CA1204643A - Device for application in blood vessels or other difficulty accessible locations and its use - Google Patents

Device for application in blood vessels or other difficulty accessible locations and its use

Info

Publication number
CA1204643A
CA1204643A CA000411459A CA411459A CA1204643A CA 1204643 A CA1204643 A CA 1204643A CA 000411459 A CA000411459 A CA 000411459A CA 411459 A CA411459 A CA 411459A CA 1204643 A CA1204643 A CA 1204643A
Authority
CA
Canada
Prior art keywords
spring
state
turns
length
diameter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
CA000411459A
Other languages
French (fr)
Inventor
Hans I. Wallsten
Dierk Maass
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Medinvent SA
Original Assignee
Medinvent SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from SE8105510A external-priority patent/SE8105510L/en
Application filed by Medinvent SA filed Critical Medinvent SA
Application granted granted Critical
Publication of CA1204643A publication Critical patent/CA1204643A/en
Expired legal-status Critical Current

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/01Filters implantable into blood vessels
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/01Filters implantable into blood vessels
    • A61F2/0105Open ended, i.e. legs gathered only at one side
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/04Hollow or tubular parts of organs, e.g. bladders, tracheae, bronchi or bile ducts
    • A61F2/06Blood vessels
    • A61F2/07Stent-grafts
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/82Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/86Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure
    • A61F2/88Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure the wire-like elements formed as helical or spiral coils
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/95Instruments specially adapted for placement or removal of stents or stent-grafts
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/01Filters implantable into blood vessels
    • A61F2/011Instruments for their placement or removal
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/01Filters implantable into blood vessels
    • A61F2002/016Filters implantable into blood vessels made from wire-like elements
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/04Hollow or tubular parts of organs, e.g. bladders, tracheae, bronchi or bile ducts
    • A61F2/06Blood vessels
    • A61F2/07Stent-grafts
    • A61F2002/072Encapsulated stents, e.g. wire or whole stent embedded in lining
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/04Hollow or tubular parts of organs, e.g. bladders, tracheae, bronchi or bile ducts
    • A61F2/06Blood vessels
    • A61F2/07Stent-grafts
    • A61F2002/075Stent-grafts the stent being loosely attached to the graft material, e.g. by stitching
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/95Instruments specially adapted for placement or removal of stents or stent-grafts
    • A61F2002/9505Instruments specially adapted for placement or removal of stents or stent-grafts having retaining means other than an outer sleeve, e.g. male-female connector between stent and instrument
    • A61F2002/9511Instruments specially adapted for placement or removal of stents or stent-grafts having retaining means other than an outer sleeve, e.g. male-female connector between stent and instrument the retaining means being filaments or wires
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2220/00Fixations or connections for prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof
    • A61F2220/0025Connections or couplings between prosthetic parts, e.g. between modular parts; Connecting elements
    • A61F2220/005Connections or couplings between prosthetic parts, e.g. between modular parts; Connecting elements using adhesives
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2220/00Fixations or connections for prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof
    • A61F2220/0025Connections or couplings between prosthetic parts, e.g. between modular parts; Connecting elements
    • A61F2220/0058Connections or couplings between prosthetic parts, e.g. between modular parts; Connecting elements soldered or brazed or welded
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2220/00Fixations or connections for prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof
    • A61F2220/0025Connections or couplings between prosthetic parts, e.g. between modular parts; Connecting elements
    • A61F2220/0075Connections or couplings between prosthetic parts, e.g. between modular parts; Connecting elements sutured, ligatured or stitched, retained or tied with a rope, string, thread, wire or cable
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2230/00Geometry of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof
    • A61F2230/0002Two-dimensional shapes, e.g. cross-sections
    • A61F2230/0004Rounded shapes, e.g. with rounded corners
    • A61F2230/0006Rounded shapes, e.g. with rounded corners circular
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2230/00Geometry of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof
    • A61F2230/0063Three-dimensional shapes
    • A61F2230/0069Three-dimensional shapes cylindrical

Landscapes

  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Public Health (AREA)
  • Transplantation (AREA)
  • Cardiology (AREA)
  • Veterinary Medicine (AREA)
  • Oral & Maxillofacial Surgery (AREA)
  • Vascular Medicine (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Pulmonology (AREA)
  • Surgical Instruments (AREA)
  • Prostheses (AREA)
  • Media Introduction/Drainage Providing Device (AREA)

Abstract

ABSTRACT OF THE DISCLOSURE:
Device comprising a helically shaped spiral spring and means for bringing the spring to expand from a first state of a certain diameter to a second state of larger diameter and vice versa, characterized thereby that said means are arranged to rotate the ends of the spring relative to each other with maintained length of the spring so that the transition from said first state to said second stake takes place by reducing the number of spring turns within said length and the corresponding increase of the pitch of the spring, or to supply to a given length of the spring further spring material at at least one end of the said length of the spring so that the transition from said first state to said second state takes place independent of pitch and number of spring turns within the said length and a method for transluminal implantation of an intravascular prosthesis using the said device.

Description

~L2~6~3 TITLE OF INVENTION
Device ~or application in blood vesse]s or other dif~icultly accessible locations and its use.
TECHNICAL FIELD
The present inventiol~ relates to a device which can be applied within for e~ample blood vessels of the body of a living animal or a living human being. The device comprises a helically shaped coil spring that can be expanded from a first state of a certain diameter to a second state of larger diameter and vice versa.
The invention is particularly useful for mechanical transluminal implantation by means of an expanding, self-fixating appliance for blood vessels, respiratory tracts or the like. By means of the device of the present invention also the inner walls of damaged blood vessels or other organs may be lined with artificial tissue which may be porous.
In surgical and other medicinal techniques there is sometimes a need of inserting and expanding a device in for example blood vessels, urinary tracts or other difficultly accessible places which has for its function to widen the said vessel or tract, the device being optionally left in position to provide for permanent widening.
The device according to the present invention may be used in many medicinal applications and, as examples~
there may be mentioned utilization in different types of aneurism reflected by some form of vessel widening, or the opposite, stenosis, which involves contraction of blood vessels. More particularly~ the invention thus may be used to support and keep open vessels of venous systems, to support artificial vessel elements, to close pathological vessel failures, to bridge pathological vessel dilatations and ruptures in interior vessel walls or to stabilize bronchial tubes ., ~ ~ , , ~LZ0~3 or bronchi. The device of the present invention may also be designed to act as a filter for thrornboses, for exarnple by application in Vena Cava Inferior to prevent the formation of lung emboliae. However, the invention is not limited to the applications mentioned herein which must be considered as solely exemplifying.

BACKGROUND ART.
In U.S. patent specification 3,868,956 there is described a device which after insertion into for example blood vessel may be expanded. The active part of this device is based on the use of metal alloys having so-called "memory function", i.e. a material which when heated will recover its initial con-~iguration. In this prior art the heating of the material is provided by electrical heating, the device being inserted at the location of interest.
However, this known technique possesseb the essential disadvantage that electrical resistance heating rnust take place in connection to surrounding sensitive tissue which may be damaged in the heating. It is true that it is stated in the patent specification (Cf.C01.3, lines 42-48) that when inserting the device into a blood vessel the patient's blood functions as a cooling mediurn. However, also blood is a heat-sensitive material which when heated can be subjected to undesirable coagulation.

UMMARY OF THE INVENTION.
The present invention has for its purpose to provide for an expansible device whereby the drawbacks of the known technique are avoided.
The present invention is based on the utilization of a device comprising a helically shaped coil spring 6 ~3 which can be subjected -to con-trac-tion or expansion. The inven-tion is based on the principle -that -the spring will be given smaller or larger diameter by means of suitable mechanical means.
This is possible to do in two principally differen-t ways which all fall within -the Eramework of the same basic inventive concept. In -the following there are given examples of two of these ways.
The inven-tion provides device comprising a helically shaped spiral spring and means for causing -the spring -to change from a firs-t s-tate of a cer-tain diameter -to a second state of larger diameter and vice versa, said means being arranged to rotate the ends of the spring relative to each other with main-tained leng-th of the spring so that the transition from said first sta-te to said second s-tate -takes place by reducing the number of spring -turns within said leng-th and the corresponding increase of -the pitch of -the spring.
Alternatively, the diameter o-f -the spring can be changed by removing part of the spring material from a given length of the spring at at least one end of the said length of -the spring, so tha-t -the transition from a s-tate of larger diameter to a sta-te of smaller diameter takes place independent of pitch and nurnber of spring turns within said leng-th. In order to expand the spring in said o-ther way the reverse operation is, oE course, performed, i.e.
additional spring material is supplied to the said leng-th of -the spring. This second way of changing the diameter of the spring may, if desirable, take place while main-taining pi-tch and number of spring turns within the said length.
Both said ways may, oE course, be used to change the coil spring from a state of larger diameter to a smaller diameter " ~2~g6~3 3a and vice versa.
In a preferred embodiment of the device according to the invention -the larger diameter correspo:nds largely to unloaded condition of the coil spring. This means that the contrac-tion of the coil sprin~ takes place against its spring resis-tance, whereas its .,
2~43 1~

expansion takes place under release of the tension to unloaded state.
While utilizing the above-outlined first way of contracting or expanding the spring one end of the spring may be attached to a shaft which is centrally arranged inside the spring, whereas its other end is connected to a sleeve surrounding said shaft. By turning the shaft and/or the sleeve relative to each other the diameter of the spring can hereby be decreased or increased. In order to make it possible to leave the coil spring also after application at a location the shaft and the sleeve can be removably connected to same.
When using coil springs of a minor dimension in regard to the spring material problem may arise in connection with applying the spring and expanding same at the intended location in that the separate material turns of the spring may fall to one side so that the desired supporting effect will not be obtained. In order to eliminate or reduce the risks for such spring collapse an axially extending guide bar can be arranged at the circumference of the sprinO, on which bar guide means are displaceably arranged through which the spring material can move tangentially in connection with the contraction or expansion of the spring.
In an alternative embodiment of the device according to the invention an axially extending support member can be arranged at the circumference of the spring which carries fixed guide means through which the spring material can move tangentially in connection with the expansion or contraction of the spring.
In certain instances~ for example in case of ~5 ~ernia or tissue rupture, it may be desirable to ~ 3 apply a spring which over a linmited part of its length has a larger density between the spring turns. This can in principle be done in two diI'ferent ways. One alternative is based on distributing the above-mentioned fixed guide means in such a manner as to obtain over a certain length of the spring a larger density of turns.
The second alternative consists in initially manu-facturing the spring with one or several sections of higher turn density. Also a combination of these two alternatives may, of course, be used in practice.
It is to prefer, in view of the above-indicated risk for collapse, to make the spring material in a flattened form or in the form of a band, the larger dimension of the material as seen in cross section extending axially. It is particularly preferred to design the spring with an essentially rectangular cross section.
In a particularly preferred ernbodiment of the device of the present invention a cylindrical tubular carrier body is arranged within the coil spring comprising a central part and being provided with end sections at the ends of the spring pivotal' relative to each other, the ends of the spring being connected to the respective end sections. The device furthermore includes means with the help of which the said end sections can be rotated relative to each other in order to expand or contract the spring. Said means for rotating the end sections suitably comprise a coaxial cable connected to the one end section, the interior concentric element of the cable extending through the carrier body and being at the end connected to the other end section, rotators being arranged at the outer free end of the coaxial cable for providing the desired relative movement between the end sections.
In connection with this latter embodiment of the ~2~ 43 device according to the invention the end sections of the carrier body may be axially displaceable relative to the cen~ral part so that in the gap between the central part and the respective end sections the end of the spring can be releasably attached. In this case it is suitable to arrange at least one end section or part thereof axially displaceable by means of a member arranged at the free end of the coaxial cable. The last-mentioned member may optionally perform the two-fold function of both to be used for rotating the second end section and providing for the axial displacement.
In a particularly preferred embodiment of the device according to the present invention there is arranged an axially extending support member at the circumference of the spring, at the one end of which the spring is attached and at the other end of which there is provided a fixed guide member-through which the spring material can move in connection with the contraction or expansion of the spring.
Alternatively, at both ends of the support member there may be arranged fixed guide means, through which the material of the spring can move.
This embodirnent enables simultaneous feeding in both directions of spring material at both ends of the spring.
According to an alternative embodiment the device of the invention comprises an elongated carrier body about which the spring is arrangedJ a cassette ~0 magazine arranged at one end of the carrier body including a cylindric cassette housing, a feed cylinder eccentrically mounted therein which at its periphery engages the inside of the cassette housing. Using this device the spring can be moved for contraction or ~5 expansion in the nip between the cassette housing and the feed cylinder by rotating the latter in one direction or the other. In this embodiment the cassette housing may be provided on the inside with a trapezoid thread in which the spring can glide.
Moreover, it is suitable to provide the feed cylinder on its exterior with a friction coating, for example of rubber or plastic.
In surgical operations for implanting prostheses it is sometimes desirable to provide for a porous tissue inside for example a blood vessel ~or some reason. In connection hereto it is possible in accordance with the invention to provide for a stocking of porous tissue outside or inside the spring which can be implanted at desired location together with the spring. The stocking may either by stretchability of the tissue or by overlapping folding be adjustable to the spring diameter in connection with the expansion of the spring.
In regard to the choice of material for the components involved in the device according to the invention it is primarily the coil spring which is critical in this respect. For the spring there should be selected a medic~nally acceptable material, for example a stainless steel or other metal alloy or a plastic, used in similar connection.
Other characterizing features and alternative embodiments will be evident from the following de-scription and the appended patent claims.
A further essential advantage of' the technique of the present invention compared with for example that of the above-mentioned U.S~ patent ~,868,956 lies in the fact that the device according to the invention is reversibly operable, i.e. the spring may first after application be expanded, whereafter before releasing . .~, .

the spring from the other members of the device one can check, for example by X-rays, that the position and fixation of the spring is acceptable, whereafter it can be released and the remaining part of the device removed from the location of application. This possibility is not at all available in the device according to the just mentioned U.S. patent, since the expansion initiated in this known technique is non-reversible.
EXAMPLES
. . . = .
The invention will in the f`ollowing be further described by exemplifying embodiments in connection with the appended drawings. It should be noted that these specific embodiments are only intended to be illustrative and not restrictive in regard to the scope defined by the claims. In the drawing the f`ollowing is lllustrated:
Fig. 1 shows a perspective view of a coil spring for use in the device according to the invention;
Fig. 2 shows a side view of the coil spring con-taining a carrier body and showing the spring in expanded state;
Fig. ~ shows the same device as Fig. 2 but showing the spring in contracted state;
Figs. 4-7 illustrate diagrammatically the principle of removing spring material from a coil spring in accordance with the invention;
Figs. 8 and 9 show a variant based on the same principle as that according to Figs. 4-7;
~0 Fig. 10 shows diagrammatically the possible per-formance of` the coil spring under the influence of external forces;
Fig. 11 shows a detail of the coil spring using guide means;

.
. :

~6~3 Fig. 12 shows in enlargement a detail of the device of Fig. 11;
Fig. 1~ shows a detail section along line I-I
in Fig. 12;
Fig. 13A shows diagrammatically a spring pro-vided with support member and a fixed guide rnember;
Fig. 13B shows a detail of the embodiment of Fig. 13A;
Fig. 14 shows diagrammatically a spring providea with support member and guide member;
Fig. 15 shows a detail of an alternative guide member;
Fig. 16 shows the guide member according to Fig. 15 seen from above;
Fig. 17 shows diagrammatically an overall view of an embodiment of the device of the invention;
Fig. 18 shows in overall view an alternative embodiment of the device according to the present invention;
Fig. 19 shows enlarged a detail of an alternative embodiment of the device of Fig. 18;
Fig. 20 shows the detail according to Fig. 19 in side view;
Fig. 21 shows a device according to the invention for the application of porous tissue;
Fig. 22 shows an embodiment using a flat spring material with recesses;
Fig. 23 shows an embodiment designed as a ladder-like double spring;
Figs. 24 and 25 show an embodiment of the coil enabling overlapping between adjacent turns;
Fig. 26 shows a modified embodiment of the spring of the deviceJ the spring providing f'or filtering function; and Fig.~27 shows an alternative embodiment where the spring has been covered with porous tissue.
In connection with the following description it is assumed that the device according to the invention is utilized in connection with a blood vessel contain-ing a defect location, where the blood vessel hasrelatively large diameter, whereas the location where the device is introduced into the blood vessel has a smaller diameter. However, the device according to the present invention may be used also in cases where it shall be inserted in a blood vessel of a relatively constant diameter thereby to avoid damages to the inner walls of the blood vessel in connection with inserting the device for transfer to the location where applica-tion shall taXe place.
ThusJ the device according to the invention can be inserted at an easily accessible location where the blood vessel in ques~ion has a relatively small diameter due to the fact that the coil spring of the device can be maintained in contracted state by mechanical meansJ said state being small or smaller than the diameter of the blood vessel at the location of insertion. The device including the coil spring is then inserted into the blood vessel and transferred to the defective location where the coil spring in a mechanical manner is expanded until the outer diameter of the spring is equal to or somewhat larger than the diameter of the blood vessel at the defective location.
Then the coil spring is suitably released from the other members cf the device according to the invention and may after removal of the remaining part of the device thus be left at the defective location for carrying out its supporting function from the inside.
If the diameter of the spring in unloaded state is selected somewhat larger than the inner diameter of the ~5 blood vessel the spring will fixedly engage the walls of .

