CA1260573A - Low power line driving digital transmission system - Google Patents

Low power line driving digital transmission system

Info

Publication number
CA1260573A
CA1260573A CA000498201A CA498201A CA1260573A CA 1260573 A CA1260573 A CA 1260573A CA 000498201 A CA000498201 A CA 000498201A CA 498201 A CA498201 A CA 498201A CA 1260573 A CA1260573 A CA 1260573A
Authority
CA
Canada
Prior art keywords
coupled
pair
transistor
source
line
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
CA000498201A
Other languages
French (fr)
Inventor
Michael Cooperman
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Verizon Laboratories Inc
Original Assignee
GTE Laboratories Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by GTE Laboratories Inc filed Critical GTE Laboratories Inc
Application granted granted Critical
Publication of CA1260573A publication Critical patent/CA1260573A/en
Expired legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/14Two-way operation using the same type of signal, i.e. duplex
    • H04L5/1469Two-way operation using the same type of signal, i.e. duplex using time-sharing
    • H04L5/1484Two-way operation using the same type of signal, i.e. duplex using time-sharing operating bytewise

Abstract

LOW POWER LINE DRIVING DIGITAL TRANSMISSION SYSTEM

ABSTRACT
A low power line driving transmission apparatus is described in which TDM signals are transmitted between points over a transmission line comprising a pair of conductors and in which the characteristic impedance of the transmission line and the source impedance of the transmitters is matched and wherein the input impedance of the receivers is sufficiently high to present an effective open circuit to received signals. Under these conditions the transmitter dissipates power only during logical transitions of the input signals.

Description

~26~5~3 LOW POWER LINE DRIVING DIGITAL TRANSMISSION SYSTEM
. _ The present invention relates to digital transmission systems and, more particularly, to a pri~ate automatic branch exchange for switching and transmitting digital signals between a plurality of telephone/data terminals and a central switehing system.
Present day electronic Private Automatie Branch Exehanges (PABX) are relatively bulky, eostly and eonsume considerable power. These shortcomings can be lessened by fabricating a PABX using state-of- the-art Very Large Seale Integrated Cireuit (VLSI) teehnology. VLSI teeh-nology ean provide over 1/2 million transistors in a single ehip. However, in order to realize the full potential of VLSI teehnology in the fabrieation of a PABX, a number of problems must be avoided in the proeess.
While VLSI chips can perform highly eomplex func-tions, the level of eomplexity re~uired for ineorporation of a PABX on a single chip can be increased significantly by using circuit struetures with regular features, such as RAMS (Random Aceess Memories), ROMS (Read Only Memories) and PLA7s (Program Logie Arrays).
Conventional PABX utilize time division multiplexed (TDM) digital bit streams of pulsed eode modulated (PCM) words in which voice or data information is digitally encoded for communication. In some sueh systems, RAM's are used to store the information as to whieh bit or bits is to be multiplexed or demultiplexed on or off the bit stream. (See for example, U. S. Patent No. 4,432,087 to Hubbard issued February 14, 1984.) Multiplexing is aceomplished by shifting data from the bit stream into shift registers at a low rate and sequentially shifting data out of the registers at a high rate. Where a large amount of information must be multiplexed/demultiplexed, as in PABX applieations, the eonventional approaeh results in use of many shift registers with attendant 5~3 interconnection complexity and relatively large power dissipation.
A large amount of power is also dissipated in -trans-mitting digital signals between points over transmission lines in a conventional manner. In the conventional approach, line driver transistor circuits are utilized at the transmitting end to produce sufficiently strong signals at the receiving end so that upon reception, a detectable signal remains after attenuation over the transmission line. Usually, such line driver circuits are terminated at the receiving end of the transmission line to prevent reflections which superimpose and interfere with subsequent data transmissions. By terminating at the receiving end, the transmitted signal is substantially absorbed and substantially no reflections occur. In such receiving end terminated structures, it is necessary to have a very low output impedance, i.e., approaching zero, for the output line drivers to minimize power dissipation in the line drivers and to minimize signal attenuation by the output impedance of the line drivers.
In order to achieve such low output impedance, the line driver transistor geometries must be relatively large, consuming a relatively large amount of space.
Furthermore, the line driver is required to deliver substantial power which is dissipated in the load termina-tion impedance. As an example, assuming a digital trans-mission of 5 volt amplitude pulses, over an ideal trans-mission line the power delivered to the load impedance i5 250 ~lW.
This power dissipation and transistor size is doubled if it is desired to reduce the number of transmission lines by time division duplexing.
These power dissipation considerations are extremely critical in the use and applications of VLSI technology to fabricate a PABX since VLSI imposes severe limltations on the amount of power that can be consumed in a chip.

