CA1205383A - Method of encapsulating biologically active materials in multilamellar lipid vesicles (mlv) - Google Patents

Method of encapsulating biologically active materials in multilamellar lipid vesicles (mlv)

Info

Publication number
CA1205383A
CA1205383A CA000438201A CA438201A CA1205383A CA 1205383 A CA1205383 A CA 1205383A CA 000438201 A CA000438201 A CA 000438201A CA 438201 A CA438201 A CA 438201A CA 1205383 A CA1205383 A CA 1205383A
Authority
CA
Canada
Prior art keywords
lipid
vessel
vesicles
biologically active
contact masses
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
CA000438201A
Other languages
French (fr)
Inventor
Michael Mezei
Fredric J. Nugent
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Lipoderm Pharmaceuticals Ltd
Original Assignee
Lipoderm Pharmaceuticals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Lipoderm Pharmaceuticals Ltd filed Critical Lipoderm Pharmaceuticals Ltd
Application granted granted Critical
Publication of CA1205383A publication Critical patent/CA1205383A/en
Expired legal-status Critical Current

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/10Dispersions; Emulsions
    • A61K9/127Liposomes
    • A61K9/1277Processes for preparing; Proliposomes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S436/00Chemistry: analytical and immunological testing
    • Y10S436/829Liposomes, e.g. encapsulation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/29Coated or structually defined flake, particle, cell, strand, strand portion, rod, filament, macroscopic fiber or mass thereof
    • Y10T428/2982Particulate matter [e.g., sphere, flake, etc.]
    • Y10T428/2984Microcapsule with fluid core [includes liposome]

Abstract

AN IMPROVED METHOD OF ENCAPSULATING BIOLOGICALLY
ACTIVE MATERIALS IN MULTILLAMELLAR LIPID VESICLES (MLV) ABSTRACT
This invention provides an improved procedure for producing large multilamellar lipid vesicles (MLV), which may be used to encapsulate a biologically active material, particularly lipophilic substances. According to this invention, a lipid film is formed on inert, solid contact masses within a vessel, by evaporating an organic solvent therefrom. Subsequent agitation in the presence of an aqueous liquid, followed by a period in which the vessel remains undisturbed yields the multilamellar vesicles.
The procedure permits the encapsulation of both hydrophilic and lipophilic materials.

Description

~2~5;~

AN IMPROVED METHOD OF ENCAPSULATlNG B~OLOGICALLY
ACTIVE MATERIALS IN MULTILAMELLAR LIPID VESICLES (MLV) TECHNICAL FIELD
The present invention relates to ~he art of liposomal encapsulation.
More specifically, the present invention relates to an improved procedure for producing large multilamellar lipid vesicles (MLV), which may be used to encapsulate a biologically active materlal, particularly lipophilic substances.
~ACKGROUND ART
Liposomes or lipid vesicles are or~ion-like structures comprising a series of bimolecular lipid layers spaced from one another by an aqueous solution, the outermost layer being lipid. Liposomes have been advantageously used to encapsulate biologically active materials for a variety of uses. The prior art describes a number of techniques for producing synthetic liposomes. Most of these techniques relate to the formation of unilamellar vesicles. For example, lJ.S. Patent 4,0789052 - Papahadjopoulos describes a procedure for producing large unilamellar vesicles (LUV). This particular procedure, however, is restricted to the lipid phosphalidyserine which was found to uniquely form the intermediate cochleate structure, apparently essential to the formation of the large lipid vesicles, in the presence of calcium cations.
A variety of other techniques have also been disclosed for producing small unilamellar vesicles ~SUVj. In one approach, a mixture of the lipid and an aqueous solution of ~he material ~o be encapsulated is warmed and then subjected to vigorous agitation and ultrasonic vibration. In another approach, U.S. Patent 4,089,801 - Schneider, a mixture of a lipid, an aqueous solution of the material to be encapsulated, and a liquid which is insoluble in water is subjected to ultrasonication, q~'`

3~

whereby aqueous globules encased in a monomolecular lipid layer are formed dispersed in the water-insoluble liquid. The lipid vesicles are then formed by combining the first dispersion with a second aqueous fluid and then subjecting the mixture to centrifugation, whereby the globules are forced through the monomolecular lipid layer dividing the two phases, thereby forming ~he bimolecular lipid layer characteristic of liposomes. In still another approach, (C). Zumbuehl and H. G. Weder, Biochim. Biophys. Acta., 6400 252-262, 1981), the lipids and additives are solubilized with detergents by agitation or sonication, yielding defined mixed micelles. The detergents are ~hen removed by dialysis.
Two alternate methods for the preparation of small unilamellar vesicles (SUV) tha~ avoid the need for sonication are the ethanol injection technique (S. Batzri and E. D. Korn, Biochim. Biophys. Acta 198: 1015-1019, 1973) and the ether-infusion technique (D. Deamer and A. D.
Bangham, Biochim. Biophys. Acta 443: 629-6349 1976). In these processes, the organic solution of lipids is rapidly injected into a buffer solution where it spontaneously forms liposomes.
A more recent method for preparing large unilamellar lipid vesicles (LUV) is the reverse phase evaporation technique described in U.S. Patent 4,235,871 - Papahadjopoulos. This technique consists of forming a water-in-oil emulsion of (a) the lipids in an organic solvent and (b) the substances to be encapsulated in an aqueous buffer solution. Removal of the organic solvent under reduced pressure produces a mixture having a gel-like character which can then be converted to the lipid vesicles by agitation or by dispersion in an aqueous media.
U.S. Patent No. 4,016,100 - Suzuki et al describes still another method of entrapping certain biologically active materials in unilamellar lipid vesicles by freezing an aqueous phospholipid dispersion of the biologically active materials and lipids.
For a comprehensive review of methods for preparing liposomes refer to a recent publication by Szoka and Papahadjopoulos (Ann. Rev.
Biophys. Bioeng. 9: 467-508, 1980).
Methods for producing multilamellar lipid vesicles (MLV), are described by Bangham et al (~. Mol. Biol. 13: 238-252, 1965) and by Mezei and Gulasekharam, (I if e Sci., 26: 1473-1477, 1980). The lipids ~;2115~3 and lipophilic substances are first dissolved in an organic solvent. The solvent is then removed under reduced pressure by rotary evaporation. The lipid residue forms a thin film on the wall of the container. Upon addition of an aqueous solution, generally containing electrolytes or hydrophilic biologically active materials, large multilamellar liposome are formed. Small unilamellar vesicles can be prepared by sonication of the large multilamellar vesicles.
Most of these prccesses suffer from either low encap-sulation efficiency or limi.tations in the types of materials that can be encapsulated or both. For example, most of these processes are limited to the encapsulation of hydrophilic materials, and cannot efficiently accommodate the encap-sulation of lipophilic substances. Moreover, all of the currently available procedures, except the ones described by Bangham et al and by Mezei and Gulasekharam, are only suit- -~able for the encapsulation of biologically active materials in oligolamellar, or unilamellar liposomes.
It is an object of an aspect of the present invention to provide a process for encapsulating biologically active materials in large multilame.llar lipid vesicles.
It is an object of an aspect of this invention to provide a method for encapsulating biologically active materials that results in significant increase in the encap-sulation efficiency thereof.
It is an object of an aspect of this invention to provide a method of encapsulating biologically active materials in large multilamellar lipid vesicles that is not limited with respect to the material to be encapsulated and can efficiently accommodate both lipophilic and hydrophilic substances.
It is an object of an aspect of this invention to provide a procedure for encapsulating biologically active materials in a multilamellar lipid vesicle that can be conducted on a larger scale relative to prior art procedures.

~1)5~3 -3a-DISCLOSURE OF THE INVENTION
.
Accordlng to one aspect of this invention there is provided, in a process for producing large multilamellar lipid vesicles of the type wherein a thin lipid film is formed on the inner wall of a vessel, an aqueous liquid is added to the vessel, the vessel is agitated to form an aqueous dispersion of lipid and the dispersion is allowed to stand essentially undisturbed for a time sufficient for the multilamellar vesicles to form, the improvement comprising also forming said thin lipid film on the surface of inert solid contact masses which partially fill said vessel.
In accordance with another aspect of this invention there is provided a process for producing large multilamellar lipid vesicles comprising the steps of:

~, " ~

53~3 (a) providing a vessel partially filled with inert, solid contact masses;
(b) providing a lipid component dissolved in a suitable organic solvent within the vessel;
(c) removing the organic solvent by evaporation so as to form a thin lipid film on the inner wall of the vessel and on the surfaces of the contact masses;
(d) thereafter adding an aqueous liquid to the vessel and agitating the vessel to form an aqueous dispersion of lipid; and (e) allowing the dispersion to stand essentially undisturbed for a time sufficient for the multilamellar vesicles to form.
If desired, the aqueous dispersion of the large multilamellar lipid vesicles can be further treated; for example, ultrasonication or filtration can be used to reduce the size of the vesicles or to change their structure to oligolamellar or unilamellar structures.
According So a known procedure, the multilamellar vesicles can be filtered through a series of polycarbonate filters, having decreasing pore sizes, so as to form the unilamellar vesicles.
It is specifically contemplated that hydrophilic and/or lipophilic biologically active substances will be encapsulated within the vesicles.
A particularly advantageous consequence of the large-sized vesicles produced by this invention is that the risk of percutaneous transfer of the formulation is substantially reduced or eliminated. Therefore, this invention is particularly useful for encapsulating lipid soluble medicaments intended to produce local (i.e., topical) rather than systemic action.
As used in the specification and claims, the terrns "biologically active material" or l'biologically active substance" means a compound or composition which, when present in an effective amount, produces an ef fect in living cells or organisms.
DETAILED DESCRIPTION
As disclosed, this process differs from the technique proposed by Bangham in that the lipid film forming step is conducted in a vessel partially filled with inert, solid contact masses. This modification has a significant and unexpected impact on the overall encapsulation procedure. In particular, we have observed a significant increase in ~053133 encapsulation efficiency, especially in ~he encapsulation of lipophilic substances.
Significant variation is possible in the size, size distribution, shape and composition of the contact masses. The principal characteristics of the contact masæs are: (1) that the contact masses be inert to the materials used in the formulation, in other words there should be no unwanted interaction between the contac~ masses and the lipid, lipophilic substances, organic solvent or aqueous liquid employed, and (2) that the contact masses be solid throughout the processing steps, in other words the contact masses should no~ dissolve or disintegrate and should provide an appropriate solid surface for supporting the ~hin lipid film. Prior experimental testing has used glass beads or balls as the iner~, solid contact masses and these materials have proven to be particularly suitable. It is also expected that metal balls, e.g., stainless steel and synthetic substances, e.g., plastics, will also be suitable in appropriate circumstances. While spherical contact masses are preferred, since they provide the maximum surface area in a given volume and are easily fluidized during the agitation step, other regular and irregular shapes could also be used.
The size of the contact masses used in any application will depend upon the scale of operation, the intensity of agitation and other factors that will be apparent to one skilled in this art. As an example, it is normally appropriate to use contact masses having a size such that the ratio of the vessel volume to the volume of an individual contact mass is between 50 and 50,000. Generally, spherical contact masses will have a diameter between 1.0 mm and 100 mm. It is also contemplated that the contact masses could have a ~ange or distribution of sizes.
However, our test work has shown that equally sized contact masses adequately satisfy the requirements of the invention. The number of contact masses employed will depend upon their shape and size, the size of the vessel, the volume of organic solvent used and the quantity of lipid and lipophilic substances dissolved. An appropriate number is used for increasing the surface area during the evaporation step and increasing the total area of the thin lipid film formed, but reserving sufficient volume within the vessel for movement of the contact masses during " ~ .
.~