~Z~46~3 the vessel by a certain specific pressure the magnitude of which can be precalculated and thus selected as desired.
In drawing figures 1, 2 and 3 there is shown in principle how a helically shaped coil spring according to an embodiment of the invention can be subjected to change in diameter. Fig. 1 shows diagrammatically a coil spring having diagrammatically shown longitudinal axis 2. The ends o~ the spring are designated 3 and 4. The coil spring of Fig. 1 is assumed to be in a position of rest, i.e. it has taken the shape it has when not effected by external forces. If now the ends 3, 4 of the spring are rotated around the longitudinal axis 2 in the direction of arrows 5, 6 under the influence of an external force the spring diameter will decrease at the same time as the number of turns increase in a corresponding degree. In Fig. 2 there is shown a coil spring 1 in position of rest as seen in a side view. In Fig. 3 the same spring 1 is shown a~ter re-duction of the diameter has been provided for in accord with the description relative to Fig. 1. In its position in Fig. 3 spring 1 has been given a diameter d3 which is one third Or the diameter d2 of Fig. 2, whereas the n~nber of turns is three times as large as the number of turns in position of rest. Since the length L of the spring is main-tained unchanged the pitch s3 of the helical spring in the position according to Fig. 3 is one third of the pitch s2 of the position of rest according to Fig. 2.
In Figs. 2 and 3 there is shown with dashed lines a cylindric central body 7 having ~or a function to stabili~e the spring 1 in its contracted condition acc. to Fig. 3.
In Figs. 4-7 there is shown the principle for another embodiment acc. to the invention, according to which the diameter change of the coil spring is provided without changing the pitch of the spring. A coil spring l~s acc.
~ ~ to Fig. 4 in its position of rest with diameter ~ j length L4 and pitch s4. In Fig. 5 the same spring is shown but 6 ~3 having the diameter d5 reduced to about half o~ the dia-meter d4 according to Fi.g. 4. However,, in this state the spring has two parts A and B of different pitch. Part A
has the same length L4 and pitch s4 as the spring has in position of rest, whereas part B has a length L5 which is considerably smaller than L~ and a pitch s5 which is con-siderably smaller than s4. The reduction of the diameter from the position of rest according to Fig. 4 to the sta~e according to Fig. 5 can be provided by rotating the ends of the spring in the same manner as shown in Figs. 1-3.
Dividing up the contracted spring in two zones of differ-ent pitches can thus be provided by means of suitable mechanical aids.
In Fig. 6 there is shown the same spring 1 as in Fig. 4 but having a diameter d6 which has been reduced to about half of diameter d4. The spring has two parts C and D. Part C has the same length L4 and pitch s4 as the spring has in its position of rest. In part D
spring 1 forms a concentric flat spiral spring.
In Fig. 7 there is shown the spiral spring acc. to Fig. 6 but in an end view, from which the appearance of part D is clear. In this embodiment the total length L4 of the spring and the pitch s4 is thus the same as in the position of rest of the spring. The change of spring 1 from position o~ rest to the state according to Figs. 6 and 7 can be provided by using suitable mechanical devic~s.
In Figs. 1-7 there has thus been shown how the diameter of helically shaped coil springs according to the invention can be changed to enable for example ~0 surgical operations. In the following there will be described some different practical solutions to provide for the desired expansion or contraction of the coil spring.
Part B of the embodiment according to Fig. 5 may also be considered as a storage part of the coil ~ZQ~3`
1~

spring material from which in the expansion the part A
of spring material is supplied. In ~igs. 8 and 9 there is shown a side view and an end view, respectively, of a device in ~hich the just mentioned principle is applied. In the storage part B the spiral turns lie close to each other. Figs. 8 and 9 show diagrammatically how the feeding can take place through a nip formed between two counter-rotating small feeding rollers 15 and 16~ whereby spiral material is progressively and controlled fed out at the end 17 of the roller nip in the direction of arrow 18. The dashed line 19 in Figs.
8 and g shows part A of the coil spring after expansion to position rest has taken place.
In connection with application of coil springs by means of the device according to the present invention it is, of course, possible after the application to change the length of the spring as required by manipulation from the outside for adaptation to different situations. Thus, the spring may before, during and after the expansion be axially compressed in order to then be axially extended to for example neutral unloaded state and even to an expanded state beyond neutral. This later case may result in certain further stabilization of the spring in view of tension stored therein.
When applying the technique according to the present invention for surgical operations in the human body the diameter o~` the coil spring in contracted or reduced state is suitably not larger than 8 to 10 mm. The diameter in expanded state may lie between 12 and 30 mm. An expansion such as for example from 8 mm to 12 mm, i.e. an expansion degree of 50 % or an expansion number of 1.5 (12 = 1.5) is possible ~ith for example a coil spring made of a thread of stain-less steel havlng a thic~ness of about 0.3 mm. However, " ~ .

it has been found that by using this thread material it is not possible to manufacture a coil spring which in its position of rest in expanded state has a dia-meter of about 30 mm. Investigations have shown that for all spring materials of interest there is a relation between material thickness and expansion number. The relation is depending on the material but in general the higher the expansion number desired the thinner the thread material to be selected. As an example there rnay be mentioned that to make possible a position of rest at ~0 mm diameter from a contracted state of 8 mm in diameter, i.e. an expansion nurnber of ~. 8 there will be required a steel band of stainless material having a width of 1 mm and a thickness of about 0.15 mm.
Quite generally a suitable interval concerning thread or band thickness is about o.o8 to 0.30 mm. As regards the breadth of band material a suitable interval is about 0.3 to 2 mm. In other words this means that for utili~ing the technique according to the present invention for surgical purposes in most cases one has to utilize a thin material in thread or band form for rll.-tnufacturing the coil spring. HoweverJ a coil spring based on such material gives satisfactory support when applied in for example a defective blood vessel.
In practice it has been found that coll springs made of` thin material have a tendency in expanded state to be mechanically instable. ThusJ this results in tilting or collapse of the spring after its application. In Fig. 10 there is shown diagramrnatically ~0 how a coil spri~g 1 made of a thin material can perform in view of instability in expanded position after it has been applied. The dashed line indicates the vessel wall of a blood vessel wherein the spring has been expanded. Such instability of the coil spring is often ~5 not acceptable? since the coil spring does not perform 6~3 its intended function to eliminate the said defect but can rather act restricting on the flow of blood.
According to the invention the risk for such spring collapse can be eliminated or at any rate essentially prevented by providing the coil spring with rigidifying devices active with the coil spring both in contracted and in expanded state. Drawing figures 11, 12 and 13 illustrate an embodiment of the device according to the invention provided with such rigidi-fying means. Fig. 11 shows diagrammatically part ofa coil spring which in contracted state is designated 21 and in expanded state is designated 21a. In the figure three guide mem~22 for the coil spring are shown. Guide mernbers 22 are arranged on a common llexible but relatively rigid thread 23 at a mutual distance of s12, as is clear from Fig. 11.
Fig. 12 shows a detail of the device of Fig. 11 in enlargement and Fig. 13 shows a section along line I-I in Fig. 12. As is clear from Figs. 12 and 13 the coil spring 21 extends through a hole or a recess 24 in guide member 22, whereas thread 23 extends through the hole 25 of guide member 22.
In connection to the embodiment illustrated in Figs. 5 and 6 it is suitable to arrange guide members 22 fixedly attached to thread 23. In this manner the pitch s12 will be maintained at contracted as well as expanded state, all in conformity with the earlier description in connection with drawing figures 5 and 6.
Fig. 13A shows an embodiment of a coil spring in expanded state stabilized by means of a fixed guide member. Coil spring 21 which is suitably made of a thin metal band is as its end 21a fixedly attached to the axial support member 23a, suitably consisting of one flexible band or two flexible bands attached to each to each other. The ot~e~ ,nd 21b of the coil spring 21 .. . .

6~3 is connected to support member 23a by means of a single fixed guide member 22a in the form of a loop having a rectangular opening. It has been surprisingly found that spring 21 in this embodiment is sufficiently stable for practical use and that it is sufficient that the end sections of the spring are stabilized and connected to each other by means of support member 23a.
The advantage of this embodiment containing one single guide member is that 'che expansion or contraction of the spring is facilitated by the fact that the spring need to pass only through one single guide member.
Fig. 13B shows in enlargement a suitable design of guide member 22a and its connection to support rnember 23a. Guide member 22a is formed by using a band h~ving a loop-like protrusion which, together with su~ort member 23a, forms a rectangular recess 22a. In said recess spring band 21 may easily slide while stabilized at the same time.
Alternatively, the last described embodiment according to Figs. 13A and 13B can be modified by aIranging a fixed guide member at each end of support member 23a. In this manner spring band material can be fed into or fed out from both ends of spring 21 simultaneously which can be of advantage at large expansion numbers when larger lengths of spring band material have to be stored at both ends of the spring in connection with the contraction of the spring.
In connection to this embodiment even better stabilization of the spring in expanded state will be obtained if the distance between fixed points 21a, 22a is made longer than the normal length of the spring in neutral, un-loaded state.
In embodimen~s in accordance with Figs. 2 and 3 guide members 22 are, however, displaceably arranged on thread 23, whereby the pitch of the coil spring can be ' 6 ~3 changed in accordance with what has been earlier descrlbed.
Figo 1~ shows diagrammatically in a side view a coil spring thus stabilized in expanded rest position.
It has been previously indicatecL that the material of the coil spring suitably is in thread or band form, i.e. that the material of the coil spring in an axial cross section has a round or f'lattened shape.
It has been found that coil springs made of band-formed material are more stable and have less tendency to tilt or collapse. As a rule, however, the band width should not exceed 1 to 1.5 mm for medicinal reasons. Larger width hampers the growth of tissue and results in inferior fixation in view of ]ower specific engagement pressure. High specific engagernent pressure is to prefer since it gives a better fixation which is essential in applications in blood vessels, where the pulse rhythm can result in displacement of an applied spring in an axial direction. One way of improving fixation is to coarsen the outer surface of the spring material by for example blastering. The spring material may also by punching be provided with outwardly extending protrusions or, alternatively, the 'band material can be perforated, for example by punching"'or by using a laser, whereby better fixation will be obtained and the growth of tissue in the area where the spring has been applied is facilitated.
Fig. 15 shows in enlargement an embodiment of a guide member providing for good spring stability also at large expansion numbers. Guide member 27 is provided with a rectangular recess 28 for guiding a band-formed coil spring 29, as shown in cross section. The dimensions of recess 28 are suitably selected so that the coil spring member 29 can easily slide through the recess when the spring is expanded or contracted. At the same 1~

time it is prevented that the coil spring tilts so that the tilting forces are taken up by the guide member and the associated thread arranged in hole 25.
Fig. 1~ shows a corresponding guide member 30 but seen from above. The dashed lines 31 indicate a recess of rectangular cross sectionJ and the dashed lines 32 correspond to hole 25 of Fig. 15. As is clear from the figure the center lines 33 and 34, respectively, cross each other with an angle different from gO. Hereby the guide member can be adjusted to the pitch angle of the coil spring in relation to the thread and in this manner the movement of the coil spring when changing the diameter of the spring will be facilitated.
Fig. 17 shows an embodiment of the device according to the present invention in the form of an instrument 35 for performing surgical operations.
A coil spring 36 is in contracted state arranged about a cyli.ndric carrier body 37. This body is provided with a tubular central part 47 and end sections 40, 41, which by a rotary ring 45 are-rotatable relative to each other and also axially displaceable in relation to the central part 47. At one end of carrier body 37 a flexible coaxial cable 42 is connected to one end section 41. This coaxial cable 42 contains an outer tubular part 42b an inner element 42a concentrically arranged extending through end section 41 and the central part 47 of carrier body 37 all the way up to the second end section 40, to which it is securely attached.
At the free outer end of coaxial cable 42 there are arranged nob members 43, 44J of which one nob member 43 is connected to the outer part 42b of the coaxial cable, whereas the other nob member 44 is connected to the inner element 42a of the coaxial cable.

~2~ 3 One end 38 of coil spring 36 can be clamped in a slit 46 arranged between the central part 47 of the carrier body and the end section 40 by the axial dis-placement of the latter. The other end 39 of coil spring 36 is in a corresponding manner clampable in a slit 48 between end section 41 and rotary ring 45, also this in view of the axial displacement of end section 41.
The clamping of ends 38, 39 of coil spring 36 in slits 46 and 48, respectively, as well as the release of the ends from the slits can be provided by axial displacement of the inner element 49 of the coaxial cable 42 by manoeuvring nob member 44 which also o~erates for providing the axial displacement. Rotating both ends 38, 39 of coil spring 36 in relation to each Gther in accordance with the principle illustrated in ~l~s. 1-3 can be provided by rotating nob members 43, 41~ relative to each other.
In the instrument shown in Fig. 17 a central through-going passage 49 is arranged by means of which ccntrast liquid, other instruments for medicinal 20 in~Jestigation can be inserted into the blood vessel~
The function of the device shown is briefly as fullows. In the state shown in Fig. 17, i . e. with coil spring 36 contracted, carrier body 37 with coil spring 36 attached in the respective slits 46, 48 is 25 inserted through an easily accessible location on the blood vessel in question and fast on to the defective position of larger diameter. The expansion of coil spring 36 i s provided by rotating nob means 43, 44 in relation to each other. After coil spring 36 has expanded to tension-less state or essentially tension-less state its ends 38, 39 are released by axial displacement of nob members 43, 44 relative to each other so as to widen slits 46, 48. In this manner ends 38, 39 of the coil spring 36 are released, where-after coaxial cable 42 and support body 37 attached thereto can be removed from the blood vessel.
In Fig. 18 there is shown an alternative embodi-ment of' the device according to the invention in the form of an instrument generally designated 51 for carrying out surgical operations. The device is based upon the spring principle in accordance with that shown in Fig. 5 and in connection to the embodiment shown in Figs. l~A and 13B. In Fig. 18 spring 52 is shown in con~racted state. The axially extending support means 5~ of the spring is securely attached to one end 54 of spring 52, whereas the spring at its other end is movable through a guide member 55 arranged on support member 5~. Spring 52 and support member 53 are attached to a cylindric elastic and hollow body 56 by meàns of latches not shown in the figure, one at each end of support means 5~. The latches can be released from the ends of support member 5~ by means o~ f'or example a wire for each extending within hollow body 56 and a coaxial cable 57 connected thereto and can in this manner be controlled from the outside.
- Between coaxial cable 57 and the end 55 of support member 53 the spring is wound about carrier body 56 with relatively close windings 58. The end 62 of spring 52 adjacent to the coaxial cable is releasably connected to a sleeve 59. The sleeve surrounds the cylinder carrier body 56 and can be rotated and axially moved by means of a flexible tube which is concentrically arranged in the coaxial cablè 57.
~0 The expansion of spring 52 is provided by rotating sleeve 59, the spring excess stored adjacen~
to the sleeve expanding simultaneously with spring 52 moving through guide means 55. During the expansion the sleeve is slowly brought forward by the axial ~5 movement of t~e flexible tube.

. .. .

~Z~4 Ei~3 The total length of spring 52 has been adjusted in advance so that when the expansion is interrup~ed by the surrounding inner walls Or the blood vessel only a minor length Or spring rnaterial is found outside guide member 55. When the surgeon has checked that the spring has taken its correct position spring 52 with carrier member 53 will be released by re:Leasing the said latches and the attachment o~ end 60. If in connection to applying the instrument it is found that the selected spring length is not suitable but need to be changed this can be done by contracting the spring before releasing latches and the end 60 by rotating sleeve 59 in the opposite direction, whereupon the instrument can be removed and spring 52 be replaced by another spring of suitable total length.
The excess 58 of the spring which has been exteriorly wound about body 56 in close windings may, according to another embodiment of the invention, be interiorly stored in a sleeve and by means of suitable r.embers be fed out from said sleeve through guide ember 55 (Fig. 18). This embodiment is shown in Figs.
1'~ and 20 in axial and radial section, respectively.
According to this embodiment a feed cylinder 63 is eccentrically mounted in a cylindric housing 61. In housing 61 cams 66 are cut to form an interior trapezoid thread 67. Feed cylinder 63 is exteriorly covered by a rubber layer 64.
When using the device the band material 72 of the coil spring lies within trapeæoid thread 67 and the rubber layer 64 arranged on the feed cylinder 63 is in t pressing engagement against band material 72 along distance 68-69 (Fig. 20). If now feed cylinder 63 is rotated in the direction of arrow 71 spring band 72 will be advanced out through guide member 55 (Fig. 18) ~5 with simultaneous expansion of the spring. In view of .

