CA1069779A - Coated superalloy article - Google Patents

Coated superalloy article

Info

Publication number
CA1069779A
CA1069779A CA264,401A CA264401A CA1069779A CA 1069779 A CA1069779 A CA 1069779A CA 264401 A CA264401 A CA 264401A CA 1069779 A CA1069779 A CA 1069779A
Authority
CA
Canada
Prior art keywords
percent
coating
nickel
aluminide
cobalt
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
CA264,401A
Other languages
French (fr)
Inventor
Noel B. Preston
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Raytheon Technologies Corp
Original Assignee
United Technologies Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by United Technologies Corp filed Critical United Technologies Corp
Application granted granted Critical
Publication of CA1069779A publication Critical patent/CA1069779A/en
Expired legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/01Layered products comprising a layer of metal all layers being exclusively metallic
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C19/00Alloys based on nickel or cobalt
    • C22C19/03Alloys based on nickel or cobalt based on nickel
    • C22C19/05Alloys based on nickel or cobalt based on nickel with chromium
    • C22C19/058Alloys based on nickel or cobalt based on nickel with chromium without Mo and W
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C19/00Alloys based on nickel or cobalt
    • C22C19/07Alloys based on nickel or cobalt based on cobalt
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/02Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings only including layers of metallic material
    • C23C28/023Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings only including layers of metallic material only coatings of metal elements only
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/30Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
    • C23C28/32Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one pure metallic layer
    • C23C28/321Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one pure metallic layer with at least one metal alloy layer
    • C23C28/3215Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one pure metallic layer with at least one metal alloy layer at least one MCrAlX layer
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/30Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
    • C23C28/34Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/30Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
    • C23C28/34Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates
    • C23C28/341Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates with at least one carbide layer
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/30Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
    • C23C28/34Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates
    • C23C28/345Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates with at least one oxide layer
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/30Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
    • C23C28/34Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates
    • C23C28/345Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates with at least one oxide layer
    • C23C28/3455Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates with at least one oxide layer with a refractory ceramic layer, e.g. refractory metal oxide, ZrO2, rare earth oxides or a thermal barrier system comprising at least one refractory oxide layer
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/12All metal or with adjacent metals
    • Y10T428/12493Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.]
    • Y10T428/12535Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.] with additional, spatially distinct nonmetal component
    • Y10T428/12583Component contains compound of adjacent metal
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/12All metal or with adjacent metals
    • Y10T428/12493Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.]
    • Y10T428/12736Al-base component
    • Y10T428/12743Next to refractory [Group IVB, VB, or VIB] metal-base component
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/12All metal or with adjacent metals
    • Y10T428/12493Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.]
    • Y10T428/12736Al-base component
    • Y10T428/1275Next to Group VIII or IB metal-base component
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/12All metal or with adjacent metals
    • Y10T428/12493Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.]
    • Y10T428/12771Transition metal-base component
    • Y10T428/12806Refractory [Group IVB, VB, or VIB] metal-base component
    • Y10T428/12826Group VIB metal-base component
    • Y10T428/12847Cr-base component
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/12All metal or with adjacent metals
    • Y10T428/12493Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.]
    • Y10T428/12771Transition metal-base component
    • Y10T428/12861Group VIII or IB metal-base component
    • Y10T428/12931Co-, Fe-, or Ni-base components, alternative to each other
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/12All metal or with adjacent metals
    • Y10T428/12493Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.]
    • Y10T428/12771Transition metal-base component
    • Y10T428/12861Group VIII or IB metal-base component
    • Y10T428/12944Ni-base component

Abstract

COATED SUPERALLOY ARTICLE

ABSTRACT OF THE DISCLOSURE

A protective coating is provided on gas turbine engine type superalloys comprising an interlayer adjacent the superalloy substrate a principal protective element of which comprises an aluminide of the basis metal of the substrate formed by the reaction of aluminum at high temper-ature with the substrate, and an overlayer comprising an MCrAlY-type coating where M is selected from the group consisting of cobalt, nickel and iron.