~0531~3 the agitation step.
The lipid vesicles of the present invention can be produced from phospholipids, neutral lipids, surf actants or any other related chemical compounds having similar amphiphilic properties. As is well known, these materials can be classified according to the formula A-B where A is a hydrophilic, generally polar group, e.g., a carboxyl group, and B
is a hydrophobic, i.e., lipophilic, non-polar group, e.g., a long chain aliphatic hydrocarbon group. Suitable lipids include phosphatidylcholines, phosphatidylethanolamine, phosphatidylserine, phosphatidylinositol, Iysophosphatidylcholine and phosphatidyglyceral. In addition, other lipophilic additives may be used for selectively modifying the characteristics of the lipid vesicle, e.g., the stability and permeability of the vesicle membrane. Such other substances include stearylamine, phosphatidic acid, dicetyl phosphate, tocopherol, cholesterol, and lanolin extracts. From the foregoing, it shGuld be appreciated that the composition of the lipid component can be substantially varied without significantly reducing the improvement in encapsulation efficiency provided by the present invention, and other lipids, in addition to those listed above, can be used as desired.
According to the present invention, the lipid component, together with any other lipophilic substances including biologically active materials, is initially dissolved in a suitable, generally non-polar, organic solvent.
The organic solvent must be capable of being substantially removed from the lipid by evaporation and must not otherwise affect any of the lipophilic substances included in the formulation~ Representative solvents include: ethers, esters, alcohols, ketones and various aromatic and aliphatic hydrocarbons, including flurocarbons. The solvents may be used alone or in combination; for example, a 2:1 mixture of chloroform and methanol has been found to be suitable. The organic solvent is removed by evaporation, which can conveniently be accomplished by use of a rotary evaporator at temperatures generally between 20 and 60~C and under a less-than-atmospheric pressure. As is well known, the evaporative conditions will strongly depend upon the physical properties of the organic solvent and the lipophilic materials used in the formulation.
After the lipid film forming step, the lipids are hydrated with 53~13 an aqueous liquid to form an aqueous dispersion of lipid. The required agitation can be accomplished by the rotation or translation, i.e., vibration, of the vessel. An important feature of the present invention is that the presence of the inert, solid contact masses within the vessel provides an increased and consistent level of mechanical agitation, which enhances the formation of uniformly sized lipid vesicles. As is well known, this hydration step is conducted above the transition temperature of the lipid components.
The aqueous liquid may be pure water; but will generally be an aqueous solution of an electrolyte or a biologically active material. For example, an aqueous solution of sodium chloride or calcium chloride may be employed. Additionally, active substances including pharmaceuticals such as, vitamins, hormones, enzymes, antibiotics and bactericides, and cosmetics such as, dyestuffs, perfumes and humectants may be included.
While most of the prior art procedures are limited to encapsula~ing hydrophilic materials, the present invention can also accomodate the encapsulation of hydrophobic, i.e., Iipophilic materials. Testing has shown that lypophilic medicaments, e.g. progesterone, can be encapsulated at high efficiencies.
In other words, the present invention can be advantageously employed to encapsulate either hydrophilic or lipophilic substances or both. In the case of lipophilic materials, the substances to be encapsulated are co-dissolved with the lipids in the organic solvent prior to the lipid film forming step; while as noted above hydrophilic substances are conveniently added to the aqueous liquid used to disperse the lipid film.
After agitating ~he lipid-aqueous liquid mixture, the resulting dispersion is then allowed to remain undisturbed for a time sufficient to allow the lipid vesicles to form and mature. Generally, it will be sufficient to allow the vessel to stand undisturbed at room temperature for approximateiy one to two hours. The aqueous dispersion of the multilamellar lipid vesicles can then be recovered from the vessel containing the inert, solid contact masses. If desired, any non-incorporated active substances can be removed from the dispersion using known techniques such as repeated centrifugations, dialysis or column i3~;~

chromatography. The lipid vesicles can then be resuspended in any suitable electrolytic buffer for subsequent use.
Since the procedure described by Bangham is the only prior art process of which we are aware for encapsulating lipophilic materials in large multilamellar lipid vesicles, we conducted a series of experiments directly comparing the process of the present invention with the Bangham procedure. In particular, we compared the two procedures so as to determine their relative effectiveness in encapsulating lipophilic substances. The following examples will vividly demonstrate the significant and unexpected improvement in the encapsulation efficiency of lipophilic materials made possible by the present invention.
EXAMPLE I
In this example, multilamellar lipid vesicles are prepared using the procedure of this inven~ion (Method A) and the procedure disclosed by Bangham (Method B). The materials used in preparing the lipid vesicles and the amounts thereof are listed below in Table 1. A small amount of progesterone labelled with Carbon 14 was mixed with a ~uantity of non-radioactive progesterone to facili~ate the determination of its encapsulation efficiency.

DL alpha dipalmitoyl 22.2 mg phosphatidyl choline (DPPC) Cholesterol ~ 5.0 mg Progesterone 5.0 m8 (containing 0.5 uCi; l~C) Calcium chloride solution (8 mM) 5.0 ml In accordance with the method of this invention, ~ethod A, the DPPC, cholesterol and progesterone were co-dissolved in a chloroform-methanol solvent (2:1) in a 50 ml round bottom vessel. Glass beads, having a diameter of 5 mm, were added to the vessel and the solvent was evaporated under vacuum in a rotary evaporator, thereby leaving a thin lipid film on the glass beads and on the vessel wall. A warm 3~13 g calcium chloride solution at 65C was then added to the vessel, and the mixture was vigorously shaken for one minute. Afterwards, the vessel was further agitated by rotating it in the rotary evaporator, without applying a vacuum, at 65C for 30 minutes. The resultant dispersion was allowed to stand for one hour.
According to the Bangham procedure, Method B, the DPPC, cholesterol and progesterone were similarly dissolved in a chloroform-methanol solvent (2:1) within a 50 ml round bottom vessel. The vessel did not contain any contact masses. The organic solvent was evaporated under vacuum in a rotary evaporator until a smoo~h, dry lipid film was observed on the wall of the vessel. A calcium chloride solution, heated to a termperature of 65C was then added to the contents of the vessel and the mixture was vigorously shaken in a 65C water bath for 30 minutes. The resultant dispersion was then allowed to stand for one hour.
After allowing the newly formed liposomal preparations to stand at room temperature Eor one hour, small aliquots (approximately 10 ul) of each of the preparations were examined under a microscope with a magnification of 475X using polarized light to verify the formation of the large multilamellar vesicles. The remaining portions of the liposomal preparations were filtered through polycarbonate f ilters ha~ring an 8 um pore size. The filtrates were then centrifuged at 22,000 Xg for 15 minutes at 20C. The supernatant was decanted and the centrifugate was resuspended in 5 ml of 8 mM aqueous calcium chloride solution.
This procedure was repeated twice. The centrifugate separated from the final step of centrifugation was resuspended in 5.0 ml of ~ mM
aqueous calcium chlorlde solution, and 10 ul aJiquots from each preparation were used to calculate the encapsulation ef ficiency. The results are presented in Example 111.

The procedure of Example I was repeated three additional times, but in each case the formulation was changed to that listed in Tables
2, 3 and 4, respectively. In formulating the liposomes from the substances listed in Table 4, a 1000 ml vessel was substituted for the 50 ml vessel.

~l~2os;3l9l3 - 10 ~

Phosphatidylcholine (purified) 22.2 mg Cholesterol 5.0 mg Progesterone (0.5 uCi; 14C) 5.0 mg Calcium Chloride (8 mM)5.0 ml Dipalmitoyl phosphatidylcholine 22.2 mg Cholesterol 5.0 mg Stearylamine 2.0 mg Progesterone (0.5 uCi; 14C) 5.0 mg Calcium Chloride (8 mM)5.0 ml Dipalmitoyl phosphatidylcholine 888.0 mg Cholesterol 200.0 mg Progesterone (1.0 uCi: 14C) 200.0 mg Calcium Chloride (8 mM)200.0 ml The progesterone encapsuiation efficiencies, using the test procedures described in Examples I and 11, are listed in Table 5. As shown by these results, the present invention (Method A) provides a substantial and unexpected increase in the encapsulation efficiency of lipophilic materials as compared with the prior art (Method B) available for accomplishing the same result.

~ ~OS3~33 "

~ABL E
TABLE % of Encapsulation FORMULATIONMethod A Method 8 77.0 7.8 2 83.0 6.1
3 87.0 10.0
4 85.0 4.5 In addition to enchancing encapsulation efficiency, ~he present invention also makes it possible to produce liposomes on a larger scale.
The Bangham method can only produce small batches of liposomes (e.g., 100-200 ml) otherwise tile encapsulation efficiency substantially decreases.
The batch size when using our invention, however, can be significantly increased simply by increasing the surface area of the vessel and the inert, solid contact massesO This result is evidenced by the encapsulation efficiency data in Table 5 for the formulation of Table 4, in which a 1000 ml vessel was substituted for the 50 ml vessel used in $he prior tests. This vessel also contained a larger amount of solid ir.ert contact masses, providing much greater surface area for the lipid film formation.
Consequently, the present invention makes the large scale manufacturing of liposomes possible.
While preferred embodimen~s of this invention have been discussed herein, those skilled in the art will appreciate that changes and modifications may be made without departing from the spirit and scope of this invention, as defined in and limited only by the scope of the appended claims.