6 ~ 3 the fact that feed cylinder 63 having rubber layer 64 engages interiorly along the whole length Or trapezoid thread 67 the spring band 72 may be retracted back into housing 61 if feed cylinder 63 is rotated in the opposite direction~ the coil spring being subjected to contraction.
The advantage of interior storage of excess of spring material in a casing in accordance with Figs.
l9 and 20 is significant. ThusJ the contraction or expansion of the coil spring does not cause any disturbance or irritation of surrounding tissue in view ot the fact that the spring excess is enclosed in a ca.sing. Moreover~ by means of the feeding arrangement ,lnd the guiding ol the spring through a terminal guide member 55 (Fig. 18) a very even and controlled expansion of the spring along all of its length will be obtained. This latter fact rneans that the implanta-tion of the spring will be significantly facilitated.
In certain cases it may be desirable to line the ihiier wall of a damaged blood vessel or other organ with e.~. porous artificial tissue~ for example in order to obstruct a fracture in the blood vessel. Also such lining can be provided using the device according to the present invention.
Fig. 21 shows diagrammatically in a cross section a spring 2i in accordance with Fig. l~A in con~racted state with support member 23A. A porous tissue in the ~orm of a cylindric stocking 73 is arranged round the spring and at$a~ched to carrier member 23A by means o~
30~-~ fine threads ~ . The tissue is overlappingly folded double at folds 75 and 76 so as to closely enclose spring 21 in contracted state. Stocking 73 is held in ~his position by means of an axially extending thin metal wire 77 arranged in fold 75.
AI'ter spring 21 with surrounding stocking 7~ has ~Z~ ~ 6 ~3 . , been inserted to the darnaged site by means of an instrument, for e~ample according to Fig. 17~ metal wire 77 is removed whereupon spring 21 is brought to expand. During the expansion of spring 21 stocking 73 will be opened out and will, finally, be brought to firm engagement against the inner side of the damaged site of for example a blood vessel.
As an alternative to the embodiment described above the cylindrical stocking may, of course, be made of a stretchable material which, in connection to the expansion of the spring, can be stretched to an expanded state without using double folding of the material. Such material may for example be a round stitched or round knitted close meshed article, for example of the tricot type. Such alternative embodiment is, of course, particularly use~ul at lower expansion numbersJ for example in such cases when the instrument with the spring in contracted state is inserted into a blood vessel of a relatively constant diameter but where nontheless certain contraction in relation to the inner diameter of the blood vessel is necessary in order to avoid damages to the inside of the blood vessel in connection with inserting the instrument into the vessel.
It should be observed that the present invention is not limited to the particular embodiments described above which only are intended to illustrate the invention. Thus, the housing described in Figs. 19-20 instead of the eccentrically mounted feed cylinder 63 may contain any suitable feed means by which the spring can be moved out from and into casing 61. As conceivable alternatives there may be mentioned a concentrically arranged feed roller or a feed screw which is axially moved in connection with storing of ~5 the spring and thus after completed feeding of the 6 ~

spring will be rotated back into housing 61 before rernoval of' the instrument I'rom the site o~ application.
Moreover the ernbodirnent described in connection with Figs. l~A and 13B using a fixed guide member at each end of the spring f'or simultaneous f'eeding at both ends of' the springt can be designed so that the spring at its mid point is f'irmly anchored to carry a me~nber 2~A. In this way two spring halves are formedJ each half being associated with a casing or other storage means.
In the embodiment shown in Fig. 22 the spring is made of a band-shaped material 78 which has been provided with elongated openings 79 f'or example by punching. In this manner the spring takes the shape of a ladder. Spring 78 which can be expanded in the same manner as the spring o~ Fig. 1 shows quite good stability and the risk for tilting of the spring in the manIler shown in Fig. 10 has been eliminated. By suitable choice of' band thickness and width of the step iron-like remaining parts of the band the good stability can be combined with high expansibility from a small diameter to a large one.
Springs possessing good stability similar to that of Fig. 22 can be manufactured in another manner than by punching openings. ThusJ there is shown in Fig. 23 a ladder-like spring made from a rolmd wire instead of from a f`lat band. In this case the spring has been manufactured by initially pr-oducing a ladder by attachment of two adjacent parallel wires 80 and 81 by means of transverse elements 82. This device may also be regarded to be a double spring composed of two single springs 80 and 81.
As prevously mentionedJ there is often a need to line the inner wall of a damaged organ with some tissue.
In connection to Fig.23 there is shown an arrangement whereby such tissue can be introducedinto a d~aged organ.
Even if the arrangement illustrated in connection to the particular spring shown in Fig. 2~ it should be noted that it is, of course, applicable to all types of coil springs.
The spring of F`ig. 23 is surrounded by a stocking 95 of some porous material which, by means of stitches or the like indlcated at 97, is attached to a longitudinally extending bar or rigid wire 94, which in turn is at~ached to spring 80, 81 at crossing points 96 in a suitable manner, for example by spot welding, gluing or the like.
By this arrangement the spring can act as a grart in implantation in for example a blood vessel, and thanks to the fixation of stocking 95 to the axially extending wire 94 it is kept in place during the whole applicat:ion operation so that after a~plication in the blood vessel it wholly surrourlds spring 80J 81 thus forming an artificial tissue in ~he blood vessel.
Stocking 95 is suitably made Or some stretchable porous material which can follow the spring material ;n the expansion of the spring in connection with the application at the intended location. Thus, it can consist cr any knitted or stitched material of tricot type with a necessary stretchability or some type of crepe product. The alternative is a stretchable plastic film, i.e. elastomer, for example of silicon resin.
~0 The embodiments of the springs shown in Figs. 22 and 23 may as alternative to the embodiment just described be used as carriers for porous materials, for example tissue, which is illustrated in Fig. 24.
A ladder-like spring 83, designed for example like the spring of Fig. 22 or 23, is covered with porous material 84. In order to enable the desirable density between khe spring turns the supporting double spring has, however, been somewhat modified in that the cross steps of the ]adder, corresponding~ to elements 82 of Fig. 2~, have been arran6ed in step position 85. In this manner the spring turns overlap each other and the desired density can be obtained. Fig. 25 shows ln enlargement an axial section through two adjacent turns of the spring of Fig. 24. As is seen the cross elements a2 are provided with a shoulder 86. The spring is covered with porous tissue 84.
As is clear from Figs. 21~ and 25 sealing will be obtained even if the spring is subjected to axial move-ment. This is of importance if it is desirable for example to use the device according to Fig. 17 to expand the spring. Since the distance between members 38 and 39 is constant the pitch of the spring will be changed when these mernbers are rotated relative to each other. By using the embodirnent of Figs. 24 and 25 this is made possible with maintained sealing in view of the fact that cross elements 82 slide in relation to each other in an axial direction. It is for example possible to design the spring according to Fig. 24 so that when it is~contracted state attached to the device according to Fig. 17 the overlap between the turns is relatively large whereas a~ter the expansion the overlap is relatively small.
If it is desirable to maintain the same pitch in contracted as well as expanded state of a springl according to for example Figs. 2~-25l this can be provided by modifying the device of Fig. 17 so that members 38 and 39 are subjected to axial movement towards each okher o~r from each other when the spring is expanded and conkracted, respectively.

~Z~ 3 In this manner the pitch can be maintained relatively constant3 which may be of advantage, particularly with regard to the embodiments according to Figs. 22-25.
In some cases it can be suitable that the porous tissue, rather than being attached on the outside of the ladder-like devices, is designed in the form of semi-permeable sections of the band-like material.
Thus, in this case openings 79 of Fig. 22 are replaced by a thinning of the band-material proper3 in which thinning very fine perforations have been applied so that the same perforated surface will be obtained. Also in this case cross elements 78 form the necessary rigidification.
A further advantage of the device according to Fig. 21i is the fact that the porous materia] does not necessarily need to be elastic in order to participate in the expansion of the spring.
Fig. 26 shows a modified design of the spring in the device according to the invention. The modified spring shown in the figure generally indicated 90 is across the major part of its length designed as a conventional spring of constant diameter, whereas at the upper end 91 as shown in Fig. 26 it is designed with a diminishing diameter so that the spring 90 in unloaded state has the configuration shown in the ~igure. In order to facilitate the following description of the function of the spring the lower free end of the spring has been desi~nated 92 whereas its free upper end has been designated 93.
In regard to contraction or expansion of spring 90 in connection with application at the intended location the function of the spring shown in Fig. 26 is the same as that of the previously described embodi-ments of the spring. ~lowever/ in view of the fact that spring 90 is provided with a diminishing end 91 certain modification of the instrument to be used for operating the spring may be desirable. For example the instrument shown in Fig. 17 can be modified for adaptation to the spring according to Fig. 26 by excluding end section L~o and providing the inner element l~2a at the end extend-ing through carrier body ~7 with a cross groove intended to accomodate and hold the upper free end 93 of spring 90. The other end 92 of spring 90 may then in the same manner as described in connection to Fig. 17 be held at the other end of carrier body 37 in connection to end section 41, whereupon in the manner previously described spring 90 can be contracted by rotating rotary members 4~J 44 in relation to each other.
With spring 90 in contracted state it may thus be applied to the desired location within a blood vessel, for example Vena Cava Inferior for the purpose of preventing lung embolia. Previously known filter rneans intended for application within blood vessels for the purpose of entrapping tromboses are subject to the disadvantage that they are permanently attached in the blood vessel by points or hooks or the like whereby correction of location or removal of the filter is not possible. Example of such a device is described in ~.S. patent 3,540,4~1.
By using the device according to the present invention such as that illustrated in Fig. 23 these drawbacks are, however, avoided while obtaining essential advantages, among which the following may be mentioned:
1. the spring with filter function is self-attaching by engagement againt the inner wall of the vessel without causing damages to the inner wall;

6 ~3 2. the position of the spring can be corrected and removal of same is possible;
3. the device results only in an insignif:icant reduction Or the flow across the section Or the blood vessel;
4. the application of the device is significant-ly simpler than that of the prior art.
In order to prevent clogging of the diminishing end 91 of spring 90 by small lumps of coagulated blood a suitable distance between the spring turns in the diminishing part of the spring is abou~ ~ mm. By using such distance the passage of larger tromboses is avoided whereas too early clogging of the diminishing part of the spring is avoided.
In connection to the embodiment of Fig. 26 and also in connection to other embodiments of the spring of the device of the present invention a spring inserted and applied in for example a blood vessel can be removed in the following manner. A flexible tube of a diameter adjusted to the blood vessel is inserted up to the end 92 of spring 90 or further up to its other end 93 whereupon the spring end is grabbed in a suitable manner by means of a grip member, whereupon the spring can be retracted through the tube without damaging the surrounding tissue. This procedure can be suitable to resort to in case the spring has taken a wrong position or has come to a wrong location in the blood vessel.
Fig. 27 shows an embodiment modified in relation to the device according to Figs. 24 and 25~ whereby the inner wall of a damaged organ can be lined with porous tissue. The embodiment contains springs of the type illustrated in Figs. 22 and 23 and reference numerals of the figure contain the corresponding designations as Fig. 23. According to Fig. 27 the ~2~ 3 :~o double spring 80-82 is covered with stocking 83 of porous tissue surrol~ding the separate turns in the spring along the whole length of the spring period.
The stocking 83 extends side-wise outside the spring material whereby there is provided overlap inside adjacent turns of the spring, as is c]ear from Fig. 27.
Also in this case there is obtained sealing if the spring is moved in an axial direction, for example if the device according to Fig. 17 is used to expand the spring.
In other respects the device according to the invention contains the following features taken each per se or in any combination, namely:
a) that said other state (Fig. 2; 4) essentially corresponds to unloaded condition of the coil spring l; 36;
b) that shaft 42a and sleeve 42b are releasably connected to coil spring 36;
c) an axially extending guide bar 23 arranged at the periphery of the spring on which at least one guide member is displaceably arranged and through which the spring material can move tangentially in connection with the contraction or expansion of the spring;
d) fixed gui.dQ members 22 distributed over the said given length of the spring and arranged at the periphery of the spring on an axially extending support member 23, the spring material 21 moving tangentially through said fixed guide members in connection with the expansion or contraction of the spring, e) that the end sections or parts thereof 40, 41 ~f the carrier body 37 are axially displace-~ 3 able relative to the central part L~7 so that in the gaps 46, ~8 between the central part 47 and the respective end sections 40, 41 the ends 38, 39 of the spring can be releasably attached;
f) that at least one section or part thereof 40, ~1 is axially displaceable by means of a member 44 arranged at the free end of the coaxial cable 42;
g) an axially extending support member 23a at the circumference of the spring 21 at one end 21a of which the spring 21 is attached and at the other end 21b o~ which there is provided a fixed guide mem~er 22a through which the spring material can move in connection with a contraction or expansion Or the spring 21;
h) an axially extending suppo:rt member arranged at the periphery of the spring at both ends of which there are arranged fixed guide means through which the material of the spring can move in connection with the contractional expansion of the spring;
i) an elongated carrier body 56 about which 25; the spring 52 is arranged, a cassette magazine arranged at one end of the carrier body including a cylindric cassette housing 61, a feed member 67~ rotatably arranged therein by which the spring can be moved ~or contraction or expansion by rotating feed member 63 in one direction or the other;
j) that the feed member consists of a feed cylinder 63 eccentrically mounted in the ~2 cassette housing 61 a cylinder 63 at its periphery engaging the inside of the cassette housing 61;
k) a trapezoid thread provideà on the inside of cassette housing 61 in which the spring 52 can glide;
1) that feed cylinder 63 on its exterior is provided with a fri ction coating 64 of for example rubber or plastic;
m) an elongated carrier body 56 about which the spring 52 is arranged and at one end of which one end of the spring is releasably attached, a magazine section 58 extending from the other end of carrier body surrounded by the spring carrying at its outer end a rotary sleeve 59 to which the other end of the spring is releasably attached, and means for rotating and axially displacing rotary sleeve 53 relative to the carrier body 56;
n) that stocking 73 by stretchability in the tissue is adaptable to the spring diameter in connection with the exparlsion of the spring;
o) that stocking 73 by overlapping folding 75J
76 is adaptable to the spring c~iameter in connection with the expansion of the spring;
p) that stocking 73 is at'cached relative to spring 21, for example by thread stitches.
In the instant disclosure the term "coil spring"
30 refers to a helical spring of the traditional type.
However~ the spring used in the device of the invention need not necessarily have constant diarneter or a constant pitch. The general configuration, however, is that of a helix.

~2 ~ 6~3 The invention is also useful in certain kidney disorders, where so-called haemodialysis takes place. In this operation a needle or cannula is applied to the patient s arm so that blood is extracted from the body and after purification in a dialyser returned to the body.
Since dialyses have to be repeated at least once a week problems arise in regard to the blood vessels of the patient. The problem has been solved by arranging a so-called by-pass providing a permanent connection between an artery and a vein9 for example in the arm of the patient. This connection may be made of for example vessel prostheses or a vein taken from calves, so-called "solkograft". The advantage of using such a by-pass is the fact that the high pressure from the artery provides for expansion of the connecting ve:in making it easily accessible when inserting the cannula.
Moreover, a large number of dialyses can be made before exchanging the connection. The connecting conduit is usually positioned beneath the skin and is attached to the artery and the vein by stitching.
HoweverJ also the connections hitherto used result in certain problems. When the prosthesis is withdrawn beneath the skin in an operation it rnay be folded and b]ocked. After the removal of the haemodialysis cannula the connecting prosthesis must be compressed to prevent too large a loss of blood. The artificial vein may then easily collapse resulting in subsequent impaired circulation. -[t has also been found that so-called stenoses, i.e. contractions, will be formed where the ~0 connection is attached to the vein.
It has now been found that the disadvantages associated with the above connecting conduits or prostheses can be eliminated by using the device of the invention by using the fo]lowing procedure.
~5 A helical spring of suitable diameter and of a suitable number of turns is attached in an instrument in accordarlce with the inventionJ for example as illustrated in Fig. 17, i.e. the spring is in contracted state.
A prosthesis, for example a solkograft, is attached at one end thereof to a vein of the patient by a few stitches. Then the device of the invention including the spring is inserted into the graft so that the outer end of the device with the corresponding end of the spring will reach a position about 2 cm inside the vein.
Then the spring is expanded inside the prosthesis and released from the instrument which is then withdrawn from the prosthesis.
By means of a cut beneath the skin the free end of the graft is transferred up to the opening of the :L5 artery and attached thereat.
The arrangement described above has been found to result in great advantages.
1. The graft will not collapse when implanted due to the action of the spring.
2. The connecting conduit or prosthesis may safely be compressed or clamped after removal of the cannula for reducing blood losses. The conduit immediately returns to full diameter in view of the action of the spring.
3. It is easy to find the prosthesis under the skin and this in turn facilitates puncturing the conduit.
4. It has been found that the risk for the formation of stenoses in the vein is reduced. In using the conventional technique the site of connection must be changed and moved to another location at least once a year due to formation of stenosis.
In addition to the application of the invention as described above there are also other important areas where the device of the invention may be used. Thus, ~2(~
,5 there are presently di~iculties in performing anirnal testsJ ror example on dogs/ where it is desirable t;o introduce ~'or exarrlple drugs several times a day to study the erfects in long-time tests. Vp t;o now such experiments have not been feasible inter alia in view Or the fact that animals are sub~ect to rapid forrnation Or stenoses.
By using the arrangement described above tests of lengthy duration can be made on for example dogs with one single permanent connection.

