CA1294013C - Frequency modulation in phase-locked loops - Google Patents

Frequency modulation in phase-locked loops

Info

Publication number
CA1294013C
CA1294013C CA000572701A CA572701A CA1294013C CA 1294013 C CA1294013 C CA 1294013C CA 000572701 A CA000572701 A CA 000572701A CA 572701 A CA572701 A CA 572701A CA 1294013 C CA1294013 C CA 1294013C
Authority
CA
Canada
Prior art keywords
frequency
signal
digital
scaling
phase
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
CA000572701A
Other languages
French (fr)
Inventor
Raymond L. Fried
Alan Hedge
Ben Flugstad
Mark D. Talbot
Barton L. Mcjunkin
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
HP Inc
Original Assignee
Hewlett Packard Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hewlett Packard Co filed Critical Hewlett Packard Co
Application granted granted Critical
Publication of CA1294013C publication Critical patent/CA1294013C/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03CMODULATION
    • H03C3/00Angle modulation
    • H03C3/02Details
    • H03C3/09Modifications of modulator for regulating the mean frequency
    • H03C3/0908Modifications of modulator for regulating the mean frequency using a phase locked loop
    • H03C3/095Modifications of modulator for regulating the mean frequency using a phase locked loop applying frequency modulation to the loop in front of the voltage controlled oscillator
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03CMODULATION
    • H03C3/00Angle modulation
    • H03C3/02Details
    • H03C3/09Modifications of modulator for regulating the mean frequency
    • H03C3/0908Modifications of modulator for regulating the mean frequency using a phase locked loop
    • H03C3/0916Modifications of modulator for regulating the mean frequency using a phase locked loop with frequency divider or counter in the loop
    • H03C3/0925Modifications of modulator for regulating the mean frequency using a phase locked loop with frequency divider or counter in the loop applying frequency modulation at the divider in the feedback loop
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03CMODULATION
    • H03C3/00Angle modulation
    • H03C3/02Details
    • H03C3/09Modifications of modulator for regulating the mean frequency
    • H03C3/0908Modifications of modulator for regulating the mean frequency using a phase locked loop
    • H03C3/0916Modifications of modulator for regulating the mean frequency using a phase locked loop with frequency divider or counter in the loop
    • H03C3/0933Modifications of modulator for regulating the mean frequency using a phase locked loop with frequency divider or counter in the loop using fractional frequency division in the feedback loop of the phase locked loop
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03CMODULATION
    • H03C3/00Angle modulation
    • H03C3/02Details
    • H03C3/09Modifications of modulator for regulating the mean frequency
    • H03C3/0908Modifications of modulator for regulating the mean frequency using a phase locked loop
    • H03C3/0941Modifications of modulator for regulating the mean frequency using a phase locked loop applying frequency modulation at more than one point in the loop
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03LAUTOMATIC CONTROL, STARTING, SYNCHRONISATION, OR STABILISATION OF GENERATORS OF ELECTRONIC OSCILLATIONS OR PULSES
    • H03L7/00Automatic control of frequency or phase; Synchronisation
    • H03L7/06Automatic control of frequency or phase; Synchronisation using a reference signal applied to a frequency- or phase-locked loop
    • H03L7/16Indirect frequency synthesis, i.e. generating a desired one of a number of predetermined frequencies using a frequency- or phase-locked loop
    • H03L7/18Indirect frequency synthesis, i.e. generating a desired one of a number of predetermined frequencies using a frequency- or phase-locked loop using a frequency divider or counter in the loop
    • H03L7/197Indirect frequency synthesis, i.e. generating a desired one of a number of predetermined frequencies using a frequency- or phase-locked loop using a frequency divider or counter in the loop a time difference being used for locking the loop, the counter counting between numbers which are variable in time or the frequency divider dividing by a factor variable in time, e.g. for obtaining fractional frequency division

Abstract

Abstract A phase-locked loop (PLL) frequency synthesizer having an analog, out-of-band component path and a digital, in-band component path to provide frequency modulation (FM) of the synthesized output signal is described. The in-band FM component is octave scaled by an analog scaling means and coupled to an analog-to-digital converter to provide a digital number to be decade added to the PLL divide number to change the PLL
frequency in response to the in-band FM signal. The out-of-band FM component is also scaled and applied to a loop summing node and summed with the PLL error signal to vary the PLL frequency. The scaling in both the in-band component path and out-of-band component path is equalized to provide a flat frequency response.
Additional, the in-band component is scaled to allow use of the analog-to-digital converter over its maximum range to maintain a high signal-to-noise ratio.

