CA1234604A - Electronic circuit capable of stably keeping a frequency during presence of a burst - Google Patents

Electronic circuit capable of stably keeping a frequency during presence of a burst

Info

Publication number
CA1234604A
CA1234604A CA000471131A CA471131A CA1234604A CA 1234604 A CA1234604 A CA 1234604A CA 000471131 A CA000471131 A CA 000471131A CA 471131 A CA471131 A CA 471131A CA 1234604 A CA1234604 A CA 1234604A
Authority
CA
Canada
Prior art keywords
signal
frequency
burst
control signal
local
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
CA000471131A
Other languages
French (fr)
Inventor
Shigeo Nakajima
Toshiyuki Takeda
Takeo Inoue
Fumiaki Suzuki
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Nippon Telegraph and Telephone Corp
Original Assignee
NEC Corp
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp, Nippon Telegraph and Telephone Corp filed Critical NEC Corp
Application granted granted Critical
Publication of CA1234604A publication Critical patent/CA1234604A/en
Expired legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/38Transceivers, i.e. devices in which transmitter and receiver form a structural unit and in which at least one part is used for functions of transmitting and receiving
    • H04B1/40Circuits
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03LAUTOMATIC CONTROL, STARTING, SYNCHRONISATION, OR STABILISATION OF GENERATORS OF ELECTRONIC OSCILLATIONS OR PULSES
    • H03L7/00Automatic control of frequency or phase; Synchronisation
    • H03L7/06Automatic control of frequency or phase; Synchronisation using a reference signal applied to a frequency- or phase-locked loop
    • H03L7/08Details of the phase-locked loop
    • H03L7/14Details of the phase-locked loop for assuring constant frequency when supply or correction voltages fail or are interrupted

Abstract

Abstract of the Disclosure In a radio communication system, a transmitting section of a substation comprises a controlling circuit (21) for controlling a carrier frequency of a local oscillator (24) in response to a frequency deviation signal. A burst generating circuit (26) generates a burst in response to the input signal, a burst control signal, and a local oscillation signal of the carrier frequency. The transmitting section further comprises a holding circuit (34) responsive to a frequency control signal and the burst control signal. During presence of the burst control signal, the holding circuit holds the frequency control signal received before a beginning of the burst control signal to keep the carrier frequency of the local oscillation signal invariable until an end of the burst control signal. Otherwise, the frequency control signal passes through the holding circuit as it stands. Consequently, the carrier frequency of the local oscilla-tion signal is controlled only during absence of the input signal and is kept invariable during presence of the input signal.

Description

- `
- :l23~ 768-gg ~LECTRONIC CI~CUIT CAPABLE OF STABLY KEEPING
A FREQUENCY DURIN~ PRESENCE OF A BURST

Background of the Invention:
This invention relates to an electronic circuit for use in a single channel per carrier (often abbreviated to SCPC) commu-nication system and, in particular, to an electronic circuit of a transmitting section comprising a frequency controlling circuit.
In the manner known in the art, an SCPC communication system is used in a satellite communication system comprising a central station fixedly located at a predetermined terrestrial site, a satellite comprising a transponder, and at least one sub-station geographically spaced on the earth from the central station. In the SCPC communication system, a carrier ~ave of a single carrier frequency is assigned to a single communication channel. Such a single communication channel serves to transmit a communication signal, such as an audio signal, between the central station and the substation. In addition, a control channel is prepared to transmit a control signa:L between the central station and the substation and is common to each of the central station and the substation. The control channel may be called a common signaling channel.
A frequency deviation of the carrier frequency inevi-tably takes place in the transponder of the satellite, as known in the art. A frequency control operation is carried out in the central station in consideration of the frequency deviation. In addition, a frequency deviation signal is transmitted from the ~N-767 - ~L23460~
central station as the control signal to the satellite through the common signaling channel.
On the other hand, the substation receives the communi-cation signal through the satellite from the central station and derives information through the communication channel allotted thereto in response to the received communication signal. The substation further receives the frequency deviation signal from the satellite through the common signaling channel. The substa-tion transmits information corresponding to an input signal to the satellite in the form of a burst of the carrier frequency in accordance with a burst control signal produced in the manner known in the art. The burst control signal lasts during presence of the input signal. The substation has a frequency controlling unit for controlling the carrier frequency in response to the frequency deviation signal. Thus, the substation produces the burst of the carrier frequency controlled by the frequency controlling unit.
The frequency controlling unit comprises a local oscil-lator for producing a local oscillation signal which has a vari-able frequency as the carrier frequency.
In the Erequency controlling unit, the carrie; frequencyof the local oscillation signal is continuously controlled not only during absence of the input signal but also during presence thereof. This means that the carrier frequency is widely varied during transmission of the burst when the carrier frequency is controlled during presence of the input signal. ~ serious problem arises in the satellite. More specifically, the transponder of ~7~3~L~Of~
the satellite is hard to Eollow or trace the wide variation of the carrier frequency. As a result, the transponder may undesiredly interrupt the communication channel allotted to the substation.
In particular, the variation of the carrier frequency becomes large and serious when the local oscillator is formed by a frequency synthesizer which generates a stepwise variable frequency.
Summary of the Invention:
It is therefore an ob~ect of this invention to provide an electronic circuit comprising a frequency controlling circuit, which is capable of avoiding an undesired interruption during presence of the burst.
An electronic circuit to which this invention is appli-cable is for use in a single channel per carrier communication system. The electronic circuit comprises controlling means responsive to a frequency deviation signal for producing a frequency control signal, frequency producing means responsive to the frequency control signal for producing a local oscillation signal of a variable frequency, and burst generating means for generating a burst in response to an input signal, the local oscillation signal, and a burst control signal. The burst control signal lasts during presence of the input signal and consequently has a beginning and an end. The electronic circuit further comprises holding means responsive to the frequency control signal and the burst control signal and coupled to the controlling means and the frequency producing means for holding the frequency control signal received before the beginning of the burst control - ~L~3~