Claims (17)

THE EMBODIMENTS OF THE INVENTION IN WHICH AN EXCLUSIVE
PROPERTY OR PRIVILEGE IS CLAIMED ARE DEFINED AS FOLLOWS:
1. Device comprising a helically shaped spiral spring and means for causing the spring to change from a first state of a certain diameter to a second state of larger diameter and vice versa, said means being arranged to rotate the ends of the spring relative to each other with maintained length of the spring so that the transition from said first state to said second state takes place by reducing the number of spring turns within said length and the corresponding increase of the pitch of the spring.
2. Device according to claim 1, wherein one end of the spring is attached to a shaft which is centrally arranged inside the spring, whereas its other end is connected to a sleeve sur-rounding the shaft, whereby through rotation of the shaft and/or the sleeve relative to each other reduction or increase of the diameter of the spring is provided.
3. Device according to claim 1, wherein the spring material as seen in axial cross section has a radially flattened shape to reduce the risk for spring collapse.
4. Device according to claim 1, 2 or 3, including a stock-ing of stretchable tissue surrounding the spring intended for implantation together with the spring.
5. Device according to claim 1, wherein the spring material is provided with radial through-openings between which axial and transverse minor sections remain, whereby the expansive or con-tractional capacity of the spring is increased.
6. Device according to claim 1, wherein the spring is composed of a co-extensive double spiral or spring wherein the spiral elements are connected by means of tangentially distributed and axially extending cross members.
7. Device according to claim 6, wherein the cross members are provided with a centrally positioned radially oriented shoulder whereby adjacent spring turns can overlap.
8. Device according to claim 6, wherein the cross members are provided with a centrally positioned radially oriented shoulder whereby adjacent spring turns can overlap, and including a stocking of porous tissue surrounding the individual turns of the spiral over substantially the whole length of the spiral material.
9. Device according to claim 1, wherein the spring is designed to act as a filter after application by having at at least one end thereof a diminishing diameter.
10. Device according to claim 9, wherein the distance between the turns of the diminishing end of the spring defining the flow passage is about 3 mm.
11. Device according to claim 6, including a stocking of porous tissue surrounding the individual turns of the spiral in the whole length of the spiral material and extending laterally outside the spiral material thereby providing overlap within adjacent turns of the spiral.
12. Device according to claim 1, 2 or 3, including an axially extending and elongated member coextensive with the periphery of the spring which is attached to the spring at one location, and by a stretchable stocking of porous material sur-rounding the spring which is attached to said member and which is intended to be implanted together with the spring.
13. Device according to claim 1, including a cylindrical tubular carrier body arranged within the coil spring comprising a central part and end sections at the ends of the spring rotatable relative to each other, the ends of the spring being connected to the respective end sections, and means with the help of which the said end sections can be rotated relative to each other to expand or to contract the spring.
14. Device according to claim 13, wherein said means com-prise coaxial members connected to the one end section, the interior element of the said members extending through the carrier body and being at the end connected to the other end section, rotators being arranged at the outer free end of the coaxial members.
15. Device comprising a helically shaped spiral spring and means for causing the spring to change from a first state of a certain diameter to a second state of larger diameter and vice versa, said means being arranged to supply to a given length of the spring further spring material at at least one end of the said length of the spring so that the transition from said first state to said second state takes place independent of pitch and number of spring turns within the said length.
16. Device according to claim 15 wherein the spring material as seen in axial cross section has a radially flattened shape to reduce the risk for spring collapse.
17. Device according to claim 15 or 16 including a stocking of stretchable tissue surrounding the spring intended for implantation together with the spring.
CA000411459A 1981-09-16 1982-09-15 Device for application in blood vessels or other difficulty accessible locations and its use Expired CA1204643A (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
SE8105510A SE8105510L (en) 1981-09-16 1981-09-16 DEVICE FOR APPLICATION IN BLODKERL OR SIMILAR RESPONSIBILITY
SE8105510-5 1981-09-16
SE8202740-0 1982-04-30
SE8202740A SE444761B (en) 1981-09-16 1982-04-30 Arrangement for surgical or medicinal use

Publications (1)

Publication Number Publication Date
CA1204643A true CA1204643A (en) 1986-05-20

Family

ID=26657957

Family Applications (1)

Application Number Title Priority Date Filing Date
CA000411459A Expired CA1204643A (en) 1981-09-16 1982-09-15 Device for application in blood vessels or other difficulty accessible locations and its use

Country Status (13)

Country Link
US (1) US4553545A (en)
EP (1) EP0088118A1 (en)
AT (1) AT392733B (en)
AU (1) AU8954282A (en)
BR (1) BR8208063A (en)
CA (1) CA1204643A (en)
CH (1) CH657521A5 (en)
DE (2) DE3250058C2 (en)
FR (1) FR2512678B1 (en)
GB (1) GB2124908B (en)
IT (1) IT1152608B (en)
NL (1) NL8220336A (en)
WO (1) WO1983000997A1 (en)