Description

~06~7~,'9 BACKGROUND OF THE INVENTION
The present invention falls generally within the coat-ing arts and relates, more particularly, to components having high temperature oxidation resistant coatings thereon which provide protection in severe environments such as those associated with advanced gas turbine engines.
Coatings of the MCrAlY-type are now well known in the art, as evidenced by the U. S. Patents to Evans et al 3,676,085; Goward et al 3,754,903; and Talboom, Jr. et al 3,542,530; all of which share a common assignee with the present invention. Typically, the MCrAlY coatings are characterized by high chromium and aluminum contents and contain yttrium in a basis metal comprising one or more of the elements selected from the group consisting of cobalt, nickel and iron. They are usually characterized as overlay coatings denoting the fact that they are deposited as the ; MCrAlY alloy on the surface to be protected and, thus, act substantially independent of the substrate in the performance of their protective function.
Aluminide coatings and processes for producing such coatings are also known and have been used for a number of years as the principal coating technique for gas turbine engine elements. In the U. S. Patent to Joseph 3,102,044, which also shares a common assignee with the present inven-tion aluminum rich slurry applied to a superalloy surface is reacted therewith to form a protective aluminide or aluminides. U. S. Patent No. 3,257,230 describes another 1(~65~7~9 aluminizing technique, i.e. the formation of a protective aluminide on alloy surfaces by a pack cementation process.
Prior to the introduction of the MCrAlY-type coatings the superalloys were, as previously mentioned, typically protected through the formation of an aluminide directly on and by reaction wi~h the superalloy surface by exposure of that surface at high temperature to aluminum or aluminum containing vapors. The principal aluminide formed was usually that of the basis metal of the substrate, i.e.
nickel, cobalt or iron. However in addition to the princi-pal aluminide the coating layer often included amounts of other ingredients present in the substrate alloy and, in most instances, the total coating comprised a composition which while acceptable nevertheless represented a compromise in terms of composition and something less than would be desired if the coating were to be optimized.
As engine environments and other demands on the coated aluminum increased in severity, the widely used aluminide found less acceptability in some circumstances and it be-came advisable to pursue further coating improvements.
Coatings, of course, play a major role in engine design acceptability. The MCrAlY-type coatings were the result of such coating improvement studies and permitted the engine designer greater flexibility in his constructions in connection with the development of advanced gas turbine engines.
With the introduction of the MCrAlY coatings it was possible to preserve or increase coating and coated component lifetimes in more severe engine environments associated with ~.06~9 the advanced engines. As previously mentioned, the MCrAlY
coatings are generally deposited on the substrate surface as the MCrAlY alloy usually by vacuum vapor deposition, sputtering or plasma spray techniques. The basic protection is provided by the deposited alloy itself which may be more closely optimized for such protection since it is substan-tially independent of the substrate itself. There is, of course, a desirable and limited interaction of the coating with the substrate metal but this is in the nature of metallurgical bonding rather than a reaction per se, and the protective elements are derived from the MCrAlY alloy rather than from the substrate.
In later developments it was suggested that additional coating improvements were achievable through the use of multiple coating layers or composite coatings. In the U. S.
Patent to Simmons 3,649,225 of the present assignee, for example, the use of a composite coating comprising a chromium or chromium rich interlayer adjacent a superalloy substrate with an MCrAly layer thereover is described.
Several other developments relating to MCrAlY-type coatings have even more recently been published in the patent literature. In U. S. Patent No. 3,849,865 a substrate to be protected is first clad with a metallic foil, such as NiCrAlSi or FeCrAlY and then that foil is covered with an aluminide layer. U. S. Patent Nos. 3,873,347 and 3,874,901 both appear to describe somewhat similar systems, referring to coating techniques where a superalloy body is first coated with an MCrAlY~type layer which is then aluminized to provide an overlayer of aluminum or an aluminide.
SUMMARY OF THE INVENTION
The present invention contemplates a coated article comprising a superalloy substrate having an aluminide coating ' composed primarily of the aluminide of the basis metal with I an overcoat comprising an MCrAlY-type alloy, wherein M is selected from the group consisting of Ni 9 Co and Fe.
Preferred embodiments of the present invention have displayed the potential of lifetimes more than three times greater than those of articles without the aluminide or without the aluminide as an interlayer.
~ESCRIPTION OF_THE PREFERRED EMBODIME~TS
The superalloys are generally those alloys charac-terized as nickel, cobalt or iron base alloys which display high strengths at high temperatures. There are a number of the superalloys which are used in gas turbine engines. Of these, the greatest physicaI demands are usually placed on those employed in blades and vanes in such engines since the blades and vanes face the highest stress at the highest temperatures.
Additionally, blades and vanes are particularly subject to the problems associated with thermal shock, differen~ial thermal growth, fatigue, errosion, etc.
Representative of the blade and vane alloys are the following nickel-base superalloys:
a) IN-100 having a nominal composition comprising 10 percent chromium, 15 percent cobalt, ~.5 percent titanium, ~0697~9 5.5 percent aluminum, 3 percent molybdenum, 0.17 percent carbon, 1 percent vanadium, 0.06 percent boron, 0.05 percent zirconium, balance nickel.
b) MAR-M200 at a composition comprising 9 percent chromium, 10 percent cobalt, 2 percent titanium, 5 percent aluminum, 1205 percent tungsten, 0.15 percent carbon, 1 percent columbium, 0.015 percent boron, 0.05 percent zir-conium, balance nickel.
c) INCONEL 792 at a nominal composition of 13 percent chromium, 10 percent cobalt, 4.5 percent titanium, 3 percent aluminum, 2 percent molybdenum, 4 percent tantalum, 4 percent tungsten, 0.2 percent carbon, 0.02 percent boron, 0.1 percent zirconium, balance nickel.
Representative cobalt-base alloys used in gas turbine engines include the following:
a) WI-52 which comprises 21 percent chromium, 11 percent tungsten, 2 percent columbium plus tantalum, 1.75 percent iron, 0.45 percent carbon, balance cobalt.
b) MAR-M509 which has a nominal composition comprising 21.5 percent chromium, 10 percent nickel, 7 percent tungsten, 3.5 percent tantalum, 0.2 percent titanium, 0.6 percent carbon, 0.5 percent zirconium, balance cobalt.
In the practice of the present invention the superalloy substrate is first provided with an aluminide coating. This coating may be accomplished by slurry, pack cementation, sputtering or any of the other techniques known in the art for this purpose. Many of the advanced blades and vanes to which the invention has particular application are provided with internal cooling passages for which surface protection is suitably provided in addition to that required on the external airfoil surfaces. When both internal and external surfaces are to be aluminized, the most preferred processes are the pack cementation or gas phase techniques.
In one aluminizing method, the parts to be coated, after thorough cleaning, were embedded in a dry powder mix contain-ing about 15 weight percent of an aluminum/12 percent silicon alloy, up to about 2.5 percent ammonium chloride, with the balance alumina. The embedded parts were then heated to a temperature of about 1400F. and held at that time for a period sufficient to produce the desired coating thickness.
Coating of external surfaces, blade roots, shroud platforms and internal passages has typically been performed in one operation. Of course, areas where coating is not desired will have been appropriately masked during the aluminizing operation.
Generally an aluminide coating thickness, including diffused zone, of 0.001-0.0025 inch has been used for all surfa~es, but obviously more or less may be acceptable or even advisable in other circumstances. Usually also the aluminum content at the surface of the aluminide has been established at about 22-36 weight percent, but variations are also possible here.
There are two principal considerations in the determina-tion of optimum aluminide coating thickness and aluminum content. The degree of protection provided is dependent to a great extent upon the amount of aluminum available in the coating. Perhaps more importantly, however, is the necessity for providing in the aluminide a firm base for the MCrAlY
overcoat, an element of which requires reasonable ductility particularly in circumstances where thermal shock conditions may exist.
Parts have also been aluminized by a higher temperature pack cementation process, wherein embedded nickel-base alloy parts are heated in a pack at a temperature up to 1900F. in a hydrogen or argon atmosphere.
Subsequent to the aluminizing operation, an MCrAlY
coating is deposited thereover. A particularly preferred NiCoCrAlY coating at a composition of about, by weight, comprising 14-22 percent chromium, 11.5-13.5 percent aluminum, 0.1-0.5 percent yttrium, 20-26 percent cobalt, balance nickel has been used.
This coating has typically been applied by vacuum vapor deposition techniques, although sputtering and plasma spray processes have also been used to apply MCrAlY coatings.
Another MCrAlY coating is the CoCrAlY alloy at a com-position by weight of about 15-21 percent chromium, 10-12 percent aluminum, 0.3-0.9 percent yttrium, balance cobalt.
The preferred processing involves vapor deposition from a molten pool of coating material in a vacuum chamber (10 Torr or better) onto a preheated part, with deposition con-tinuing until the desired thickness, typically 0.001~0.005 inch is achieved.
Following deposition, the coated article is generally dry glass bead peened. Subsequently, the coated article is subjected to a diffusion heat treatment at a temperature selected to accommodate not only the particular coating involved but also the substrate. Typically for the blade and vane alloys a heat treatment of 1975F. for about 4 hours has been found appropriate.
Testing of the coated articles, has revealed some sur-prising results.
In cyclic oxidation:
~) a nickel-base superalloy specimen coated with the NiCoCrAlY coating alone lasted 953 hours; to the onset of pitting;
b) a nickel-base superalloy specimen coated with the NiCoCrAlY coating with an aluminide overcoat survived 890 hours to the onset of pitting;
c) a specimen according to the present invention comprising a nickel-base superalloy having an aluminide interlayer and a NiCoCrAlY overcoat is currently still in test at 3177 hours with no sign of pitting to this time.
This represents a factor of greater than three for this embodiment of the present invention.
In another cyclic oxidation test:
a) a specimen having a CoCrAlY undercoat and an aluminide overcoat exhibited pitting at163 hours;
b) a specimen according to the present invention having an aluminide interlayer and a CoCrAlY overcoat revealed a time to pitting of 274 hours.
The substantial and unexpected superiority of the present invention was thus conclusively demonstrated.

