CA1159160A - Pattern forming apparatus - Google Patents

Pattern forming apparatus

Info

Publication number
CA1159160A
CA1159160A CA000398647A CA398647A CA1159160A CA 1159160 A CA1159160 A CA 1159160A CA 000398647 A CA000398647 A CA 000398647A CA 398647 A CA398647 A CA 398647A CA 1159160 A CA1159160 A CA 1159160A
Authority
CA
Canada
Prior art keywords
pattern
forming apparatus
photoresist layer
liquid
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
CA000398647A
Other languages
French (fr)
Inventor
Akihiro Takanashi
Tatsuo Harada
Masamoto Akeyama
Yataro Kondo
Toshiei Kurosaki
Shinji Kuniyoshi
Sumio Hosaka
Yoshio Kawamura
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Application granted granted Critical
Publication of CA1159160A publication Critical patent/CA1159160A/en
Expired legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70216Mask projection systems
    • G03F7/70241Optical aspects of refractive lens systems, i.e. comprising only refractive elements
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/20Exposure; Apparatus therefor
    • G03F7/2041Exposure; Apparatus therefor in the presence of a fluid, e.g. immersion; using fluid cooling means
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70216Mask projection systems
    • G03F7/70341Details of immersion lithography aspects, e.g. exposure media or control of immersion liquid supply

Abstract

ABSTRACT OF THE DISCLOSURE
There is disclosed a pattern forming apparatus for projecting a pattern which is formed on a reticle upon a photoresist layer on a substrate which comprises an illumination system for illuminating the pattern for forming an optical image, a reduction lenses for reducing the optical pattern image at a certain reduction ratio and projecting the reduced optical pattern image upon the photoresist layer formed on the substrate for exposing the photoresist layer, and liquid sustaining means for filling a gap between at least a portion of the reduction lenses and the photoresist layer with an optically transparent liquid having a refractive index of more than 1 (one).

Description

1 ~591~) 1 This invention relates t:o an apparatus for forming a pattern of a large scale integration semi-conductor element by utilizing a fine pattern.
Of processes in fabrication of semiconductors, lithography process for the formation of a fine pattern on a substrate is the most important and photolithography using light plays the leading role today in the lithography process.
In the lithography process, as larger integra-tion of the semiconductor elements prevails, it isrequired to improve resolution of the fine pattern and pattern alignment necessary for the formation of the fine pattern at a desired position.
With the photolithography, however, the wave-length of light for exposure constrains the resolutionto a limit in the formation of a fine pattern having a line width of about 1 ~m.
In order to assure the pattern alignment, it is also required to detect the position of the pattern to be formed on the substrate with high precision.
Description will be made hereinbelow in conjunction with the accompanying drawings, in which:
Fig. 1 is a fragmentary sectional view of a substrate useful in explaining disadvantages encountered in a prior art pattern forming apparatus;

1 E~ig. ~ is a schematic diagram showlng a fundamental construction of a pattern forming apparatus embodying the invention;
Flg. 3 is a schematic diagram of another embodiment of the invention; and Fig. 4 is a graph useful in explaining effects brought about by the pattern forming apparatus of the invention.
Referring to Fig. 1, a pattern 10 formed on a substrate 1 and to be detected for aligning the sub-strate 1 is covered with a photoresist layer 2 with an uneven surface. Therefore, refraction of light for pattern detection becomes irregular, thus impairing precise position detection.
This invention contemplates the elimination of the above drawbacks and has for its object to provide a novel pattern forming apparatus effective to improve resolution of a fine pattern and precision of the pattern alignment.
According to one aspect of the present inven-tion, there is provided a pattern forming apparatus for projecting a pattern, which is formed in advance on a reticle, upon a workpiece at a certain reduction ratio, comprising an illumination system for illuminating the pattern for forming an optical pattern image, reduction lenses for projecting the optical pattern image at a certain reduction ratio upon a photoresist iayer formed on a substrate to expose the photoresist layer, and 1 ~ 5 ~ o 1 liquid sustaining rneans for filling a yap between at leas-t a portion of the reduction lenses and the photo-resist layer with an opticall~ transparent liquid having a refractive index of move than l (one~.
Now, description will be made in detail, by way of example, on preferred embodiments of this inven-tion.
The fundamental principle of the present invention will first be descrlbed. In general, the resolution limit R (~m) of a pattern projection optics used for the pattern formation for semiconductor elements is expressed as, R = 0.61 x n x sln ~

where ~: wavelength (~m) of light in vacuum used for exposure, n: refractive index of ambient atmosphere in an exposure system, and sin ~: fixed value of reduction lenses.

For larger integration of semiconductor elements, the pattern for the formation of the semi-conductor element should be finely drawn and the resolution limit R of the pattern projection optics should be improved.
Accordingly, it has hitherto been contrived to minimize the exposure light wavelength or increase the o 1 fi~ed ~ialue sin ) o~ the reduction lenses. However, physical conditioll constrains ~he variatlon of these quantities to limits. It is found that the conven-tional pattern projection and exposure has assumed to carry out the e~posure in air or in vacuum in which n = 1 always stands. The prese~t invention makes it possible to drastically improve the resolution limit R by using an optically transparent liquid having a refractive index n of more than 1.
Specifically, a pattern forming apparatus 20 of the invention has a fundamental construction as shown in Fig. 2. The apparatus 20 comparises an illumination system 6 comprised of a lamp housing unit and condenser lenses (not shown), a reticle 5 provided with a pattern, reduction lenses 4, a semiconductor substrate 1 carried on a wafer stage (not shown) and having a surface on which a photoresist layer 2 is formed, a liquid layer 3 filling a gap between the photoresist layer 2 and at least a portion of the reduction lenses 4, and a pattern detector 7 for positioning the reticle 5 and the sub-strate 1.
In operation, a positioning pattern formed on the reticle 5 and a positioning pattern 10 formed on the substrate 1 are first brought into alignment by means of the pattern detector 7 through the reduction lenses 4. An optical path 11 in this alignment process is shown by solid lines. Then, the reticle 5 provided with a predetermined magnified pattern is illuminated ~ ~ s~

1 by the illumination sys-tem 6 to form an optical pa-ttern image o~. the magnified pattern. This optical pattern image is reduced and ~rojected b~ the reduction lenses 4 upon the photoresi.st layer 2 coated on the semiconduc-tor substrate 1 to e~pose the photoresist layer 2. An optical path 12 in this process is shown by dotted lines. After the first exposure process, the wafer stage carrying the semiconductor substrate 1 is moved tstepped) and a next exposure field is exposed (i.e.
exposure is repeated) in the same manner as the first exposure process. By repeating the exposure process, a predetermined pattern is formed over the entire area of the substrate 1. The pattern forming apparatus 20 of the type as described above is usually termed a reduction projection aligner, and its general construction is referred to as STEP & REPEAT CAMERA, for the detail of which reference may be made to US patent No. 4,057,347.
The pattern forming apparatus 20, according to an embodiment of the present invention is featured by the use of the liquid layer 3 formed and sustained between the reduction lenses 4 and the photoresist layer 2 as has already been described above. The present embodiment defines the pattern forming apparatus 20 by the construc-tion wherein the semiconductor substrate 1 provided with the photoresist layer 2 and a portion or a whole of the reduction lenses 4 are immersed in the liquid layer 3. This liquid layer 3 contains a liquid which can transmit the optical pattern image, that is, 9 ~
1 opticall~ transparent and has a refractive index of more than i (one). Needless to say, the liquid should not be reactlve with materials of the reductlon lenses 4, photoresist layer 2 and semiconductor substrate 1, i.e.
should have chemically s-table characteristics. Examplified as the liquid of this nature are trichlorotrifluoroethane (C2C13F3), chloro~enzene (C6H5Cl~, and water.
In order to form and sustain the liquid layer 3, the liquid is filled in a pool 19 and the reduction lenses 4 and the semiconductor substrate 1 are disposed in the pool 19. Alternatively, in accordance with another embodiment 20' of the invention as shown in Fig. 3, a member 9 may be provided which surrounds the reduction lenses 4 and forms and sustains the liquid layer 3, and the sustaining memker 9 may be equipped with a nozzle 13. Liquid supplied to the nozzle 13 in a direction of an arrow 8 may be drawn out toward the semiconductor substrate 1. With this modification also, the reduction lenses 4 and the photoresist layer 2 are put in immersion in the liquid layer 3.
Acccrding to the foregoing embodiments, when the refractive index n of atmosphere ambient of the exposure system is varied to be more than 1 (one) under the condition that a high resolution reduction lenses 4 usable and available for this invention has a fixed value as defined by sin ~ = 0.28 at a wavelength ~ =
0.436 ~m, the resolution limit R is improved as shown in Fig. 4.