Families Citing this family (538)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5876419A (en) * 1976-10-02 1999-03-02 Navius Corporation Stent and method for making a stent
US5643314A (en) * 1995-11-13 1997-07-01 Navius Corporation Self-expanding stent
SE445884B (en) * 1982-04-30 1986-07-28 Medinvent Sa DEVICE FOR IMPLANTATION OF A RODFORM PROTECTION
FR2573646B1 (en) * 1984-11-29 1988-11-25 Celsa Composants Electr Sa PERFECTED FILTER, PARTICULARLY FOR THE RETENTION OF BLOOD CLOTS
SE450809B (en) * 1985-04-10 1987-08-03 Medinvent Sa PLANT TOPIC PROVIDED FOR MANUFACTURING A SPIRAL SPRING SUITABLE FOR TRANSLUMINAL IMPLANTATION AND MANUFACTURED SPIRAL SPRINGS
US4706671A (en) * 1985-05-02 1987-11-17 Weinrib Harry P Catheter with coiled tip
SE447061B (en) * 1985-06-10 1986-10-27 Medinvent Sa INFO DEVICE, SPEC FOR IMPLEMENTATION IN A LIVE ORGANISM
US4805618A (en) * 1985-08-08 1989-02-21 Olympus Optical Co., Ltd. Oviduct closing apparatus
DE3532653C2 (en) * 1985-09-13 1993-10-21 Martin Kaltenbach Dilatation catheter
US5102417A (en) * 1985-11-07 1992-04-07 Expandable Grafts Partnership Expandable intraluminal graft, and method and apparatus for implanting an expandable intraluminal graft
US4733665C2 (en) * 1985-11-07 2002-01-29 Expandable Grafts Partnership Expandable intraluminal graft and method and apparatus for implanting an expandable intraluminal graft
DE3640745A1 (en) * 1985-11-30 1987-06-04 Ernst Peter Prof Dr M Strecker Catheter for producing or extending connections to or between body cavities
US4649922A (en) * 1986-01-23 1987-03-17 Wiktor Donimik M Catheter arrangement having a variable diameter tip and spring prosthesis
EP0556940A1 (en) * 1986-02-24 1993-08-25 Robert E. Fischell Intravascular stent
US4759748A (en) * 1986-06-30 1988-07-26 Raychem Corporation Guiding catheter
FR2606642B1 (en) * 1986-11-14 1989-04-28 Michel Camus ELEMENT TO BE IMPLANTED IN A VEIN AND CARRIER DEVICE THEREOF
US4893623A (en) * 1986-12-09 1990-01-16 Advanced Surgical Intervention, Inc. Method and apparatus for treating hypertrophy of the prostate gland
US4762130A (en) * 1987-01-15 1988-08-09 Thomas J. Fogarty Catheter with corkscrew-like balloon
US4800882A (en) * 1987-03-13 1989-01-31 Cook Incorporated Endovascular stent and delivery system
US4907336A (en) * 1987-03-13 1990-03-13 Cook Incorporated Method of making an endovascular stent and delivery system
US5041126A (en) * 1987-03-13 1991-08-20 Cook Incorporated Endovascular stent and delivery system
US4969458A (en) * 1987-07-06 1990-11-13 Medtronic, Inc. Intracoronary stent and method of simultaneous angioplasty and stent implant
JPH088933B2 (en) * 1987-07-10 1996-01-31 日本ゼオン株式会社 Catheter
JPS6483251A (en) * 1987-09-24 1989-03-29 Terumo Corp Instrument for securing inner diameter of cavity of tubular organ
US5242451A (en) * 1987-09-24 1993-09-07 Terumo Kabushiki Kaisha Instrument for retaining inner diameter of tubular organ lumen
US5133732A (en) * 1987-10-19 1992-07-28 Medtronic, Inc. Intravascular stent
US4886062A (en) 1987-10-19 1989-12-12 Medtronic, Inc. Intravascular radially expandable stent and method of implant
US6974475B1 (en) * 1987-12-08 2005-12-13 Wall W Henry Angioplasty stent
US4889137A (en) * 1988-05-05 1989-12-26 The United States Of America As Reprsented By The Department Of Health And Human Services Method for improved use of heart/lung machine
US4830003A (en) * 1988-06-17 1989-05-16 Wolff Rodney G Compressive stent and delivery system
DE68922497T2 (en) 1988-08-24 1995-09-14 Marvin J Slepian ENDOLUMINAL SEAL WITH BISDEGRADABLE POLYMERS.
US5575815A (en) * 1988-08-24 1996-11-19 Endoluminal Therapeutics, Inc. Local polymeric gel therapy
US5213580A (en) * 1988-08-24 1993-05-25 Endoluminal Therapeutics, Inc. Biodegradable polymeric endoluminal sealing process
US5843156A (en) 1988-08-24 1998-12-01 Endoluminal Therapeutics, Inc. Local polymeric gel cellular therapy
US5328471A (en) * 1990-02-26 1994-07-12 Endoluminal Therapeutics, Inc. Method and apparatus for treatment of focal disease in hollow tubular organs and other tissue lumens
US5749915A (en) * 1988-08-24 1998-05-12 Focal, Inc. Polymeric endoluminal paving process
US5092877A (en) * 1988-09-01 1992-03-03 Corvita Corporation Radially expandable endoprosthesis
US5019090A (en) * 1988-09-01 1991-05-28 Corvita Corporation Radially expandable endoprosthesis and the like
US5226913A (en) * 1988-09-01 1993-07-13 Corvita Corporation Method of making a radially expandable prosthesis
CA1322628C (en) * 1988-10-04 1993-10-05 Richard A. Schatz Expandable intraluminal graft
US4950227A (en) * 1988-11-07 1990-08-21 Boston Scientific Corporation Stent delivery system
CH678393A5 (en) * 1989-01-26 1991-09-13 Ulrich Prof Dr Med Sigwart
US5163958A (en) * 1989-02-02 1992-11-17 Cordis Corporation Carbon coated tubular endoprosthesis
US5052782A (en) * 1989-03-14 1991-10-01 Hughes Aircraft Company Resilient lens mounting apparatus
US6004261A (en) * 1989-04-28 1999-12-21 C. R. Bard, Inc. Formed-in-place endovascular stent and delivery system
US5100429A (en) * 1989-04-28 1992-03-31 C. R. Bard, Inc. Endovascular stent and delivery system
US4990155A (en) * 1989-05-19 1991-02-05 Wilkoff Howard M Surgical stent method and apparatus
US5116318A (en) * 1989-06-06 1992-05-26 Cordis Corporation Dilatation balloon within an elastic sleeve
US5171262A (en) * 1989-06-15 1992-12-15 Cordis Corporation Non-woven endoprosthesis
US5015253A (en) * 1989-06-15 1991-05-14 Cordis Corporation Non-woven endoprosthesis
US4955859A (en) * 1989-07-07 1990-09-11 C. R. Bard, Inc. High-friction prostatic stent
DE9010130U1 (en) * 1989-07-13 1990-09-13 American Medical Systems, Inc., Minnetonka, Minn., Us
US5571169A (en) * 1993-06-07 1996-11-05 Endovascular Instruments, Inc. Anti-stenotic method and product for occluded and partially occluded arteries
US5662701A (en) * 1989-08-18 1997-09-02 Endovascular Instruments, Inc. Anti-stenotic method and product for occluded and partially occluded arteries
US6344053B1 (en) 1993-12-22 2002-02-05 Medtronic Ave, Inc. Endovascular support device and method
DE3930600A1 (en) * 1989-09-07 1991-04-04 Schubert Werner Expansible probe for blood vessel, etc. treatment - is used for pressure shock and coupling of wave energy imparting medium
DE69002295T2 (en) 1989-09-25 1993-11-04 Schneider Usa Inc MULTILAYER EXTRUSION AS A METHOD FOR PRODUCING BALLOONS FOR VESSEL PLASTICS.
CA2026604A1 (en) * 1989-10-02 1991-04-03 Rodney G. Wolff Articulated stent
US5290306A (en) * 1989-11-29 1994-03-01 Cordis Corporation Puncture resistant balloon catheter
US5478320A (en) * 1989-11-29 1995-12-26 Cordis Corporation Puncture resistant balloon catheter and method of manufacturing
US5108416A (en) * 1990-02-13 1992-04-28 C. R. Bard, Inc. Stent introducer system
US5071407A (en) * 1990-04-12 1991-12-10 Schneider (U.S.A.) Inc. Radially expandable fixation member
US5221261A (en) * 1990-04-12 1993-06-22 Schneider (Usa) Inc. Radially expandable fixation member
IL94138A (en) * 1990-04-19 1997-03-18 Instent Inc Device for the treatment of constricted fluid conducting ducts
US5344426A (en) * 1990-04-25 1994-09-06 Advanced Cardiovascular Systems, Inc. Method and system for stent delivery
US5242399A (en) * 1990-04-25 1993-09-07 Advanced Cardiovascular Systems, Inc. Method and system for stent delivery
US5158548A (en) * 1990-04-25 1992-10-27 Advanced Cardiovascular Systems, Inc. Method and system for stent delivery
US5064435A (en) * 1990-06-28 1991-11-12 Schneider (Usa) Inc. Self-expanding prosthesis having stable axial length
US5236447A (en) * 1990-06-29 1993-08-17 Nissho Corporation Artificial tubular organ
US5108417A (en) * 1990-09-14 1992-04-28 Interface Biomedical Laboratories Corp. Anti-turbulent, anti-thrombogenic intravascular stent
US5344425A (en) * 1990-09-14 1994-09-06 Interface Biomedical Laboratories, Corp. Intravascular stent and method for conditioning the surfaces thereof
WO1992005747A1 (en) * 1990-10-09 1992-04-16 Moskovsky Institut Stali I Splavov Appliance for implantation in hollow organs and device for its introduction
US5222971A (en) * 1990-10-09 1993-06-29 Scimed Life Systems, Inc. Temporary stent and methods for use and manufacture
US5160341A (en) * 1990-11-08 1992-11-03 Advanced Surgical Intervention, Inc. Resorbable urethral stent and apparatus for its insertion
US5695518A (en) * 1990-12-28 1997-12-09 Laerum; Frode Filtering device for preventing embolism and/or distension of blood vessel walls
CA2060067A1 (en) * 1991-01-28 1992-07-29 Lilip Lau Stent delivery system
US5195969A (en) 1991-04-26 1993-03-23 Boston Scientific Corporation Co-extruded medical balloons and catheter using such balloons
US5304200A (en) * 1991-05-29 1994-04-19 Cordis Corporation Welded radially expandable endoprosthesis and the like
US5217484A (en) * 1991-06-07 1993-06-08 Marks Michael P Retractable-wire catheter device and method
US5591172A (en) * 1991-06-14 1997-01-07 Ams Medinvent S.A. Transluminal implantation device
US5527354A (en) * 1991-06-28 1996-06-18 Cook Incorporated Stent formed of half-round wire
US5314472A (en) * 1991-10-01 1994-05-24 Cook Incorporated Vascular stent
FR2678508B1 (en) * 1991-07-04 1998-01-30 Celsa Lg DEVICE FOR REINFORCING VESSELS OF THE HUMAN BODY.
CA2053930C (en) * 1991-07-17 1997-01-07 Robert Emmet Kirby Bodyside cover for an absorbent article
US5129910A (en) * 1991-07-26 1992-07-14 The Regents Of The University Of California Stone expulsion stent
US5183085A (en) * 1991-09-27 1993-02-02 Hans Timmermans Method and apparatus for compressing a stent prior to insertion
US5443498A (en) * 1991-10-01 1995-08-22 Cook Incorporated Vascular stent and method of making and implanting a vacsular stent
WO1993006792A1 (en) * 1991-10-04 1993-04-15 Scimed Life Systems, Inc. Biodegradable drug delivery vascular stent
CA2380683C (en) * 1991-10-28 2006-08-08 Advanced Cardiovascular Systems, Inc. Expandable stents and method for making same
US5507767A (en) * 1992-01-15 1996-04-16 Cook Incorporated Spiral stent
US5405377A (en) * 1992-02-21 1995-04-11 Endotech Ltd. Intraluminal stent
US5683448A (en) * 1992-02-21 1997-11-04 Boston Scientific Technology, Inc. Intraluminal stent and graft
GR920100104A (en) * 1992-03-13 1993-11-30 Christodoulos I Stefanadis Temporary luminal stent for the support of the vascular wall.
US5282823A (en) * 1992-03-19 1994-02-01 Medtronic, Inc. Intravascular radially expandable stent
US7101392B2 (en) 1992-03-31 2006-09-05 Boston Scientific Corporation Tubular medical endoprostheses
US6497709B1 (en) 1992-03-31 2002-12-24 Boston Scientific Corporation Metal medical device
US5201757A (en) * 1992-04-03 1993-04-13 Schneider (Usa) Inc. Medial region deployment of radially self-expanding stents
US5224953A (en) * 1992-05-01 1993-07-06 The Beth Israel Hospital Association Method for treatment of obstructive portions of urinary passageways
US5540712A (en) * 1992-05-01 1996-07-30 Nitinol Medical Technologies, Inc. Stent and method and apparatus for forming and delivering the same
US5354308A (en) * 1992-05-01 1994-10-11 Beth Israel Hospital Association Metal wire stent
US5817102A (en) * 1992-05-08 1998-10-06 Schneider (Usa) Inc. Apparatus for delivering and deploying a stent
AU678350B2 (en) * 1992-05-08 1997-05-29 Schneider (Usa) Inc. Esophageal stent and delivery tool
US5342387A (en) * 1992-06-18 1994-08-30 American Biomed, Inc. Artificial support for a blood vessel
US5772668A (en) * 1992-06-18 1998-06-30 American Biomed, Inc. Apparatus for placing an endoprosthesis
DE4240177C2 (en) * 1992-11-30 1997-02-13 Ruesch Willy Ag Self-expanding stent for hollow organs
US5330483A (en) * 1992-12-18 1994-07-19 Advanced Surgical Inc. Specimen reduction device
US5630840A (en) 1993-01-19 1997-05-20 Schneider (Usa) Inc Clad composite stent
CA2152594C (en) * 1993-01-19 1998-12-01 David W. Mayer Clad composite stent
IL108455A (en) * 1993-01-27 1997-04-15 Instent Inc Vascular and coronary stents
US5360401A (en) * 1993-02-18 1994-11-01 Advanced Cardiovascular Systems, Inc. Catheter for stent delivery
WO1994021196A2 (en) * 1993-03-18 1994-09-29 C.R. Bard, Inc. Endovascular stents
US6090115A (en) 1995-06-07 2000-07-18 Intratherapeutics, Inc. Temporary stent system
DE69431989T2 (en) * 1993-04-13 2003-11-06 Boston Scient Corp DEVICE FOR APPLYING A PROSTHESIS WITH A DILATION TIP
WO1994023786A1 (en) * 1993-04-13 1994-10-27 Boston Scientific Corporation Prosthesis delivery system
EP0621015B1 (en) 1993-04-23 1998-03-18 Schneider (Europe) Ag Stent with a covering layer of elastic material and method for applying the layer on the stent
US5441515A (en) * 1993-04-23 1995-08-15 Advanced Cardiovascular Systems, Inc. Ratcheting stent
US5456667A (en) * 1993-05-20 1995-10-10 Advanced Cardiovascular Systems, Inc. Temporary stenting catheter with one-piece expandable segment
DE69330132T2 (en) * 1993-07-23 2001-11-15 Cook Inc FLEXIBLE STENT WITH A CONFIGURATION MOLDED FROM A MATERIAL SHEET
US6025044A (en) * 1993-08-18 2000-02-15 W. L. Gore & Associates, Inc. Thin-wall polytetrafluoroethylene tube
EP0714270B1 (en) * 1993-08-18 2002-09-04 W.L. Gore & Associates, Inc. A tubular intraluminally insertable graft
US6027779A (en) * 1993-08-18 2000-02-22 W. L. Gore & Associates, Inc. Thin-wall polytetrafluoroethylene tube
US5735892A (en) * 1993-08-18 1998-04-07 W. L. Gore & Associates, Inc. Intraluminal stent graft
US6159565A (en) * 1993-08-18 2000-12-12 W. L. Gore & Associates, Inc. Thin-wall intraluminal graft
GB2281865B (en) * 1993-09-16 1997-07-30 Cordis Corp Endoprosthesis having multiple laser welded junctions,method and procedure
US5913897A (en) * 1993-09-16 1999-06-22 Cordis Corporation Endoprosthesis having multiple bridging junctions and procedure
WO1995008289A2 (en) 1993-09-16 1995-03-30 Scimed Life Systems, Inc. Percutaneous repair of cardiovascular anomalies and repair compositions
US5545209A (en) 1993-09-30 1996-08-13 Texas Petrodet, Inc. Controlled deployment of a medical device
US6685736B1 (en) 1993-09-30 2004-02-03 Endogad Research Pty Limited Intraluminal graft
WO1995008966A1 (en) 1993-09-30 1995-04-06 White Geoffrey H Intraluminal graft
US6896842B1 (en) 1993-10-01 2005-05-24 Boston Scientific Corporation Medical device balloons containing thermoplastic elastomers
EP0738168B1 (en) 1993-10-01 2004-01-21 Boston Scientific Corporation Medical device balloons containing thermoplastic elastomers
US5632772A (en) * 1993-10-21 1997-05-27 Corvita Corporation Expandable supportive branched endoluminal grafts
US5476505A (en) * 1993-11-18 1995-12-19 Advanced Cardiovascular Systems, Inc. Coiled stent and delivery system
US6775021B1 (en) 1993-11-26 2004-08-10 Canon Kabushiki Kaisha Data communication apparatus for receiving and recording data and having means for adding a predetermined mark and a time of reception to the recorded data
US5792106A (en) * 1993-12-02 1998-08-11 Scimed Life Systems, Inc. In situ stent forming catheter
DE4341504C1 (en) * 1993-12-06 1995-04-13 Staudacher Gerhard Dr Med Vet Device for supporting a tubular structure
JP2703510B2 (en) * 1993-12-28 1998-01-26 アドヴァンスド カーディオヴァスキュラー システムズ インコーポレーテッド Expandable stent and method of manufacturing the same
FR2714815B1 (en) * 1994-01-10 1996-03-08 Microfil Ind Sa Elastic prosthesis to widen a duct, in particular a blood vessel.
US5609627A (en) * 1994-02-09 1997-03-11 Boston Scientific Technology, Inc. Method for delivering a bifurcated endoluminal prosthesis
US6051020A (en) 1994-02-09 2000-04-18 Boston Scientific Technology, Inc. Bifurcated endoluminal prosthesis
US6165213A (en) * 1994-02-09 2000-12-26 Boston Scientific Technology, Inc. System and method for assembling an endoluminal prosthesis
US6039749A (en) 1994-02-10 2000-03-21 Endovascular Systems, Inc. Method and apparatus for deploying non-circular stents and graftstent complexes
ES2075812B1 (en) * 1994-02-25 1996-05-16 De La Torre Fernando Izquierdo LONG DURATION URETERAL PROSTHESIS.
SI0669114T1 (en) 1994-02-25 1999-02-28 Robert E. Fischell Stent having a multiplicity of closed circular structures
US5643312A (en) * 1994-02-25 1997-07-01 Fischell Robert Stent having a multiplicity of closed circular structures
US5441516A (en) * 1994-03-03 1995-08-15 Scimed Lifesystems Inc. Temporary stent
IL108832A (en) * 1994-03-03 1999-12-31 Medinol Ltd Urological stent and deployment device therefor
US5556413A (en) * 1994-03-11 1996-09-17 Advanced Cardiovascular Systems, Inc. Coiled stent with locking ends
US6165210A (en) * 1994-04-01 2000-12-26 Gore Enterprise Holdings, Inc. Self-expandable helical intravascular stent and stent-graft
US6001123A (en) * 1994-04-01 1999-12-14 Gore Enterprise Holdings Inc. Folding self-expandable intravascular stent-graft
ES2126896T3 (en) * 1994-05-19 1999-04-01 Scimed Life Systems Inc IMPROVED BIOLOGICAL TISSUE SUPPORT DEVICES.
US5476508A (en) * 1994-05-26 1995-12-19 Tfx Medical Stent with mutually interlocking filaments
EP0684021A1 (en) * 1994-05-26 1995-11-29 TFX Medical Stent with mutually linked wires
DE69518435T3 (en) 1994-06-08 2004-07-22 CardioVascular Concepts, Inc., Portola Valley A branching graft manufacturing system
DE69528216T2 (en) * 1994-06-17 2003-04-17 Terumo Corp Process for the production of a permanent stent
EP1695673A3 (en) * 1994-07-08 2009-07-08 ev3 Inc. Intravascular filtering device
US6123715A (en) 1994-07-08 2000-09-26 Amplatz; Curtis Method of forming medical devices; intravascular occlusion devices
US5846261A (en) * 1994-07-08 1998-12-08 Aga Medical Corp. Percutaneous catheter directed occlusion devices
US6331188B1 (en) 1994-08-31 2001-12-18 Gore Enterprise Holdings, Inc. Exterior supported self-expanding stent-graft
US6015429A (en) 1994-09-08 2000-01-18 Gore Enterprise Holdings, Inc. Procedures for introducing stents and stent-grafts
US5702419A (en) * 1994-09-21 1997-12-30 Wake Forest University Expandable, intraluminal stents
US5545210A (en) * 1994-09-22 1996-08-13 Advanced Coronary Technology, Inc. Method of implanting a permanent shape memory alloy stent
US5601591A (en) * 1994-09-23 1997-02-11 Vidamed, Inc. Stent for use in prostatic urethra, apparatus and placement device for same and method
IT1278164B1 (en) * 1995-01-20 1997-11-17 Trode Srl X CORONARY ENDOPROTESIS AND METHOD FOR ITS REALIZATION
US7204848B1 (en) 1995-03-01 2007-04-17 Boston Scientific Scimed, Inc. Longitudinally flexible expandable stent
EP1163889B1 (en) 1995-03-01 2008-05-14 Boston Scientific Scimed, Inc. Improved longitudinally flexible expandable stent
US6896696B2 (en) 1998-11-20 2005-05-24 Scimed Life Systems, Inc. Flexible and expandable stent
US6818014B2 (en) * 1995-03-01 2004-11-16 Scimed Life Systems, Inc. Longitudinally flexible expandable stent
US6981986B1 (en) 1995-03-01 2006-01-03 Boston Scientific Scimed, Inc. Longitudinally flexible expandable stent
US5645558A (en) * 1995-04-20 1997-07-08 Medical University Of South Carolina Anatomically shaped vasoocclusive device and method of making the same
US8790363B2 (en) 1995-04-20 2014-07-29 DePuy Synthes Products, LLC Three dimensional, low friction vasoocclusive coil, and method of manufacture
US6638291B1 (en) 1995-04-20 2003-10-28 Micrus Corporation Three dimensional, low friction vasoocclusive coil, and method of manufacture
US6027516A (en) * 1995-05-04 2000-02-22 The United States Of America As Represented By The Department Of Health And Human Services Highly elastic, adjustable helical coil stent
US5766160A (en) * 1995-06-06 1998-06-16 Target Therapeutics, Inc. Variable stiffness coils
US6010530A (en) * 1995-06-07 2000-01-04 Boston Scientific Technology, Inc. Self-expanding endoluminal prosthesis
US5676685A (en) * 1995-06-22 1997-10-14 Razavi; Ali Temporary stent
US5782907A (en) * 1995-07-13 1998-07-21 Devices For Vascular Intervention, Inc. Involuted spring stent and graft assembly and method of use
PL184769B1 (en) * 1995-07-25 2002-12-31 Medstent Inc Expandible stent's mass
US6261318B1 (en) * 1995-07-25 2001-07-17 Medstent Inc. Expandable stent
US5702418A (en) * 1995-09-12 1997-12-30 Boston Scientific Corporation Stent delivery system
US6099558A (en) * 1995-10-10 2000-08-08 Edwards Lifesciences Corp. Intraluminal grafting of a bifuricated artery
US5735872A (en) * 1995-11-13 1998-04-07 Navius Corporation Stent
EP0775470B1 (en) * 1995-11-14 1999-03-24 Schneider (Europe) GmbH Stent delivery device
US5626604A (en) * 1995-12-05 1997-05-06 Cordis Corporation Hand held stent crimping device
US6042605A (en) 1995-12-14 2000-03-28 Gore Enterprose Holdings, Inc. Kink resistant stent-graft
EP0950385A3 (en) 1995-12-14 1999-10-27 Prograft Medical, Inc. Stent-graft deployment apparatus and method
US6719782B1 (en) 1996-01-04 2004-04-13 Endovascular Technologies, Inc. Flat wire stent
PT955950E (en) * 1996-01-04 2006-08-31 Timothy A M Dr Chuter ENDOVASCULAR IMPLANT OF ACHATARED WIRE
US5725547A (en) * 1996-01-04 1998-03-10 Chuter; Timothy A. M. Corrugated stent
US6168622B1 (en) 1996-01-24 2001-01-02 Microvena Corporation Method and apparatus for occluding aneurysms
US6258116B1 (en) 1996-01-26 2001-07-10 Cordis Corporation Bifurcated axially flexible stent
US5895406A (en) * 1996-01-26 1999-04-20 Cordis Corporation Axially flexible stent
US5938682A (en) * 1996-01-26 1999-08-17 Cordis Corporation Axially flexible stent
US5980553A (en) * 1996-12-20 1999-11-09 Cordis Corporation Axially flexible stent
US6796997B1 (en) 1996-03-05 2004-09-28 Evysio Medical Devices Ulc Expandable stent
CA2192520A1 (en) 1996-03-05 1997-09-05 Ian M. Penn Expandable stent and method for delivery of same
EP1477133B9 (en) 1996-03-05 2007-11-21 Evysio Medical Devices Ulc Expandable stent
US6533805B1 (en) 1996-04-01 2003-03-18 General Surgical Innovations, Inc. Prosthesis and method for deployment within a body lumen
US6413269B1 (en) 2000-07-06 2002-07-02 Endocare, Inc. Stent delivery system
US6629981B2 (en) 2000-07-06 2003-10-07 Endocare, Inc. Stent delivery system
US6702846B2 (en) 1996-04-09 2004-03-09 Endocare, Inc. Urological stent therapy system and method
US5833699A (en) * 1996-04-10 1998-11-10 Chuter; Timothy A. M. Extending ribbon stent
US6235053B1 (en) 1998-02-02 2001-05-22 G. David Jang Tubular stent consists of chevron-shape expansion struts and contralaterally attached diagonal connectors
JP4636634B2 (en) 1996-04-26 2011-02-23 ボストン サイエンティフィック サイムド,インコーポレイテッド Intravascular stent
US6241760B1 (en) 1996-04-26 2001-06-05 G. David Jang Intravascular stent
US20040106985A1 (en) 1996-04-26 2004-06-03 Jang G. David Intravascular stent
US6190402B1 (en) * 1996-06-21 2001-02-20 Musc Foundation For Research Development Insitu formable and self-forming intravascular flow modifier (IFM) and IFM assembly for deployment of same
US5836952A (en) * 1996-08-21 1998-11-17 Cordis Corporation Hand-held stent crimper
US5776183A (en) 1996-08-23 1998-07-07 Kanesaka; Nozomu Expandable stent
US5968068A (en) * 1996-09-12 1999-10-19 Baxter International Inc. Endovascular delivery system
US5911752A (en) * 1996-09-13 1999-06-15 Intratherapeutics, Inc. Method for collapsing a stent
US5843176A (en) * 1996-10-17 1998-12-01 Cordis Corporation Self-expanding endoprosthesis
US5776142A (en) * 1996-12-19 1998-07-07 Medtronic, Inc. Controllable stent delivery system and method
US6551350B1 (en) 1996-12-23 2003-04-22 Gore Enterprise Holdings, Inc. Kink resistant bifurcated prosthesis
US6352561B1 (en) 1996-12-23 2002-03-05 W. L. Gore & Associates Implant deployment apparatus
US5925061A (en) * 1997-01-13 1999-07-20 Gore Enterprise Holdings, Inc. Low profile vascular stent
US5733330A (en) * 1997-01-13 1998-03-31 Advanced Cardiovascular Systems, Inc. Balloon-expandable, crush-resistant locking stent
US5858556A (en) * 1997-01-21 1999-01-12 Uti Corporation Multilayer composite tubular structure and method of making
US5957974A (en) * 1997-01-23 1999-09-28 Schneider (Usa) Inc Stent graft with braided polymeric sleeve
US5911732A (en) * 1997-03-10 1999-06-15 Johnson & Johnson Interventional Systems, Co. Articulated expandable intraluminal stent
US5824053A (en) * 1997-03-18 1998-10-20 Endotex Interventional Systems, Inc. Helical mesh endoprosthesis and methods of use
US5824052A (en) * 1997-03-18 1998-10-20 Endotex Interventional Systems, Inc. Coiled sheet stent having helical articulation and methods of use
US6425915B1 (en) * 1997-03-18 2002-07-30 Endotex Interventional Systems, Inc. Helical mesh endoprosthesis and methods of use
US6273913B1 (en) 1997-04-18 2001-08-14 Cordis Corporation Modified stent useful for delivery of drugs along stent strut
US6019777A (en) 1997-04-21 2000-02-01 Advanced Cardiovascular Systems, Inc. Catheter and method for a stent delivery system
CA2424551A1 (en) * 1997-05-27 1998-11-27 Schneider (Usa) Inc. Stent and stent-graft for treating branched vessels
US5906641A (en) * 1997-05-27 1999-05-25 Schneider (Usa) Inc Bifurcated stent graft
CA2241558A1 (en) 1997-06-24 1998-12-24 Advanced Cardiovascular Systems, Inc. Stent with reinforced struts and bimodal deployment
ATE286687T1 (en) * 1997-07-17 2005-01-15 Schneider Europ Gmbh STENT AND PRODUCTION METHOD THEREOF
US6070589A (en) 1997-08-01 2000-06-06 Teramed, Inc. Methods for deploying bypass graft stents
US7753950B2 (en) 1997-08-13 2010-07-13 Advanced Cardiovascular Systems, Inc. Stent and catheter assembly and method for treating bifurcations
US6165195A (en) 1997-08-13 2000-12-26 Advanced Cardiovascylar Systems, Inc. Stent and catheter assembly and method for treating bifurcations
US6746476B1 (en) 1997-09-22 2004-06-08 Cordis Corporation Bifurcated axially flexible stent
US6273908B1 (en) 1997-10-24 2001-08-14 Robert Ndondo-Lay Stents
US5961548A (en) * 1997-11-18 1999-10-05 Shmulewitz; Ascher Bifurcated two-part graft and methods of implantation
US6156062A (en) * 1997-12-03 2000-12-05 Ave Connaught Helically wrapped interlocking stent
US6241691B1 (en) 1997-12-05 2001-06-05 Micrus Corporation Coated superelastic stent
US6159165A (en) * 1997-12-05 2000-12-12 Micrus Corporation Three dimensional spherical micro-coils manufactured from radiopaque nickel-titanium microstrand
US6168570B1 (en) 1997-12-05 2001-01-02 Micrus Corporation Micro-strand cable with enhanced radiopacity
US5873907A (en) 1998-01-27 1999-02-23 Endotex Interventional Systems, Inc. Electrolytic stent delivery system and methods of use
US6533807B2 (en) 1998-02-05 2003-03-18 Medtronic, Inc. Radially-expandable stent and delivery system
US6224626B1 (en) 1998-02-17 2001-05-01 Md3, Inc. Ultra-thin expandable stent
US6033436A (en) * 1998-02-17 2000-03-07 Md3, Inc. Expandable stent
US6623521B2 (en) * 1998-02-17 2003-09-23 Md3, Inc. Expandable stent with sliding and locking radial elements
CA2265062C (en) * 1998-03-10 2008-09-16 Cordis Corporation Stretch resistant embolic coil with variable stiffness
US6887268B2 (en) 1998-03-30 2005-05-03 Cordis Corporation Extension prosthesis for an arterial repair
US6290731B1 (en) 1998-03-30 2001-09-18 Cordis Corporation Aortic graft having a precursor gasket for repairing an abdominal aortic aneurysm
US6656215B1 (en) 2000-11-16 2003-12-02 Cordis Corporation Stent graft having an improved means for attaching a stent to a graft
US6063111A (en) * 1998-03-31 2000-05-16 Cordis Corporation Stent aneurysm treatment system and method
US8029561B1 (en) 2000-05-12 2011-10-04 Cordis Corporation Drug combination useful for prevention of restenosis
US6494907B1 (en) 1998-04-28 2002-12-17 Intratherapeutics, Inc. Braided stent
US6168615B1 (en) 1998-05-04 2001-01-02 Micrus Corporation Method and apparatus for occlusion and reinforcement of aneurysms
US6171334B1 (en) 1998-06-17 2001-01-09 Advanced Cardiovascular Systems, Inc. Expandable stent and method of use
US6136011A (en) * 1998-07-14 2000-10-24 Advanced Cardiovascular Systems, Inc. Stent delivery system and method of use
US6656218B1 (en) 1998-07-24 2003-12-02 Micrus Corporation Intravascular flow modifier and reinforcement device
US6165194A (en) 1998-07-24 2000-12-26 Micrus Corporation Intravascular flow modifier and reinforcement device
US6461380B1 (en) 1998-07-28 2002-10-08 Advanced Cardiovascular Systems, Inc. Stent configuration
US7118600B2 (en) 1998-08-31 2006-10-10 Wilson-Cook Medical, Inc. Prosthesis having a sleeve valve
US6478773B1 (en) 1998-12-21 2002-11-12 Micrus Corporation Apparatus for deployment of micro-coil using a catheter
US6746489B2 (en) 1998-08-31 2004-06-08 Wilson-Cook Medical Incorporated Prosthesis having a sleeve valve
US6296622B1 (en) 1998-12-21 2001-10-02 Micrus Corporation Endoluminal device delivery system using axially recovering shape memory material
US6500149B2 (en) 1998-08-31 2002-12-31 Deepak Gandhi Apparatus for deployment of micro-coil using a catheter
US6117104A (en) * 1998-09-08 2000-09-12 Advanced Cardiovascular Systems, Inc. Stent deployment system and method of use
JP2003520055A (en) 1998-09-08 2003-07-02 インターベンショナル テクノロジィーズ インコーポレイテッド Low pressure stent
DE29816878U1 (en) 1998-09-21 1998-12-24 Schmitz Rode Thomas Dipl Ing D Helix stent that can be manufactured using the cutting process
US7662409B2 (en) * 1998-09-25 2010-02-16 Gel-Del Technologies, Inc. Protein matrix materials, devices and methods of making and using thereof
US6019779A (en) * 1998-10-09 2000-02-01 Intratherapeutics Inc. Multi-filar coil medical stent
US6214036B1 (en) 1998-11-09 2001-04-10 Cordis Corporation Stent which is easily recaptured and repositioned within the body
US6190403B1 (en) 1998-11-13 2001-02-20 Cordis Corporation Low profile radiopaque stent with increased longitudinal flexibility and radial rigidity
US6503270B1 (en) 1998-12-03 2003-01-07 Medinol Ltd. Serpentine coiled ladder stent
US20060178727A1 (en) * 1998-12-03 2006-08-10 Jacob Richter Hybrid amorphous metal alloy stent
US6355059B1 (en) * 1998-12-03 2002-03-12 Medinol, Ltd. Serpentine coiled ladder stent
US20040267349A1 (en) 2003-06-27 2004-12-30 Kobi Richter Amorphous metal alloy medical devices
US8382821B2 (en) 1998-12-03 2013-02-26 Medinol Ltd. Helical hybrid stent
US6383204B1 (en) 1998-12-15 2002-05-07 Micrus Corporation Variable stiffness coil for vasoocclusive devices
US6835185B2 (en) 1998-12-21 2004-12-28 Micrus Corporation Intravascular device deployment mechanism incorporating mechanical detachment