Claims (15)

1. A process for producing large multilamellar lipid vesicles comprising the steps of:
(a) providing a vessel partially filled with inert, solid contact masses;
(b) providing a lipid component dissolved in a suitable organic solvent within said vessel;
(c) removing the organic solvent by evaporation so as to form a thin lipid film on the inner wall of said vessel and on the surfaces of said contact masses;
(d) thereafter adding an aqueous liquid to vessel and agitating same to form an aqueous dispersion of lipid; and (e) allowing said dispersion to stand essentially undisturbed for a time sufficient for the multilamellar vesicles to form.
2. The process of claim 1 wherein the lipid component is a phospholipid.
3. The process of claim 2 wherein the phospholipid is selected from the group consisting of phosphatidylcholines, lysophosphatidylcholine, phosphatidylserine, phosphatidylethanolamine, and phosphatidylinositol.
4. The process of claim 3 wherein the phospholipid is provided in admixture with cholesterol.
5. The process of claim 3 wherein the phospholipid is provided in admixture with stearylamine or phosphatidic acid.
6. The process of claim 1 wherein a lipophilic biologically active material is provided in admixture with the lipid component.
7. The process of claim 6 wherein the lipophilic biologically active material comprises steroid hormones.
8. The process of claim 1 where in the organic solvent is selected from the group consisting of chloroform, methanol and mixtures thereof.
9. The process of claim 1 where in the aqueous liquid contains a hydrophilic biologically active material.
10. The process of claim 1 wherein the inert, solid contact masses are made from glass, metal or a synthetic plastic.
11. The process of claim 10 wherein the inert, solid contact masses are spherical.
12. The process of claim 11 wherein the spherical, inert, solid contact masses have a diameter between 1 mm and 100 mm.
13. The process of claim 1 wherein the aqueous dispersion of lipid is allowed to stand essentially undisturbed for about 1 to 2 hours.
14. The process of claim 7 wherein the steroid hormone is progesterone.
15. In a process for producing large multilamellar lipid vesicles of the type wherein a thin lipid film is formed on the inner wall of a vessel, an aqueous liquid is added to the vessel, the vessel is agitated to form an aqueous dispersion of lipid and the dispersion is allowed to stand essentially undisturbed for a time sufficient for the multilamellar vesicles to form, the improvement comprising also forming said thin lipid film on the surface of inert solid contact masses which partially fill said vessel.
CA000438201A 1982-10-04 1983-10-03 Method of encapsulating biologically active materials in multilamellar lipid vesicles (mlv) Expired CA1205383A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US06/432,686 US4485054A (en) 1982-10-04 1982-10-04 Method of encapsulating biologically active materials in multilamellar lipid vesicles (MLV)
US432,686 1982-10-04

Publications (1)

Publication Number Publication Date
CA1205383A true CA1205383A (en) 1986-06-03

Family

ID=23717192

Family Applications (1)

Application Number Title Priority Date Filing Date
CA000438201A Expired CA1205383A (en) 1982-10-04 1983-10-03 Method of encapsulating biologically active materials in multilamellar lipid vesicles (mlv)

Country Status (4)

Country Link
US (1) US4485054A (en)
JP (1) JPS59134712A (en)
CA (1) CA1205383A (en)
DE (1) DE3335701A1 (en)