5~

The foregoing problems have been solved in the present system by an interrelated combination involving several steps and improved devices. One step is the use of a plurality of local PABX's to handle a large but limited number of subscribers within a limited geograph-ical area. The local PABX's are capable of being fab-ricated in VLSI technology on a single chip, to provide voice and data exchange capability to a plurality of sub-scribers. The subscribers transmit digitally encoded speech signals and/or digitally encoded data in the conventional manner to the local PABX. The local PABX
time division multiplexes (TDM's) each subscriber's signal and transmits the plurality of subscriber's signals to a central exchange for transmittal and reception to and from a plurality of other local single chip PABX's.
In the preferred embodiment, a single local PABX is capable o~ handling up to forty such subscribers. The connection between the telephone/data terminals and the local PABX employs a twisted pair wire operating in a time division duplex mode. Because the local PABX serves a relatively small number of subscribers in a relatively small geographical area, it can be located within a few hundred feet of each telephone data terminal pair. This results in a considerable reduction of the telephone line length between the subscriber and the PABX, which results in numerous advantages, such as reduced installation cost, reduced line attenuation and cross-talk. Synchronization between the transmitted and received signals is sim-plified, since the transmission delay is small, compared to the period of the transmitted bit. This eliminates the need for asynchronous receivers with the associated power dissipation and chip area consumption of such receivers.
The short distance, and hence short time delay, between transmission and receipt of signals to and from the local PABX chip and the subscriber's telephone makes it possible, in accordance with the invention, to employ a ~;057~:~

novel highly efficient apparatus and process for serial-to-parallel conversion. This conversion apparatus accomplishes time division, multiplexing and demultiplex-ing using a single memory array for all subscribers in which reading is performed orthogonally to writing, hereinafter referred to as "orthogonal memory" or "orthog-onal RAMS". Each orthogonal memory, in addition to multiplexing or demultiplexing, provides storage and serial~to-parallel or parallel-to-serial conversion in a regular and compact structure highly suitable for VLSI
fabrication techniques.
~ Use of orthogonal memory in this manner eliminates the necessity of having four bit shift stages for each bit sent from a subscriber. In the preferred embodiment 40, such subscribers are hanaled per PABX chip. Thirty-two hundred shift bit register stages may thus be eliminated by utilizing the orthogonal memory array of the invention.
Eliminating such a large shift register requirement is a major step in making it possible to fabricate a PABX on a single chip.
An additional step in the process of achieving a single chip PABX involves a reduction of the line driver power requirements. As stated earlier, conventional digital line drivers used in digital communication over transmission lines, employ impedance terminations at the receiving end in order to prevent reflections which superimpose as noise with the subsequent transmissions.
Such a design requirement necessitates large driver transistor geometries and a capability in the driver to deliver several hundred milliwatts of power.
The method and apparatus of the present invention reduces the power dissipation and the size of the line drive transistors, provided the line delay is short compared to the transmitting pulse width. This size and power dissipation reduction is achieved by terminating the line at the sending end rather than at the receiving end.

~2~573 Accordingly, the present invention provides an apparatus for transmitting electrical signals from a transmitter end to a receiver end over a pair of conduc-tors having a characteristic impedance of Z0 comprising:
(a) a differential receiver at the receiver end comprising a pair of like conductivity transistor pairs having source, drain and gate electrodes with the gate electrode of one transistor in one transistor pair coupled to one of said conductors at the receiver end and the gate electrode of one of the other of said transistors in the other transistor pair coupled to the other one of said conduc-tors at the receiver end and means for differentially switching a current source to one or the other of said transistor pairs and a differential driver at the trans-mitter end comprising a pair of opposite conductivity transistor pairs having source, drain and gate electrodes with the source electrodes of the positive conductivity transistors coupled to a source of positive D.C. voltage and the source electrodes of the negative conductivity transistors coupled to ground or negative D.C. voltage while the gate electrodes are driven differentially and the drain electrodes of one transistor pair are coupled to one conductor of said pair of conductors while the drain electrodes of the other transistor pair is coupled to the other conductor of said pair of conductors at the trans-mitter end; and (b) the source impedance of said differen-tial driver being substantially equal to said charac-teristic impedance Z0 and the input impedance of said differential receiver being sufficiently high as to present an effective open circuit to received signals.
One embodiment of the invention will now be de-scribed, by way of example, with reference to the accompa-nying drawings in which:
Fig. 1 is a schematic of the line low-power line drivers of the embodiment.