~0697 ~9 ~ lthough the present invention has been described in connection with certain examples and preferred embodiments, these are illustrative only. Improvements to and modifica-tion thereof may be made thereto in the true spirit and within the scope of the invention.

Claims (9)

The embodiments of the invention in which an exclusive property or privilege is claimed are defined as follows:
1. A coated article comprising:
a superalloy substrate, a first coating thereon consisting essentially of an aluminide of the basis metal of the substrate, and an MCrAlY coating thereover, where M is selected from the group consisting of Ni, Co and Fe.
2. A coated article comprising:
a superalloy substrate the basis metal of which is an element selected from the group consisting of nickel, cobalt or iron, a first protective coating thereon the principal protective element of which consists essentially of a ductile aluminide of the basis metal: and an MCrAlY overlay coating over the first coating, where M is selected from the group consisting of nickel, cobalt and iron.
3. A coated article according to claim 2 wherein:
the MCrAlY coating has a composition which consists essentially of, by weight, 15-35 percent chromium, 10-20 percent aluminum, 0.01-3 percent yttrium, balance selected from the group consisting of nickel, cobalt and iron.
4. A coated gas turbine engine component which comprises:
a nickel-base superalloy substrate, a ductile nickel aluminide coating formed at the substrate surface, and a NiCoCrAlY coating over the aluminide coating.
5. A coated component according to claim 4 wherein:
the NiCoCrAlY coating has a composition consisting essentially of, by weight, 11-48 percent cobalt, at least 15 percent nickel, 10-40 percent chromium, 9-15 percent aluminum, and 0.01-1 percent yttrium.
6. A coated component according to claim 5 wherein:
the NiCoCrAlY coating has a composition consisting essentially of, by weight, 25-40 percent cobalt, 14-22 per-cent chromium, 10-13 percent aluminum 0.01-1 percent yttrium, balance essentially nickel.
7. A coated gas turbine engine component which com-prises:
a nickel-base superalloy substrate, a ductile nickel aluminide layer on the substrate surface, and a CoCrAlY coating over the aluminide layer.
8. A coated component according to claim 7 wherein:
the CoCrAlY coating has a composition which consists essentially of, by weight, 15-40 percent chromium, 10-25 percent aluminum, 0.01-5 percent yttrium, balance cobalt.
9. A coated component according to claim 8 wherein:
the CoCrAlY coating has a composition which consists essentially of, by weight, 15-25 percent chromium, 11-14 percent aluminum, 0.1-1 percent yttrium, balance cobalt.
CA264,401A 1976-01-13 1976-10-28 Coated superalloy article Expired CA1069779A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US05/648,853 US4005989A (en) 1976-01-13 1976-01-13 Coated superalloy article

Publications (1)

Publication Number Publication Date
CA1069779A true CA1069779A (en) 1980-01-15

Family

ID=24602495

Family Applications (1)

Application Number Title Priority Date Filing Date
CA264,401A Expired CA1069779A (en) 1976-01-13 1976-10-28 Coated superalloy article

Country Status (15)

Country Link
US (1) US4005989A (en)
JP (1) JPS6044390B2 (en)
AU (1) AU502359B2 (en)
BE (1) BE850138A (en)
BR (1) BR7700185A (en)
CA (1) CA1069779A (en)
DE (1) DE2657288C2 (en)
DK (1) DK549976A (en)
FR (1) FR2338386A1 (en)
GB (1) GB1526911A (en)
IL (1) IL51081A (en)
IT (1) IT1076201B (en)
NL (1) NL7614128A (en)
NO (1) NO147019C (en)
SE (1) SE416742B (en)