V

1 Speci ically, while the conventional exposure in air achieves a resolvable line width or resolution limit R of 0.95 ~m, the use of a liquid of, for example, n = 1.36 or n = 1.53 such as trichlorotrifluoroethane or chlorobenzene permits a drastic irnprovement of the resolution limit R to 0.69 ~m or 0.62 ~m.
When the refractive indices of the photoresist layer 2 formed on the substrate 1 and of the liquid layer 3 are made equal or almost equal, there occurs no or almost no such error in position detection, which is ascribed to the unevenness of the photoresist layer and has occurred in the conventional system upon detection of the pattern 10 by the position detector 7, even with a photoresist layer 2 having an uneven surface as shown in Fig. 2. In other words, the optical affect of the unevenness of the photoresist layer 2 can be eliminated essentially by melting the optical interface at the photoresist surface in an optically uniform medium, thereby ensuring a stable and highly precise pattern detection.
The present invention is also advantageous in that since the liquid used in the invention can be kept clean by, for example, distillation. It is expected that failure due to the deposition of dusts contained in air to the surface of the photoresist layer 2, which - would occur in the conventional apparatus, can be prevented. Especially, when forming a fine exposure field of less than 1 ~m line width with a reduction projection 1 aligner, difficulties have been encountered ln removing fine dusts contained in air ~,~'r.ich may otherwise be deposited to the ~ine pattern. But, such difficulties can advantageollsly be overcome by the present invention.
Further, since the liquid layer 3 has a larger heat capacity than air, the substrate l can be less affected by temperature variatlons in the course of exposure and possible alignment error due to in-plane distortion of the substrate can be prevented in advance.
While -the foregoing embodiments have been described by way of the reduction projection aligner, the present invention may also be applied advantageously to a 1 : 1 projection aligner for forming a pattern on a substrate, and a checker or a measuring instrument for a fine pattern on a substrate.

Claims (6)

WHAT IS CLAIMIED IS:
1. A pattern forming apparatus for projecting a pattern which is formed on a reticle upon a photoresist layer on a substrate, comprising:
an illumination system for illuminating said pattern and forming an optical pattern image;
reduction lenses for projecting said optical pattern image at a certain reduction ratio upon the photoresist layer formed on the substrate for exposing the photoresist layer; and liquid sustaining means for filling a gap between at least a portion of said reduction lenses and said photoresist layer with an optically transparent liquid having a refractive index of more than 1 (one).
2. A pattern forming apparatus according to Claim 1, wherein said liquid has substantially the same refractive index as that of a material of said photo-resist layer.
3. A pattern forming apparatus according to Claim 1, further comprising a pattern detector interposed between said illumination system and said reticle for detecting the alignment of pattern between said reticle and said substrate.
4. A pattern forming apparatus according to Claim 1, wherein said substrate comprises a semiconductor substrate.
5. A pattern forming apparatus according to Claim 1, wherein said liquid sustaining means comprises a nozzle for drawing in the liquid.
6. A pattern forming apparatus according to Claim 1, wherein said liquid is trichlorotrifluoroethane or chlorobenzene.
CA000398647A 1981-03-18 1982-03-17 Pattern forming apparatus Expired CA1159160A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP37977/81 1981-03-18
JP56037977A JPS57153433A (en) 1981-03-18 1981-03-18 Manufacturing device for semiconductor

Publications (1)

Publication Number Publication Date
CA1159160A true CA1159160A (en) 1983-12-20

Family

ID=12512621

Family Applications (1)

Application Number Title Priority Date Filing Date
CA000398647A Expired CA1159160A (en) 1981-03-18 1982-03-17 Pattern forming apparatus

Country Status (5)

Country Link
US (1) US4480910A (en)
EP (1) EP0060729B1 (en)
JP (1) JPS57153433A (en)
CA (1) CA1159160A (en)
DE (1) DE3272511D1 (en)