605~3 83-3-01~ -6-Fig. 2 is an equivalent circuit of the circuit shown in Fig. 17.
Fig. 3 is a timing diagram showing the waveforms at certain points of time and as propagated along the trans-mission line 20 of Figs. 1 and 2.
Fig. 4 is a schematic diagram of a bidirectional transmission circuit in accordance with the embodiment.
Fig. 5 is a schematic diagram of the subtractor circuit utilized in Fig. 4.
Fig. 6 is a schematic diagram of a bidirectional transmission system with differential drive in accordance with the embodiment.
LOW PO~IER LINE DRIVING
Transmission between a local PABX chip and local subscribers may be achieved using a differential trans-ceiver coupled by twisted wire pairs 20. The details of such transmission, in accordance with the invention, will now be described in connection with Fig. 1.
Fig. 1 shows a differential transceiver 3010 at the receiving end, i.e., the PABX end, and a differential driver 3020 at the sending end, in this case, the tele-phone subscriber's end. However, it is to be understood that the two ends are interchangeable. The differential driver 3020 consists of two P/N MOS transistor pairs 3001 and 3003, forming one pair, and 3000 and 3002, forming the second pair. The source terminal of transistors 3000 and 3001 is coupled to +5 volts and the source terminal of transistors 3002 and 3003 is coupled to ground. Twisted wire transmission line 20 has one wire 20A coupled to the intersection of the drain terminals of respective transis-tors 3001 and 3003, while the drain terminals of respec-tive transistors 3000 and 3002 are coupled to the other wire 20B. The information bit stream at terminal 3025 is coupled to the gate terminals of transistors 3003 and 3001 and the negative or reciprocal of the bit stream is coupled to the gates of transistors 3000 and 3002, thereby ~L2~5~

differentially driving the transistor pairs and hence the transmission line 20.
The equivalent circuit for the differential line driver 3020 of Fig. 1 is shown in Fig. 2. The two figures may be used to show that the sending end termination circuit line driver dissipates power only during logical transitions of the input signals on the wires 20a and 20b, comprising the wire pair 20.
The receiving end of transmission line 20 is coupled across the gates of N-MOS transistors 3006 and 3007, which present a high input impedance, thus effectively providing an open circuit at the receiving end.
The characteristic impedance Z0 of line 20 is typi~
cally 100 ohms. The transistor pair geometries are select-ed to provide a drain-source resistance of ~ Z0 or 50 ohms. The line driver 3020 sending end circuit has a source impedance of 100 ohms matched to the line impedance Z0; and is thus considered to be terminated at the sending end. The result of this arrangement is summarized in Table II below:

~2~S73 TABLE II
Sendin~ End Termination -Sending Receiving Time End End -O T TD ZO 2 V = 0 1 = E - E/2 E 25 ~ I = 0 R 2~
D 1 2TD V = - = 2.5V V = 2 x E/2 = E