Families Citing this family (97)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA1082949A (en) * 1976-06-03 1980-08-05 William F. Schilling High-temperature austenitic alloys and articles utilizing the same
US4101713A (en) * 1977-01-14 1978-07-18 General Electric Company Flame spray oxidation and corrosion resistant superalloys
US4101715A (en) * 1977-06-09 1978-07-18 General Electric Company High integrity CoCrAl(Y) coated nickel-base superalloys
USRE30995E (en) * 1977-06-09 1982-07-13 General Electric Company High integrity CoCrAl(Y) coated nickel-base superalloys
US4219592A (en) * 1977-07-11 1980-08-26 United Technologies Corporation Two-way surfacing process by fusion welding
US4123595A (en) * 1977-09-22 1978-10-31 General Electric Company Metallic coated article
US4123594A (en) * 1977-09-22 1978-10-31 General Electric Company Metallic coated article of improved environmental resistance
US4198442A (en) * 1977-10-31 1980-04-15 Howmet Turbine Components Corporation Method for producing elevated temperature corrosion resistant articles
US4284688A (en) * 1978-12-21 1981-08-18 Bbc Brown, Boveri & Company Limited Multi-layer, high-temperature corrosion protection coating
US4229234A (en) * 1978-12-29 1980-10-21 Exxon Research & Engineering Co. Passivated, particulate high Curie temperature magnetic alloys
US4218007A (en) * 1979-02-22 1980-08-19 General Electric Company Method of diffusion bonding duplex sheet cladding to superalloy substrates
US4339509A (en) * 1979-05-29 1982-07-13 Howmet Turbine Components Corporation Superalloy coating composition with oxidation and/or sulfidation resistance
US4313760A (en) * 1979-05-29 1982-02-02 Howmet Turbine Components Corporation Superalloy coating composition
US4346137A (en) * 1979-12-19 1982-08-24 United Technologies Corporation High temperature fatigue oxidation resistant coating on superalloy substrate
US4326011A (en) * 1980-02-11 1982-04-20 United Technologies Corporation Hot corrosion resistant coatings
US4615865A (en) * 1981-08-05 1986-10-07 United Technologies Corporation Overlay coatings with high yttrium contents
US4451496A (en) * 1982-07-30 1984-05-29 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Coating with overlay metallic-cermet alloy systems
US4743514A (en) * 1983-06-29 1988-05-10 Allied-Signal Inc. Oxidation resistant protective coating system for gas turbine components, and process for preparation of coated components
US5514482A (en) * 1984-04-25 1996-05-07 Alliedsignal Inc. Thermal barrier coating system for superalloy components
DE3426201A1 (en) * 1984-07-17 1986-01-23 BBC Aktiengesellschaft Brown, Boveri & Cie., Baden, Aargau PROCESS FOR APPLYING PROTECTIVE LAYERS
GB2167773A (en) * 1984-11-29 1986-06-04 Secr Defence Improvements in or relating to coating processes
US4897315A (en) * 1985-10-15 1990-01-30 United Technologies Corporation Yttrium enriched aluminide coating for superalloys
JPS62185869A (en) * 1986-02-12 1987-08-14 Hitachi Ltd Alloy coated heat resistant member
US4729799A (en) * 1986-06-30 1988-03-08 United Technologies Corporation Stress relief of single crystal superalloy articles
US4910092A (en) * 1986-09-03 1990-03-20 United Technologies Corporation Yttrium enriched aluminide coating for superalloys
GB2199849B (en) * 1987-01-16 1991-05-15 Rolls Royce Plc Superalloy surface treatment against vapourisation
US4916022A (en) * 1988-11-03 1990-04-10 Allied-Signal Inc. Titania doped ceramic thermal barrier coatings
US5015502A (en) * 1988-11-03 1991-05-14 Allied-Signal Inc. Ceramic thermal barrier coating with alumina interlayer
US4933239A (en) * 1989-03-06 1990-06-12 United Technologies Corporation Aluminide coating for superalloys
US5273712A (en) * 1989-08-10 1993-12-28 Siemens Aktiengesellschaft Highly corrosion and/or oxidation-resistant protective coating containing rhenium
DE3926479A1 (en) * 1989-08-10 1991-02-14 Siemens Ag RHENIUM-PROTECTIVE COATING, WITH GREAT CORROSION AND / OR OXIDATION RESISTANCE
US5582635A (en) * 1990-08-10 1996-12-10 Siemens Aktiengesellschaft High temperature-resistant corrosion protection coating for a component in particular a gas turbine component
US5401307A (en) * 1990-08-10 1995-03-28 Siemens Aktiengesellschaft High temperature-resistant corrosion protection coating on a component, in particular a gas turbine component