Description

FREQUENCY MODULATION IN PHASE-LOCKED LOOP
Background of the Invention The present invention relates generally to fre~uency modulation of a RF carrier signal and more particularly to frequency modulation of a synthesized RF
carrier signal generated by a phase-locXed loop utilizing digital techniques.
Signal generators utilizing phase-locked loop (P~L) apparatus to provide an output signal having a precise stable frequency are well known in the art.
Such a P~L typically includes a tunable oscillator, such as a voltage controlled oscillator (VCO), whose output frequency is locked to the frequency of a known reference signal by means of a phase comparator. The phase comparator generates an output voltage or current that is proportional to the phase difference between the VCO output signal and the reference signal. The phase comparator output is fed back to the input of the VCO to tune the VCO to a desired frequency and eliminate any phase difference at the phase comparator. ~his forces the VCO output signal to have the same frequency as the reference signal. By interposing a divide-by-N block in the PLL circuit, the referen~e frequency may instead be compared with the VCO output frequency divided by N; the VCO output will then be locked to N times the reference frequency. Another technique, called fractional-N, makes it possible to synthesize frequencies that are any rational multiple of the reference frequency. Such a technique is disclosed in U.S. Patent No. 3,928,813 issued to Charles A. Kingsford-Smith on December 23, 1975 entitled "Device for Synthesizing Frequencies Which are Rational Multiples of a Fundamental Frequency".
In a given application, it is often desired to frequency modulate (FM) such a synthesized signal. A
PLL is, in effect, a control system that maintains a constant phase difference between two signals. Any variations in the phase of one signal relative to the Case 186912 4~3 other signal are removed by the PLL. This property of a PLL is utilized to suppress noise and clean up the output signal; however, this property of the PLL also tends to suppress any attempts to frequency modulate the output signal.
Audio or low rate FM may be accomplished by splitting the FM signal into two separate signal paths.
One path is AC coupled to the input of the VCO and is the primary path for the FM signal for frequency deviation outside the bandwidth of the PLL. For frequency deviation, inside the PLL bandwidth the FM
signal is integrated and summed with the output of the phase detector or phase comparator at a loop summing node. Since phase is the integral of frequency, FM at frequencies within the PLL bandwidth is accomplished by phase modulation (PM). In order to prevent the PLL from correcting the frequency shift of the VCO output signal, a pulse has to be added or subtracted from the VCO
output signal for each two pi radians of phase accumulation due to the deviation from the center frequency. Properly scaling the gains of each signal path provides flat FM response both inside and outside the PLL bandwidth. Such a technique is disclosed in U.S. Patent No. 4,546,331 issued to DaSilva et al on October 8, 1985 entitled "Frequency Modulation in a Phase-Locked Loop." The described technique is often employed to accomplish FM in PLL's; however, it has some important limitations.
There are two characteristics which inherently limit the amount of frequency deviation from the center frequency that is obtainable in a PLL. First, phase detectors or phase comparators typically operate linearly over only a range of a few degrees or a small fraction of a radian. This forces the maximum obtainable frequency deviation to be small at low modulation rates. Secondly, an integrator generally comprises an operational amplifier with a capacitor in its feedback path. Practical integrators cannot provide Case 186912 . , .

an output that is higher than the power supply voltage, typically plus or minus 10 to plus or minus 15 volts.
This determines the maximum PM signal, further restricting the maximum FM deviation obtainable.
~ typical application requires a RF signal to be frequency modulated at audio rates and at high carrier frequency deviations. This application requires a large modulation index, where the modulation index is the ratio of the maximum fre~uency shift in the VC0 output to the modulation rate. Usually a large modulation index is obtained by constructing a PLL having a narrow bandwidth thus allowing most of the FM to be accomplished outside the loop bandwidth. The limitation of a narrow bandwidth loop is that the stability provided by a wide bandwidth PLL is lost. Further, narrow bandwidth loops are inherently noisier and more susceptible to spurs and jitter caused by external sources, such as vibration than are wide bandwidth loops.
Summary of the Invention In accordance with principles of the present invention, a phase-locked loop (PLL) ha~ing both digital and analog FN signal input paths to frequency modulate the PLL output signal at modulation rates both within the PLL bandwidth as well as outside of the PLL
bandwidth is provided. The P~L includes a voltage controlled oscillator (VC0), fractional-N means for periodically changing the rational number by which the VC0 output signal is frequency divided, a phase detector for comparing the phase of the frequency divided output signal with the phase of a predetermined reference signal and for producing an error signal representing the detected phase difference and a loop filter for suîtably processing the phase detector signal to produce an error signal for controllably adjusting the VC0 frequency. The high rate, out-of-band F~ signal is analog coupled to the control input of the VC0 via Case 186912 - ... . .