1 = _ = 25 mA I = 0 2TD 1 TW V = E V = E
1 = E - E 0 I = 0 E + Z0 0 1 TW Average Power Dissipation (Sending and Receiving) = (5V x 25 mA) x D = 23.4 mW (max length) TW
= 1 x 23.4 mW = 11.7 mW (average length) = 1 x 11.7 mW = 5~85 mW (average length) 250% transmit 50% receive Under the above conditions, assume that the one-way transit time for a signal sent from the sending end (driver 3020) to be received at the receiving end (trans-ceiver 3010) is TD; and that the round trip transmit timefor the transmit signal to be sent and reflected back to the driver is 2TD; then during the time "t" is smaller than 2TD the transmission line appears infinitely long to the transmitter circuit (driver 3020) causing only half of the driver voltage E to be applied to the line. This is because the output impedance seen by the driver during ~L26~)573 this time period t <2TD is Z0, thus a 2:1 attenuator is formed by the ratio of the line impedance Z0 = 100 ohms and the internal impedance of driver 3020 = 100 ohms.
Thus r assuming a driver voltage of 5 volts, at a time, t
2 TD; the voltage V on the line 20 is 5/2 or 2.5 volts , as shown in curve A of Fig. 3.
When this voltage V of 2.5 volts arrives at the receiving end (driver 3020) at time t = TD, the open circuit at the receiver end causes V to double to 2 x E/2 or 5 volts and return to the sending end as shown in curve B of Fig. 3.
When the reflection from the receiving end arrives at the sending end at t = 2TD, the transmission line voltage V at that end becomes E/2 + E/2 = E, or 5 volts, reducing the current and power into the line to zero at t = 2TD
since current cannot flow without a voltage difference across the line and, as shown in curves A and B, the voltage at both ends at 2TD ~ t ~TW is the same. During a time period less than the transmitted pulse width, Tw, of
3.2 us, the power dissipation is 23.4 mW for a line length of 300 feet. Line attenuation, which is small, is ne-glected in this example. The resulting crosstalk into an adjacent twisted pair in the same sleeve is several millivolts but this can be tolerated by the line, which has a 5 volt noise immunity when driven differentially ~ith a OV to +5V logic signal.
It should be emphasized that the line driver 3020 dissipates power only during logical transitions, at which time the driver delivers current to charge or discharge the line 20. As may be seen in Fig. 2, current Il flows through Rl, PL, Z0, R3 and N2 to ground to charge the line represented by Z0; whereas for discharge current I2 flows from +5V through R2, P2, Z0, R4 and Nl to ground.
In Fig. 1 the N transistor 3040 of receiver 3010 forms a current source which is switched between the two N
transistors 3006 and 3007 connected to the twisted pair ~2~i~573 20. In Fig. 2, resistors Rl-R4 represent the stray resistances of the driver 3020 transistors which provide the output impedance to match the line impedance Z0.