signal to keep the frequency of the local oscillation signal invariable until the end of the burst control signal.
Brief Description of the Drawing:
Figure 1 is a block diagram of a single channel per carrier communication system comprising a central station, a satellite, and a substation;
Figure 2 is a block diagram of a conventional electronic circuit of a transmitting section used in the substation illus-trated in Figure 1;
Figure 3 is a block diagram of an electronic circuit according to a first embodiment of this invention;
Figure 4 is a block diagram of an electronic circuit according to a second embodiment of this invention; and Figure 5 is a block diagram of an electronic circuit according to a third embodiment of this invention.

Descri tion of the Preferred Embodiments:
p Referring to Figure 1, description will be made so as to facilitate an understanding of this invention as regards a single channel per carrier communication system. The system comprises a central station 11 fixedly located at a predetermined terrestrial site, a satellite 12 located at a distance of about 35,000 kilometers above the equator of the earth, and at least one substation 13 geographically spaced on the earth from the central station 11.
Communication is carried out through the satellite 12 between the central station 11 and the substation 13 by the use of communication signals.

~23~

The central sta~ion 11 is operable in a known manner to carry out transmission and reception of the communication signals which are for the central station 11 and which may be called a central station signal. '~he central station signal is carried by a carrier signal of a predetermined carrier frequency f.
The satellite 12 comprises a transponder (not shown) which is operable in response to the communication signal and which repeats the communication signal to deliver the same to the central and the substations 11 and 13. The carrier frequency of the communication signal may be undesiredly varied or deviated from a desired frequency in the satellite 12, namely, by the transponder. A variation or a frequency deviation is monitored and cancelled by the central station 11.
For this purpose, the central station signal is trans-mitted from the central station 11 to the satellite 12 and par-tially sent back to the central station 11. The central station 11 detects the variation or deviation of the carrier frequency by comparing the transmitted central station signal with the sent-back central station signal. Automatic frequency control is carried out in the central station 11 to cancel the frequency deviation. Simultaneously, the central station 11 transmits a frequency deviation signal representative of the frequency devia-tion to the satellite 12 through a common con-trol or signaling channel. The frequency deviation signal is delivered to the sub-station 13 from the satellite 12.
The substation 13 receives the communication signals and the frequency deviation signal at a receiving section (not shown).