delay compensation and filter circuits to provide out-of-band frequency modulation of the VC0 output signal.
The low rat~, in-band FM is coupled to an analog to digital convertor (ADC) to provide a digital signal to be digitally added to the digital signal controlling the VC0 center frequency to real time modulate the VC0 output signal by changing the PLL divide number.
Utilizing a digital phase detector which is linear over a wide range allows the in-band frequency modulation to be achieved by directly changing the loop divide number. The maximum obtainable ~requency deviation is no longer limited ~y the phase detector, but is limited only by the slewing capability of the phase-locked loop and provides an infinite modulation index. Further, the maximum frequency deviation is no longer limited by the power supply voltage, thus providing large frequency deviation at high rates. The in-band FM bandwidth is limited only by the sampling rate of the ADC and the data input rate to the fractional-N circuitry. Equalizing the time delay through the FM analog and FM digital paths insures maximum F~ frequency response flatness. Signal distortion and frequency response is further improved by use of a high resolution PLL provided by fractional-N
techniques. Since the modulation index is not dependent upon the PLL bandwidth, the stab~,lity and noise characteristics provided by a wide bandwidth PLL may be taken advantage of. Further, implementing a digital in-band FM loop provides a less complex circuit requiring fewer components than the prior art techniques ~o achieve in-band low rate FM and DCFM.
An aspect of the invention is as follows:
A phase-locked loop frequency synthesizer for providing a frequency modulated output signal having a controllably selectable frequency, comprising:
voltage controlled oscillator means for generating an output signal having a frequency that is .- ..

5a ~ 94~.3 controllably variable over a predetermined frequency range;
frequency divider means coupled to the output of said voltage controlled oscillator for providing a first signal having a frequency equal to the frequency of said output signal divided ~y a predetermined divisor ~;
phase detector means for comparing the phasa of said first signal to the phase of a predetermined reference signal and providing an error signal representative of a phase difference between said first signal and said reference signal, said error signal coupled to a control input of said voltage controlled oscillator to control the frequency of said output signal;
input means for coupling a frequency modulation signal to said phase-locked loop, said input means having at least two outputs;
loop summing means interposed in said phase-locked loop between said phase detector means and said voltage controlled oscillator means and coupled to a first output of said input means, said loop summing means for summing an out-of-band component of said fre~uency modulation signal with said error signal;
first analog scaling means interposed between said first output of said input means and said loop summing means for æcaling said out-of-band component of said frequency modulation signal;
second analog scaling means coupled to a second output of said input means for scaling an in-band component of said frequency modulation signal;
analog-to-digital converter means coupled to said second analog scaling means for providing a first : digital signal representative of said in-band component :~ 35 of said scaled frequency modulation signal;
digital scaling means coupled to an output o~
said analog-to-digital converter means for scaling said first digital signal to provide a second digital signal 5b ~2~4G~l3 indicative of a desired frequency deviation represented by said frequency modulation signal; and digital adder means coupled to said digital scaling means for adding said second digital signal to a third digital signal, said third digital signal representative of a predetermined phase-locked loop center frequency, said digital adder means providing a fourth digital signal to said frequency divide means to modify the frequency divisor N in response to said in-band frequency modulation signal thereby modulating saidfrequency-locked loop frequency.
Brief Description of the Drawings Figure 1 is a conceptual block diagram of a phase-locked loop implementing digital low rate frequency modulation in accordance with the principles of the present invention; and - ~ ~Z~ l3 . .