TWO WIRE BIDIRECTIONAL TRANSMISSION
In the transmission circuit described in connection with Figs. 1-3 transmission in one direction occurred during one frame and in the other direction in another frame. In the following alternate embodiment, trans-mission and reception of signals is provided over the samepair of wires at the same time.
The circuit for this two wire bidirectional~trans-mission circuit is shown in Fig. 4 to comprise a line driver 2050 at terminal A; and a line driver 2051 at terminal B. Note that terminal A may comprise a PABX and terminal B telephones or vice versa. The output of line driver 2050 is coupled through terminating resistor RA to line 20A of twisted pair 20. RA has an impedance of 100 ohms matched to the impedance Z0 of line 20. Likewise, line driver 2051 at terminal B is coupled through imped-ance matching resistor RB to line 20A of twisted pair transmission line 20. The remaining line 20B of the pair 20 is grounded at both ends, as shown.
The A terminal end of line 20A is also coupled to the plus terminal of a subtracting circuit 2052. The negative terminal of subtractor 2052 is provided with an input voltage VA/2 from the midpoint of a voltage divider network comprising Rl and R2 coupled in series between ground and the input terminal of line driver 2050.
Similarly, the B terminal end of line 20A is coupled to the plus input terminal 2 of subtractor 2053, while the negative input terminal 1 is coupled to the midpoint of a voltage divider network comprising resistors R3 and R4 which divides the input voltage VB at the input to line driver 2051 in half, i.e., VB/2. The output at terminal 3 ~L2~6)573 of subtractors 2051 and 2053 is the linear vector differ-ence between the inputs at terminals 1 and 2.
The input to line driver 2050 may comprise a bit stream of digital pulses of amplitude VA, while the received signal VBD/2 may comprise the input bit stream.
The circuit of Fig. 4 takes advantage of the fact that:
a) the transmitted and received signals add linear-ly at each end of the transmission line 20, and b) the transmitted component can be recreated and subtracted from the combined signal to provide the received component.
The output from driver 2050, VA, is attenuated by a factor of two since RA and Z0 form a 2:1 attenuator.
Similarly, the input from the B terminal on the right side of the line 20 is VB/2. When VB/2 arrives at the A side, it adds to the A driver signal VA/2 and the combined output at the A side of the transmission line 20 becomes VA/2 + VBD/2 where VBD/2 is the delayed and attenuated version of VB/2. Similarly on the B side of the trans-mission line the voltage is VAD/2 + VB/2, where VAD is the delayed and attenuated version of VA. By subtracting VB/2 from VAD/2 + VB/2 in subtractor 2053 the desired received signal output VAD/2 is obtained.
The subtractors 2052 and 2053 must be linear since the two signals form an analog addition. One way of implementing such a subtractor is shown in Fig. 5.
As shown in Fig. 5, the subtractor 2052 of Fig. ~ may comprise a high gain differential amplifier 2055 which provides at its output the negative of its input. Thus, the input to terminal 1, +VA/2, is coupled through R10 a 1000 ohm resistor to the plus terminal of amplifier 2055;
while the negative terminal is grounded. The output of amplifier 2055 is fed back through R12, a 1000 ohm resis~
tor to the plus terminal producing at the output terminal -VA/2. The signal -VA/2 is summed at R5 with the signal VA/2 + VBD/2 at terminal 2. Summation occurs because R5 has a much smaller resistance (100 ohms) than R14 (lOK
ohms) and R14 equals R13. The resulting output at termi-nal 3 is thus VBD/2.
Fig. 6 shows how bidirectional transmission can be achieved with a balanced differential drive. In Fig. 6, a twisted pair 20 is being driven at each end by two differ-ential drivers, 2050' and 2051'. The output impedance of each driver must equal the line impedance ZO for proper line termination. Operation is basically the same as in Fig. 4 wherein the input VA or VB is subtracted from the combined signals. However, due to differential operation, a different scheme ls employed in obtaining subtraction.
This is accomplished by alternately switching capacitors C10 and C20 between terminals 1-2 and 3-4 by means of switches S10 and S12. For example, when capaci-tor C10 is connected across terminals 1-2, it charges with the differential line voltage. When C10 is then switched to terminals 3-4 the differential line voltage is sub-tracted from the terminal A input VA, thus providing -VB.
During the time C10 is connected to terminal 3-4, C12 is being charged with the differential line voltage. The capacitors must switch at about 5 times the transmission bit rate. The switches S10 and S12 may preferably com-prise MOS transistors which can be switched at the rates of several megahertz. Although not shown, the same circuit for subtraction is intended to be used at the B
terminal side of the line 20 used on the right side of the line.
While what has been described constitutes the pres-ently most preferred embodiment of the invention, it can be varied in many ways, as is apparent from the above discussion, and the invention should, therefore, only be limited insofar as is required by the scope of the follow-ing claims.

Claims (5)

THE EMBODIMENT OF THE INVENTION FOR WHICH AN EXCLUSIVE
PROPERTY OR PRIVILEGE IS CLAIMED IS DEFINED AS FOLLOWS:
1. Apparatus for transmitting electrical signals from a transmitter end to a receiver end over a pair of conduc-tors having a characteristic impedance of Z0 comprising:
(a) a differential receiver at the receiver end comprising a pair of like conductivity transis-tor pairs having source, drain and gate elec-trodes with the gate electrode of one transistor in one transistor pair coupled to one of said conductors at the receiver end and the gate electrode of one of the other of said transis-tors in the other transistor pair coupled to the other one of said conductors at the receiver end and means for differentially switching a current source to one or the other of said transistor pairs and a differential driver at the transmit-ter end comprising a pair of opposite conduc-tivity transistor pairs having source, drain and gate electrodes with the source electrodes of the positive conductivity transistors coupled to a source of positive D.C. voltage and the source electrodes of the negative conductivity transis-tors coupled to ground or negative D.C. voltage while the gate electrodes are driven differen-tially and the drain electrodes of one transis-tor pair are coupled to one conductor of said pair of conductors while the drain electrodes of the other transistor pair is coupled to the other conductor of said pair of conductors at the transmitter end; and (b) the source impedance of said differential driver being substantially equal to said charac-teristic impedance Z0 and the input impedance of said differential receiver being sufficiently high as to present an effective open circuit to received signals.
2. The apparatus of claim 1 in which the electrical signals comprise voltage pulses which undergo logical transitions and wherein power is only dissipated during such transitions.
3. The apparatus of claim 1 wherein the geometry of each transistor pair provides a drain source resistance of 1/2Z0.
4. The apparatus of claim 1 in which the electrical signals are voltage pulses which undergo logical tran-sitions and said voltage pulses are coupled to the gates of one of said transistor pairs of said differential driver while the inverse of said voltage pulses is coupled to the gates of the other of said transistor pair to differentially drive said differential driver.
5. The apparatus of claim 4 in which the means for differentially switching the current source to one or the other of said transistor pairs in said differential receiver comprises a transistor coupled between a voltage source and the source electrode of each transistor having a gate electrode coupled to one of said wires.
CA000498201A 1984-12-28 1985-12-19 Low power line driving digital transmission system Expired CA1260573A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US06/687,537 US4630284A (en) 1984-12-28 1984-12-28 Low power line driving digital transmission system
US687,537 1984-12-28