US6248122B1 (en) * 1999-02-26 2001-06-19 Vascular Architects, Inc. Catheter with controlled release endoluminal prosthesis
EP1156758B1 (en) 1999-02-26 2008-10-15 LeMaitre Vascular, Inc. Coiled stent
US5976155A (en) 1999-03-05 1999-11-02 Advanced Cardiovascular Systems, Inc. System for removably securing a stent on a catheter assembly and method of use
US6161029A (en) * 1999-03-08 2000-12-12 Medtronic, Inc. Apparatus and method for fixing electrodes in a blood vessel
US6325825B1 (en) * 1999-04-08 2001-12-04 Cordis Corporation Stent with variable wall thickness
US6860899B1 (en) 1999-04-15 2005-03-01 Boston Scientific Scimed, Inc. Method for treating neurovascular aneurysms
US6899730B1 (en) 1999-04-15 2005-05-31 Scimed Life Systems, Inc. Catheter-stent device
US6436120B1 (en) 1999-04-20 2002-08-20 Allen J. Meglin Vena cava filter
US6080178A (en) * 1999-04-20 2000-06-27 Meglin; Allen J. Vena cava filter
US6375676B1 (en) 1999-05-17 2002-04-23 Advanced Cardiovascular Systems, Inc. Self-expanding stent with enhanced delivery precision and stent delivery system
US6398802B1 (en) * 1999-06-21 2002-06-04 Scimed Life Systems, Inc. Low profile delivery system for stent and graft deployment
US6540774B1 (en) 1999-08-31 2003-04-01 Advanced Cardiovascular Systems, Inc. Stent design with end rings having enhanced strength and radiopacity
US6270525B1 (en) 1999-09-23 2001-08-07 Cordis Corporation Precursor stent gasket for receiving bilateral grafts having controlled contralateral guidewire access
US6344056B1 (en) 1999-12-29 2002-02-05 Edwards Lifesciences Corp. Vascular grafts for bridging a vessel side branch
US6663667B2 (en) 1999-12-29 2003-12-16 Edwards Lifesciences Corporation Towel graft means for enhancing tissue ingrowth in vascular grafts
US6537311B1 (en) 1999-12-30 2003-03-25 Advanced Cardiovascular Systems, Inc. Stent designs for use in peripheral vessels
US6471721B1 (en) 1999-12-30 2002-10-29 Advanced Cardiovascular Systems, Inc. Vascular stent having increased radiopacity and method for making same
US6355058B1 (en) 1999-12-30 2002-03-12 Advanced Cardiovascular Systems, Inc. Stent with radiopaque coating consisting of particles in a binder
AU3095301A (en) 2000-01-31 2001-08-07 Advanced Cardiovascular Systems Inc. Self-expanding stent with enhanced delivery precision and stent delivery system
EP1464303A2 (en) 2000-01-31 2004-10-06 Advanced Cardiovascular Systems, Inc. Self-expanding stent with enhanced delivery precision and stent delivery system
US6312463B1 (en) 2000-02-01 2001-11-06 Endotex Interventional Systems, Inc. Micro-porous mesh stent with hybrid structure
US7740637B2 (en) * 2000-02-09 2010-06-22 Micrus Endovascular Corporation Apparatus and method for deployment of a therapeutic device using a catheter
US6436132B1 (en) 2000-03-30 2002-08-20 Advanced Cardiovascular Systems, Inc. Composite intraluminal prostheses
US7722663B1 (en) * 2000-04-24 2010-05-25 Scimed Life Systems, Inc. Anatomically correct endoluminal prostheses
US6776796B2 (en) 2000-05-12 2004-08-17 Cordis Corportation Antiinflammatory drug and delivery device
US7300662B2 (en) 2000-05-12 2007-11-27 Cordis Corporation Drug/drug delivery systems for the prevention and treatment of vascular disease
US8236048B2 (en) 2000-05-12 2012-08-07 Cordis Corporation Drug/drug delivery systems for the prevention and treatment of vascular disease
WO2001097717A1 (en) 2000-06-20 2001-12-27 Chf Solutions, Inc. Implantable flow diversion device
AU2000254982A1 (en) 2000-06-20 2002-01-02 Intellicardia, Inc. Instrumented stent
US6652579B1 (en) 2000-06-22 2003-11-25 Advanced Cardiovascular Systems, Inc. Radiopaque stent
US6572648B1 (en) * 2000-06-30 2003-06-03 Vascular Architects, Inc. Endoluminal prosthesis and tissue separation condition treatment method
US6540775B1 (en) * 2000-06-30 2003-04-01 Cordis Corporation Ultraflexible open cell stent
US6974473B2 (en) 2000-06-30 2005-12-13 Vascular Architects, Inc. Function-enhanced thrombolytic AV fistula and method
US20020077693A1 (en) * 2000-12-19 2002-06-20 Barclay Bruce J. Covered, coiled drug delivery stent and method
US6579310B1 (en) 2000-08-17 2003-06-17 Advanced Cardiovascular Systems, Inc. Stent having overlapping struts
AU2001286731A1 (en) * 2000-08-25 2002-03-04 Kensey Nash Corporation Covered stents, systems for deploying covered stents
US7118592B1 (en) 2000-09-12 2006-10-10 Advanced Cardiovascular Systems, Inc. Covered stent assembly for reduced-shortening during stent expansion
US8070792B2 (en) * 2000-09-22 2011-12-06 Boston Scientific Scimed, Inc. Stent
US7766956B2 (en) 2000-09-22 2010-08-03 Boston Scientific Scimed, Inc. Intravascular stent and assembly
US20020072792A1 (en) * 2000-09-22 2002-06-13 Robert Burgermeister Stent with optimal strength and radiopacity characteristics
CA2424029C (en) 2000-09-29 2008-01-29 Cordis Corporation Coated medical devices
US20020111590A1 (en) 2000-09-29 2002-08-15 Davila Luis A. Medical devices, drug coatings and methods for maintaining the drug coatings thereon
US7261735B2 (en) 2001-05-07 2007-08-28 Cordis Corporation Local drug delivery devices and methods for maintaining the drug coatings thereon
US7037330B1 (en) 2000-10-16 2006-05-02 Scimed Life Systems, Inc. Neurovascular stent and method
US7267685B2 (en) 2000-11-16 2007-09-11 Cordis Corporation Bilateral extension prosthesis and method of delivery
US6843802B1 (en) 2000-11-16 2005-01-18 Cordis Corporation Delivery apparatus for a self expanding retractable stent
US7229472B2 (en) 2000-11-16 2007-06-12 Cordis Corporation Thoracic aneurysm repair prosthesis and system
US6942692B2 (en) 2000-11-16 2005-09-13 Cordis Corporation Supra-renal prosthesis and renal artery bypass
US7314483B2 (en) 2000-11-16 2008-01-01 Cordis Corp. Stent graft with branch leg
US20020103526A1 (en) * 2000-12-15 2002-08-01 Tom Steinke Protective coating for stent
US6565599B1 (en) 2000-12-28 2003-05-20 Advanced Cardiovascular Systems, Inc. Hybrid stent
US20020123791A1 (en) 2000-12-28 2002-09-05 Harrison William J. Stent design with increased vessel coverage
US6790227B2 (en) 2001-03-01 2004-09-14 Cordis Corporation Flexible stent
US6740114B2 (en) 2001-03-01 2004-05-25 Cordis Corporation Flexible stent
US6679911B2 (en) 2001-03-01 2004-01-20 Cordis Corporation Flexible stent
AU784552B2 (en) 2001-03-02 2006-05-04 Cardinal Health 529, Llc Flexible stent
US6585753B2 (en) 2001-03-28 2003-07-01 Scimed Life Systems, Inc. Expandable coil stent
KR100878086B1 (en) * 2001-04-16 2009-01-14 게리 에이. 스트로벨 Novel endophytic fungi and methods of use
US20050021123A1 (en) 2001-04-30 2005-01-27 Jurgen Dorn Variable speed self-expanding stent delivery system and luer locking connector
US8182527B2 (en) 2001-05-07 2012-05-22 Cordis Corporation Heparin barrier coating for controlled drug release
US6926732B2 (en) 2001-06-01 2005-08-09 Ams Research Corporation Stent delivery device and method
US6821291B2 (en) 2001-06-01 2004-11-23 Ams Research Corporation Retrievable stent and method of use thereof
US7201940B1 (en) 2001-06-12 2007-04-10 Advanced Cardiovascular Systems, Inc. Method and apparatus for thermal spray processing of medical devices
US6824560B2 (en) * 2001-06-13 2004-11-30 Advanced Cardiovascular Systems, Inc. Double-butted superelastic nitinol tubing
US20020198589A1 (en) 2001-06-22 2002-12-26 Leong Veronica Jade Tessellated stent and method of manufacture
US6716239B2 (en) 2001-07-03 2004-04-06 Scimed Life Systems, Inc. ePTFE graft with axial elongation properties
US8252040B2 (en) 2001-07-20 2012-08-28 Microvention, Inc. Aneurysm treatment device and method of use
US7252679B2 (en) * 2001-09-13 2007-08-07 Cordis Corporation Stent with angulated struts
US7195640B2 (en) 2001-09-25 2007-03-27 Cordis Corporation Coated medical devices for the treatment of vulnerable plaque
US7108701B2 (en) 2001-09-28 2006-09-19 Ethicon, Inc. Drug releasing anastomosis devices and methods for treating anastomotic sites
US7219799B2 (en) * 2002-12-31 2007-05-22 Possis Medical, Inc. Packaging system with oxygen sensor
GB2382776A (en) * 2001-11-21 2003-06-11 Tayside Flow Technologies Ltd Helix shaped insert for flow modification in a duct or stent
US20060292206A1 (en) 2001-11-26 2006-12-28 Kim Steven W Devices and methods for treatment of vascular aneurysms
DE10159708A1 (en) * 2001-12-05 2003-06-18 Bayer Ag Alkaline chloride electrolysis cell with gas diffusion electrodes
US7326237B2 (en) 2002-01-08 2008-02-05 Cordis Corporation Supra-renal anchoring prosthesis
US7029493B2 (en) * 2002-01-25 2006-04-18 Cordis Corporation Stent with enhanced crossability
GB0204381D0 (en) * 2002-02-26 2002-04-10 Mcminn Derek J W Knee prosthesis
US20030195609A1 (en) * 2002-04-10 2003-10-16 Scimed Life Systems, Inc. Hybrid stent
WO2003092468A2 (en) 2002-04-29 2003-11-13 Gel-Del Technologies, Inc. Biomatrix structural containment and fixation systems and methods of use thereof
IL149828A (en) 2002-05-23 2007-09-20 Ronnie Levi Medical device having a tubular portion
DE10334906B4 (en) * 2002-07-30 2018-11-15 Andreas Stihl Ag & Co. Kg Anti-vibration element
US6805706B2 (en) 2002-08-15 2004-10-19 Gmp Cardiac Care, Inc. Stent-graft with rails
US7481821B2 (en) 2002-11-12 2009-01-27 Thomas J. Fogarty Embolization device and a method of using the same
US6899729B1 (en) 2002-12-18 2005-05-31 Advanced Cardiovascular Systems, Inc. Stent for treating vulnerable plaque
US7846198B2 (en) * 2002-12-24 2010-12-07 Novostent Corporation Vascular prosthesis and methods of use
US20050165469A1 (en) * 2002-12-24 2005-07-28 Michael Hogendijk Vascular prosthesis including torsional stabilizer and methods of use
US20040158314A1 (en) * 2002-12-24 2004-08-12 Novostent Corporation Ribbon-type vascular prosthesis having stress-relieving articulation and methods of use
US20050033410A1 (en) * 2002-12-24 2005-02-10 Novostent Corporation Vascular prothesis having flexible configuration
US7316710B1 (en) 2002-12-30 2008-01-08 Advanced Cardiovascular Systems, Inc. Flexible stent
US6896697B1 (en) 2002-12-30 2005-05-24 Advanced Cardiovascular Systems, Inc. Intravascular stent
US7294214B2 (en) * 2003-01-08 2007-11-13 Scimed Life Systems, Inc. Medical devices
US20040160685A1 (en) * 2003-01-27 2004-08-19 Everardo Daniel Faires Quiros Lower rear view mirror (LRVM for short)
US20040260382A1 (en) 2003-02-12 2004-12-23 Fogarty Thomas J. Intravascular implants and methods of using the same
US20040193141A1 (en) * 2003-02-14 2004-09-30 Leopold Eric W. Intravascular flow modifier and reinforcement device and deployment system for same
US8016869B2 (en) 2003-03-26 2011-09-13 Biosensors International Group, Ltd. Guidewire-less stent delivery methods
US7771463B2 (en) 2003-03-26 2010-08-10 Ton Dai T Twist-down implant delivery technologies
WO2004087006A2 (en) 2003-03-26 2004-10-14 Cardiomind, Inc. Implant delivery technologies
US6846323B2 (en) 2003-05-15 2005-01-25 Advanced Cardiovascular Systems, Inc. Intravascular stent
EP1628596B1 (en) 2003-05-23 2011-04-06 Boston Scientific Limited Stents with attached looped ends
JP2007500584A (en) * 2003-06-12 2007-01-18 シー・アール・バード・インク Stent delivery catheter
US8465537B2 (en) * 2003-06-17 2013-06-18 Gel-Del Technologies, Inc. Encapsulated or coated stent systems
US9155639B2 (en) 2009-04-22 2015-10-13 Medinol Ltd. Helical hybrid stent
US9039755B2 (en) 2003-06-27 2015-05-26 Medinol Ltd. Helical hybrid stent
US20050015110A1 (en) 2003-07-18 2005-01-20 Fogarty Thomas J. Embolization device and a method of using the same
US20050043786A1 (en) * 2003-08-18 2005-02-24 Medtronic Ave, Inc. Methods and apparatus for treatment of aneurysmal tissue
US8153591B2 (en) 2003-08-26 2012-04-10 Gel-Del Technologies, Inc. Protein biomaterials and biocoacervates and methods of making and using thereof
AU2004296851A1 (en) * 2003-12-08 2005-06-23 Gel-Del Technologies, Inc. Mucoadhesive drug delivery devices and methods of making and using thereof
US20050131515A1 (en) * 2003-12-16 2005-06-16 Cully Edward H. Removable stent-graft
US7258697B1 (en) 2003-12-22 2007-08-21 Advanced Cardiovascular Systems, Inc. Stent with anchors to prevent vulnerable plaque rupture during deployment
US20050177224A1 (en) * 2004-02-11 2005-08-11 Fogarty Thomas J. Vascular fixation device and method
US7651521B2 (en) 2004-03-02 2010-01-26 Cardiomind, Inc. Corewire actuated delivery system with fixed distal stent-carrying extension
AU2005221234C1 (en) 2004-03-11 2009-10-29 Percutaneous Cardiovascular Solutions Pty Limited Percutaneous heart valve prosthesis
US7766960B2 (en) * 2004-04-30 2010-08-03 Novostent Corporation Delivery catheter that controls foreshortening of ribbon-type prostheses and methods of making and use
US20050246008A1 (en) * 2004-04-30 2005-11-03 Novostent Corporation Delivery system for vascular prostheses and methods of use
US20070179486A1 (en) * 2004-06-29 2007-08-02 Jeff Welch Laser fiber for endovenous therapy having a shielded distal tip
US20050288655A1 (en) * 2004-06-29 2005-12-29 Howard Root Laser fiber for endovenous therapy having a shielded distal tip
US20060020286A1 (en) * 2004-07-22 2006-01-26 Volker Niermann Device for filtering blood in a vessel with helical elements
US7763065B2 (en) 2004-07-21 2010-07-27 Reva Medical, Inc. Balloon expandable crush-recoverable stent device
US7063720B2 (en) * 2004-09-14 2006-06-20 The Wallace Enterprises, Inc. Covered stent with controlled therapeutic agent diffusion
US7018403B1 (en) 2004-09-14 2006-03-28 Advanced Cardiovascular Systems, Inc. Inclined stent pattern for vulnerable plaque
US20060058869A1 (en) * 2004-09-14 2006-03-16 Vascular Architects, Inc., A Delaware Corporation Coiled ladder stent
US8337543B2 (en) * 2004-11-05 2012-12-25 Boston Scientific Scimed, Inc. Prosthesis anchoring and deploying device
US8292944B2 (en) 2004-12-17 2012-10-23 Reva Medical, Inc. Slide-and-lock stent
US20060136035A1 (en) * 2004-12-20 2006-06-22 Vascular Architects, Inc. A Delaware Corporation Coiled endoluminal prosthesis system and delivery catheter
US20060136034A1 (en) * 2004-12-20 2006-06-22 Vascular Architects, Inc. Delivery catheter and method
US8403346B2 (en) * 2005-01-20 2013-03-26 Watson & Chalin Manufacturring, Inc. Adjustable run height lift axle suspension system
US7763198B2 (en) 2005-04-12 2010-07-27 Abbott Cardiovascular Systems Inc. Method for retaining a vascular stent on a catheter
US7947207B2 (en) 2005-04-12 2011-05-24 Abbott Cardiovascular Systems Inc. Method for retaining a vascular stent on a catheter
EP1903999B1 (en) 2005-04-25 2018-11-21 Covidien LP Controlled fracture connections for stents
US20060246210A1 (en) * 2005-04-29 2006-11-02 Vascular Architects Inc., A Delaware Corporation Method for making a covered drug-eluting stent
US20060253197A1 (en) * 2005-05-09 2006-11-09 Napier Bradford Shape-memory port-access tube
JP4945714B2 (en) * 2005-05-25 2012-06-06 タイコ ヘルスケア グループ リミテッド パートナーシップ System and method for supplying and deploying an occlusion device in a conduit
US7914574B2 (en) 2005-08-02 2011-03-29 Reva Medical, Inc. Axially nested slide and lock expandable device
US9149378B2 (en) 2005-08-02 2015-10-06 Reva Medical, Inc. Axially nested slide and lock expandable device
EP2179709B1 (en) 2005-08-17 2011-10-05 C. R. Bard, Inc. Variable speed stent delivery system
US20070061001A1 (en) * 2005-09-13 2007-03-15 Advanced Cardiovascular Systems, Inc. Packaging sheath for drug coated stent
US20070100414A1 (en) 2005-11-02 2007-05-03 Cardiomind, Inc. Indirect-release electrolytic implant delivery systems
WO2007058857A2 (en) 2005-11-10 2007-05-24 Arshad Quadri Balloon-expandable, self-expanding, vascular prosthesis connecting stent
DE602006009963D1 (en) * 2005-11-17 2009-12-03 Peritec Biosciences Ltd DEVICE AND METHOD FOR DISTRIBUTING A DRESSED INTRALUMINAL PROSTHESIS
EP1954221B1 (en) * 2005-11-17 2011-04-20 The Cleveland Clinic Foundation Method and apparatus for compressing intraluminal prostheses
US20070162110A1 (en) * 2006-01-06 2007-07-12 Vipul Bhupendra Dave Bioabsorbable drug delivery devices
US20070160672A1 (en) 2006-01-06 2007-07-12 Vipul Bhupendra Dave Methods of making bioabsorbable drug delivery devices comprised of solvent cast films
US11026822B2 (en) 2006-01-13 2021-06-08 C. R. Bard, Inc. Stent delivery system
CA2936205C (en) 2006-01-13 2018-08-21 C.R. Bard, Inc. Stent delivery system
US7699884B2 (en) 2006-03-22 2010-04-20 Cardiomind, Inc. Method of stenting with minimal diameter guided delivery systems
DE102006023637A1 (en) * 2006-05-18 2007-11-22 Breathe Technologies, Inc., Freemont Tracheostoma placeholder for use in trachea opening e.g. tracheostoma, has tubular support structure that is expandable from initial condition into support condition, where diameter of support structure is increased in support condition
US7909789B2 (en) 2006-06-26 2011-03-22 Sight Sciences, Inc. Intraocular implants and methods and kits therefor
WO2008013915A2 (en) 2006-07-28 2008-01-31 Arshad Quadri Percutaneous valve prosthesis and system and method for implanting same
GB0615658D0 (en) 2006-08-07 2006-09-13 Angiomed Ag Hand-held actuator device
US8252041B2 (en) 2006-08-23 2012-08-28 Abbott Laboratories Stent designs for use in peripheral vessels
KR100817788B1 (en) * 2006-09-07 2008-03-31 박경우 A flexible rod manufacturing apparatus and method for a spinal fixation and the flexible rod manufactured through the same
US7988720B2 (en) 2006-09-12 2011-08-02 Boston Scientific Scimed, Inc. Longitudinally flexible expandable stent
JP2008119077A (en) * 2006-11-09 2008-05-29 Olympus Medical Systems Corp Stent supplying device
US7704275B2 (en) 2007-01-26 2010-04-27 Reva Medical, Inc. Circumferentially nested expandable device
US8221505B2 (en) 2007-02-22 2012-07-17 Cook Medical Technologies Llc Prosthesis having a sleeve valve
US8348994B2 (en) * 2007-03-09 2013-01-08 Novostent Corporation Vascular prosthesis with alternating helical sections
US9017395B2 (en) * 2007-03-09 2015-04-28 Novostent Corporation Vascular prosthesis and methods of use
US20080221658A1 (en) * 2007-03-09 2008-09-11 Novostent Corporation Vascular prosthesis and methods of use
US8002815B2 (en) * 2007-03-09 2011-08-23 Novostent Corporation Delivery system and method for vascular prosthesis
US9265636B2 (en) * 2007-05-25 2016-02-23 C. R. Bard, Inc. Twisted stent
US9364586B2 (en) 2007-05-31 2016-06-14 Abbott Cardiovascular Systems Inc. Method and apparatus for improving delivery of an agent to a kidney
US9149610B2 (en) 2007-05-31 2015-10-06 Abbott Cardiovascular Systems Inc. Method and apparatus for improving delivery of an agent to a kidney
US9144509B2 (en) 2007-05-31 2015-09-29 Abbott Cardiovascular Systems Inc. Method and apparatus for delivering an agent to a kidney
US8216209B2 (en) 2007-05-31 2012-07-10 Abbott Cardiovascular Systems Inc. Method and apparatus for delivering an agent to a kidney
EP2162101B1 (en) 2007-06-25 2019-02-20 MicroVention, Inc. Self-expanding prosthesis
GB0713497D0 (en) 2007-07-11 2007-08-22 Angiomed Ag Device for catheter sheath retraction
EP2182854B1 (en) * 2007-08-17 2019-12-11 Micrus Endovascular Corporation A twisted primary coil for vascular therapy
US8298215B2 (en) * 2007-09-25 2012-10-30 Vascular Solutions, Inc. Guidewire tipped laser fiber
US20090157161A1 (en) * 2007-10-24 2009-06-18 Edwards Lifesciences Corporation Percutaneous Nitinol Stent Extraction Device
US7988721B2 (en) 2007-11-30 2011-08-02 Reva Medical, Inc. Axially-radially nested expandable device
CA2711001A1 (en) 2007-12-26 2009-07-09 Gel-Del Technologies, Inc. Biocompatible protein-based particles and methods thereof
US20100069948A1 (en) * 2008-09-12 2010-03-18 Micrus Endovascular Corporation Self-expandable aneurysm filling device, system and method of placement
EP3753534A1 (en) 2008-09-29 2020-12-23 Edwards Lifesciences CardiAQ LLC Heart valve
EP2341871B1 (en) 2008-10-01 2017-03-22 Edwards Lifesciences CardiAQ LLC Delivery system for vascular implant
AU2009303347B2 (en) 2008-10-10 2013-10-24 Reva Medical, Inc. Expandable slide and lock stent
US20100125323A1 (en) * 2008-11-14 2010-05-20 Medtronic Vascular, Inc. Coil Stent Delivery System and Method of Use
WO2010057177A2 (en) 2008-11-17 2010-05-20 Gel-Del Technologies, Inc. Protein biomaterial and biocoacervate vessel graft systems and methods of making and using thereof
US8998945B2 (en) 2008-12-17 2015-04-07 Abbott Laboratories Vascular Enterprises Limited Methods and apparatus for filtering a body lumen
CA2961053C (en) 2009-04-15 2019-04-30 Edwards Lifesciences Cardiaq Llc Vascular implant and delivery system
US8657870B2 (en) 2009-06-26 2014-02-25 Biosensors International Group, Ltd. Implant delivery apparatus and methods with electrolytic release
US9730790B2 (en) 2009-09-29 2017-08-15 Edwards Lifesciences Cardiaq Llc Replacement valve and method
US8652203B2 (en) 2010-09-23 2014-02-18 Cardiaq Valve Technologies, Inc. Replacement heart valves, delivery devices and methods
US20110313515A1 (en) 2010-06-21 2011-12-22 Arshad Quadri Replacement heart valve
WO2011056981A2 (en) 2009-11-04 2011-05-12 Nitinol Devices And Components, Inc. Alternating circumferential bridge stent design and methods for use thereof
JP5856569B2 (en) * 2010-02-05 2016-02-10 サイト サイエンシーズ, インコーポレイテッド Device for reducing intraocular pressure and kit including the same
EP2558041B1 (en) 2010-04-10 2018-01-10 Reva Medical, Inc. Expandable slide and lock stent
US8579964B2 (en) 2010-05-05 2013-11-12 Neovasc Inc. Transcatheter mitral valve prosthesis
US20130109987A1 (en) * 2011-05-12 2013-05-02 Medical Device Innovations Inc. Method and device for treatment of arrhythmias and other maladies
US8864811B2 (en) 2010-06-08 2014-10-21 Veniti, Inc. Bi-directional stent delivery system
US9301864B2 (en) 2010-06-08 2016-04-05 Veniti, Inc. Bi-directional stent delivery system
US9247942B2 (en) 2010-06-29 2016-02-02 Artventive Medical Group, Inc. Reversible tubal contraceptive device
EP2588042A4 (en) 2010-06-29 2015-03-18 Artventive Medical Group Inc Reducing flow through a tubular structure
US9233014B2 (en) 2010-09-24 2016-01-12 Veniti, Inc. Stent with support braces
WO2012047308A1 (en) 2010-10-08 2012-04-12 Nitinol Devices And Components, Inc. Alternating circumferential bridge stent design and methods for use thereof
US9149277B2 (en) 2010-10-18 2015-10-06 Artventive Medical Group, Inc. Expandable device delivery
GB201017834D0 (en) 2010-10-21 2010-12-01 Angiomed Ag System to deliver a bodily implant
EP2658484A1 (en) 2010-12-30 2013-11-06 Boston Scientific Scimed, Inc. Multi stage opening stent designs
WO2012119037A1 (en) 2011-03-03 2012-09-07 Boston Scientific Scimed, Inc. Stent with reduced profile
CA2823535A1 (en) 2011-03-03 2012-09-07 Boston Scientific Scimed, Inc. Low strain high strength stent
US9308087B2 (en) 2011-04-28 2016-04-12 Neovasc Tiara Inc. Sequentially deployed transcatheter mitral valve prosthesis
US9554897B2 (en) 2011-04-28 2017-01-31 Neovasc Tiara Inc. Methods and apparatus for engaging a valve prosthesis with tissue
WO2012155093A1 (en) 2011-05-11 2012-11-15 Microvention, Inc. Device for occluding a lumen
US20160193059A1 (en) * 2011-05-12 2016-07-07 Aperiam Medical, lnc. Intraluminal implants and methods
US9101507B2 (en) 2011-05-18 2015-08-11 Ralph F. Caselnova Apparatus and method for proximal-to-distal endoluminal stent deployment
US10213329B2 (en) 2011-08-12 2019-02-26 W. L. Gore & Associates, Inc. Evertable sheath devices, systems, and methods
US9162017B2 (en) * 2011-08-29 2015-10-20 Minnetronix, Inc. Expandable vascular pump
US9855167B2 (en) 2012-03-20 2018-01-02 Sight Sciences, Inc. Ocular delivery systems and methods
US9345573B2 (en) 2012-05-30 2016-05-24 Neovasc Tiara Inc. Methods and apparatus for loading a prosthesis onto a delivery system
US20150182358A1 (en) 2012-06-18 2015-07-02 Board Of Regents Of The University Of Nebraska Stent to assist in arteriovenous fistula formation
FR2996492B1 (en) * 2012-10-05 2014-12-19 Michelin & Cie DEVICE FOR MAKING A TIRE TREAD OF A PNEUMATIC ENVELOPE
US9498356B2 (en) 2012-12-19 2016-11-22 Cook Medical Technologies, LLC Flexible stent and delivery system
RU2015132693A (en) * 2013-01-04 2017-02-09 В. Л. Гор Энд Ассошиейтс, Инк. IMPLANTED INTRALUMINAL DEVICE
US9095344B2 (en) 2013-02-05 2015-08-04 Artventive Medical Group, Inc. Methods and apparatuses for blood vessel occlusion
US8984733B2 (en) 2013-02-05 2015-03-24 Artventive Medical Group, Inc. Bodily lumen occlusion
US9763819B1 (en) 2013-03-05 2017-09-19 W. L. Gore & Associates, Inc. Tapered sleeve
US10583002B2 (en) 2013-03-11 2020-03-10 Neovasc Tiara Inc. Prosthetic valve with anti-pivoting mechanism
US9681951B2 (en) 2013-03-14 2017-06-20 Edwards Lifesciences Cardiaq Llc Prosthesis with outer skirt and anchors
US20140277427A1 (en) 2013-03-14 2014-09-18 Cardiaq Valve Technologies, Inc. Prosthesis for atraumatically grasping intralumenal tissue and methods of delivery
US9730791B2 (en) 2013-03-14 2017-08-15 Edwards Lifesciences Cardiaq Llc Prosthesis for atraumatically grasping intralumenal tissue and methods of delivery
WO2014159337A1 (en) 2013-03-14 2014-10-02 Reva Medical, Inc. Reduced - profile slide and lock stent
US9572665B2 (en) 2013-04-04 2017-02-21 Neovasc Tiara Inc. Methods and apparatus for delivering a prosthetic valve to a beating heart
US10149968B2 (en) 2013-06-14 2018-12-11 Artventive Medical Group, Inc. Catheter-assisted tumor treatment
US9737306B2 (en) 2013-06-14 2017-08-22 Artventive Medical Group, Inc. Implantable luminal devices
US9737308B2 (en) 2013-06-14 2017-08-22 Artventive Medical Group, Inc. Catheter-assisted tumor treatment
US9636116B2 (en) 2013-06-14 2017-05-02 Artventive Medical Group, Inc. Implantable luminal devices
EP3021790A4 (en) * 2013-07-19 2017-03-15 Aperiam Medical, Inc. Intraluminal implants and methods
US10433847B2 (en) 2013-12-17 2019-10-08 The Board Of Regents Of The University Of Nebraska Platform device and method of use to assist in anastomosis formation
US9907641B2 (en) 2014-01-10 2018-03-06 W. L. Gore & Associates, Inc. Implantable intraluminal device
EP3107497B1 (en) 2014-02-21 2020-07-22 Edwards Lifesciences CardiAQ LLC Delivery device for controlled deployment of a replacement valve
USD755384S1 (en) * 2014-03-05 2016-05-03 Edwards Lifesciences Cardiaq Llc Stent
US10966850B2 (en) 2014-03-06 2021-04-06 W. L. Gore & Associates, Inc. Implantable medical device constraint and deployment apparatus
US10363043B2 (en) 2014-05-01 2019-07-30 Artventive Medical Group, Inc. Treatment of incompetent vessels
CA3161000A1 (en) 2014-05-19 2015-11-26 Edwards Lifesciences Cardiaq Llc Replacement mitral valve with annular flap
US9532870B2 (en) 2014-06-06 2017-01-03 Edwards Lifesciences Corporation Prosthetic valve for replacing a mitral valve
AU2015292327A1 (en) 2014-07-25 2017-02-16 Incumedx, Inc. Covered embolic coils
US10299958B2 (en) 2015-03-31 2019-05-28 Sight Sciences, Inc. Ocular delivery systems and methods
US10441416B2 (en) 2015-04-21 2019-10-15 Edwards Lifesciences Corporation Percutaneous mitral valve replacement device
US10376363B2 (en) 2015-04-30 2019-08-13 Edwards Lifesciences Cardiaq Llc Replacement mitral valve, delivery system for replacement mitral valve and methods of use
US10226335B2 (en) 2015-06-22 2019-03-12 Edwards Lifesciences Cardiaq Llc Actively controllable heart valve implant and method of controlling same
US10092400B2 (en) 2015-06-23 2018-10-09 Edwards Lifesciences Cardiaq Llc Systems and methods for anchoring and sealing a prosthetic heart valve
US10575951B2 (en) 2015-08-26 2020-03-03 Edwards Lifesciences Cardiaq Llc Delivery device and methods of use for transapical delivery of replacement mitral valve
US10117744B2 (en) 2015-08-26 2018-11-06 Edwards Lifesciences Cardiaq Llc Replacement heart valves and methods of delivery
US10350066B2 (en) 2015-08-28 2019-07-16 Edwards Lifesciences Cardiaq Llc Steerable delivery system for replacement mitral valve and methods of use
US10130465B2 (en) 2016-02-23 2018-11-20 Abbott Cardiovascular Systems Inc. Bifurcated tubular graft for treating tricuspid regurgitation
CN107280715A (en) * 2016-03-08 2017-10-24 殷月慧 A kind of vessel dilator implanting instrument
US10813644B2 (en) 2016-04-01 2020-10-27 Artventive Medical Group, Inc. Occlusive implant and delivery system
USD815744S1 (en) 2016-04-28 2018-04-17 Edwards Lifesciences Cardiaq Llc Valve frame for a delivery system
US10350062B2 (en) 2016-07-21 2019-07-16 Edwards Lifesciences Corporation Replacement heart valve prosthesis
CA3033666A1 (en) 2016-08-19 2018-02-22 Edwards Lifesciences Corporation Steerable delivery system for replacement mitral valve and methods of use
US10639143B2 (en) 2016-08-26 2020-05-05 Edwards Lifesciences Corporation Multi-portion replacement heart valve prosthesis
CN106420127B (en) * 2016-10-15 2019-03-15 郑州大学第一附属医院 One kind complying with esophageal peristalsis and is bonded Esophageal Stent entirely
US10758348B2 (en) 2016-11-02 2020-09-01 Edwards Lifesciences Corporation Supra and sub-annular mitral valve delivery system
US11123186B2 (en) 2017-07-06 2021-09-21 Edwards Lifesciences Corporation Steerable delivery system and components
US11540933B2 (en) 2017-10-11 2023-01-03 W. L. Gore & Associates, Inc. Implantable medical device constraint and deployment apparatus
CN107468393A (en) * 2017-10-19 2017-12-15 李征 Ureter bracket tube swelling spring place tool and laying method
EP3720390B1 (en) 2018-01-25 2024-05-01 Edwards Lifesciences Corporation Delivery system for aided replacement valve recapture and repositioning post- deployment
US11051934B2 (en) 2018-02-28 2021-07-06 Edwards Lifesciences Corporation Prosthetic mitral valve with improved anchors and seal
US10575973B2 (en) 2018-04-11 2020-03-03 Abbott Cardiovascular Systems Inc. Intravascular stent having high fatigue performance
CA3101217C (en) 2018-06-11 2023-03-28 Boston Scientific Scimed, Inc. Sphincterotomes and methods for using sphincterotomes
US11504270B1 (en) 2019-09-27 2022-11-22 Sight Sciences, Inc. Ocular delivery systems and methods
CN116367796A (en) 2020-08-31 2023-06-30 波士顿科学国际有限公司 Self-expanding stent with cover
US20220142771A1 (en) * 2020-11-09 2022-05-12 Medtronic, Inc. Mechanical guides for controlling leaflet folding behavior during crimping