~.234~

The frequency deviation signal is sent through the receiving section to a transmitting section (not shown) in the known manner.
Responsive to an input signal to be transmitted, the transmitting section produces a sequence of bursts carrying the input signal, with reference to the frequency deviation signal and a burst control signal produced in the manner known in the art. The burst is sent to the satellite 12 through a channel assigned to the substation 13.
Referring to Figure 2, description will be made as regards a conventional transmitting section of the substation 13 (Figure 1). The transmitting section comprises a controlling circuit 21 responsive to the frequency deviation signal (indicated at 22) for producing a frequency control signal 23. A local oscillator 24 is responsive to the frequency control signal 23 for producing a local oscillation signal 25 of a stepwise variable frequency. The frequency is stepwise varied when a frequency synthesizer is used as the local oscillator 24. A burst gener-ating circuit 26 is for generating the burst (indicated at 27~ in response to the input signal (indicated at 28), the local oscilla-tion signal 2~, and a burst control signal 29. The burst controlsignal 29 is generated in synchronism with the input signal 28 in the manner known in the art. The burst control signal 29 lasts during presence of the input signal and consequently has a beginning and an end.
More specifically referring to Figure 2, the burst qen-erating circuit 26 comprises a modulator 31 supplied with the input signal and the local oscillation signal 25. The modulator - 1~3~
31 carries out modulation of the input signal 28 in accordance with the local oscillation signal 25 and produces a modulated signal 33. Responsive to the burst control signal 29, a gating circuit 32 gates the modulated signal 33 into the burst 27 only during presence of the burst control signal 29. In other words, the burst appears during presence of the input signal 28.
Supplied with the frequency deviation signal 22, the controlling circuit 21 supplies the local oscillator 24 with the frequency control signal 23 and controls the frequency of the local oscillation signal 25 so as to cancel or eliminate the frequency deviation occurring in the satellite 12 tFigure 1).
It is assumed that the frequency deviation and a desired frequency are represented by ~f and f1, respectively. The local oscillation signal 25 has a frequency f2 given by:

f2 = ~ f.
The frequency f2 of the local oscillation signal 25 is continuously controlled not only during absence of the input signal 28 but also during presence thereof. On the contrary, there is a case where the frequency of the local oscillation signal 25 is widely and stepwise varied during transmission of the burst 27,as mentioned before. However, the transponder of the satellite 12 is hard to follow the wide variation of the frequency of the burst.
Referring to Figure 3, a transmitting section of the substation 13 ~Figure 1) according to a first embodiment of this invention comprises similar parts designated by like reference numerals in Figure 2. The transmitting section further comprises ~3~

a holding circuit 34 for producing a modified frequency control signal 23' in response to the frequency control signal 23 and the burst control signal 29. During presence of the burst control signal 29, the holding circuit 34 supplies the local oscillator 24 as the modified frequency control signal 23' with the frequency control signal 23 received just before the beginning of the burst control signal 29. As a result the frequency of the local oscil-lation signal 25 is kept invariable until the end of the burst control signal 29.
On the other hand, the holding circuit 34 allows the frequency control signal 23 to pass therethrough as the modified frequency control signal 23' during absence of the burst control signal 29. Thus, the frequency of the local oscillation signal 25 is controlled by the frequency control signal 23 variable with time so as to cancel the frequency deviation in the transponder of the satellite 12 (Figure 1).
As mentioned above, the frequency of the local oscilla-tion signal 25 is controlled only during absence of the input signal 28 and is kept invariable during presence of the input signal 28. Accordingly, even if -the :Erequency synthesizer is used for the local oscillator, the transponder of the satelli.te 12 is capable of following the variation of the frequency of the burst.
Referring to Figure 4, the burst generating circuit 26 comprises the modulator 31, an additional local oscillator 35 for supplying an additional local oscillation signal 36 to the modu-lator 31, a Erequency converter 37 coupled to the modulator 31 for carrying out frequency conversion of the modulated signal 33 in ~3~

response to the local frequency signal 25 to produce a frequency converted signal 38, and the gating circuit 32. The frequency converter 37 serves as an up converter known in the art.
Referring to Figure 5, the burst generating circuit 26 is similar to that illustrated with reference to Figure 4 except that the gating circuit 32 is interposed between the modulator 31 and the frequency converter 37.
While this invention has so ar been described in con-junction with a ew preferred embodiments thereof, it will now be possible for those skilled in the art to put the invention into practice in various other manners. The burst control signal may be generated in response to a carrier switching signal appearing before information. In this event, the input signal may include the carrier switching signal in addition to the information.