Families Citing this family (439)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB8919617D0 (en) * 1989-08-30 1989-10-11 Crosfield Electronics Ltd Film transparency holder
JP2753930B2 (en) * 1992-11-27 1998-05-20 キヤノン株式会社 Immersion type projection exposure equipment
JP3221226B2 (en) * 1994-03-30 2001-10-22 キヤノン株式会社 Illumination apparatus and projection exposure apparatus using the same
WO1999049504A1 (en) * 1998-03-26 1999-09-30 Nikon Corporation Projection exposure method and system
US7187503B2 (en) * 1999-12-29 2007-03-06 Carl Zeiss Smt Ag Refractive projection objective for immersion lithography
KR100866818B1 (en) * 2000-12-11 2008-11-04 가부시키가이샤 니콘 Projection optical system and exposure apparatus comprising the same
WO2002091078A1 (en) * 2001-05-07 2002-11-14 Massachusetts Institute Of Technology Methods and apparatus employing an index matching medium
US7092069B2 (en) * 2002-03-08 2006-08-15 Carl Zeiss Smt Ag Projection exposure method and projection exposure system
DE10210899A1 (en) * 2002-03-08 2003-09-18 Zeiss Carl Smt Ag Refractive projection lens for immersion lithography
KR20050035890A (en) * 2002-08-23 2005-04-19 가부시키가이샤 니콘 Projection optical system and method for photolithography and exposure apparatus and method using same
US6788477B2 (en) * 2002-10-22 2004-09-07 Taiwan Semiconductor Manufacturing Co., Ltd. Apparatus for method for immersion lithography
EP1429188B1 (en) * 2002-11-12 2013-06-19 ASML Netherlands B.V. Lithographic projection apparatus
DE60335595D1 (en) * 2002-11-12 2011-02-17 Asml Netherlands Bv Immersion lithographic apparatus and method of making a device
SG121822A1 (en) * 2002-11-12 2006-05-26 Asml Netherlands Bv Lithographic apparatus and device manufacturing method
CN101470360B (en) * 2002-11-12 2013-07-24 Asml荷兰有限公司 Immersion lithographic apparatus and device manufacturing method
SG121818A1 (en) 2002-11-12 2006-05-26 Asml Netherlands Bv Lithographic apparatus and device manufacturing method
US9482966B2 (en) 2002-11-12 2016-11-01 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US10503084B2 (en) 2002-11-12 2019-12-10 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US7110081B2 (en) * 2002-11-12 2006-09-19 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US7372541B2 (en) 2002-11-12 2008-05-13 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
EP1420298B1 (en) * 2002-11-12 2013-02-20 ASML Netherlands B.V. Lithographic apparatus
SG121819A1 (en) 2002-11-12 2006-05-26 Asml Netherlands Bv Lithographic apparatus and device manufacturing method
DE10253679A1 (en) * 2002-11-18 2004-06-03 Infineon Technologies Ag Optical arrangement used in the production of semiconductor components comprises a lens system arranged behind a mask, and a medium having a specified refractive index lying between the mask and the lens system
SG131766A1 (en) * 2002-11-18 2007-05-28 Asml Netherlands Bv Lithographic apparatus and device manufacturing method
DE60319658T2 (en) * 2002-11-29 2009-04-02 Asml Netherlands B.V. Lithographic apparatus and method of making a device
DE10258718A1 (en) * 2002-12-09 2004-06-24 Carl Zeiss Smt Ag Projection lens, in particular for microlithography, and method for tuning a projection lens
JP4352874B2 (en) 2002-12-10 2009-10-28 株式会社ニコン Exposure apparatus and device manufacturing method
US7242455B2 (en) * 2002-12-10 2007-07-10 Nikon Corporation Exposure apparatus and method for producing device
CN100446179C (en) 2002-12-10 2008-12-24 株式会社尼康 Exposure apparatus and device manufacturing method
TW200421444A (en) 2002-12-10 2004-10-16 Nippon Kogaku Kk Optical device and projecting exposure apparatus using such optical device
EP1571698A4 (en) 2002-12-10 2006-06-21 Nikon Corp Exposure apparatus, exposure method and method for manufacturing device
SG150388A1 (en) 2002-12-10 2009-03-30 Nikon Corp Exposure apparatus and method for producing device
SG171468A1 (en) 2002-12-10 2011-06-29 Nikon Corp Exposure apparatus and method for producing device
US6992750B2 (en) * 2002-12-10 2006-01-31 Canon Kabushiki Kaisha Exposure apparatus and method
US7948604B2 (en) * 2002-12-10 2011-05-24 Nikon Corporation Exposure apparatus and method for producing device
DE10257766A1 (en) * 2002-12-10 2004-07-15 Carl Zeiss Smt Ag Method for setting a desired optical property of a projection lens and microlithographic projection exposure system
US7514699B2 (en) * 2002-12-19 2009-04-07 Koninklijke Philips Electronics N.V. Method and device for irradiating spots on a layer
CN100385535C (en) * 2002-12-19 2008-04-30 皇家飞利浦电子股份有限公司 Method and device for irradiating spots on a layer
DE10261775A1 (en) 2002-12-20 2004-07-01 Carl Zeiss Smt Ag Device for the optical measurement of an imaging system
CN101354539B (en) * 2003-02-26 2011-01-26 株式会社尼康 Exposure apparatus and method for producing device
EP3301511A1 (en) 2003-02-26 2018-04-04 Nikon Corporation Exposure apparatus, exposure method, and method for producing device
KR20050110033A (en) * 2003-03-25 2005-11-22 가부시키가이샤 니콘 Exposure system and device production method
AU2003219097A1 (en) * 2003-03-26 2004-10-18 Carl Zeiss Smt Ag Device for the low-deformation replaceable mounting of an optical element
KR101176817B1 (en) 2003-04-07 2012-08-24 가부시키가이샤 니콘 Exposure apparatus and method for manufacturing device
EP2270597B1 (en) 2003-04-09 2017-11-01 Nikon Corporation Exposure method and apparatus and device manufacturing method
KR20110104084A (en) * 2003-04-09 2011-09-21 가부시키가이샤 니콘 Immersion lithography fluid control system
CN1771463A (en) 2003-04-10 2006-05-10 株式会社尼康 Run-off path to collect liquid for an immersion lithography apparatus
WO2004090633A2 (en) * 2003-04-10 2004-10-21 Nikon Corporation An electro-osmotic element for an immersion lithography apparatus
SG2012050829A (en) 2003-04-10 2015-07-30 Nippon Kogaku Kk Environmental system including vacuum scavange for an immersion lithography apparatus
EP3062152B1 (en) 2003-04-10 2017-12-20 Nikon Corporation Environmental system including vaccum scavenge for an immersion lithography apparatus
KR101697896B1 (en) 2003-04-11 2017-01-18 가부시키가이샤 니콘 Apparatus and method for maintaining immersion fluid in the gap under the projection lens during wafer exchange in an immersion lithography machine
JP4582089B2 (en) 2003-04-11 2010-11-17 株式会社ニコン Liquid jet recovery system for immersion lithography
KR101324818B1 (en) 2003-04-11 2013-11-01 가부시키가이샤 니콘 Cleanup method for optics in immersion lithography
EP1614000B1 (en) 2003-04-17 2012-01-18 Nikon Corporation Immersion lithographic apparatus
KR101790914B1 (en) 2003-05-06 2017-10-26 가부시키가이샤 니콘 Projection optical system, and exposure apparatus and exposure method
US7348575B2 (en) 2003-05-06 2008-03-25 Nikon Corporation Projection optical system, exposure apparatus, and exposure method
JP4025683B2 (en) * 2003-05-09 2007-12-26 松下電器産業株式会社 Pattern forming method and exposure apparatus
TWI295414B (en) 2003-05-13 2008-04-01 Asml Netherlands Bv Lithographic apparatus and device manufacturing method
JP4552853B2 (en) 2003-05-15 2010-09-29 株式会社ニコン Exposure apparatus and device manufacturing method
TWI463533B (en) 2003-05-23 2014-12-01 尼康股份有限公司 An exposure method, an exposure apparatus, and an element manufacturing method
TW201806001A (en) 2003-05-23 2018-02-16 尼康股份有限公司 Exposure device and device manufacturing method
KR20150036794A (en) * 2003-05-28 2015-04-07 가부시키가이샤 니콘 Exposure method, exposure device, and device manufacturing method
EP1482372B1 (en) 2003-05-30 2014-10-08 ASML Netherlands B.V. Lithographic apparatus and device manufacturing method
TWI347741B (en) * 2003-05-30 2011-08-21 Asml Netherlands Bv Lithographic apparatus and device manufacturing method
US7213963B2 (en) 2003-06-09 2007-05-08 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
EP2261741A3 (en) 2003-06-11 2011-05-25 ASML Netherlands B.V. Lithographic apparatus and device manufacturing method
US7317504B2 (en) 2004-04-08 2008-01-08 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
TW200511388A (en) 2003-06-13 2005-03-16 Nikon Corp Exposure method, substrate stage, exposure apparatus and method for manufacturing device
KR101475634B1 (en) 2003-06-19 2014-12-22 가부시키가이샤 니콘 Exposure device and device producing method
US6867844B2 (en) * 2003-06-19 2005-03-15 Asml Holding N.V. Immersion photolithography system and method using microchannel nozzles
JP2005019616A (en) 2003-06-25 2005-01-20 Canon Inc Immersion type exposure apparatus
EP1498778A1 (en) * 2003-06-27 2005-01-19 ASML Netherlands B.V. Lithographic apparatus and device manufacturing method
US6809794B1 (en) * 2003-06-27 2004-10-26 Asml Holding N.V. Immersion photolithography system and method using inverted wafer-projection optics interface
EP1491956B1 (en) 2003-06-27 2006-09-06 ASML Netherlands B.V. Lithographic apparatus and device manufacturing method
DE60321779D1 (en) * 2003-06-30 2008-08-07 Asml Netherlands Bv Lithographic apparatus and method for making an article
EP1494074A1 (en) * 2003-06-30 2005-01-05 ASML Netherlands B.V. Lithographic apparatus and device manufacturing method
EP1639391A4 (en) * 2003-07-01 2009-04-29 Nikon Corp Using isotopically specified fluids as optical elements
JP4697138B2 (en) * 2003-07-08 2011-06-08 株式会社ニコン Immersion lithography apparatus, immersion lithography method, and device manufacturing method
WO2005006418A1 (en) * 2003-07-09 2005-01-20 Nikon Corporation Exposure apparatus and method for manufacturing device
ATE513309T1 (en) 2003-07-09 2011-07-15 Nikon Corp EXPOSURE DEVICE AND METHOD FOR PRODUCING COMPONENTS
ATE489724T1 (en) * 2003-07-09 2010-12-15 Nikon Corp EXPOSURE DEVICE AND METHOD FOR PRODUCING COMPONENTS
KR101209539B1 (en) * 2003-07-09 2012-12-07 가부시키가이샤 니콘 Exposure apparatus and method for manufacturing device
US7738074B2 (en) 2003-07-16 2010-06-15 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
EP1500982A1 (en) 2003-07-24 2005-01-26 ASML Netherlands B.V. Lithographic apparatus and device manufacturing method
US7006209B2 (en) * 2003-07-25 2006-02-28 Advanced Micro Devices, Inc. Method and apparatus for monitoring and controlling imaging in immersion lithography systems
WO2005010960A1 (en) * 2003-07-25 2005-02-03 Nikon Corporation Inspection method and inspection device for projection optical system, and production method for projection optical system
US7175968B2 (en) * 2003-07-28 2007-02-13 Asml Netherlands B.V. Lithographic apparatus, device manufacturing method and a substrate
US7326522B2 (en) 2004-02-11 2008-02-05 Asml Netherlands B.V. Device manufacturing method and a substrate
CN102043350B (en) 2003-07-28 2014-01-29 株式会社尼康 Exposure apparatus, device manufacturing method, and control method of exposure apparatus
EP1503244A1 (en) 2003-07-28 2005-02-02 ASML Netherlands B.V. Lithographic projection apparatus and device manufacturing method
US7779781B2 (en) 2003-07-31 2010-08-24 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US7700267B2 (en) * 2003-08-11 2010-04-20 Taiwan Semiconductor Manufacturing Company, Ltd. Immersion fluid for immersion lithography, and method of performing immersion lithography
US7061578B2 (en) * 2003-08-11 2006-06-13 Advanced Micro Devices, Inc. Method and apparatus for monitoring and controlling imaging in immersion lithography systems
US7579135B2 (en) * 2003-08-11 2009-08-25 Taiwan Semiconductor Manufacturing Company, Ltd. Lithography apparatus for manufacture of integrated circuits
SG109614A1 (en) * 2003-08-11 2005-03-30 Taiwan Semiconductor Mfg Lithography apparatus for manufacture of integrated circuits
KR101288632B1 (en) 2003-08-21 2013-07-22 가부시키가이샤 니콘 Exposure apparatus, exposure method, and device producing method
KR101094114B1 (en) * 2003-08-26 2011-12-15 가부시키가이샤 니콘 Optical element and exposure device
US8149381B2 (en) 2003-08-26 2012-04-03 Nikon Corporation Optical element and exposure apparatus
US6954256B2 (en) * 2003-08-29 2005-10-11 Asml Netherlands B.V. Gradient immersion lithography
TWI245163B (en) * 2003-08-29 2005-12-11 Asml Netherlands Bv Lithographic apparatus and device manufacturing method
TWI263859B (en) 2003-08-29 2006-10-11 Asml Netherlands Bv Lithographic apparatus and device manufacturing method
WO2005022616A1 (en) 2003-08-29 2005-03-10 Nikon Corporation Exposure apparatus and device producing method
EP2261740B1 (en) 2003-08-29 2014-07-09 ASML Netherlands BV Lithographic apparatus
US7014966B2 (en) * 2003-09-02 2006-03-21 Advanced Micro Devices, Inc. Method and apparatus for elimination of bubbles in immersion medium in immersion lithography systems
EP1660925B1 (en) * 2003-09-03 2015-04-29 Nikon Corporation Apparatus and method for providing fluid for immersion lithography
KR101162527B1 (en) * 2003-09-03 2012-07-09 가부시키가이샤 니콘 Exposure apparatus and device producing method
US7166418B2 (en) 2003-09-03 2007-01-23 Matsushita Electric Industrial Co., Ltd. Sulfonamide compound, polymer compound, resist material and pattern formation method
WO2005029559A1 (en) * 2003-09-19 2005-03-31 Nikon Corporation Exposure apparatus and device producing method
JP4438747B2 (en) * 2003-09-26 2010-03-24 株式会社ニコン Projection exposure apparatus, projection exposure apparatus cleaning method, maintenance method, and device manufacturing method
EP1519230A1 (en) * 2003-09-29 2005-03-30 ASML Netherlands B.V. Lithographic apparatus and device manufacturing method
TW200513809A (en) * 2003-09-29 2005-04-16 Nippon Kogaku Kk Liquid-soaked lens system and projecting exposure apparatus as well as component manufacturing method
US7158211B2 (en) * 2003-09-29 2007-01-02 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
EP1519231B1 (en) * 2003-09-29 2005-12-21 ASML Netherlands B.V. Lithographic apparatus and device manufacturing method
KR101441840B1 (en) 2003-09-29 2014-11-04 가부시키가이샤 니콘 Exposure apparatus, exposure method, and device manufacturing method
EP1670040B1 (en) * 2003-09-29 2012-08-08 Nikon Corporation Projection exposure apparatus, projection exposure method, and device manufacturing method
US7056646B1 (en) * 2003-10-01 2006-06-06 Advanced Micro Devices, Inc. Use of base developers as immersion lithography fluid