AU3323193A (en) * 1991-12-24 1993-07-28 Detroit Diesel Corporation Thermal barrier coating and method of depositing the same on combustion chamber component surfaces
US5397649A (en) * 1992-08-26 1995-03-14 Alliedsignal Inc. Intermediate coating layer for high temperature rubbing seals for rotary regenerators
US5352540A (en) * 1992-08-26 1994-10-04 Alliedsignal Inc. Strain-tolerant ceramic coated seal
GB9414859D0 (en) * 1994-07-22 1994-09-14 Baj Coatings Ltd Protective coating
WO1996015284A1 (en) * 1994-11-09 1996-05-23 Cametoid Advanced Technologies Inc. Method of producing reactive element modified-aluminide diffusion coatings
US6103386A (en) * 1994-11-18 2000-08-15 Allied Signal Inc Thermal barrier coating with alumina bond inhibitor
US5562998A (en) * 1994-11-18 1996-10-08 Alliedsignal Inc. Durable thermal barrier coating
US5512382A (en) * 1995-05-08 1996-04-30 Alliedsignal Inc. Porous thermal barrier coating
US5702288A (en) * 1995-08-30 1997-12-30 United Technologies Corporation Method of removing excess overlay coating from within cooling holes of aluminide coated gas turbine engine components
US5987882A (en) * 1996-04-19 1999-11-23 Engelhard Corporation System for reduction of harmful exhaust emissions from diesel engines
US6422008B2 (en) 1996-04-19 2002-07-23 Engelhard Corporation System for reduction of harmful exhaust emissions from diesel engines
US6095755A (en) * 1996-11-26 2000-08-01 United Technologies Corporation Gas turbine engine airfoils having increased fatigue strength
US6924040B2 (en) 1996-12-12 2005-08-02 United Technologies Corporation Thermal barrier coating systems and materials
US6177200B1 (en) 1996-12-12 2001-01-23 United Technologies Corporation Thermal barrier coating systems and materials
US6224963B1 (en) 1997-05-14 2001-05-01 Alliedsignal Inc. Laser segmented thick thermal barrier coatings for turbine shrouds
US20040180233A1 (en) * 1998-04-29 2004-09-16 Siemens Aktiengesellschaft Product having a layer which protects against corrosion. and process for producing a layer which protects against corrosion
US6284390B1 (en) * 1998-06-12 2001-09-04 United Technologies Corporation Thermal barrier coating system utilizing localized bond coat and article having the same
US6372299B1 (en) * 1999-09-28 2002-04-16 General Electric Company Method for improving the oxidation-resistance of metal substrates coated with thermal barrier coatings
US6435830B1 (en) * 1999-12-20 2002-08-20 United Technologies Corporation Article having corrosion resistant coating
SG96589A1 (en) * 1999-12-20 2003-06-16 United Technologies Corp Methods of providing article with corrosion resistant coating and coated article
US6482537B1 (en) 2000-03-24 2002-11-19 Honeywell International, Inc. Lower conductivity barrier coating
US6585864B1 (en) 2000-06-08 2003-07-01 Surface Engineered Products Corporation Coating system for high temperature stainless steel
DE10029810A1 (en) * 2000-06-16 2001-12-20 Mahle Gmbh Piston for diesel engine; has steel base with combustion mould and has thermal sprayed NiCrAl, CoCrAl or FeCrAl alloy coating, which is thicker at mould edge
US6544351B2 (en) 2001-07-12 2003-04-08 General Electric Company Compositions and methods for producing coatings with improved surface smoothness and articles having such coatings
US6655369B2 (en) * 2001-08-01 2003-12-02 Diesel Engine Transformations Llc Catalytic combustion surfaces and method for creating catalytic combustion surfaces
US6924046B2 (en) * 2001-10-24 2005-08-02 Siemens Aktiengesellschaft Rhenium-containing protective layer for protecting a component against corrosion and oxidation at high temperatures
JP2003147464A (en) 2001-11-02 2003-05-21 Tocalo Co Ltd Member with high-temperature strength
EP1411148A1 (en) * 2002-10-15 2004-04-21 ALSTOM Technology Ltd Method of depositing a MCrALY-coating on an article and the coated article
EP1439245B1 (en) * 2003-01-10 2005-11-23 Siemens Aktiengesellschaft A protective coating
US7094450B2 (en) * 2003-04-30 2006-08-22 General Electric Company Method for applying or repairing thermal barrier coatings
EP1524334A1 (en) * 2003-10-17 2005-04-20 Siemens Aktiengesellschaft Protective coating for protecting a structural member against corrosion and oxidation at high temperatures and structural member