Families Citing this family (397)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS607932A (en) * 1983-06-29 1985-01-16 Dai Ichi Seiyaku Co Ltd Preparation of liposome
CA1237671A (en) * 1983-08-01 1988-06-07 Michael W. Fountain Enhancement of pharmaceutical activity
US4728575A (en) * 1984-04-27 1988-03-01 Vestar, Inc. Contrast agents for NMR imaging
US4880635B1 (en) * 1984-08-08 1996-07-02 Liposome Company Dehydrated liposomes
JPS6150912A (en) * 1984-08-16 1986-03-13 Shionogi & Co Ltd Production of liposome preparation
EP0177223B1 (en) * 1984-09-24 1990-02-28 Michael Mezei Pharmaceutical multi-phase composition
US4761288A (en) * 1984-09-24 1988-08-02 Mezei Associates Limited Multiphase liposomal drug delivery system
US4897269A (en) * 1984-09-24 1990-01-30 Mezei Associates Limited Administration of drugs with multiphase liposomal delivery system
US5019369A (en) * 1984-10-22 1991-05-28 Vestar, Inc. Method of targeting tumors in humans
US4619795A (en) * 1984-12-24 1986-10-28 Technicon Instruments Corp. Method for preparing lipid vesicles
US5545412A (en) * 1985-01-07 1996-08-13 Syntex (U.S.A.) Inc. N-[1, (1-1)-dialkyloxy]-and N-[1, (1-1)-dialkenyloxy]-alk-1-yl-n,n,n-tetrasubstituted ammonium lipids and uses therefor
US4897355A (en) * 1985-01-07 1990-01-30 Syntex (U.S.A.) Inc. N[ω,(ω-1)-dialkyloxy]- and N-[ω,(ω-1)-dialkenyloxy]-alk-1-yl-N,N,N-tetrasubstituted ammonium lipids and uses therefor
US4753788A (en) * 1985-01-31 1988-06-28 Vestar Research Inc. Method for preparing small vesicles using microemulsification
US4830858A (en) * 1985-02-11 1989-05-16 E. R. Squibb & Sons, Inc. Spray-drying method for preparing liposomes and products produced thereby
US5041278A (en) * 1985-10-15 1991-08-20 The Liposome Company, Inc. Alpha tocopherol-based vesicles
US4923854A (en) * 1986-01-22 1990-05-08 The Liposome Company, Inc. Solubilization of hydrophobic materials using lysophospholipid
US5068198A (en) * 1986-03-26 1991-11-26 Syntex (U.S.A.) Inc. Liquid single reagent for assays involving confining gels
US4902466A (en) * 1986-12-11 1990-02-20 Ciba Corning Diagnostics Corp. Process for making lipid films suitable for liposomes
US4891324A (en) * 1987-01-07 1990-01-02 Syntex (U.S.A.) Inc. Particle with luminescer for assays
US5049391A (en) * 1987-02-27 1991-09-17 Terumo Kabushiki Kaisha Liposome encapsulated hemoglobin
JPS63211222A (en) * 1987-02-27 1988-09-02 Terumo Corp Production of liposome
US5000960A (en) * 1987-03-13 1991-03-19 Micro-Pak, Inc. Protein coupling to lipid vesicles
US5234767A (en) * 1987-03-13 1993-08-10 Micro-Pak, Inc. Hybrid paucilamellar lipid vesicles
US5628936A (en) * 1987-03-13 1997-05-13 Micro-Pak, Inc. Hybrid paucilamellar lipid vesicles
US4917951A (en) * 1987-07-28 1990-04-17 Micro-Pak, Inc. Lipid vesicles formed of surfactants and steroids
US4855090A (en) * 1987-03-13 1989-08-08 Micro-Pak, Inc. Method of producing high aqueous volume multilamellar vesicles
US4942038A (en) * 1987-03-13 1990-07-17 Micro Vesicular Systems, Inc. Encapsulated humectant
US4911928A (en) * 1987-03-13 1990-03-27 Micro-Pak, Inc. Paucilamellar lipid vesicles
US5023086A (en) * 1987-03-13 1991-06-11 Micro-Pak, Inc. Encapsulated ionophore growth factors
US4938965A (en) * 1987-07-22 1990-07-03 Her Majesty The Queen In Right Of Canada, As Represented By The Minister Of National Defence Of Her Majesty's Canadian Government Ocular delivery of prophylactic agents
US4853228A (en) * 1987-07-28 1989-08-01 Micro-Pak, Inc. Method of manufacturing unilamellar lipid vesicles
US5017501A (en) * 1987-11-25 1991-05-21 Abbott Laboratories Preparation of uniformly sized liposomes encapsulating an aqueous liquid
US4873035A (en) * 1987-11-25 1989-10-10 Abbott Laboratories Preparation of sized populations of liposomes
US5019392A (en) * 1988-03-03 1991-05-28 Micro-Pak, Inc. Encapsulation of parasiticides
US5019174A (en) * 1988-03-03 1991-05-28 Micro Vesicular Systems, Inc. Removing oil from surfaces with liposomal cleaner
US5104736A (en) * 1988-03-03 1992-04-14 Micro-Pak, Inc. Reinforced paucilamellar lipid vesicles
US5160669A (en) * 1988-03-03 1992-11-03 Micro Vesicular Systems, Inc. Method of making oil filled paucilamellar lipid vesicles
US5269979A (en) * 1988-06-08 1993-12-14 Fountain Pharmaceuticals, Inc. Method for making solvent dilution microcarriers
US5133965A (en) * 1988-06-08 1992-07-28 Fountain Pharmaceuticals, Inc. Dressing material having adsorbed thereon a solvent dilution microcarrier precursor solution
US4917892A (en) * 1988-06-28 1990-04-17 Temple University Encapsulated topical delivery system
US4937078A (en) * 1988-08-26 1990-06-26 Mezei Associates Limited Liposomal local anesthetic and analgesic products
FR2637182B1 (en) * 1988-10-03 1992-11-06 Lvmh Rech COMPOSITIONS BASED ON HYDRATED LIPID LAMID PHASES OR LIPOSOMES CONTAINING AN ECDYSTEROID, PREFERABLY ECDYSTERONE, OR A DERIVATIVE THEREOF; AND COSMETIC, PHARMACEUTICAL, ESPECIALLY DERMATOLOGICAL, SERICULTURE OR PHYTOSANITARY COMPOSITIONS INCORPORATING THE SAME
US4935171A (en) * 1989-01-27 1990-06-19 Vestar, Inc. Method for vesicle formation
US5202130A (en) * 1989-08-31 1993-04-13 The Johns Hopkins University Suppression of eczematous dermatitis by calcium transport inhibition
KR940000166B1 (en) * 1989-11-09 1994-01-08 니혼다바고 상교오 가부시기가이샤 Novel glucosamine derivative and liposome containing the same as membrane component
US5221535A (en) * 1989-11-13 1993-06-22 Nova Pharmaceutical Corporation Sustained release formulations of insect repellent
IE904098A1 (en) * 1989-11-13 1991-05-22 Nova Pharm Corp Lipospheres for controlled delivery of substances
US5188837A (en) * 1989-11-13 1993-02-23 Nova Pharmaceutical Corporation Lipsopheres for controlled delivery of substances
US5227165A (en) * 1989-11-13 1993-07-13 Nova Pharmaceutical Corporation Liposphere delivery systems for local anesthetics
WO1991016332A1 (en) * 1990-04-12 1991-10-31 Japan Tobacco Inc. 4,6-o-hydroxyphosphorylglucosamine derivative
AU7979491A (en) * 1990-05-03 1991-11-27 Vical, Inc. Intracellular delivery of biologically active substances by means of self-assembling lipid complexes
EP0525132B1 (en) * 1991-02-14 1996-01-03 Baxter International Inc. Binding of recognizing substances to liposomes
US5603872A (en) * 1991-02-14 1997-02-18 Baxter International Inc. Method of binding recognizing substances to liposomes
US5128139A (en) * 1991-02-15 1992-07-07 Nu Skin International, Inc. Composition containing liposome-entrapped grapefruit seed extract and method for making
US6251581B1 (en) 1991-05-22 2001-06-26 Dade Behring Marburg Gmbh Assay method utilizing induced luminescence
US5340716A (en) * 1991-06-20 1994-08-23 Snytex (U.S.A.) Inc. Assay method utilizing photoactivated chemiluminescent label
US5578498A (en) 1991-05-22 1996-11-26 Behringwerke Ag Metal chelate containing compositions for use in chemiluminescent assays
ATE162892T1 (en) * 1992-07-31 1998-02-15 Behringwerke Ag PHOTOACTIVABLE CHEMILUMINIZING MATRICES
AU6833994A (en) * 1993-05-17 1994-12-12 Liposome Company, Inc., The Incorporation of taxol into liposomes and gels
US5853755A (en) * 1993-07-28 1998-12-29 Pharmaderm Laboratories Ltd. Biphasic multilamellar lipid vesicles
EP0815852A1 (en) * 1993-08-06 1998-01-07 Opperbas Holding B.V. A method for high loading of vesicles with biopolymeric substances
US5746223A (en) 1996-10-11 1998-05-05 Williams; Kevin Jon Method of forcing the reverse transport of cholesterol from a body part to the liver while avoiding harmful disruptions of hepatic cholesterol homeostasis
US6773719B2 (en) 1994-03-04 2004-08-10 Esperion Luv Development, Inc. Liposomal compositions, and methods of using liposomal compositions to treat dislipidemias
US6312719B1 (en) 1994-03-04 2001-11-06 The University Of British Columbia Liposome compositions and methods for the treatment of atherosclerosis
US6139871A (en) * 1995-07-26 2000-10-31 The University Of British Columbia Liposome compositions and methods for the treatment of atherosclerosis
USRE38407E1 (en) 1994-03-23 2004-01-27 Delex Therapeutics Inc. Pain management with liposome-encapsulated analgesic drugs
US5451408A (en) * 1994-03-23 1995-09-19 Liposome Pain Management, Ltd. Pain management with liposome-encapsulated analgesic drugs
US6048545A (en) * 1994-06-24 2000-04-11 Biozone Laboratories, Inc. Liposomal delivery by iontophoresis
US5702722A (en) * 1994-09-30 1997-12-30 Bracco Research S.A. Liposomes with enhanced entrapment capacity, method and use
HU223475B1 (en) * 1994-10-24 2004-07-28 Chinoin Gyógyszer és Vegyészeti Termékek Gyára Rt. Liposome composition containing selegiline and process for it`s preparation
US5759445A (en) * 1995-05-24 1998-06-02 Matsushita Electric Industrial Co., Ltd. Lipid-dispersed solution and process for producing the same
AU709262B2 (en) * 1995-10-17 1999-08-26 Board Of Regents, The University Of Texas System Insoluble drug delivery
US6183774B1 (en) 1996-01-31 2001-02-06 Collaborative Laboratories, Inc. Stabilizing vitamin A derivatives by encapsulation in lipid vesicles formed with alkylammonium fatty acid salts
US5874105A (en) * 1996-01-31 1999-02-23 Collaborative Laboratories, Inc. Lipid vesicles formed with alkylammonium fatty acid salts
US6071535A (en) * 1996-01-31 2000-06-06 Collaborative Laboratories, Inc. Lipid vesicles formed with alkylammonium fatty acid salts
US5780319A (en) * 1996-04-19 1998-07-14 Pasteur Sanofi Diagnostics Immunoassays to detect antiphospholipid antibodies
US5776487A (en) * 1996-04-19 1998-07-07 Pasteur Sanofi Diagnostics Liposome reagents for immunoassays
GB9615350D0 (en) * 1996-07-22 1996-09-04 Resource Medical Limited Hormone replacement therapy
US7255877B2 (en) 1996-08-22 2007-08-14 Jagotec Ag Fenofibrate microparticles
US6465016B2 (en) 1996-08-22 2002-10-15 Research Triangle Pharmaceuticals Cyclosporiine particles
US5935572A (en) * 1997-01-10 1999-08-10 Collaborative Laboratories, Inc. Composition containing protease separate from glycosidase for removing nits in treating lice infestation
US5891467A (en) 1997-01-31 1999-04-06 Depotech Corporation Method for utilizing neutral lipids to modify in vivo release from multivesicular liposomes
CA2320807C (en) * 1998-02-11 2011-01-18 Research Triangle Pharmaceuticals Method and composition for treatment of inflammatory conditions
US6979456B1 (en) 1998-04-01 2005-12-27 Jagotec Ag Anticancer compositions
WO1999057133A2 (en) * 1998-05-06 1999-11-11 Vlaams Interuniversitair Instituut Voor Biotechnologie Vzw Inhibitors of nf-kb activation
KR100635456B1 (en) 1998-05-29 2006-10-18 스키에파마 캐나다 인코포레이티드 Thermoprotected Microparticle Compositions and Process for Terminal Steam Sterilization thereof
IL141095A0 (en) 1998-08-19 2002-02-10 Rtp Pharma Inc Injectable aqueous dispersions of propofol
US6855296B1 (en) 1998-11-13 2005-02-15 Optime Therapeutics, Inc. Method and apparatus for liposome production
JP2002529240A (en) * 1998-11-13 2002-09-10 オプタイム セラピュウティクス, インコーポレイテッド Method and apparatus for liposome production
EP1133281A1 (en) 1998-11-20 2001-09-19 RTP Pharma Inc. Dispersible phospholipid stabilized microparticles
US6080211A (en) * 1999-02-19 2000-06-27 Igen, Inc. Lipid vesicle-based fuel additives and liquid energy sources containing same
US6723338B1 (en) * 1999-04-01 2004-04-20 Inex Pharmaceuticals Corporation Compositions and methods for treating lymphoma
ES2333400T3 (en) 1999-04-01 2010-02-22 Hana Biosciences, Inc. COMPOSITIONS AND PROCEDURES TO TREAT LYMPHONES.
US7244450B2 (en) * 1999-04-01 2007-07-17 Inex Pharmaceuticals Corporation Compositions and methods for treating lymphoma
US7311924B2 (en) 1999-04-01 2007-12-25 Hana Biosciences, Inc. Compositions and methods for treating cancer
WO2000076982A1 (en) 1999-06-16 2000-12-21 University Of Iowa Research Foundation Antagonism of immunostimulatory cpg-oligonucleotides by 4-aminoquinolines and other weak bases
DE60137829D1 (en) * 2000-01-13 2009-04-16 Genentech Inc HUMAN STRA6 POLYPEPTIDE
EP1254369B1 (en) 2000-02-08 2010-10-06 Sangamo BioSciences, Inc. Cells for drug discovery
US6596266B2 (en) 2000-02-18 2003-07-22 Natural Science, Inc. Compositions containing minoxidil and saw palmetto for treating baldness
CN1313080C (en) 2000-04-20 2007-05-02 斯凯伊药品加拿大公司 Improved water-insoluble drug particle process
AU2001288471B2 (en) 2000-08-31 2006-03-02 Rtp Pharma Inc. Milled particles
US8586094B2 (en) 2000-09-20 2013-11-19 Jagotec Ag Coated tablets
ATE334696T1 (en) * 2001-06-22 2006-08-15 Vlaams Interuniv Inst Biotech ABIN TO PROTECT AGAINST HEPATITIS
US8735153B2 (en) 2001-09-24 2014-05-27 Sangamo Biosciences, Inc. Modulation of stem cells using zinc finger proteins
CN1635873A (en) * 2001-09-28 2005-07-06 埃斯佩里安医疗公司 Methods and apparatus for extrusion of vesicles at high pressure
BRPI0105509B8 (en) * 2001-11-05 2021-05-25 Univ Minas Gerais formulations of the angiotensin- (1-7) peptide using cyclodextrins, liposomes and the plga polymer