US7169530B2 (en) 2003-10-02 2007-01-30 Matsushita Electric Industrial Co., Ltd. Polymer compound, resist material and pattern formation method
US7369217B2 (en) * 2003-10-03 2008-05-06 Micronic Laser Systems Ab Method and device for immersion lithography
ITMI20031914A1 (en) * 2003-10-03 2005-04-04 Solvay Solexis Spa Perfluoropolyethers.
JP4319188B2 (en) 2003-10-08 2009-08-26 株式会社蔵王ニコン Substrate transport apparatus and substrate transport method, exposure apparatus and exposure method, device manufacturing apparatus and device manufacturing method
KR20060126949A (en) 2003-10-08 2006-12-11 가부시키가이샤 니콘 Substrate transporting apparatus and method, exposure apparatus and method, and device producing method
JP2005136364A (en) * 2003-10-08 2005-05-26 Zao Nikon Co Ltd Substrate carrying device, exposure device and device manufacturing method
TW201738932A (en) 2003-10-09 2017-11-01 Nippon Kogaku Kk Exposure apparatus, exposure method, and device producing method
EP1524557A1 (en) * 2003-10-15 2005-04-20 ASML Netherlands B.V. Lithographic apparatus and device manufacturing method
EP1524558A1 (en) * 2003-10-15 2005-04-20 ASML Netherlands B.V. Lithographic apparatus and device manufacturing method
AU2003304557A1 (en) * 2003-10-22 2005-06-08 Carl Zeiss Smt Ag Refractive projection objective for immersion lithography
TWI569308B (en) 2003-10-28 2017-02-01 尼康股份有限公司 Optical illumination device, exposure device, exposure method and device manufacturing method
US7411653B2 (en) * 2003-10-28 2008-08-12 Asml Netherlands B.V. Lithographic apparatus
US7352433B2 (en) 2003-10-28 2008-04-01 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
WO2005041276A1 (en) * 2003-10-28 2005-05-06 Nikon Corporation Exposure apparatus, exposure method, and device producing method
CN100461336C (en) * 2003-10-31 2009-02-11 株式会社尼康 Exposure apparatus and device producing method
US7113259B2 (en) * 2003-10-31 2006-09-26 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
EP1531362A3 (en) * 2003-11-13 2007-07-25 Matsushita Electric Industrial Co., Ltd. Semiconductor manufacturing apparatus and pattern formation method
US7528929B2 (en) 2003-11-14 2009-05-05 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
TWI385414B (en) 2003-11-20 2013-02-11 尼康股份有限公司 Optical illuminating apparatus, illuminating method, exposure apparatus, exposure method and device fabricating method
US7545481B2 (en) * 2003-11-24 2009-06-09 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
TWI605315B (en) 2003-12-03 2017-11-11 Nippon Kogaku Kk Exposure device, exposure method, and device manufacturing method
JP2005175034A (en) * 2003-12-09 2005-06-30 Canon Inc Aligner
JP4720506B2 (en) 2003-12-15 2011-07-13 株式会社ニコン Stage apparatus, exposure apparatus, and exposure method
JPWO2005057635A1 (en) * 2003-12-15 2007-07-05 株式会社ニコン Projection exposure apparatus, stage apparatus, and exposure method
JP2005183438A (en) * 2003-12-16 2005-07-07 Matsushita Electric Ind Co Ltd Method of forming pattern
US7460206B2 (en) * 2003-12-19 2008-12-02 Carl Zeiss Smt Ag Projection objective for immersion lithography
US7394521B2 (en) 2003-12-23 2008-07-01 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US7589818B2 (en) * 2003-12-23 2009-09-15 Asml Netherlands B.V. Lithographic apparatus, alignment apparatus, device manufacturing method, and a method of converting an apparatus
WO2005067013A1 (en) * 2004-01-05 2005-07-21 Nikon Corporation Exposure apparatus, exposure method, and device producing method
JP4253592B2 (en) * 2004-01-06 2009-04-15 オリンパス株式会社 Immersion objective lens, fluorescence analyzer and inverted microscope.
ATE459898T1 (en) 2004-01-20 2010-03-15 Zeiss Carl Smt Ag EXPOSURE DEVICE AND MEASURING DEVICE FOR A PROJECTION LENS
TWI259319B (en) * 2004-01-23 2006-08-01 Air Prod & Chem Immersion lithography fluids
US20050161644A1 (en) * 2004-01-23 2005-07-28 Peng Zhang Immersion lithography fluids
JP4319189B2 (en) * 2004-01-26 2009-08-26 株式会社ニコン Exposure apparatus and device manufacturing method
US7589822B2 (en) 2004-02-02 2009-09-15 Nikon Corporation Stage drive method and stage unit, exposure apparatus, and device manufacturing method
EP1723467A2 (en) * 2004-02-03 2006-11-22 Rochester Institute of Technology Method of photolithography using a fluid and a system thereof
KR101377815B1 (en) * 2004-02-03 2014-03-26 가부시키가이샤 니콘 Exposure apparatus and method of producing device
KR101579361B1 (en) 2004-02-04 2015-12-21 가부시키가이샤 니콘 Exposure apparatus, exposure method, and device producing method
US20070058146A1 (en) * 2004-02-04 2007-03-15 Nikon Corporation Exposure apparatus, exposure method, position control method, and method for producing device
TWI609410B (en) 2004-02-06 2017-12-21 尼康股份有限公司 Optical illumination apparatus, light-exposure apparatus ,light-exposure method and device manufacturing method
JP4018647B2 (en) * 2004-02-09 2007-12-05 キヤノン株式会社 Projection exposure apparatus and device manufacturing method
KR101118834B1 (en) * 2004-02-09 2012-03-21 요시히코 오카모토 Aligner and semiconductor device manufacturing method using the aligner
US7050146B2 (en) 2004-02-09 2006-05-23 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US20070030467A1 (en) * 2004-02-19 2007-02-08 Nikon Corporation Exposure apparatus, exposure method, and device fabricating method
US20080151200A1 (en) * 2004-02-19 2008-06-26 Nikon Corporation Exposure Apparatus and Device Manufacturing Method
US20070166639A1 (en) * 2004-02-20 2007-07-19 Takayuki Araki Laminated resist used for immersion lithography
KR101106497B1 (en) * 2004-02-20 2012-01-20 가부시키가이샤 니콘 Exposure apparatus, supply method and recovery method, exposure method, and device producing method
TWI371657B (en) 2004-02-20 2012-09-01 Fujifilm Corp Positive resist composition for immersion exposure and method of pattern formation with the same
JP4974049B2 (en) * 2004-02-20 2012-07-11 株式会社ニコン Exposure method, exposure apparatus, and device manufacturing method
JP4365236B2 (en) 2004-02-20 2009-11-18 富士フイルム株式会社 Resist composition for immersion exposure and pattern forming method using the same
US7906268B2 (en) 2004-03-18 2011-03-15 Fujifilm Corporation Positive resist composition for immersion exposure and pattern-forming method using the same
US8488102B2 (en) * 2004-03-18 2013-07-16 Taiwan Semiconductor Manufacturing Company, Ltd. Immersion fluid for immersion lithography, and method of performing immersion lithography
JP4671051B2 (en) * 2004-03-25 2011-04-13 株式会社ニコン Exposure apparatus, exposure method, and device manufacturing method
TW201816844A (en) 2004-03-25 2018-05-01 日商尼康股份有限公司 Exposure apparatus, exposure method, and device manufacturing method
WO2005096354A1 (en) * 2004-03-30 2005-10-13 Nikon Corporation Exposure apparatus, exposure method, device manufacturing method, and surface shape detecting device
US7227619B2 (en) * 2004-04-01 2007-06-05 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US7034917B2 (en) * 2004-04-01 2006-04-25 Asml Netherlands B.V. Lithographic apparatus, device manufacturing method and device manufactured thereby
US7295283B2 (en) * 2004-04-02 2007-11-13 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US7898642B2 (en) 2004-04-14 2011-03-01 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
WO2005104195A1 (en) 2004-04-19 2005-11-03 Nikon Corporation Exposure apparatus and device producing method
US7379159B2 (en) * 2004-05-03 2008-05-27 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
EP1747499A2 (en) 2004-05-04 2007-01-31 Nikon Corporation Apparatus and method for providing fluid for immersion lithography
US7091502B2 (en) * 2004-05-12 2006-08-15 Taiwan Semiconductor Manufacturing, Co., Ltd. Apparatus and method for immersion lithography
DE602005017972D1 (en) 2004-05-17 2010-01-14 Fujifilm Corp Method of producing a pattern
US7616383B2 (en) 2004-05-18 2009-11-10 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US7486381B2 (en) * 2004-05-21 2009-02-03 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US20070103661A1 (en) * 2004-06-04 2007-05-10 Nikon Corporation Exposure apparatus, exposure method, and method for producing device
EP1768169B9 (en) * 2004-06-04 2013-03-06 Nikon Corporation Exposure apparatus, exposure method, and device producing method
US7796274B2 (en) 2004-06-04 2010-09-14 Carl Zeiss Smt Ag System for measuring the image quality of an optical imaging system
JP4655039B2 (en) * 2004-06-07 2011-03-23 株式会社ニコン Stage apparatus, exposure apparatus, and exposure method
CN102290365B (en) * 2004-06-09 2015-01-21 尼康股份有限公司 Substrate holding device, exposure apparatus having same, exposure method and method for producing device
KR101421915B1 (en) * 2004-06-09 2014-07-22 가부시키가이샤 니콘 Exposure system and device production method
US20070222959A1 (en) * 2004-06-10 2007-09-27 Nikon Corporation Exposure apparatus, exposure method, and method for producing device
KR101556454B1 (en) * 2004-06-10 2015-10-13 가부시키가이샤 니콘 Exposure equipment, exposure method and device manufacturing method
JP4543767B2 (en) * 2004-06-10 2010-09-15 株式会社ニコン Exposure apparatus and device manufacturing method
US8373843B2 (en) * 2004-06-10 2013-02-12 Nikon Corporation Exposure apparatus, exposure method, and method for producing device
US8717533B2 (en) 2004-06-10 2014-05-06 Nikon Corporation Exposure apparatus, exposure method, and method for producing device
KR101505756B1 (en) * 2004-06-10 2015-03-26 가부시키가이샤 니콘 Exposure apparatus, exposure method, and device producing method
US20070139628A1 (en) * 2004-06-10 2007-06-21 Nikon Corporation Exposure apparatus, exposure method, and method for producing device
US8508713B2 (en) * 2004-06-10 2013-08-13 Nikon Corporation Exposure apparatus, exposure method, and method for producing device
JP4551701B2 (en) 2004-06-14 2010-09-29 富士フイルム株式会社 Protective film forming composition for immersion exposure and pattern forming method using the same
US7481867B2 (en) 2004-06-16 2009-01-27 Edwards Limited Vacuum system for immersion photolithography
KR101378688B1 (en) * 2004-06-21 2014-03-27 가부시키가이샤 니콘 Exposure equipment and device manufacturing method
EP3462241A1 (en) * 2004-06-21 2019-04-03 Nikon Corporation Exposure apparatus, exposure method and method for producing a device
US8698998B2 (en) * 2004-06-21 2014-04-15 Nikon Corporation Exposure apparatus, method for cleaning member thereof, maintenance method for exposure apparatus, maintenance device, and method for producing device
CN100547488C (en) * 2004-06-23 2009-10-07 台湾积体电路制造股份有限公司 The manufacture method of immersion optical projection system and integrated circuit (IC) wafer
US7057702B2 (en) * 2004-06-23 2006-06-06 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
EP1621927B1 (en) 2004-07-07 2018-05-23 FUJIFILM Corporation Positive type resist composition for use in liquid immersion exposure and a method of forming the pattern using the same
US7463330B2 (en) 2004-07-07 2008-12-09 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
JP4551704B2 (en) 2004-07-08 2010-09-29 富士フイルム株式会社 Protective film forming composition for immersion exposure and pattern forming method using the same
DE102004033195A1 (en) * 2004-07-09 2006-02-23 Leica Microsystems Semiconductor Gmbh Device for inspecting a microscopic component
CN100533661C (en) * 2004-07-12 2009-08-26 株式会社尼康 Determination method of exposure conditions, exposure method, exposure device and components manufacturing method
KR101433491B1 (en) 2004-07-12 2014-08-22 가부시키가이샤 니콘 Exposure equipment and device manufacturing method
EP1801852A4 (en) * 2004-07-16 2008-04-09 Nikon Corp Support method and support structure for optical member, optical apparatus, exposure apparatus, and device production method
US7161663B2 (en) * 2004-07-22 2007-01-09 Asml Netherlands B.V. Lithographic apparatus
ATE470235T1 (en) 2004-08-03 2010-06-15 Nikon Corp EXPOSURE DEVICES, EXPOSURE PROCESSES AND COMPONENT PRODUCTION PROCESSES
TW200615716A (en) * 2004-08-05 2006-05-16 Nikon Corp Stage device and exposure device
JP4621451B2 (en) * 2004-08-11 2011-01-26 富士フイルム株式会社 Protective film forming composition for immersion exposure and pattern forming method using the same
US7304715B2 (en) * 2004-08-13 2007-12-04 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
JP4983257B2 (en) * 2004-08-18 2012-07-25 株式会社ニコン Exposure apparatus, device manufacturing method, measuring member, and measuring method
US7701550B2 (en) 2004-08-19 2010-04-20 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US20060044533A1 (en) * 2004-08-27 2006-03-02 Asmlholding N.V. System and method for reducing disturbances caused by movement in an immersion lithography system
SG10201801998TA (en) 2004-09-17 2018-04-27 Nikon Corp Substrate holding device, exposure apparatus, and device manufacturing method
EP1804279A4 (en) * 2004-09-17 2008-04-09 Nikon Corp Substrate for exposure, exposure method and device manufacturing method
KR101618493B1 (en) * 2004-09-17 2016-05-04 가부시키가이샤 니콘 Exposure apparatus, exposure method, and method for manufacturing device
US7133114B2 (en) * 2004-09-20 2006-11-07 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US20060060653A1 (en) * 2004-09-23 2006-03-23 Carl Wittenberg Scanner system and method for simultaneously acquiring data images from multiple object planes
US7522261B2 (en) * 2004-09-24 2009-04-21 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US7355674B2 (en) * 2004-09-28 2008-04-08 Asml Netherlands B.V. Lithographic apparatus, device manufacturing method and computer program product
US7894040B2 (en) * 2004-10-05 2011-02-22 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US7209213B2 (en) * 2004-10-07 2007-04-24 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
JP4448767B2 (en) 2004-10-08 2010-04-14 富士フイルム株式会社 Positive resist composition and pattern forming method using the same
JP4613910B2 (en) * 2004-10-08 2011-01-19 株式会社ニコン Exposure apparatus and device manufacturing method
WO2006041083A1 (en) * 2004-10-13 2006-04-20 Nikon Corporation Exposure apparatus, exposure method and device manufacturing method