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2836181A (en) * 1955-01-17 1958-05-27 Chemstrand Corp Flexible nylon tube and method for preparing same
GB1205743A (en) * 1966-07-15 1970-09-16 Nat Res Dev Surgical dilator
US3509883A (en) * 1967-11-29 1970-05-05 Gen Electric Expanding cannula
US3540431A (en) * 1968-04-04 1970-11-17 Kazi Mobin Uddin Collapsible filter for fluid flowing in closed passageway
US3657744A (en) * 1970-05-08 1972-04-25 Univ Minnesota Method for fixing prosthetic implants in a living body
CS148134B1 (en) * 1970-11-20 1973-02-22
US3868956A (en) * 1972-06-05 1975-03-04 Ralph J Alfidi Vessel implantable appliance and method of implanting it
SE397769B (en) * 1974-11-04 1977-11-21 Gambro Ab INITIATIVE ELEMENTS FOR USE IN VEHICLE SURGERY AND METHODS OF PRODUCING SUCCESSFUL
DE2528273C3 (en) * 1975-04-12 1981-07-23 Fabian, Karl, Dr.Med., 5300 Bonn catheter
FR2391709A2 (en) * 1975-12-02 1978-12-22 Rhone Poulenc Ind Implantable surgical tubing with sewable ends - has radially elastic wall including a fleece layer and reinforcement
FR2333487A1 (en) * 1975-12-02 1977-07-01 Rhone Poulenc Ind Implantable surgical tubing with sewable ends - has radially elastic wall including a fleece layer and reinforcement
US4130904A (en) * 1977-06-06 1978-12-26 Thermo Electron Corporation Prosthetic blood conduit
DE2822603A1 (en) * 1978-05-24 1979-11-29 Kay Dr Thierfelder Tissue fault closing instrument - has skin fixed to scissor type supports expanded radially catheter in probe
SE424045B (en) * 1979-01-12 1982-06-28 Tesi Ab CATHETER
US4300244A (en) * 1979-09-19 1981-11-17 Carbomedics, Inc. Cardiovascular grafts
WO1982001647A1 (en) * 1980-11-17 1982-05-27 Robert L Kaster Vascular graft
US4512338A (en) * 1983-01-25 1985-04-23 Balko Alexander B Process for restoring patency to body vessels
US4503569A (en) * 1983-03-03 1985-03-12 Dotter Charles T Transluminally placed expandable graft prosthesis