Publications (1)

Publication Number Publication Date
CA1260573A true CA1260573A (en) 1989-09-26

Family

ID=24760805

Family Applications (1)

Application Number Title Priority Date Filing Date
CA000498201A Expired CA1260573A (en) 1984-12-28 1985-12-19 Low power line driving digital transmission system

Country Status (5)

Country Link
US (1) US4630284A (en)
EP (1) EP0187339A3 (en)
JP (1) JPS61158225A (en)
AU (1) AU579798B2 (en)
CA (1) CA1260573A (en)

Families Citing this family (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4825450A (en) * 1987-03-12 1989-04-25 The Boeing Company Binary data communication system
US4823364A (en) * 1987-03-12 1989-04-18 The Boeing Company Receive coupler for binary data communication systems
US4805196A (en) * 1987-04-29 1989-02-14 Gte Laboratories Incorporated Line delay compensation for digital transmission systems utilizing low power line drivers
US4788510A (en) * 1987-05-29 1988-11-29 American Telephone And Telegraph Company, At&T Bell Laboratories Differential input stage for differential line receivers and operational amplifiers
US5268676A (en) * 1987-09-11 1993-12-07 Cybex Corporation Computer-monitor extended range communications link
US4885718A (en) * 1987-09-11 1989-12-05 Cybex Corporation Extended communications link for keyboard and display units remotely located from a computer
US4807258A (en) * 1987-11-17 1989-02-21 Gte Laboratories Incorporated Method for synchronizing a digital communication system
US20020091850A1 (en) 1992-10-23 2002-07-11 Cybex Corporation System and method for remote monitoring and operation of personal computers
US5471498A (en) * 1993-04-15 1995-11-28 National Semiconductor Corporation High-speed low-voltage differential swing transmission line transceiver
US5490171A (en) * 1994-03-09 1996-02-06 International Business Machines Corporation Single-port network node transceiver with powered-down protection
US5544197A (en) * 1994-04-07 1996-08-06 Harvey Mudd College Cutover apparatus and methods for switching a signal between two transmission media
US5469473A (en) * 1994-04-15 1995-11-21 Texas Instruments Incorporated Transceiver circuit with transition detection
US5818821A (en) * 1994-12-30 1998-10-06 Intelogis, Inc. Universal lan power line carrier repeater system and method
US5721842A (en) * 1995-08-25 1998-02-24 Apex Pc Solutions, Inc. Interconnection system for viewing and controlling remotely connected computers with on-screen video overlay for controlling of the interconnection switch
US6304895B1 (en) 1997-08-22 2001-10-16 Apex Inc. Method and system for intelligently controlling a remotely located computer
US20010044843A1 (en) * 1997-10-28 2001-11-22 Philip Bates Multi-user computer system
AU774003B2 (en) 1998-09-22 2004-06-10 Avocent Huntsville Corporation System for accessing personal computers remotely
US6378014B1 (en) 1999-08-25 2002-04-23 Apex Inc. Terminal emulator for interfacing between a communications port and a KVM switch
JP3481176B2 (en) * 1999-11-16 2003-12-22 松下電器産業株式会社 Signal transmission circuit
SE518796C2 (en) * 2000-04-07 2002-11-19 Ericsson Telefon Ab L M Method and apparatus for minimizing power loss in a line driver
US7057672B2 (en) * 2001-03-29 2006-06-06 Intel Corporation Method and apparatus for high frequency data transmission and testability in a low voltage, differential swing design
US7203243B2 (en) * 2003-03-10 2007-04-10 Acuid Corporation (Guernsey) Limited Line driver with reduced power consumption
US7259482B2 (en) 2003-09-24 2007-08-21 Belkin International, Inc. Distance extender and method making use of same
US7057425B2 (en) * 2004-05-25 2006-06-06 Avago Technologies General Ip Pte. Ltd. Propagation of a dynamic signal to a quasi-differential receiver biased by an ungrounded driver-side bias signal
US8427489B2 (en) 2006-08-10 2013-04-23 Avocent Huntsville Corporation Rack interface pod with intelligent platform control
US8009173B2 (en) 2006-08-10 2011-08-30 Avocent Huntsville Corporation Rack interface pod with intelligent platform control