EP1541713A1 (en) * 2003-12-11 2005-06-15 Siemens Aktiengesellschaft Metallic Protective Coating
EP1734145A1 (en) * 2005-06-13 2006-12-20 Siemens Aktiengesellschaft Coating system for a component having a thermal barrier coating and an erosion resistant coating, method for manufacturing and method for using said component
EP1780294A1 (en) * 2005-10-25 2007-05-02 Siemens Aktiengesellschaft Alloy, protective coating for protecting a structural member against corrosion and oxidation at high temperatures and structural member
EP1783236A1 (en) 2005-11-04 2007-05-09 Siemens Aktiengesellschaft Alloy, protecting coating for a component protection against corrosion and oxidation at high temperature and component
DE502005010521D1 (en) 2005-11-24 2010-12-23 Siemens Ag Alloy, protective layer and component
EP1790743A1 (en) 2005-11-24 2007-05-30 Siemens Aktiengesellschaft Alloy, protective layer and component
EP1793008A1 (en) * 2005-12-02 2007-06-06 Siemens Aktiengesellschaft Alloy, protective coating for protecting a structural member against corrosion and oxidation at high temperatures and structural member
EP1798299B1 (en) 2005-12-14 2008-10-08 Siemens Aktiengesellschaft Alloy, protective coating and component
EP1806418A1 (en) 2006-01-10 2007-07-11 Siemens Aktiengesellschaft Alloy, protective coating for protecting a structural member against corrosion and oxidation at high temperatures and structural member
US20100159277A1 (en) * 2007-09-21 2010-06-24 General Electric Company Bilayer protection coating and related method
EP2216421A1 (en) * 2009-01-29 2010-08-11 Siemens Aktiengesellschaft Alloy, protective layer and component
EP2239346A1 (en) * 2009-04-09 2010-10-13 Siemens Aktiengesellschaft Slurry composition for aluminising a superalloy component
EP2354260A1 (en) 2010-01-12 2011-08-10 Siemens Aktiengesellschaft Alloy, protective layer and component
EP2345748A1 (en) 2010-01-14 2011-07-20 Siemens Aktiengesellschaft Alloy, protective layer and component
EP2392684A1 (en) 2010-06-02 2011-12-07 Siemens Aktiengesellschaft Alloy, protective layer and component
CN103189545A (en) 2010-11-02 2013-07-03 西门子公司 Alloy, protective coating, and component
EP2474413A1 (en) 2011-01-06 2012-07-11 Siemens Aktiengesellschaft Alloy, protective coating and component
EP2474414A1 (en) 2011-01-06 2012-07-11 Siemens Aktiengesellschaft Alloy, protective coating and component
WO2013007281A1 (en) 2011-07-08 2013-01-17 Siemens Aktiengesellschaft Layer system having a two-ply metal layer
EP2557201A1 (en) 2011-08-09 2013-02-13 Siemens Aktiengesellschaft Alloy, protective coating and component
US9267218B2 (en) * 2011-09-02 2016-02-23 General Electric Company Protective coating for titanium last stage buckets
US9556748B2 (en) 2011-09-12 2017-01-31 Siemens Aktiengesellschaft Layer system with double MCrAlX metallic layer
EP2568054A1 (en) 2011-09-12 2013-03-13 Siemens Aktiengesellschaft Alloy, protective coating and component
US20130115072A1 (en) * 2011-11-09 2013-05-09 General Electric Company Alloys for bond coatings and articles incorporating the same
EP2639336A1 (en) * 2012-03-16 2013-09-18 Siemens Aktiengesellschaft Coating system with NiCoCrAlY double-protection coat with varying chromium content and alloy
US10539039B2 (en) * 2012-08-14 2020-01-21 Safran Aircraft Engines Method of measuring the temperature reached by a part, in particular a turbine engine part
EP2971686B1 (en) 2013-03-15 2018-10-17 United Technologies Corporation Coated articles and manufacture methods
EP2971687A4 (en) 2013-03-15 2016-11-02 United Technologies Corp Coated articles and manufacture methods
US20140363698A1 (en) * 2013-06-11 2014-12-11 General Electric Company Composition and component
CN111041436B (en) * 2019-11-15 2022-04-05 中国科学院宁波材料技术与工程研究所 Fe-Cr-Al-Y protective coating for zirconium alloy protection and preparation method and application thereof
CN111575645A (en) * 2020-06-30 2020-08-25 中国航发动力股份有限公司 Oxidation-resistant coating containing aluminum storage layer and preparation method thereof
CN113976893A (en) * 2021-11-15 2022-01-28 上海东震冶金工程技术有限公司 Preparation method for strengthening and prolonging service life of flame cleaning burner
GB202118927D0 (en) * 2021-12-23 2022-02-09 Rolls Royce Plc Method of forming protective coating, protective coating, and coated article