Claims (4)

THE EMBODIMENTS OF THE INVENTION IN WHICH AN EXCLUSIVE
PROPERTY OR PRIVILEGE IS CLAIMED ARE DEFINED AS FOLLOWS:
1. In an electronic circuit comprising controlling means responsive to a frequency deviation signal for producing a frequency control signal, frequency producing means responsive to said frequency control signal for producing a local oscillation signal of a variable frequency, and burst generating means for generating a burst in response to an input signal, said local oscillation signal, and a burst control signal related to said input signal and consequently has a beginning and an end, the improvement wherein said circuit further comprises:
holding means responsive to said frequency control signal and said burst control signal and coupled to said controlling means and said frequency producing means for holding the frequency control signal received before the beginning of said burst control signal to keep said frequency of the local oscilla-tion signal invariable until the end of said burst control signal.
2. An electronic circuit as claimed in Claim 1, said burst generating means comprising a modulator responsive to said input signal for carrying out modulation of said input signal in accor-dance with a carrier signal to produce a modulated signal and gating means coupled to said modulator for gating said modulated signal in response to said burst control signal to produce said burst, wherein said local oscillation signal is supplied as said carrier signal to said modulator.
3. An electronic circuit as claimed in Claim 1, wherein said burst generating means comprises a modulation circuit respon-sive to said input signal for carrying out modulation of said input signal to produce a modulated signal, a frequency converter coupled to said modulation circuit for carrying out frequency conversion of said modulated signal in response to a local frequency signal to produce a frequency converted signal, and a gate circuit for gating said frequency converted signal in accor-dance with said burst control signal to produce said burst, where-in said local oscillation signal is supplied as said local frequency signal to said frequency converter.
4. An electronic circuit as claimed in Claim 1, wherein said burst generating means comprises a modulation circuit respon-sive to said input signal for carrying out modulation of said input signal to produce a modulated signal, a gate circuit for gating said modulated signal in response to said burst control signal to produce a gated signal, and a frequency converter for carrying out frequency conversion of said gated signal in response to a local frequency signal to produce a frequency converted signal as said burst, wherein said frequency producing means is connected to said frequency converter to supply the same with said local oscillation signal as said local frequency signal.
CA000471131A 1983-12-28 1984-12-28 Electronic circuit capable of stably keeping a frequency during presence of a burst Expired CA1234604A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP58245435A JPS60141027A (en) 1983-12-28 1983-12-28 Frequency controller
JP245435/1983 1983-12-28

Publications (1)

Publication Number Publication Date
CA1234604A true CA1234604A (en) 1988-03-29

Family

ID=17133613

Family Applications (1)

Application Number Title Priority Date Filing Date
CA000471131A Expired CA1234604A (en) 1983-12-28 1984-12-28 Electronic circuit capable of stably keeping a frequency during presence of a burst

Country Status (5)

Country Link
US (1) US4633510A (en)
EP (1) EP0147869B1 (en)
JP (1) JPS60141027A (en)
CA (1) CA1234604A (en)
DE (1) DE3482397D1 (en)

Families Citing this family (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63131644A (en) * 1986-11-20 1988-06-03 Pioneer Electronic Corp Psk transmitter
JP2800500B2 (en) * 1991-10-01 1998-09-21 松下電器産業株式会社 Burst transmission output control circuit
US5881374A (en) * 1997-01-31 1999-03-09 Telefonaktiebolaget L M Ericsson (Publ) Circuitry and method for detecting frequency deviation caused by aging of an oscillator
US6097929A (en) * 1997-03-03 2000-08-01 Telogy Networks, Inc. Method and system for monitoring and controlling a single channel per carrier satellite link between two remote earth stations
US7515896B1 (en) 1998-10-21 2009-04-07 Parkervision, Inc. Method and system for down-converting an electromagnetic signal, and transforms for same, and aperture relationships
US6061551A (en) 1998-10-21 2000-05-09 Parkervision, Inc. Method and system for down-converting electromagnetic signals
US7039372B1 (en) 1998-10-21 2006-05-02 Parkervision, Inc. Method and system for frequency up-conversion with modulation embodiments
US6370371B1 (en) 1998-10-21 2002-04-09 Parkervision, Inc. Applications of universal frequency translation
US6813485B2 (en) 1998-10-21 2004-11-02 Parkervision, Inc. Method and system for down-converting and up-converting an electromagnetic signal, and transforms for same
US7236754B2 (en) 1999-08-23 2007-06-26 Parkervision, Inc. Method and system for frequency up-conversion
US7209725B1 (en) 1999-01-22 2007-04-24 Parkervision, Inc Analog zero if FM decoder and embodiments thereof, such as the family radio service
US6853690B1 (en) 1999-04-16 2005-02-08 Parkervision, Inc. Method, system and apparatus for balanced frequency up-conversion of a baseband signal and 4-phase receiver and transceiver embodiments
US6879817B1 (en) 1999-04-16 2005-04-12 Parkervision, Inc. DC offset, re-radiation, and I/Q solutions using universal frequency translation technology
US7693230B2 (en) 1999-04-16 2010-04-06 Parkervision, Inc. Apparatus and method of differential IQ frequency up-conversion
US7065162B1 (en) 1999-04-16 2006-06-20 Parkervision, Inc. Method and system for down-converting an electromagnetic signal, and transforms for same
US7110444B1 (en) 1999-08-04 2006-09-19 Parkervision, Inc. Wireless local area network (WLAN) using universal frequency translation technology including multi-phase embodiments and circuit implementations
US8295406B1 (en) 1999-08-04 2012-10-23 Parkervision, Inc. Universal platform module for a plurality of communication protocols
US7010286B2 (en) 2000-04-14 2006-03-07 Parkervision, Inc. Apparatus, system, and method for down-converting and up-converting electromagnetic signals
US7454453B2 (en) 2000-11-14 2008-11-18 Parkervision, Inc. Methods, systems, and computer program products for parallel correlation and applications thereof
US7072427B2 (en) 2001-11-09 2006-07-04 Parkervision, Inc. Method and apparatus for reducing DC offsets in a communication system
US7379883B2 (en) 2002-07-18 2008-05-27 Parkervision, Inc. Networking methods and systems
US7460584B2 (en) 2002-07-18 2008-12-02 Parkervision, Inc. Networking methods and systems