TW200628995A (en) * 2004-10-13 2006-08-16 Nikon Corp Exposure device, exposure method, and device manufacturing method
US7456929B2 (en) * 2004-10-15 2008-11-25 Nikon Corporation Exposure apparatus and device manufacturing method
US7379155B2 (en) 2004-10-18 2008-05-27 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US7119876B2 (en) * 2004-10-18 2006-10-10 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
CN101044594B (en) * 2004-10-26 2010-05-12 株式会社尼康 Substrate processing method, exposure apparatus, and method for producing device
US20070242248A1 (en) * 2004-10-26 2007-10-18 Nikon Corporation Substrate processing method, exposure apparatus, and method for producing device
WO2006049134A1 (en) * 2004-11-01 2006-05-11 Nikon Corporation Exposure apparatus and device producing method
KR20070085214A (en) 2004-11-11 2007-08-27 가부시키가이샤 니콘 Exposure method, device manufacturing method, and substrate
US7423720B2 (en) * 2004-11-12 2008-09-09 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US7583357B2 (en) * 2004-11-12 2009-09-01 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US7251013B2 (en) 2004-11-12 2007-07-31 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US7414699B2 (en) * 2004-11-12 2008-08-19 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US7411657B2 (en) 2004-11-17 2008-08-12 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
TWI654661B (en) 2004-11-18 2019-03-21 日商尼康股份有限公司 Position measurement method, position control method, measurement method, loading method, exposure method and exposure device, and element manufacturing method
WO2006054719A1 (en) * 2004-11-19 2006-05-26 Nikon Corporation Maintenance method, exposure method, exposure apparatus, and device producing method
US7119035B2 (en) * 2004-11-22 2006-10-10 Taiwan Semiconductor Manufacturing Company, Ltd. Method using specific contact angle for immersion lithography
US7145630B2 (en) * 2004-11-23 2006-12-05 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US7732123B2 (en) * 2004-11-23 2010-06-08 Taiwan Semiconductor Manufacturing Company, Ltd. Immersion photolithography with megasonic rinse
KR101280166B1 (en) * 2004-11-25 2013-06-28 가부시키가이샤 니콘 Mobile body system, exposure apparatus, and method of producing device
US7161654B2 (en) * 2004-12-02 2007-01-09 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US7256121B2 (en) * 2004-12-02 2007-08-14 Texas Instruments Incorporated Contact resistance reduction by new barrier stack process
WO2006059720A1 (en) * 2004-12-02 2006-06-08 Nikon Corporation Exposure apparatus, exposure method and device manufacturing method
WO2006059636A1 (en) * 2004-12-02 2006-06-08 Nikon Corporation Exposure device and device manufacturing method
US7446850B2 (en) * 2004-12-03 2008-11-04 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
TW200625026A (en) * 2004-12-06 2006-07-16 Nikon Corp Substrate processing method, method of exposure, exposure device and device manufacturing method
JP4784513B2 (en) 2004-12-06 2011-10-05 株式会社ニコン Maintenance method, maintenance equipment, exposure apparatus, and device manufacturing method
WO2006062096A1 (en) * 2004-12-07 2006-06-15 Nikon Corporation Exposure apparatus and method for manufacturing device
US7196770B2 (en) * 2004-12-07 2007-03-27 Asml Netherlands B.V. Prewetting of substrate before immersion exposure
US7397533B2 (en) 2004-12-07 2008-07-08 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US7248334B2 (en) * 2004-12-07 2007-07-24 Asml Netherlands B.V. Sensor shield
US7365827B2 (en) 2004-12-08 2008-04-29 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
JP4752473B2 (en) * 2004-12-09 2011-08-17 株式会社ニコン Exposure apparatus, exposure method, and device manufacturing method
US7352440B2 (en) 2004-12-10 2008-04-01 Asml Netherlands B.V. Substrate placement in immersion lithography
EP2995997B1 (en) * 2004-12-15 2017-08-30 Nikon Corporation Exposure apparatus, exposure method, and device fabricating method
US7403261B2 (en) * 2004-12-15 2008-07-22 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US7528931B2 (en) 2004-12-20 2009-05-05 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US7880860B2 (en) 2004-12-20 2011-02-01 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US7405805B2 (en) * 2004-12-28 2008-07-29 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US7491661B2 (en) * 2004-12-28 2009-02-17 Asml Netherlands B.V. Device manufacturing method, top coat material and substrate
US20060147821A1 (en) 2004-12-30 2006-07-06 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US7450217B2 (en) * 2005-01-12 2008-11-11 Asml Netherlands B.V. Exposure apparatus, coatings for exposure apparatus, lithographic apparatus, device manufacturing method, and device manufactured thereby
DE602006012746D1 (en) 2005-01-14 2010-04-22 Asml Netherlands Bv Lithographic apparatus and manufacturing method
SG124351A1 (en) 2005-01-14 2006-08-30 Asml Netherlands Bv Lithographic apparatus and device manufacturing method
JPWO2006077859A1 (en) * 2005-01-18 2008-06-19 株式会社ニコン Liquid removal apparatus, exposure apparatus, and device manufacturing method
TWI530759B (en) 2005-01-24 2016-04-21 富士軟片股份有限公司 Positive resist composition for immersion exposure and pattern-forming method using the same
KR101427056B1 (en) 2005-01-31 2014-08-05 가부시키가이샤 니콘 Exposure apparatus and method for manufacturing device
WO2006080427A1 (en) * 2005-01-31 2006-08-03 Nikon Corporation Exposure method, exposure apparatus and method for manufacturing device
US8692973B2 (en) 2005-01-31 2014-04-08 Nikon Corporation Exposure apparatus and method for producing device
CN101128775B (en) * 2005-02-10 2012-07-25 Asml荷兰有限公司 Immersion liquid, exposure apparatus, and exposure process
US20070258068A1 (en) * 2005-02-17 2007-11-08 Hiroto Horikawa Exposure Apparatus, Exposure Method, and Device Fabricating Method
US8018573B2 (en) 2005-02-22 2011-09-13 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US7224431B2 (en) * 2005-02-22 2007-05-29 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US7378025B2 (en) 2005-02-22 2008-05-27 Asml Netherlands B.V. Fluid filtration method, fluid filtered thereby, lithographic apparatus and device manufacturing method
US7428038B2 (en) * 2005-02-28 2008-09-23 Asml Netherlands B.V. Lithographic apparatus, device manufacturing method and apparatus for de-gassing a liquid
US7282701B2 (en) 2005-02-28 2007-10-16 Asml Netherlands B.V. Sensor for use in a lithographic apparatus
US7324185B2 (en) * 2005-03-04 2008-01-29 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
EP1698937B1 (en) 2005-03-04 2015-12-23 FUJIFILM Corporation Positive resist composition and pattern-forming method using the same
US7684010B2 (en) * 2005-03-09 2010-03-23 Asml Netherlands B.V. Lithographic apparatus, device manufacturing method, seal structure, method of removing an object and a method of sealing
JP4946109B2 (en) * 2005-03-18 2012-06-06 株式会社ニコン Exposure method, exposure apparatus, and device manufacturing method
JP4844186B2 (en) * 2005-03-18 2011-12-28 株式会社ニコン Plate member, substrate holding apparatus, exposure apparatus and exposure method, and device manufacturing method
US7330238B2 (en) * 2005-03-28 2008-02-12 Asml Netherlands, B.V. Lithographic apparatus, immersion projection apparatus and device manufacturing method
JP4544303B2 (en) * 2005-03-30 2010-09-15 株式会社ニコン Exposure apparatus, exposure method, and device manufacturing method
JP4605219B2 (en) * 2005-03-30 2011-01-05 株式会社ニコン Exposure condition determination method, exposure method and exposure apparatus, and device manufacturing method
US20090047607A1 (en) * 2005-03-31 2009-02-19 Hiroyuki Nagasaka Exposure method, exposure apparatus and device fabricating methods
TW200644079A (en) * 2005-03-31 2006-12-16 Nikon Corp Exposure apparatus, exposure method, and device production method
US7411654B2 (en) 2005-04-05 2008-08-12 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
USRE43576E1 (en) 2005-04-08 2012-08-14 Asml Netherlands B.V. Dual stage lithographic apparatus and device manufacturing method
US7291850B2 (en) * 2005-04-08 2007-11-06 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US8089608B2 (en) * 2005-04-18 2012-01-03 Nikon Corporation Exposure apparatus, exposure method, and device manufacturing method
US20060232753A1 (en) * 2005-04-19 2006-10-19 Asml Holding N.V. Liquid immersion lithography system with tilted liquid flow
KR101466533B1 (en) 2005-04-25 2014-11-27 가부시키가이샤 니콘 Exposure method, exposure apparatus and liquid supplying method
CN101156226B (en) * 2005-04-27 2012-03-14 株式会社尼康 Exposure method, exposure apparatus, method for manufacturing device, and film evaluation method
US8236467B2 (en) * 2005-04-28 2012-08-07 Nikon Corporation Exposure method, exposure apparatus, and device manufacturing method
EP1876636A1 (en) * 2005-04-28 2008-01-09 Nikon Corporation Exposure method, exposure apparatus, and device producing method
EP1720072B1 (en) 2005-05-01 2019-06-05 Rohm and Haas Electronic Materials, L.L.C. Compositons and processes for immersion lithography
US7433016B2 (en) 2005-05-03 2008-10-07 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US8248577B2 (en) 2005-05-03 2012-08-21 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US7317507B2 (en) * 2005-05-03 2008-01-08 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
KR101524964B1 (en) 2005-05-12 2015-06-01 가부시키가이샤 니콘 Projection optical system, exposure apparatus and exposure method
US7652746B2 (en) * 2005-06-21 2010-01-26 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US7751027B2 (en) 2005-06-21 2010-07-06 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US20070085989A1 (en) * 2005-06-21 2007-04-19 Nikon Corporation Exposure apparatus and exposure method, maintenance method, and device manufacturing method
US7924416B2 (en) * 2005-06-22 2011-04-12 Nikon Corporation Measurement apparatus, exposure apparatus, and device manufacturing method
US7834974B2 (en) 2005-06-28 2010-11-16 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US7474379B2 (en) 2005-06-28 2009-01-06 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
JPWO2007000995A1 (en) * 2005-06-28 2009-01-22 株式会社ニコン Exposure apparatus and method, and device manufacturing method
US7468779B2 (en) * 2005-06-28 2008-12-23 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US20080204682A1 (en) * 2005-06-28 2008-08-28 Nikon Corporation Exposure method and exposure apparatus, and device manufacturing method
TW200707124A (en) * 2005-06-29 2007-02-16 Nikon Corp Exposure apparatus, substrate processing method, and device producing method
JP2007012375A (en) * 2005-06-29 2007-01-18 Toyota Motor Corp Fuel cell, method of manufacturing electrode catalyst layer, and operation method thereof
US7522258B2 (en) 2005-06-29 2009-04-21 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method utilizing movement of clean air to reduce contamination
KR20080026082A (en) * 2005-06-30 2008-03-24 가부시키가이샤 니콘 Exposure apparatus and method, exposure apparatus maintenance method, and device manufacturing method
JP4861767B2 (en) 2005-07-26 2012-01-25 富士フイルム株式会社 Positive resist composition and pattern forming method using the same
US7535644B2 (en) * 2005-08-12 2009-05-19 Asml Netherlands B.V. Lens element, lithographic apparatus, device manufacturing method, and device manufactured thereby
US8054445B2 (en) * 2005-08-16 2011-11-08 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US7580112B2 (en) * 2005-08-25 2009-08-25 Nikon Corporation Containment system for immersion fluid in an immersion lithography apparatus
US8070145B2 (en) * 2005-08-26 2011-12-06 Nikon Corporation Holding unit, assembly system, sputtering unit, and processing method and processing unit
US7812926B2 (en) * 2005-08-31 2010-10-12 Nikon Corporation Optical element, exposure apparatus based on the use of the same, exposure method, and method for producing microdevice
WO2007029829A1 (en) * 2005-09-09 2007-03-15 Nikon Corporation Exposure apparatus, exposure method, and device production method
US8111374B2 (en) * 2005-09-09 2012-02-07 Nikon Corporation Analysis method, exposure method, and device manufacturing method
TWI403843B (en) 2005-09-13 2013-08-01 Fujifilm Corp Positive resist composition and pattern-forming method using the same
JP4562628B2 (en) 2005-09-20 2010-10-13 富士フイルム株式会社 Positive resist composition and pattern forming method using the same
US20070070323A1 (en) * 2005-09-21 2007-03-29 Nikon Corporation Exposure apparatus, exposure method, and device fabricating method
JP4568668B2 (en) 2005-09-22 2010-10-27 富士フイルム株式会社 Positive resist composition for immersion exposure and pattern forming method using the same
US7357768B2 (en) * 2005-09-22 2008-04-15 William Marshall Recliner exerciser
US7411658B2 (en) 2005-10-06 2008-08-12 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US7420188B2 (en) * 2005-10-14 2008-09-02 Taiwan Semiconductor Manufacturing Company, Ltd. Exposure method and apparatus for immersion lithography
US7986395B2 (en) * 2005-10-24 2011-07-26 Taiwan Semiconductor Manufacturing Company, Ltd. Immersion lithography apparatus and methods
US20070127135A1 (en) * 2005-11-01 2007-06-07 Nikon Corporation Exposure apparatus, exposure method and device manufacturing method
US20070127002A1 (en) * 2005-11-09 2007-06-07 Nikon Corporation Exposure apparatus and method, and device manufacturing method
US7656501B2 (en) * 2005-11-16 2010-02-02 Asml Netherlands B.V. Lithographic apparatus
US7864292B2 (en) * 2005-11-16 2011-01-04 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US7804577B2 (en) 2005-11-16 2010-09-28 Asml Netherlands B.V. Lithographic apparatus
JP2007142181A (en) 2005-11-18 2007-06-07 Toshiba Corp Substrate processing method and rinse device
US7803516B2 (en) * 2005-11-21 2010-09-28 Nikon Corporation Exposure method, device manufacturing method using the same, exposure apparatus, and substrate processing method and apparatus