US7871619B2 (en) 2001-11-30 2011-01-18 Chemocentryx, Inc. Compositions and methods for detecting and treating diseases and conditions related to chemokine receptors
WO2003057728A1 (en) * 2002-01-10 2003-07-17 Vlaams Interuniversitair Instituut Voor Biotechnologie Vzw A novel splice variant of myd88 and uses thereof
US20050058698A1 (en) * 2002-01-21 2005-03-17 Nolan Yvonne Mairead Pharmaceutically acceptable phosphate-glycerol carrying bodies and uses relating to Parkinson's Disease
CA2368656A1 (en) * 2002-01-21 2003-07-21 Vasogen Ireland Limited Receptor-ligand pairing for anti-inflammatory response
US20040082521A1 (en) * 2002-03-29 2004-04-29 Azaya Therapeutics Inc. Novel formulations of digitalis glycosides for treating cell-proliferative and other diseases
US20040009216A1 (en) * 2002-04-05 2004-01-15 Rodrigueza Wendi V. Compositions and methods for dosing liposomes of certain sizes to treat or prevent disease
US7273620B1 (en) 2002-05-20 2007-09-25 University Of British Columbia Triggered release of liposomal drugs following mixing of cationic and anionic liposomes
US7179484B2 (en) * 2002-11-06 2007-02-20 Azaya Therapeutics, Inc. Protein-stabilized liposomal formulations of pharmaceutical agents
US20040224010A1 (en) * 2002-11-15 2004-11-11 Optime Therapeutics, Inc. Ophthalmic liposome compositions and uses thereof
EP1576004A2 (en) * 2002-12-23 2005-09-21 VIB vzw An immunomodulatory protein derived from trypanosomes and uses thereof
DK2927318T3 (en) 2003-08-08 2020-08-03 Sangamo Therapeutics Inc Method and compositions for targeted cleavage and recombination
US7888121B2 (en) 2003-08-08 2011-02-15 Sangamo Biosciences, Inc. Methods and compositions for targeted cleavage and recombination
ATE518960T1 (en) 2003-09-19 2011-08-15 Sangamo Biosciences Inc GENETICALLY PRODUCED ZINC FINGER PROTEINS TO REGULATE GENE EXPRESSION
JP4903689B2 (en) * 2004-04-08 2012-03-28 サンガモ バイオサイエンシズ インコーポレイテッド Methods and compositions for treating neuropathy and neurodegenerative symptoms
CA2561565C (en) * 2004-04-08 2013-11-26 Sangamo Biosciences, Inc. Methods for repression of phospholamban gene and modulating cardiac contractility
EP1750673B1 (en) * 2004-05-17 2009-12-02 Tekmira Pharmaceuticals Corporation Liposomal formulations comprising dihydrosphingomyelin and methods of use thereof
EP1789095A2 (en) * 2004-09-16 2007-05-30 Sangamo Biosciences Inc. Compositions and methods for protein production
US20080045575A1 (en) * 2004-12-29 2008-02-21 Van Dyke Thomas E Delivery of H2 Antagonists
WO2006094106A2 (en) * 2005-02-28 2006-09-08 Sangamo Biosciences, Inc. Anti-angiogenic methods and compositions
WO2006119121A2 (en) * 2005-04-29 2006-11-09 University Of Louisville Research Foundation, Inc. Cell-surface decoration with active agents
CA2615532C (en) * 2005-07-26 2016-06-28 Sangamo Biosciences, Inc. Targeted integration and expression of exogenous nucleic acid sequences
US20070072247A1 (en) * 2005-08-31 2007-03-29 Academia Sinica Methods and reagents for the analysis and purification of polysaccharides
US7943134B2 (en) * 2005-08-31 2011-05-17 Academia Sinica Compositions and methods for identifying response targets and treating flavivirus infection responses
US8039462B2 (en) * 2005-09-19 2011-10-18 Neuronascent, Inc. Methods and compositons for stimulating neurogenesis and inhibiting neuronal degeneration
AU2006299421B2 (en) 2005-10-03 2013-01-31 Mark A. Pinsky Compositions and methods for improved skin care
NZ598088A (en) 2005-10-21 2013-09-27 Univ California C-kit oncogene mutations in melanoma
AU2006307460A1 (en) * 2005-10-26 2007-05-03 New York University A method for preparing liposomes and uses thereof
US8883841B2 (en) 2005-11-23 2014-11-11 The Board Of Regents Of The University Of Texas System Oncogenic ras-specific cytotoxic compound and methods of use thereof
CA2632331C (en) 2005-12-22 2015-02-10 Vib Vzw Molecules with a beta-aggregating region and their use in inducing protein aggregation
US8669418B2 (en) 2005-12-22 2014-03-11 Vib Vzw Means and methods for mediating protein interference
CA2650414A1 (en) * 2006-05-19 2007-11-29 Sangamo Biosciences, Inc. Methods and compositions for inactivation of dihydrofolate reductase
ATE462783T1 (en) * 2006-05-25 2010-04-15 Sangamo Biosciences Inc VARIANT FOKI CLIP HALF DOMAINS
US8343539B2 (en) * 2006-07-14 2013-01-01 Regents Of The University Of Minnesota Compounds that bind α5β1 integrin and methods of use
US8349801B2 (en) * 2006-09-18 2013-01-08 Compugen Ltd. Peptide ligands for G-protein coupled receptors
EP2117575A4 (en) 2007-01-03 2013-06-05 Burnham Inst Medical Research Methods and compositions related to clot binding compounds
US20100098752A1 (en) * 2007-01-18 2010-04-22 Pinsky Mark A Materials and Methods for Delivering Antioxidants into the Skin
WO2009017863A2 (en) 2007-05-08 2009-02-05 Burnham Institute For Medical Research Tissue non-specific alkaline phosphatase inhibitors and uses thereof for treating vascular calcification
WO2009023306A2 (en) 2007-05-09 2009-02-19 Burnham Institute For Medical Research Targeting host proteinases as a therapeutic strategy against viral and bacterial pathogens
ES2564826T3 (en) * 2007-06-21 2016-03-29 Neuronascent, Inc. Methods and compositions to stimulate neurogenesis and inhibit neuronal degeneration using isothiazolopyrimidinones
CA2692453C (en) 2007-07-12 2018-01-09 Trevor Collingwood Methods and compositions for inactivating alpha 1,6 fucosyltransferase (fut8) gene expression
CA2693651A1 (en) 2007-07-12 2009-01-15 Ronen Shemesh Bioactive peptides and method of using same
US8563314B2 (en) 2007-09-27 2013-10-22 Sangamo Biosciences, Inc. Methods and compositions for modulating PD1
EP2268664B1 (en) 2007-12-03 2017-05-24 The Government of the United States of America as represented by the Secretary of the Department of Health and Human Services Doc1 compositions and methods for treating cancer
ES2916498T3 (en) 2007-12-06 2022-07-01 Genalyte Inc Method for identifying a nucleotide sequence in an unknown species of nucleic acid; and device for carrying out the method
US20090169615A1 (en) * 2007-12-26 2009-07-02 Pinsky Mark A Collagen Formulations for Improved Skin Care
CA2726768C (en) 2008-06-10 2016-09-06 Sangamo Biosciences, Inc. Methods and compositions for generation of bax- and bak-deficient cell lines
KR101759586B1 (en) 2008-08-22 2017-07-19 상가모 테라퓨틱스, 인코포레이티드 Methods and compositions for targeted single-stranded cleavage and targeted integration
US8911711B2 (en) * 2008-09-30 2014-12-16 The Invention Science Fund I, Llc Method, device, and system to control pH in pulmonary tissue of a subject
EP2347247B1 (en) 2008-10-27 2019-06-26 Genalyte, Inc. Biosensors based on optical probing and sensing
SG172760A1 (en) 2008-12-04 2011-08-29 Sangamo Biosciences Inc Genome editing in rats using zinc-finger nucleases
EP3354275B1 (en) 2009-02-04 2019-10-30 Sangamo Therapeutics, Inc. Methods and compositions for treating neuropathies
CA3026701C (en) 2009-03-02 2023-04-18 Massachusetts Institute Of Technology Methods and products for in vivo enzyme profiling
AU2010235161B2 (en) 2009-04-09 2015-01-22 Sangamo Therapeutics, Inc. Targeted integration into stem cells
AU2010281705B2 (en) 2009-07-28 2015-02-05 Sangamo Therapeutics, Inc. Methods and compositions for treating trinucleotide repeat disorders
WO2011043980A1 (en) 2009-10-07 2011-04-14 Sanford Burnham Medical Research Institute Methods and compositions related to clot-binding lipid compounds
US8912136B2 (en) 2009-12-18 2014-12-16 Sanford-Burnham Medical Research Institute Methods and compositions related to clot-binding compounds
EP2515944B1 (en) 2009-12-23 2020-04-22 Sanford-Burnham Medical Research Institute Methods and compositions related to annexin 1-binding compounds
EP2526112B1 (en) 2010-01-22 2018-10-17 Dow AgroSciences LLC Targeted genomic alteration
EP2534173B1 (en) 2010-02-08 2019-09-11 Sangamo Therapeutics, Inc. Engineered cleavage half-domains
AU2011215557B2 (en) 2010-02-09 2016-03-10 Sangamo Therapeutics, Inc. Targeted genomic modification with partially single-stranded donor molecules
JP2013525285A (en) 2010-04-08 2013-06-20 サンフォード−バーナム メディカル リサーチ インスティテュート Methods and compositions for enhancing delivery of compounds
JP5767314B2 (en) 2010-04-16 2015-08-19 ソーク インスティチュート フォー バイオロジカル スタディーズ Methods for treating metabolic disorders using FGF
AU2011256838B2 (en) 2010-05-17 2014-10-09 Sangamo Therapeutics, Inc. Novel DNA-binding proteins and uses thereof
WO2012024233A2 (en) 2010-08-14 2012-02-23 The Regents Of The University Of California Zwitterionic lipids
EP2622090B1 (en) 2010-09-27 2019-06-19 Sangamo Therapeutics, Inc. Compositions for inhibiting viral entry into cells
US8846623B2 (en) 2010-10-25 2014-09-30 Academia Sinica Cancer-targeting peptides and uses thereof in cancer treatment and diagnosis
CA3060724A1 (en) 2010-11-05 2012-05-10 Genalyte, Inc. Optical analyte detection systems and methods of use
WO2012109387A1 (en) 2011-02-08 2012-08-16 Halozyme, Inc. Composition and lipid formulation of a hyaluronan-degrading enzyme and the use thereof for treatment of benign prostatic hyperplasia
WO2012118778A1 (en) 2011-02-28 2012-09-07 Sanford-Burnham Medical Research Institute Truncated car peptides and methods and compositions using truncated car peptides
EP3461896B1 (en) 2011-07-15 2023-11-29 The General Hospital Corporation Methods of transcription activator like effector assembly
IL277027B (en) 2011-09-21 2022-07-01 Sangamo Therapeutics Inc Methods and compositions for regulation of transgene expression
US8877161B2 (en) 2011-10-19 2014-11-04 Georgia Regents Research Institute, Inc. GM1-like peptides and uses thereof
IN2014DN05866A (en) 2011-12-22 2015-05-22 Nuvo Res Gmbh
WO2013130824A1 (en) 2012-02-29 2013-09-06 Sangamo Biosciences, Inc. Methods and compositions for treating huntington's disease
EP2825885B1 (en) 2012-03-12 2021-05-12 The Board of Trustees of the University of Illinois Optical analyte detection systems with magnetic enhancement
US9890364B2 (en) 2012-05-29 2018-02-13 The General Hospital Corporation TAL-Tet1 fusion proteins and methods of use thereof
DK3444342T3 (en) 2012-07-11 2020-08-24 Sangamo Therapeutics Inc METHODS AND COMPOSITIONS FOR THE TREATMENT OF LYSOSOMAL DEPOSIT DISEASES
EP2872154B1 (en) 2012-07-11 2017-05-31 Sangamo BioSciences, Inc. Methods and compositions for delivery of biologics
UA118957C2 (en) 2012-08-29 2019-04-10 Сангамо Біосайєнсиз, Інк. Methods and compositions for treatment of a genetic condition
EP2906684B8 (en) 2012-10-10 2020-09-02 Sangamo Therapeutics, Inc. T cell modifying compounds and uses thereof
EP3789405A1 (en) 2012-10-12 2021-03-10 The General Hospital Corporation Transcription activator-like effector (tale) - lysine-specific demethylase 1 (lsd1) fusion proteins
AU2013347990B2 (en) 2012-11-20 2018-01-18 Arbutus Biopharma Corp. Improved method for the preparation of liposome encapsulated vincristine for therapeutic use
BR112015013311A2 (en) 2012-12-07 2017-11-14 Haplomics Inc tolerance induction and factor 8 mutation repair
US8697359B1 (en) 2012-12-12 2014-04-15 The Broad Institute, Inc. CRISPR-Cas systems and methods for altering expression of gene products
SG10201801969TA (en) 2012-12-12 2018-04-27 Broad Inst Inc Engineering and Optimization of Improved Systems, Methods and Enzyme Compositions for Sequence Manipulation
US20140242664A1 (en) 2012-12-12 2014-08-28 The Broad Institute, Inc. Engineering of systems, methods and optimized guide compositions for sequence manipulation
EP2848690B1 (en) 2012-12-12 2020-08-19 The Broad Institute, Inc. Crispr-cas component systems, methods and compositions for sequence manipulation
US20140310830A1 (en) 2012-12-12 2014-10-16 Feng Zhang CRISPR-Cas Nickase Systems, Methods And Compositions For Sequence Manipulation in Eukaryotes
EP2931899A1 (en) 2012-12-12 2015-10-21 The Broad Institute, Inc. Functional genomics using crispr-cas systems, compositions, methods, knock out libraries and applications thereof
US8993233B2 (en) 2012-12-12 2015-03-31 The Broad Institute Inc. Engineering and optimization of systems, methods and compositions for sequence manipulation with functional domains
EP3252160B1 (en) 2012-12-12 2020-10-28 The Broad Institute, Inc. Crispr-cas component systems, methods and compositions for sequence manipulation
ES2883590T3 (en) 2012-12-12 2021-12-09 Broad Inst Inc Supply, modification and optimization of systems, methods and compositions for sequence manipulation and therapeutic applications
EP3730615A3 (en) 2013-05-15 2020-12-09 Sangamo Therapeutics, Inc. Methods and compositions for treatment of a genetic condition
CA2914754A1 (en) 2013-06-07 2014-12-11 Massachusetts Institute Of Technology Affinity-based detection of ligand-encoded synthetic biomarkers