Also Published As

Publication number Publication date
EP0088118A1 (en) 1983-09-14
IT8223312A0 (en) 1982-09-16
GB2124908A (en) 1984-02-29
DE3250058C2 (en) 1992-08-27
GB2124908B (en) 1985-07-17
AU8954282A (en) 1983-04-08
US4553545A (en) 1985-11-19
ATA907182A (en) 1990-11-15
CH657521A5 (en) 1986-09-15
FR2512678A1 (en) 1983-03-18
FR2512678B1 (en) 1986-08-22
AT392733B (en) 1991-05-27
DE3249027C2 (en) 1992-02-20
DE3249027T1 (en) 1984-10-31
BR8208063A (en) 1984-01-10
IT1152608B (en) 1987-01-07
WO1983000997A1 (en) 1983-03-31
GB8326791D0 (en) 1983-11-09
NL8220336A (en) 1984-01-02

Similar Documents

Publication Publication Date Title
CA1204643A (en) Device for application in blood vessels or other difficulty accessible locations and its use
JP7065091B2 (en) Radially adjustable stent graft delivery system
AU724820B2 (en) Apparatus and method for engrafting a blood vessel
JP3280034B2 (en) Stent graft against kink
EP1659992B1 (en) Prosthetic valve devices and methods of making such devices
US6146416A (en) Medical stents for body lumens exhibiting peristaltic motion
US5961546A (en) Method and apparatus for recapture of hooked endoprosthesis
US5634941A (en) Vascular graft bypass apparatus
JP4317200B2 (en) Introduction instrument system
EP0701800B1 (en) Vascular endoprosthesis with hook
CA2146156C (en) Medical stents for body lumens exhibiting peristaltic motion
EP1311208B1 (en) Bifurcated graft
US20140172069A1 (en) Repositionable diameter constraints
EP1637083A2 (en) Flexible transmyocardial implant to induce angiogenesis
JP5866133B2 (en) Arteriovenous spool anchor
JP2000505316A (en) Method and apparatus for joining openings formed in adjacent blood vessels or other anatomical structures
JP2003527939A (en) Recoverable self-expanding flow divider
JP2002531219A (en) Multi-stage expandable stent / graft
JP2006513010A (en) Vascular prosthesis and methods of use
US10117736B2 (en) Low radial force filter
JPS58501458A (en) canal dilator
JP2002233580A (en) Stent graft
CN218106158U (en) Recoverable aneurysm auxiliary stent and delivery system
CN116459040A (en) Artificial valve
CA2235675A1 (en) Apparatus and method for engrafting a blood vessel

Legal Events

Date Code Title Description
MKEX Expiry