US7633073B2 (en) * 2005-11-23 2009-12-15 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US7773195B2 (en) * 2005-11-29 2010-08-10 Asml Holding N.V. System and method to increase surface tension and contact angle in immersion lithography
US8125610B2 (en) 2005-12-02 2012-02-28 ASML Metherlands B.V. Method for preventing or reducing contamination of an immersion type projection apparatus and an immersion type lithographic apparatus
KR100768849B1 (en) * 2005-12-06 2007-10-22 엘지전자 주식회사 Power supply apparatus and method for line conection type fuel cell system
JP4881686B2 (en) 2005-12-09 2012-02-22 富士フイルム株式会社 Positive resist composition and pattern forming method using the same
JP4691442B2 (en) 2005-12-09 2011-06-01 富士フイルム株式会社 Positive resist composition and pattern forming method using the same
JP4881687B2 (en) 2005-12-09 2012-02-22 富士フイルム株式会社 Positive resist composition and pattern forming method using the same
TWI443461B (en) 2005-12-09 2014-07-01 Fujifilm Corp Positive resist composition, resin used for the positive resist composition, compound used for synthesis of the resin and pattern forming method using the positive resist composition
US8426101B2 (en) 2005-12-21 2013-04-23 Fujifilm Corporation Photosensitive composition, pattern-forming method using the photosensitve composition and compound in the photosensitive composition
TWI479266B (en) 2005-12-27 2015-04-01 Fujifilm Corp Positive resist composition and pattern forming method using the same
US7420194B2 (en) * 2005-12-27 2008-09-02 Asml Netherlands B.V. Lithographic apparatus and substrate edge seal
US8411271B2 (en) * 2005-12-28 2013-04-02 Nikon Corporation Pattern forming method, pattern forming apparatus, and device manufacturing method
JP4866605B2 (en) 2005-12-28 2012-02-01 富士フイルム株式会社 Photosensitive composition, pattern forming method using the photosensitive composition, and compound used in the photosensitive composition
US7839483B2 (en) * 2005-12-28 2010-11-23 Asml Netherlands B.V. Lithographic apparatus, device manufacturing method and a control system
US8404427B2 (en) 2005-12-28 2013-03-26 Fujifilm Corporation Photosensitive composition, and pattern-forming method and resist film using the photosensitive composition
US7649611B2 (en) * 2005-12-30 2010-01-19 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
CN101356623B (en) * 2006-01-19 2012-05-09 株式会社尼康 Moving body drive method, moving body drive system, pattern formation method, pattern formation device, exposure method, exposure device, and device fabrication method
US7848516B2 (en) * 2006-01-20 2010-12-07 Chiou-Haun Lee Diffused symmetric encryption/decryption method with asymmetric keys
JP5114022B2 (en) 2006-01-23 2013-01-09 富士フイルム株式会社 Pattern formation method
JP5114021B2 (en) 2006-01-23 2013-01-09 富士フイルム株式会社 Pattern formation method
US8134681B2 (en) * 2006-02-17 2012-03-13 Nikon Corporation Adjustment method, substrate processing method, substrate processing apparatus, exposure apparatus, inspection apparatus, measurement and/or inspection system, processing apparatus, computer system, program and information recording medium
JP4682057B2 (en) 2006-02-20 2011-05-11 富士フイルム株式会社 Photosensitive composition, pattern forming method using the photosensitive composition, and compound used in the photosensitive composition
SG178791A1 (en) 2006-02-21 2012-03-29 Nikon Corp Pattern forming apparatus, mark detecting apparatus, exposure apparatus, pattern forming method, exposure method and device manufacturing method
US8908145B2 (en) 2006-02-21 2014-12-09 Nikon Corporation Pattern forming apparatus and pattern forming method, movable body drive system and movable body drive method, exposure apparatus and exposure method, and device manufacturing method
EP3267259A1 (en) 2006-02-21 2018-01-10 Nikon Corporation Exposure apparatus, exposure method, and device manufacturing method
US7893047B2 (en) * 2006-03-03 2011-02-22 Arch Chemicals, Inc. Biocide composition comprising pyrithione and pyrrole derivatives
JP4682064B2 (en) 2006-03-09 2011-05-11 富士フイルム株式会社 Photosensitive composition, pattern forming method using the composition, and compound used in the composition
US8045134B2 (en) 2006-03-13 2011-10-25 Asml Netherlands B.V. Lithographic apparatus, control system and device manufacturing method
KR20080114691A (en) * 2006-03-13 2008-12-31 가부시키가이샤 니콘 Exposure apparatus, maintenance method, exposure method and device manufacturing method
US9477158B2 (en) * 2006-04-14 2016-10-25 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
DE102006021797A1 (en) 2006-05-09 2007-11-15 Carl Zeiss Smt Ag Optical imaging device with thermal damping
KR101486086B1 (en) * 2006-05-10 2015-01-23 가부시키가이샤 니콘 Exposure apparatus and device manufacturing method
US7969548B2 (en) * 2006-05-22 2011-06-28 Asml Netherlands B.V. Lithographic apparatus and lithographic apparatus cleaning method
WO2007139017A1 (en) * 2006-05-29 2007-12-06 Nikon Corporation Liquid recovery member, substrate holding member, exposure apparatus and device manufacturing method
US8564759B2 (en) * 2006-06-29 2013-10-22 Taiwan Semiconductor Manufacturing Company, Ltd. Apparatus and method for immersion lithography
JP4911682B2 (en) 2006-07-20 2012-04-04 富士フイルム株式会社 Exposure equipment
US8570484B2 (en) * 2006-08-30 2013-10-29 Nikon Corporation Immersion exposure apparatus, device manufacturing method, cleaning method, and cleaning member to remove foreign substance using liquid
CN104460241B (en) 2006-08-31 2017-04-05 株式会社尼康 Movable body drive system and method, patterning device and method, exposure device and method, assembly manufacture method
US8013982B2 (en) 2006-08-31 2011-09-06 Nikon Corporation Movable body drive method and system, pattern formation method and apparatus, exposure method and apparatus for driving movable body based on measurement value of encoder and information on flatness of scale, and device manufacturing method
TWI653511B (en) 2006-08-31 2019-03-11 日商尼康股份有限公司 Exposure apparatus, exposure method, and component manufacturing method
KR101452524B1 (en) 2006-09-01 2014-10-21 가부시키가이샤 니콘 Mobile body driving method, mobile body driving system, pattern forming method and apparatus, exposure method and apparatus and device manufacturing method
TWI596656B (en) 2006-09-01 2017-08-21 尼康股份有限公司 Moving body driving method and moving body driving system, pattern forming method and apparatus, exposure method and apparatus, element manufacturing method, and correction method
US7872730B2 (en) * 2006-09-15 2011-01-18 Nikon Corporation Immersion exposure apparatus and immersion exposure method, and device manufacturing method
KR101400824B1 (en) 2006-09-25 2014-05-29 후지필름 가부시키가이샤 Resist composition, resin for use in the resist composition, compound for use in the synthesis of the resin, and pattern-forming method usign the resist composition
JP5055971B2 (en) * 2006-11-16 2012-10-24 株式会社ニコン Surface treatment method, surface treatment apparatus, exposure method, exposure apparatus, and device manufacturing method
US7973910B2 (en) * 2006-11-17 2011-07-05 Nikon Corporation Stage apparatus and exposure apparatus
US8045135B2 (en) * 2006-11-22 2011-10-25 Asml Netherlands B.V. Lithographic apparatus with a fluid combining unit and related device manufacturing method
US8040490B2 (en) * 2006-12-01 2011-10-18 Nikon Corporation Liquid immersion exposure apparatus, exposure method, and method for producing device
US8013975B2 (en) * 2006-12-01 2011-09-06 Nikon Corporation Exposure apparatus, exposure method, and method for producing device
US20080156356A1 (en) 2006-12-05 2008-07-03 Nikon Corporation Cleaning liquid, cleaning method, liquid generating apparatus, exposure apparatus, and device fabricating method
US9632425B2 (en) 2006-12-07 2017-04-25 Asml Holding N.V. Lithographic apparatus, a dryer and a method of removing liquid from a surface
US8634053B2 (en) 2006-12-07 2014-01-21 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US7791709B2 (en) * 2006-12-08 2010-09-07 Asml Netherlands B.V. Substrate support and lithographic process
JP4554665B2 (en) 2006-12-25 2010-09-29 富士フイルム株式会社 PATTERN FORMATION METHOD, POSITIVE RESIST COMPOSITION FOR MULTIPLE DEVELOPMENT USED FOR THE PATTERN FORMATION METHOD, NEGATIVE DEVELOPMENT SOLUTION USED FOR THE PATTERN FORMATION METHOD, AND NEGATIVE DEVELOPMENT RINSE SOLUTION USED FOR THE PATTERN FORMATION METHOD
JP2008209889A (en) 2007-01-31 2008-09-11 Fujifilm Corp Positive resist composition and pattern forming method using the positive resist composition
US8817226B2 (en) 2007-02-15 2014-08-26 Asml Holding N.V. Systems and methods for insitu lens cleaning using ozone in immersion lithography
US8654305B2 (en) 2007-02-15 2014-02-18 Asml Holding N.V. Systems and methods for insitu lens cleaning in immersion lithography
US8237911B2 (en) 2007-03-15 2012-08-07 Nikon Corporation Apparatus and methods for keeping immersion fluid adjacent to an optical assembly during wafer exchange in an immersion lithography machine
EP1975705B1 (en) 2007-03-28 2016-04-27 FUJIFILM Corporation Positive resist composition and pattern-forming method
JP4621754B2 (en) 2007-03-28 2011-01-26 富士フイルム株式会社 Positive resist composition and pattern forming method
US8877421B2 (en) 2007-03-28 2014-11-04 Fujifilm Corporation Positive resist composition and pattern-forming method
EP1975714A1 (en) 2007-03-28 2008-10-01 FUJIFILM Corporation Positive resist composition and pattern forming method
EP1975716B1 (en) 2007-03-28 2013-05-15 Fujifilm Corporation Positive resist composition and pattern forming method
JP4839253B2 (en) 2007-03-28 2011-12-21 富士フイルム株式会社 Positive resist composition and pattern forming method
US8034547B2 (en) 2007-04-13 2011-10-11 Fujifilm Corporation Pattern forming method, resist composition to be used in the pattern forming method, negative developing solution to be used in the pattern forming method and rinsing solution for negative development to be used in the pattern forming method
WO2008129964A1 (en) 2007-04-13 2008-10-30 Fujifilm Corporation Method for pattern formation, and resist composition, developing solution and rinsing liquid for use in the method for pattern formation
US7866330B2 (en) * 2007-05-04 2011-01-11 Asml Netherlands B.V. Cleaning device, a lithographic apparatus and a lithographic apparatus cleaning method
US9013672B2 (en) 2007-05-04 2015-04-21 Asml Netherlands B.V. Cleaning device, a lithographic apparatus and a lithographic apparatus cleaning method
US8011377B2 (en) * 2007-05-04 2011-09-06 Asml Netherlands B.V. Cleaning device and a lithographic apparatus cleaning method
US8947629B2 (en) 2007-05-04 2015-02-03 Asml Netherlands B.V. Cleaning device, a lithographic apparatus and a lithographic apparatus cleaning method
WO2008140119A1 (en) 2007-05-15 2008-11-20 Fujifilm Corporation Method for pattern formation
US8164736B2 (en) * 2007-05-29 2012-04-24 Nikon Corporation Exposure method, exposure apparatus, and method for producing device
JP4590431B2 (en) 2007-06-12 2010-12-01 富士フイルム株式会社 Pattern formation method
US8617794B2 (en) 2007-06-12 2013-12-31 Fujifilm Corporation Method of forming patterns
US8632942B2 (en) 2007-06-12 2014-01-21 Fujifilm Corporation Method of forming patterns
WO2008153110A1 (en) 2007-06-12 2008-12-18 Fujifilm Corporation Resist composition for negative working-type development, and method for pattern formation using the resist composition
JP4617337B2 (en) 2007-06-12 2011-01-26 富士フイルム株式会社 Pattern formation method
KR101524571B1 (en) 2007-08-10 2015-06-01 후지필름 가부시키가이샤 Positive resist composition, pattern forming method using the composition, and compound used in the composition
JP5449675B2 (en) 2007-09-21 2014-03-19 富士フイルム株式会社 Photosensitive composition, pattern forming method using the photosensitive composition, and compound used in the photosensitive composition
JP5267029B2 (en) 2007-10-12 2013-08-21 株式会社ニコン Illumination optical apparatus, exposure apparatus, and device manufacturing method
US8379187B2 (en) 2007-10-24 2013-02-19 Nikon Corporation Optical unit, illumination optical apparatus, exposure apparatus, and device manufacturing method
US9116346B2 (en) 2007-11-06 2015-08-25 Nikon Corporation Illumination apparatus, illumination method, exposure apparatus, and device manufacturing method
JP2009122325A (en) 2007-11-14 2009-06-04 Fujifilm Corp Topcoat composition, alkali developer-soluble topcoat film using the same and pattern forming method using the same
NL1036186A1 (en) * 2007-12-03 2009-06-04 Asml Netherlands Bv Lithographic apparatus and device manufacturing method.
KR101448152B1 (en) * 2008-03-26 2014-10-07 삼성전자주식회사 Distance measuring sensor having vertical photogate and three dimensional color image sensor having the same
JP5097166B2 (en) 2008-05-28 2012-12-12 エーエスエムエル ネザーランズ ビー.ブイ. Lithographic apparatus and method of operating the apparatus
JP5530651B2 (en) 2008-07-14 2014-06-25 富士フイルム株式会社 Actinic ray-sensitive or radiation-sensitive resin composition, and pattern formation method using the composition
NL2003363A (en) * 2008-09-10 2010-03-15 Asml Netherlands Bv Lithographic apparatus, method of manufacturing an article for a lithographic apparatus and device manufacturing method.
JP5586294B2 (en) 2009-03-31 2014-09-10 富士フイルム株式会社 Actinic ray-sensitive or radiation-sensitive resin composition, and pattern formation method using the composition
JP5377172B2 (en) 2009-03-31 2013-12-25 富士フイルム株式会社 Actinic ray-sensitive or radiation-sensitive resin composition and pattern forming method using the same
JP5544130B2 (en) 2009-09-01 2014-07-09 富士フイルム株式会社 Actinic ray-sensitive or radiation-sensitive resin composition and pattern forming method using the same
NL2005207A (en) * 2009-09-28 2011-03-29 Asml Netherlands Bv Heat pipe, lithographic apparatus and device manufacturing method.
EP2381310B1 (en) 2010-04-22 2015-05-06 ASML Netherlands BV Fluid handling structure and lithographic apparatus
DE102011003140A1 (en) * 2011-01-25 2012-07-26 Hamilton Bonaduz Ag Optical analysis method for liquid in a sample container and analysis device for carrying out the method