EP3011034B1 (en) 2013-06-17 2019-08-07 The Broad Institute, Inc. Delivery, use and therapeutic applications of the crispr-cas systems and compositions for targeting disorders and diseases using viral components
EP3725885A1 (en) 2013-06-17 2020-10-21 The Broad Institute, Inc. Functional genomics using crispr-cas systems, compositions methods, screens and applications thereof
DK3011029T3 (en) 2013-06-17 2020-03-16 Broad Inst Inc ADMINISTRATION, MODIFICATION AND OPTIMIZATION OF TANDEM GUIDE SYSTEMS, PROCEDURES AND COMPOSITIONS FOR SEQUENCE MANIPULATION
BR112015031608A2 (en) 2013-06-17 2017-08-22 Massachusetts Inst Technology APPLICATION AND USE OF CRISPR-CAS SYSTEMS, VECTORS AND COMPOSITIONS FOR LIVER TARGETING AND THERAPY
CA2915837A1 (en) 2013-06-17 2014-12-24 The Broad Institute, Inc. Optimized crispr-cas double nickase systems, methods and compositions for sequence manipulation
EP3011032B1 (en) 2013-06-17 2019-10-16 The Broad Institute, Inc. Delivery, engineering and optimization of systems, methods and compositions for targeting and modeling diseases and disorders of post mitotic cells
US20150044192A1 (en) 2013-08-09 2015-02-12 President And Fellows Of Harvard College Methods for identifying a target site of a cas9 nuclease
US9228207B2 (en) 2013-09-06 2016-01-05 President And Fellows Of Harvard College Switchable gRNAs comprising aptamers
CA2926950C (en) 2013-10-10 2022-10-11 Eastern Virginia Medical School 4-((2-hydroxy-3-methoxybenzyl)amino) benzenesulfonamide derivatives as potent and selective inhibitors of 12-lipoxygenase
DK3441468T3 (en) 2013-10-17 2021-07-26 Sangamo Therapeutics Inc Delivery methods and compositions for nuclease-mediated genome manipulation
RU2693891C1 (en) 2013-11-11 2019-07-05 Сангамо Байосайенсиз, Инк. Methods and compositions for treating huntington's disease
HUE044540T2 (en) 2013-11-13 2019-10-28 Childrens Medical Center Nuclease-mediated regulation of gene expression
CA2931637C (en) 2013-12-09 2023-10-10 Sangamo Biosciences, Inc. Methods and compositions for treating hemophilia
BR112016013213A2 (en) 2013-12-12 2017-12-05 Massachusetts Inst Technology administration, use and therapeutic applications of crisper systems and compositions for targeting disorders and diseases using particle delivery components
CN105899658B (en) 2013-12-12 2020-02-18 布罗德研究所有限公司 Delivery, use and therapeutic applications of CRISPR-CAS systems and compositions for HBV and viral diseases and disorders
WO2015089486A2 (en) 2013-12-12 2015-06-18 The Broad Institute Inc. Systems, methods and compositions for sequence manipulation with optimized functional crispr-cas systems
EP3653229A1 (en) 2013-12-12 2020-05-20 The Broad Institute, Inc. Delivery, use and therapeutic applications of the crispr-cas systems and compositions for genome editing
LT3102673T (en) 2014-02-03 2020-08-25 Sangamo Therapeutics, Inc. Methods and compositions for treatment of a beta thalessemia
EP3929279A1 (en) 2014-03-18 2021-12-29 Sangamo Therapeutics, Inc. Methods and compositions for regulation of zinc finger protein expression
JP2015209462A (en) * 2014-04-25 2015-11-24 株式会社島津製作所 Preparation method of molecular assembly of amphiphilic block polymer
MX2016014565A (en) 2014-05-08 2017-05-23 Sangamo Biosciences Inc Methods and compositions for treating huntington's disease.
EP3155101B1 (en) 2014-06-16 2020-01-29 The Johns Hopkins University Compositions and methods for the expression of crispr guide rnas using the h1 promoter
KR102330593B1 (en) 2014-07-28 2021-11-26 에스케이이노베이션 주식회사 Novel Isoprene Synthase and Method of Preparing Isoprene Using Thereof
WO2016022363A2 (en) 2014-07-30 2016-02-11 President And Fellows Of Harvard College Cas9 proteins including ligand-dependent inteins
ES2780904T3 (en) 2014-08-17 2020-08-27 Broad Inst Inc Genomic editing using Cas9 nickases
WO2016033555A1 (en) 2014-08-28 2016-03-03 Halozyme, Inc. Combination therapy with a hyaluronan-degrading enzyme and an immune checkpoint inhibitor
CN113699113A (en) 2014-09-16 2021-11-26 桑格摩治疗股份有限公司 Methods and compositions for nuclease-mediated genome engineering and correction in hematopoietic stem cells
WO2016049251A1 (en) 2014-09-24 2016-03-31 The Broad Institute Inc. Delivery, use and therapeutic applications of the crispr-cas systems and compositions for modeling mutations in leukocytes
WO2016049024A2 (en) 2014-09-24 2016-03-31 The Broad Institute Inc. Delivery, use and therapeutic applications of the crispr-cas systems and compositions for modeling competition of multiple cancer mutations in vivo
WO2016049163A2 (en) 2014-09-24 2016-03-31 The Broad Institute Inc. Use and production of chd8+/- transgenic animals with behavioral phenotypes characteristic of autism spectrum disorder
WO2016094867A1 (en) 2014-12-12 2016-06-16 The Broad Institute Inc. Protected guide rnas (pgrnas)
WO2016094872A1 (en) 2014-12-12 2016-06-16 The Broad Institute Inc. Dead guides for crispr transcription factors
WO2016094874A1 (en) 2014-12-12 2016-06-16 The Broad Institute Inc. Escorted and functionalized guides for crispr-cas systems
WO2016106236A1 (en) 2014-12-23 2016-06-30 The Broad Institute Inc. Rna-targeting system
WO2016106244A1 (en) 2014-12-24 2016-06-30 The Broad Institute Inc. Crispr having or associated with destabilization domains
WO2016108926A1 (en) 2014-12-30 2016-07-07 The Broad Institute Inc. Crispr mediated in vivo modeling and genetic screening of tumor growth and metastasis
HRP20231022T1 (en) 2015-01-28 2023-12-08 Caribou Biosciences, Inc. Crispr hybrid dna/rna polynucleotides and methods of use
WO2016161446A1 (en) 2015-04-03 2016-10-06 Dana-Farber Cancer Institute, Inc. Composition and methods of genome editing of b-cells
SG10201910750WA (en) 2015-05-16 2020-01-30 Genzyme Corp Gene editing of deep intronic mutations
WO2016205728A1 (en) 2015-06-17 2016-12-22 Massachusetts Institute Of Technology Crispr mediated recording of cellular events
EP3666895A1 (en) 2015-06-18 2020-06-17 The Broad Institute, Inc. Novel crispr enzymes and systems
US9790490B2 (en) 2015-06-18 2017-10-17 The Broad Institute Inc. CRISPR enzymes and systems
WO2016205749A1 (en) 2015-06-18 2016-12-22 The Broad Institute Inc. Novel crispr enzymes and systems
US10500246B2 (en) 2015-06-25 2019-12-10 Sanford Burnham Prebys Medical Discovery Institute Compositions for delivery to and treatment of atherosclerotic plaques
CA2991301A1 (en) 2015-07-13 2017-01-19 Sangamo Therapeutics, Inc. Delivery methods and compositions for nuclease-mediated genome engineering
EP3117830A1 (en) 2015-07-16 2017-01-18 Nuritas Limited Antibacterial peptides, and uses thereof
EP3117831A1 (en) 2015-07-16 2017-01-18 Nuritas Limited Peptides for use in promoting transport of glucose into skeletal muscle
EP3118215A1 (en) 2015-07-16 2017-01-18 Nuritas Limited Anti-inflammatory peptides, and uses thereof
EP3118216A1 (en) 2015-07-16 2017-01-18 Nuritas Limited Cellular growth and proliferation promoting peptides, and uses thereof
ES2806989T3 (en) 2015-07-16 2021-02-19 Nuritas Ltd Anti-inflammatory peptides, and their uses
TWI678213B (en) 2015-07-22 2019-12-01 美商史倍壯製藥公司 A ready-to-use formulation for vincristine sulfate liposome injection
WO2017024317A2 (en) 2015-08-06 2017-02-09 Dana-Farber Cancer Institute, Inc. Methods to induce targeted protein degradation through bifunctional molecules
US10429302B2 (en) 2015-08-11 2019-10-01 Scintillon Institute For Biomedical And Bioenergy Research Optical analyses of particles and vesicles
WO2017062855A1 (en) 2015-10-09 2017-04-13 Monsanto Technology Llc Novel rna-guided nucleases and uses thereof
WO2017070605A1 (en) 2015-10-22 2017-04-27 The Broad Institute Inc. Type vi-b crispr enzymes and systems
US10167457B2 (en) 2015-10-23 2019-01-01 President And Fellows Of Harvard College Nucleobase editors and uses thereof
US11352631B2 (en) 2015-12-18 2022-06-07 Sangamo Therapeutics, Inc. Targeted disruption of the T cell receptor
US20190233814A1 (en) 2015-12-18 2019-08-01 The Broad Institute, Inc. Novel crispr enzymes and systems
AU2016374253B2 (en) 2015-12-18 2021-10-21 Sangamo Therapeutics, Inc. Targeted disruption of the MHC cell receptor
KR20180127319A (en) 2016-01-15 2018-11-28 상가모 테라퓨틱스, 인코포레이티드 Methods and compositions for the treatment of neurological disorders
EP3445856A1 (en) 2016-04-19 2019-02-27 The Broad Institute Inc. Novel crispr enzymes and systems
SG10202010311SA (en) 2016-04-19 2020-11-27 Broad Inst Inc Novel Crispr Enzymes and Systems
US11286478B2 (en) 2016-04-19 2022-03-29 The Broad Institute, Inc. Cpf1 complexes with reduced indel activity
US11708588B2 (en) 2016-06-16 2023-07-25 Adam Brian Robertson Gene editing
KR20230156150A (en) 2016-06-17 2023-11-13 더 브로드 인스티튜트, 인코퍼레이티드 Type vi crispr orthologs and systems
US20210222164A1 (en) 2016-06-29 2021-07-22 The Broad Institute, Inc. Crispr-cas systems having destabilization domain
EA201990213A1 (en) 2016-07-05 2019-11-29 COMPOSITIONS AND METHODS INCLUDING IMPROVEMENT OF CRISPR GUIDE RNA USING THE H1 PROMOTION
ES2938210T3 (en) 2016-07-13 2023-04-05 Vertex Pharma Methods, compositions and kits to increase the efficiency of genome editing
CA3030587A1 (en) 2016-07-15 2018-01-18 Salk Institute For Biological Studies Methods and compositions for genome editing in non-dividing cells
WO2018014936A1 (en) 2016-07-18 2018-01-25 Nuritas Limited Topical compositions
CA2937157A1 (en) 2016-07-25 2018-01-25 Ucl Business Plc Protein-based t-cell receptor knockdown
IL308426A (en) 2016-08-03 2024-01-01 Harvard College Adenosine nucleobase editors and uses thereof
CN109804066A (en) 2016-08-09 2019-05-24 哈佛大学的校长及成员们 Programmable CAS9- recombination enzyme fusion proteins and application thereof
US11352647B2 (en) 2016-08-17 2022-06-07 The Broad Institute, Inc. Crispr enzymes and systems
WO2018035387A1 (en) 2016-08-17 2018-02-22 The Broad Institute, Inc. Novel crispr enzymes and systems
AU2017315406B2 (en) 2016-08-24 2021-04-01 Sangamo Therapeutics, Inc. Regulation of gene expression using engineered nucleases
WO2018039438A1 (en) 2016-08-24 2018-03-01 President And Fellows Of Harvard College Incorporation of unnatural amino acids into proteins using base editing
AU2017315414B2 (en) 2016-08-24 2024-02-15 Sangamo Therapeutics, Inc. Engineered target specific nucleases
AU2017342543A1 (en) 2016-10-14 2019-05-02 President And Fellows Of Harvard College AAV delivery of nucleobase editors
US11219695B2 (en) 2016-10-20 2022-01-11 Sangamo Therapeutics, Inc. Methods and compositions for the treatment of Fabry disease
CA3041668A1 (en) 2016-10-31 2018-05-03 Sangamo Therapeutics, Inc. Gene correction of scid-related genes in hematopoietic stem and progenitor cells
JP2020504714A (en) 2016-12-05 2020-02-13 ニューリタス リミテッド Composition comprising peptide WKDEAGKPLVK
EP3329930A1 (en) 2016-12-05 2018-06-06 Nuritas Limited Pharmaceuctical compositions
EP3329905A1 (en) 2016-12-05 2018-06-06 Nuritas Limited Topical cosmetic compositions comprising an oligopeptide against anti-aging of the skin
CA3046199A1 (en) 2016-12-08 2018-06-14 Case Western Reserve University Methods and compositions for enhancing functional myelin production
ES2962711T3 (en) 2016-12-20 2024-03-20 Bristol Myers Squibb Co Methods to increase the efficiency of homology-directed repair (HDR) in the cellular genome
WO2018119359A1 (en) 2016-12-23 2018-06-28 President And Fellows Of Harvard College Editing of ccr5 receptor gene to protect against hiv infection
US11898179B2 (en) 2017-03-09 2024-02-13 President And Fellows Of Harvard College Suppression of pain by gene editing
US11542496B2 (en) 2017-03-10 2023-01-03 President And Fellows Of Harvard College Cytosine to guanine base editor
JP7191388B2 (en) 2017-03-23 2022-12-19 プレジデント アンド フェローズ オブ ハーバード カレッジ Nucleobase editors comprising nucleic acid programmable DNA binding proteins
WO2018187688A1 (en) 2017-04-07 2018-10-11 Massachusetts Institute Of Technology Methods to spatially profile protease activity in tissue and sections
EP3628047A1 (en) 2017-05-02 2020-04-01 Sanford Burnham Prebys Medical Discovery Institute Tumor associated monocyte/macrophage binding peptide and methods of use thereof
US20210278416A1 (en) 2017-05-09 2021-09-09 The Broad Institute, Inc. Gut microbiome function predicts response to anti-integrin biologic therapy in inflammatory bowel diseases
WO2018206732A1 (en) 2017-05-09 2018-11-15 Vib Vzw Means and methods for treating bacterial infections
US11560566B2 (en) 2017-05-12 2023-01-24 President And Fellows Of Harvard College Aptazyme-embedded guide RNAs for use with CRISPR-Cas9 in genome editing and transcriptional activation
KR102558931B1 (en) 2017-06-23 2023-07-21 인스크립타 인코포레이티드 Nucleic acid-guided nucleases
KR20200031618A (en) 2017-06-26 2020-03-24 더 브로드 인스티튜트, 인코퍼레이티드 CRISPR / CAS-adenine deaminase based compositions, systems and methods for targeted nucleic acid editing