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3542530A (en) * 1968-05-23 1970-11-24 United Aircraft Corp Nickel or cobalt base with a coating containing iron chromium and aluminum
US3649225A (en) * 1969-11-17 1972-03-14 United Aircraft Corp Composite coating for the superalloys
US3754903A (en) * 1970-09-15 1973-08-28 United Aircraft Corp High temperature oxidation resistant coating alloy
US3676085A (en) * 1971-02-18 1972-07-11 United Aircraft Corp Cobalt base coating for the superalloys
US3849865A (en) * 1972-10-16 1974-11-26 Nasa Method of protecting the surface of a substrate
US3869779A (en) * 1972-10-16 1975-03-11 Nasa Duplex aluminized coatings

Also Published As

Publication number Publication date
GB1526911A (en) 1978-10-04
NO770070L (en) 1977-07-14
SE416742B (en) 1981-02-02
AU502359B2 (en) 1979-07-19
IL51081A (en) 1979-12-30
IT1076201B (en) 1985-04-27
JPS5288226A (en) 1977-07-23
NO147019B (en) 1982-10-11
US4005989A (en) 1977-02-01
FR2338386B1 (en) 1982-07-02
NL7614128A (en) 1977-07-15
DE2657288C2 (en) 1984-06-07
SE7614295L (en) 1977-07-13
NO147019C (en) 1983-01-19
BE850138A (en) 1977-05-02
BR7700185A (en) 1977-09-20
IL51081A0 (en) 1977-02-28
JPS6044390B2 (en) 1985-10-03
FR2338386A1 (en) 1977-08-12
DK549976A (en) 1977-07-14
AU2045776A (en) 1978-06-15
DE2657288A1 (en) 1977-07-14

Similar Documents

Publication Publication Date Title
CA1069779A (en) Coated superalloy article
US4447503A (en) Superalloy coating composition with high temperature oxidation resistance
US4477538A (en) Platinum underlayers and overlayers for coatings
US4313760A (en) Superalloy coating composition
US4897315A (en) Yttrium enriched aluminide coating for superalloys
CA1169267A (en) Superalloy coating composition with oxidation and/or sulfidation resistance
US4933239A (en) Aluminide coating for superalloys
US4152223A (en) Plasma sprayed MCrAlY coating and coating method
US5498484A (en) Thermal barrier coating system with hardenable bond coat
US5238752A (en) Thermal barrier coating system with intermetallic overlay bond coat
CA1173670A (en) Nickel/cobalt-chromium-base alloys for gas turbine engine components
US6682827B2 (en) Nickel aluminide coating and coating systems formed therewith
US6964791B2 (en) High-temperature articles and method for making
US5334263A (en) Substrate stabilization of diffusion aluminide coated nickel-based superalloys
EP2145969B1 (en) Economic oxidation and fatigue resistant metallic coating
JPS6117905B2 (en)
US4615864A (en) Superalloy coating composition with oxidation and/or sulfidation resistance
US4326011A (en) Hot corrosion resistant coatings
US20100068556A1 (en) Diffusion barrier layer and methods of forming
JPS6048590B2 (en) coated metal articles
CA2034336A1 (en) Coating systems for titanium oxidation protection
CA2292370C (en) Improved coating and method for minimizing consumption of base material during high temperature service
US4371570A (en) Hot corrosion resistant coatings
US6416882B1 (en) Protective layer system for gas turbine engine component
EP1411148A1 (en) Method of depositing a MCrALY-coating on an article and the coated article

Legal Events

Date Code Title Description
MKEX Expiry