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2073287A (en) * 1934-04-17 1937-03-09 Eastman Kodak Co Method and apparatus for reproducing sound
US3115815A (en) * 1960-11-07 1963-12-31 Visual Graphics Corp Photographic composing device and method
GB1114597A (en) * 1965-08-19 1968-05-22 Newman And Guardia Ltd Improvements in or relating to optical gates
GB1242527A (en) * 1967-10-20 1971-08-11 Kodak Ltd Optical instruments
US3554641A (en) * 1968-08-08 1971-01-12 Movielab Inc Apparatus and process for the liquid gate printing of a photographic film
US3614223A (en) * 1969-07-03 1971-10-19 Eastman Kodak Co Liquid gate
JPS5411704B1 (en) * 1971-03-22 1979-05-17
US3893763A (en) * 1974-01-31 1975-07-08 Eastman Kodak Co Liquid gate for individual film frame printing
JPS52109875A (en) * 1976-02-25 1977-09-14 Hitachi Ltd Position matching system for mask and wafer and its unit
US4209250A (en) * 1978-12-26 1980-06-24 James Randall P System for making multiple original holograms or copies of a hologram and method
ATE1462T1 (en) * 1979-07-27 1982-08-15 Werner W. Dr. Tabarelli OPTICAL LITHOGRAPHY PROCESS AND DEVICE FOR COPYING A PATTERN ONTO A SEMICONDUCTOR DISC.
FR2474708B1 (en) * 1980-01-24 1987-02-20 Dme HIGH-RESOLUTION MICROPHOTOLITHOGRAPHY PROCESS