EP3658573A1 (en) 2017-07-28 2020-06-03 President and Fellows of Harvard College Methods and compositions for evolving base editors using phage-assisted continuous evolution (pace)
US11319532B2 (en) 2017-08-30 2022-05-03 President And Fellows Of Harvard College High efficiency base editors comprising Gam
CN111511388A (en) 2017-09-21 2020-08-07 博德研究所 Systems, methods, and compositions for targeted nucleic acid editing
WO2019075292A1 (en) 2017-10-12 2019-04-18 Massachusetts Institute Of Technology Prostate cancer protease nanosensors and uses thereof
EP3697906A1 (en) 2017-10-16 2020-08-26 The Broad Institute, Inc. Uses of adenosine base editors
KR20200110687A (en) 2018-01-17 2020-09-24 버텍스 파마슈티칼스 인코포레이티드 Quinoxalinone compounds, compositions, methods and kits for increasing genome editing efficiency
BR112020014315A2 (en) 2018-01-17 2020-12-08 Vertex Pharmaceuticals Incorporated DNA-PK INHIBITORS
US20210060028A1 (en) 2018-01-17 2021-03-04 Vertex Pharmaceuticals Incorporated Dna-pk inhibitors
WO2019160383A1 (en) 2018-02-19 2019-08-22 고려대학교 산학협력단 Vaccine comprising epitope of heat shock protein, and use thereof
US11054428B2 (en) 2018-03-05 2021-07-06 Massachusetts Institute Of Technology Inhalable nanosensors with volatile reporters and uses thereof
WO2019209956A1 (en) 2018-04-25 2019-10-31 University Of Massachusetts Artificial exosome composition and related methods
EP3797160A1 (en) 2018-05-23 2021-03-31 The Broad Institute Inc. Base editors and uses thereof
CA3102840A1 (en) 2018-06-05 2019-12-12 Lifeedit, Inc. Rna-guided nucleases and active fragments and variants thereof and methods of use
WO2020033601A1 (en) 2018-08-07 2020-02-13 The Broad Institute, Inc. Novel cas12b enzymes and systems
US20210317429A1 (en) 2018-08-20 2021-10-14 The Broad Institute, Inc. Methods and compositions for optochemical control of crispr-cas9
CN113015741A (en) 2018-09-18 2021-06-22 桑格摩生物治疗股份有限公司 Programmed cell death 1(PD1) specific nucleases
US20200096514A1 (en) 2018-09-25 2020-03-26 Massachusetts Institute Of Technology Lung protease nanosensors and uses thereof
WO2020069029A1 (en) 2018-09-26 2020-04-02 Emendobio Inc. Novel crispr nucleases
WO2020069373A1 (en) 2018-09-28 2020-04-02 President And Fellows Of Harvard College Cellular reprogramming to reverse aging and promote organ and tissue regeneration
CA3116452A1 (en) 2018-10-15 2020-04-23 Fondazione Telethon Genome editing methods and constructs
ES2754476B2 (en) * 2018-10-15 2020-09-14 Consejo Superior Investigacion NANOSTRUCTURED LIPID GEL, PREPARATION AND USE PROCEDURE
US20200116725A1 (en) 2018-10-16 2020-04-16 Massachusetts Institute Of Technology Renal clearable nanocatalysts for disease monitoring
US20220389395A1 (en) 2018-10-29 2022-12-08 The Broad Institute, Inc. Nucleobase editors comprising geocas9 and uses thereof
US20220282275A1 (en) 2018-11-15 2022-09-08 The Broad Institute, Inc. G-to-t base editors and uses thereof
AU2019406778A1 (en) 2018-12-17 2021-07-22 Massachusetts Institute Of Technology Crispr-associated transposase systems and methods of use thereof
US20220145296A1 (en) 2018-12-27 2022-05-12 LifeEDIT Therapeutics, Inc. Polypeptides useful for gene editing and methods of use
EP3911753A1 (en) 2019-01-17 2021-11-24 Massachusetts Institute of Technology Sensors for detecting and imaging of cancer metastasis
AU2020218940A1 (en) 2019-02-04 2021-08-12 University Of Tartu Bi-specific extracellular matrix binding peptides and methods of use thereof
WO2020163379A1 (en) 2019-02-05 2020-08-13 Emendobio Inc. Crispr compositions and methods for promoting gene editing of ribosomal protein s19 (rps19) gene
WO2020163017A1 (en) 2019-02-06 2020-08-13 Klogenix Llc Dna binding proteins and uses thereof
US20220154157A1 (en) 2019-02-06 2022-05-19 Emendobio Inc. New engineered high fidelity cas9
WO2020181195A1 (en) 2019-03-06 2020-09-10 The Broad Institute, Inc. T:a to a:t base editing through adenine excision
WO2020181178A1 (en) 2019-03-06 2020-09-10 The Broad Institute, Inc. T:a to a:t base editing through thymine alkylation
WO2020181202A1 (en) 2019-03-06 2020-09-10 The Broad Institute, Inc. A:t to t:a base editing through adenine deamination and oxidation
US20220170013A1 (en) 2019-03-06 2022-06-02 The Broad Institute, Inc. T:a to a:t base editing through adenosine methylation
WO2020181180A1 (en) 2019-03-06 2020-09-10 The Broad Institute, Inc. A:t to c:g base editors and uses thereof
GB201903499D0 (en) 2019-03-14 2019-05-01 Ucl Business Plc Minimal promoter
US20220177863A1 (en) 2019-03-18 2022-06-09 The Broad Institute, Inc. Type vii crispr proteins and systems
DE112020001342T5 (en) 2019-03-19 2022-01-13 President and Fellows of Harvard College Methods and compositions for editing nucleotide sequences
JP2022519949A (en) 2019-04-02 2022-03-25 サンガモ セラピューティクス, インコーポレイテッド Methods for the treatment of beta-thalassemia
US20220202957A1 (en) 2019-04-09 2022-06-30 The Regents Of The University Of California Long-lasting analgesia via targeted in vivo epigenetic repression
US20220204975A1 (en) 2019-04-12 2022-06-30 President And Fellows Of Harvard College System for genome editing
US20220307003A1 (en) 2019-04-17 2022-09-29 The Broad Institute, Inc. Adenine base editors with reduced off-target effects
US20220220469A1 (en) 2019-05-20 2022-07-14 The Broad Institute, Inc. Non-class i multi-component nucleic acid targeting systems
WO2020243485A1 (en) 2019-05-29 2020-12-03 Massachusetts Institute Of Technology Hiv-1 specific immunogen compositions and methods of use
WO2021025750A1 (en) 2019-08-08 2021-02-11 The Broad Institute, Inc. Base editors with diversified targeting scope
JP2022545385A (en) 2019-08-12 2022-10-27 ライフエディット セラピューティクス,インコーポレイティド RNA-guided nuclease, active fragments and variants thereof, and methods of use
WO2021030666A1 (en) 2019-08-15 2021-02-18 The Broad Institute, Inc. Base editing by transglycosylation
CN115023499A (en) 2019-08-16 2022-09-06 麻省理工学院 Targeted trans-splicing using CRISPR/Cas13
KR102099342B1 (en) 2019-09-03 2020-04-10 주식회사 제노포커스 Expression Method of CRM197 Protein
WO2021072328A1 (en) 2019-10-10 2021-04-15 The Broad Institute, Inc. Methods and compositions for prime editing rna
US20230086199A1 (en) 2019-11-26 2023-03-23 The Broad Institute, Inc. Systems and methods for evaluating cas9-independent off-target editing of nucleic acids
CN115190912A (en) 2019-12-30 2022-10-14 生命编辑制药股份有限公司 RNA-guided nucleases, active fragments and variants thereof, and methods of use
GB202000934D0 (en) 2020-01-22 2020-03-04 Ucl Business Ltd Engineered immune cells
WO2021155065A1 (en) 2020-01-28 2021-08-05 The Broad Institute, Inc. Base editors, compositions, and methods for modifying the mitochondrial genome
WO2021158921A2 (en) 2020-02-05 2021-08-12 The Broad Institute, Inc. Adenine base editors and uses thereof
US20230108687A1 (en) 2020-02-05 2023-04-06 The Broad Institute, Inc. Gene editing methods for treating spinal muscular atrophy
US20210262025A1 (en) 2020-02-18 2021-08-26 Massachusetts Institute Of Technology Multiplexed in vivo disease sensing with nucleic acid-barcoded reporters
TW202208626A (en) 2020-04-24 2022-03-01 美商生命編輯公司 Rna-guided nucleases and active fragments and variants thereof and methods of use
EP4143315A1 (en) 2020-04-28 2023-03-08 The Broad Institute Inc. <smallcaps/>? ? ?ush2a? ? ? ? ?targeted base editing of thegene
CA3177621A1 (en) 2020-05-06 2021-11-11 Alexandre Juillerat Methods to genetically modify cells for delivery of therapeutic proteins
CA3177093A1 (en) 2020-05-06 2021-11-11 Cellectis S.A. Methods for targeted insertion of exogenous sequences in cellular genomes
JP2023525304A (en) 2020-05-08 2023-06-15 ザ ブロード インスティテュート,インコーポレーテッド Methods and compositions for simultaneous editing of both strands of a target double-stranded nucleotide sequence
CA3173882A1 (en) 2020-05-11 2021-11-18 Alexandra Briner CRAWLEY Rna-guided nucleic acid binding proteins and active fragments and variants thereof and methods of use
EP3939596A1 (en) 2020-07-14 2022-01-19 Bimeda Animal Health Limited A composition for treating helminth infestation in a mammal
AU2021310363A1 (en) 2020-07-15 2023-03-16 LifeEDIT Therapeutics, Inc. Uracil stabilizing proteins and active fragments and variants thereof and methods of use
US20230304047A1 (en) 2020-08-11 2023-09-28 University Of Oslo Improved gene editing
US20220064596A1 (en) 2020-08-25 2022-03-03 Kite Pharma, Inc. T cells with improved functionality
IL301139A (en) 2020-09-11 2023-05-01 Lifeedit Therapeutics Inc Dna modifying enzymes and active fragments and variants thereof and methods of use
WO2022150790A2 (en) 2021-01-11 2022-07-14 The Broad Institute, Inc. Prime editor variants, constructs, and methods for enhancing prime editing efficiency and precision
EP4314266A1 (en) 2021-03-22 2024-02-07 Lifeedit Therapeutics, Inc. Dna modifyng enzymes and active fragments and variants thereof and methods of use
WO2022212863A1 (en) 2021-04-01 2022-10-06 Vestaron Corporation Liposome formulations for pesticide delivery and methods for producing and using the same
AU2022259536A1 (en) 2021-04-14 2023-11-09 University College Cork - National University Of Ireland, Cork Treatment of cerebrovascular events and neurological disorders
CA3214579A1 (en) 2021-04-14 2022-10-20 Tom Moore Psg1 for use in the treatment of osteoarthritis
EP4341300A1 (en) 2021-05-21 2024-03-27 Cellectis S.A. Enhancing efficacy of t-cell-mediated immunotherapy by modulating cancer-associated fibroblasts in solid tumors
WO2022261509A1 (en) 2021-06-11 2022-12-15 The Broad Institute, Inc. Improved cytosine to guanine base editors
WO2022261394A1 (en) 2021-06-11 2022-12-15 LifeEDIT Therapeutics, Inc. Rna polymerase iii promoters and methods of use
AU2022325166A1 (en) 2021-08-06 2024-02-08 President And Fellows Of Harvard College Improved prime editors and methods of use
WO2023056368A1 (en) 2021-09-30 2023-04-06 The United States Of America, As Represented By The Secretary, Department Of Health And Human Services Cyclic peptides as non-hormonal male contraceptive agents and methods of use thereof
WO2023076898A1 (en) 2021-10-25 2023-05-04 The Broad Institute, Inc. Methods and compositions for editing a genome with prime editing and a recombinase
WO2023077148A1 (en) 2021-11-01 2023-05-04 Tome Biosciences, Inc. Single construct platform for simultaneous delivery of gene editing machinery and nucleic acid cargo
CN114015674A (en) 2021-11-02 2022-02-08 辉二(上海)生物科技有限公司 Novel CRISPR-Cas12i system
WO2023122764A1 (en) 2021-12-22 2023-06-29 Tome Biosciences, Inc. Co-delivery of a gene editor construct and a donor template
WO2023140901A1 (en) 2022-01-21 2023-07-27 Elanco Us Inc. Molidustat formulations and methods of use for treatment of anemia in cats
WO2023139557A1 (en) 2022-01-24 2023-07-27 LifeEDIT Therapeutics, Inc. Rna-guided nucleases and active fragments and variants thereof and methods of use
WO2023196802A1 (en) 2022-04-04 2023-10-12 The Broad Institute, Inc. Cas9 variants having non-canonical pam specificities and uses thereof
WO2023196818A1 (en) 2022-04-04 2023-10-12 The Regents Of The University Of California Genetic complementation compositions and methods
WO2023196851A1 (en) 2022-04-06 2023-10-12 President And Fellows Of Harvard College Reversing aging of the central nervous system
WO2023205744A1 (en) 2022-04-20 2023-10-26 Tome Biosciences, Inc. Programmable gene insertion compositions
WO2023215831A1 (en) 2022-05-04 2023-11-09 Tome Biosciences, Inc. Guide rna compositions for programmable gene insertion
WO2023225670A2 (en) 2022-05-20 2023-11-23 Tome Biosciences, Inc. Ex vivo programmable gene insertion
WO2023230613A1 (en) 2022-05-27 2023-11-30 The Broad Institute, Inc. Improved mitochondrial base editors and methods for editing mitochondrial dna
WO2023240137A1 (en) 2022-06-08 2023-12-14 The Board Institute, Inc. Evolved cas14a1 variants, compositions, and methods of making and using same in genome editing
WO2024003334A1 (en) 2022-06-30 2024-01-04 Cellectis S.A. Enhancing safety of t-cell-mediated immunotherapy
WO2024033901A1 (en) 2022-08-12 2024-02-15 LifeEDIT Therapeutics, Inc. Rna-guided nucleases and active fragments and variants thereof and methods of use
WO2024040083A1 (en) 2022-08-16 2024-02-22 The Broad Institute, Inc. Evolved cytosine deaminases and methods of editing dna using same
WO2024040222A1 (en) 2022-08-19 2024-02-22 Generation Bio Co. Cleavable closed-ended dna (cedna) and methods of use thereof
WO2024042489A1 (en) 2022-08-25 2024-02-29 LifeEDIT Therapeutics, Inc. Chemical modification of guide rnas with locked nucleic acid for rna guided nuclease-mediated gene editing
WO2024081646A1 (en) 2022-10-11 2024-04-18 Massachusetts Institute Of Technology Reagents and methods for the conditional delivery of cargo
WO2024078729A1 (en) 2022-10-14 2024-04-18 University College Cork - National University Of Ireland, Cork Placenta expressed proteins for use in the treatment of tendon injury