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3331071A (en) * 1965-12-23 1967-07-11 James E Webb Satellite communication system
DE2130095C3 (en) * 1970-07-10 1974-11-14 Autophon Ag, Solothurn (Schweiz) Circuit arrangement for generating a high-frequency oscillation, which can be intermittently modulated in terms of its frequency, with high frequency accuracy
US4061979A (en) * 1975-10-20 1977-12-06 Digital Communications Corporation Phase locked loop with pre-set and squelch
JPS5816653B2 (en) * 1976-03-19 1983-04-01 三洋電機株式会社 FM receiver pulse noise removal device
US4310804A (en) * 1978-02-06 1982-01-12 Motorola, Inc. Input activated frequency synthesizer
DE3016118C2 (en) * 1979-04-28 1984-10-31 Pioneer Electronic Corp., Tokio/Tokyo Circuit arrangement for suppressing interference pulses in FM receivers

Also Published As

Publication number Publication date
JPH0354904B2 (en) 1991-08-21
JPS60141027A (en) 1985-07-26
US4633510A (en) 1986-12-30
EP0147869B1 (en) 1990-05-30
EP0147869A3 (en) 1987-04-22
DE3482397D1 (en) 1990-07-05
EP0147869A2 (en) 1985-07-10

Similar Documents

Publication Publication Date Title
CA1234604A (en) Electronic circuit capable of stably keeping a frequency during presence of a burst
US4696052A (en) Simulcast transmitter apparatus having automatic synchronization capability
US4901368A (en) Frequency translation correction scheme for satellite communication system
EP0467651B1 (en) Satellite-based cellular communication system with position aided subscriber unit.
US4709402A (en) Method of synchronizing radio transmitters for synchronous radio transmission
EP0601336B1 (en) Time-division-duplex transmitter-receiver
WO1997019557B1 (en) Frequency drift correction in subscriber terminals
NZ337741A (en) Decoding apparatus with threshold adjustment for frequency synchronized bidirectional radio system
US5995812A (en) VSAT frequency source using direct digital synthesizer
US4229741A (en) Two-way communications system and method of synchronizing
CA1205139A (en) Satellite telecommunications system
GB1119056A (en) Radio communication system
US4010420A (en) Satellite communications transmission apparatus and method
US4466130A (en) Two pilot frequency control for communication systems
US5369779A (en) Two-way MMDS communications system
US5497402A (en) Automatic frequency control device for satellite communications ground system
CA1193674A (en) Two pilot frequency control for communication systems
US4457003A (en) Time reference tracking loop for frequency hopping systems
US5577074A (en) Combined clock recovery/frequency stabilization loop
GB1166165A (en) Communications Receivers
US3375443A (en) Radio-transmission system for selective pulse communication between stations which share a frequency band with other stations
JPS626373B2 (en)
JPS62290207A (en) Radio transmitter
JPS5985143A (en) Satellite communication system
JPS62261231A (en) Transmission power controller

Legal Events

Date Code Title Description
MKEX Expiry