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3015080A (en) * 1957-06-21 1961-12-26 Research Corp Signal transmission line
US4110711A (en) * 1977-02-08 1978-08-29 Harvey Hubbell, Incorporated Voice/data receiver coupled with a transmission line through an input transformer working into an impedance approaching a short circuit
US4086534A (en) * 1977-02-14 1978-04-25 Network Systems Corporation Circuit for wire transmission of high frequency data communication pulse signals
US4326287A (en) * 1980-06-30 1982-04-20 International Business Machines Corp. Two wire bi-directional digital telephone link
EP0129542A4 (en) * 1982-12-27 1986-06-11 Storage Technology Partners Cmos circuit using transmission line interconnections.
US4638473A (en) * 1984-12-28 1987-01-20 Gte Laboratories Incorporated Two wire bidirectional digital transmission system
AU5110585A (en) * 1984-12-28 1986-07-03 Gte Laboratories Incorporated Digital switching system

Also Published As

Publication number Publication date
AU579798B2 (en) 1988-12-08
AU5110085A (en) 1986-07-03
EP0187339A3 (en) 1988-07-13
JPS61158225A (en) 1986-07-17
US4630284A (en) 1986-12-16
EP0187339A2 (en) 1986-07-16

Similar Documents

Publication Publication Date Title
CA1260573A (en) Low power line driving digital transmission system
US4638473A (en) Two wire bidirectional digital transmission system
US4086534A (en) Circuit for wire transmission of high frequency data communication pulse signals
US4254501A (en) High impedance, Manchester (3 state) to TTL (2 wire, 2 state) transceiver for tapped bus transmission systems
US5111080A (en) Complementary signal transmission circuit with impedance matching circuitry
CN1261231A (en) Method and system for data transmission by differiential and common mode data commands
US5264744A (en) Complementary signal transmission circuit with impedance matching circuitry
EP1014615B1 (en) Full duplex transmission
US4797904A (en) Transmitter for ISDN S-bus interface circuit
DE69921092T2 (en) SIGNALING USING AN IMPEDANCE MODULATOR
US4736361A (en) Digital switching system with two-directional addressing rams
US4270214A (en) High impedance tap for tapped bus transmission systems
US4805196A (en) Line delay compensation for digital transmission systems utilizing low power line drivers
EP0186139A2 (en) Time division multiplexing RAM
US6944239B2 (en) CMOS receiver for simultaneous bi-directional links
US6369650B1 (en) Impedance synthesis and DC biasing method and architecture for DSL/cable line drivers
US4656621A (en) Digital switching system
CA1244540A (en) Digital switching system
US4807258A (en) Method for synchronizing a digital communication system
EP0156813A1 (en) A low power wideband switching array element
US3413413A (en) Switching arrangement for the transmission of direct current telegraph signal units
US6603805B1 (en) Transceiver circuit transmitting/receiving a tenary pulse signal
US3068322A (en) Switching system
Tomita et al. 622 Mbps 8 mW CMOS low-voltage interface circuit
SU1506567A1 (en) Trunk-line communication system

Legal Events

Date Code Title Description
MKEX Expiry