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4945224B1 (en) * 1970-12-14 1974-12-03
GB1502774A (en) * 1974-06-25 1978-03-01 Nat Res Dev Immunological preparations
CH588887A5 (en) * 1974-07-19 1977-06-15 Battelle Memorial Institute
JPS5186117A (en) * 1975-01-27 1976-07-28 Tanabe Seiyaku Co Johoseibiryushiseizainoseiho
US4217344A (en) * 1976-06-23 1980-08-12 L'oreal Compositions containing aqueous dispersions of lipid spheres
US4078052A (en) * 1976-06-30 1978-03-07 The United States Of America As Represented By The Secretary Of Health, Education And Welfare Large unilamellar vesicles (LUV) and method of preparing same
CH624011A5 (en) * 1977-08-05 1981-07-15 Battelle Memorial Institute
US4235871A (en) * 1978-02-24 1980-11-25 Papahadjopoulos Demetrios P Method of encapsulating biologically active materials in lipid vesicles
US4342826A (en) * 1980-02-04 1982-08-03 Collaborative Research, Inc. Immunoassay products and methods

Also Published As

Publication number Publication date
DE3335701A1 (en) 1984-04-05
US4485054A (en) 1984-11-27
JPS59134712A (en) 1984-08-02

Similar Documents

Publication Publication Date Title
CA1205383A (en) Method of encapsulating biologically active materials in multilamellar lipid vesicles (mlv)
EP0240346B1 (en) Method of producing liposome
US4515736A (en) Method for encapsulating materials into liposomes
AU633631B2 (en) Paucilamellar lipid vesicles using charge-localized, single chain, nonphospholipid surfactants
US4897269A (en) Administration of drugs with multiphase liposomal delivery system
CA1267842A (en) Unilamellar lipid vesicles and method for their formation
US4761288A (en) Multiphase liposomal drug delivery system
Du Plessis et al. The influence of lipid composition and lamellarity of liposomes on the physical stability of liposomes upon storage
CA1315678C (en) Alpha-tocopherol based vesicles
Weiner et al. Liposomes as a drug delivery system
AU738020B2 (en) Method for producing liposomes with increased percent of compound encapsulated
JPH0753661B2 (en) Pro-liposome composition and method of making an aqueous dispersion of liposomes
JP2756526B2 (en) Stabilization method of liposome suspension and liposome suspension
EP0177223B1 (en) Pharmaceutical multi-phase composition
JP2617346B2 (en) Lipid vesicles formed from surfactants and steroids
KR950002146B1 (en) Process for preparing single bilayered liposomes
EP0454733A1 (en) Osmotically dependent vesicles
US6399094B1 (en) Unilamellar liposomal preparations with high active substance content
US5693336A (en) Blood stable liposomal cyclosporin formulations
Fresta et al. Neutrase entrapment in stable multilamellar and large unilamellar vesicles for the acceleration of cheese ripening
Röding Properties and characterization of pre-liposome systems
GB1575344A (en) Method for the manufacture of liposome composition
KR950002880B1 (en) Process for preparing liposomes
Vemuri et al. Encapsulation of a water soluble drug in a liposome preparation: removal of free drug by washing
KR800001360B1 (en) Process for the preparation of liposomes

Legal Events

Date Code Title Description
MKEX Expiry