Also Published As

Publication number Publication date
EP0060729B1 (en) 1986-08-13
DE3272511D1 (en) 1986-09-18
EP0060729A3 (en) 1983-03-16
EP0060729A2 (en) 1982-09-22
JPS57153433A (en) 1982-09-22
JPS6349893B2 (en) 1988-10-06
US4480910A (en) 1984-11-06

Similar Documents

Publication Publication Date Title
CA1159160A (en) Pattern forming apparatus
US4811055A (en) Projection exposure apparatus
US8018657B2 (en) Optical arrangement of autofocus elements for use with immersion lithography
US6280886B1 (en) Clean-enclosure window to protect photolithographic mask
US7846848B2 (en) Cluster tool with integrated metrology chamber for transparent substrates
EP0793073B1 (en) Surface position detecting method and scanning exposure method using the same
US20060110667A1 (en) Method of fabrication of semiconductor integrated circuit device and mask fabrication method
US5770338A (en) Phase shifting overlay mark that measures exposure energy and focus
US6459491B1 (en) Non-intrusive pellicle height measurement system
KR20180057813A (en) Phase shift mask for extreme ultraviolet lithography
US6569579B2 (en) Semiconductor mask alignment system utilizing pellicle with zero layer image placement indicator
KR19990045161A (en) Positioning and Projection Exposure Equipment
Nyyssonen Calibration of optical systems for linewidth measurements on wafers
US6778285B1 (en) Automatic in situ pellicle height measurement system
JP2901201B2 (en) Photo mask
US4964146A (en) Pattern transistor mask and method of using the same
JPS61114529A (en) Exposure and exposing device
JPH11176726A (en) Aligning method, lithographic system using the method and method for manufacturing device using the aligning method
US20050106475A1 (en) Lithographic mask, and method for covering a mask layer
US7655384B2 (en) Methods for reducing spherical aberration effects in photolithography
Bossung et al. Optical advances in projection photolithography
US6567153B1 (en) Multiple image photolithography system and method
US6741333B2 (en) Multiple image photolithography system and method
Luis et al. New optical metrology technique for measuring the shape of a lithography photo mask
JP2675882B2 (en) Exposure equipment

Legal Events

Date Code Title Description
MKEX Expiry