Figure 2 is a detailed functional block diagram of the phase-locked loop shown in Figure 1.
Detailed Desoripti~n of the Preferred Embodiment Referring now to the drawings, and particularly to Figure 1, a phase-locked loop (PLL) frequency synthesizer implementing both analog and digital techniques to provide a frequency modulated output signal is shown. The PLL 10 comprises a voltage controlled oscillator (VC0) 11 for providing an output signal Fout line 13 in response to a control signal applied to khe VC0 11 on line 27. The frequency of the output signal Fout is selectively variable over a full decade from approximately 520 mHz to 1040 mHz.
The VC0 11 is a negative resistance oscillator and includes a delay line discriminator (not shown) which measures FM
noise on the oscillator output signal and provides feedback to the VC0 11 input circuits (not shown) to minimize the VC0 11 phase noise. VCO 11 is described in more detail in the co-pending Canadian application entitled "Fast Frequency Setting Signal Generator Utilizing a Frequency-Locked Loop", serial no. 572/432 filed on July 19, 198B and assigned to the instant assignee. The output signal of the VC0 11 is frequency divided by fractional-N
divide means 15 to provide an input signal to the digital phase detector 17 having a freguency equal to the VC0 11 output frequency divided by a selectable rational number.
Digital phase detector 17 compares the phase of a predetermined reference signal, Fref on line 16, with the phase of the frequency divided VC0 output signal and provides an error signal having a value which is proportional to the phase difference between the two input signals. The error signal is filtered in the loop filter 37 and then coupled to the loop gain compensation circuitry 35 (as shown in figure 2). Since the gain of the PLL loop components, particularly the VCO 11, is frequency sensitive, the loop gain compensation circuitry 35 provides a control siqnal to the VCO 11 having a constant predetermined sensitivity over the full VC0 11 frequency range.
The desired FM input signal on line 14 is coupled to the PLL 10 via two separate signal paths. The FM
input signal on line 14 may be internally generated in response to commands input at the front panel (not shown) of the instrument or it may be an externally generated modulation signal input via an external FM
port. The analog FM signal coupled on line 29 to summer 19 is summed with the phase detector 17 error signal on line 12 and provides FM modulation of the VCO
11 output signal at FM rates and frequency deviations outside the PLL 10 bandwidth. For FM modulation at l~w rates and frequency deviation within the PLL 10 bandwidth, the FM input signal is coupled to analog-to-digital convertor (ADC) 21 for conversion to a 12-bit digital data signal. The FM signal input to ADC 21 i5 scaled to permit the use of the full range of ADC 21.
If the ADC 21 is not utilized over its full range, accuracy and resolution is lost. The ADC 21 also utilizes an offset reference input voltage to insure that 0 volts from a bipolar input to ADC 21 provides a ~ midrange output to minimize frequency offset from the ;~ 25 desired VC0 11 center frequency. The digital FM signal on bus 22 is coupled to decade adder 23 to be added to the digital signal on bus 18 representing the desired center frequency of VCO 11. Utilizing a decade adder to perform this addition allows ADC 21 to be used over its full range and provides a wide dynamic range for maximum FM deviation. The digital output of adder 23 on bus 28 is coupled to the fractional-N divide means 15 to vary the fractional-N divide number and thereby modulate the PLL 10 frequency.
Referring now also to Figure 2, the desired characteristics for the PLL output signal, FoUt~
including VC0 ll center frequency, FM deviation and FM
rate are programmed at the instrument front panel (not ` Case 186912 : `

~;294~13 shown) and input in digital form to the host processor 40 on bus 42. The analog FM input on line 14 is generated internally by the instrument under the direction of the processor 40. An external FM input port (not shown) may be also be used, so long as the external FM signal has the proper characteristics. The PLL 10 has four different FM sensitivities: 3.33 kHz/volt, 33.3 kHz/volt, 333 khz/volt and 3.33 mHz/volt.
These FM sensitivities are set by attenuating the analog FN signal prior to coupling it to the VC0 11 tune line. Attenuator circuit 32 provides four selectable levels of attenuation: 0, 20, 40 and 60 dB. The host processor 40 sets the attenuation level according to the programed FM deviation. When khe attenuator 32 is set, the processor 40 will switch in the attenuation elements physi~ally closest to the VC0 11 first to minimize signal noise. The FM delay compensation circuitry 31 compensates for a time delay of approximately 34 microseconds introduced in the digital in-band FM path.
The FM delay compensation circuitry 31 effectively delays the out-of-band FM signal by the same amount of time as the digital FM signal. Equalizing the time delay through the analog path and the digital path provides a flat frequency response over the entire range of the PL~.
Variable amplifier 33 comprises a discrete operational amplifier utilizing FET switches to selectively change the gain of the amplifier from two to five. Variable amplifier 33 also includes FM shaping circuits to compensate for signal compression affects whenever the FM signal is programed to provide greater than a 1 mHz FM deviation in the VC0 frequency band.
The FM shaper circuit comprises a dual PNP/NPN current buffer whose bias circuit is designed to limit the output signal. For programed FM deviations of 1 mHz and less the gain of the variable amplifier 33 is set at two. For FM deviations greater than 1 mHz, the gain is switched to five. ~he gain of five offsets signal Case 186912 ~z~ti3 losses due to the FM shaper circuits which are in the FM
signal path only when the FM deviation is programed to be greater than 1 mHz deviation.
The in-band FM signal is coupled from the FM
distribution circuit 34 to the analog scaling amplifier 43. The FM distribution cixcuit 34 includes an FM
analog amplifier (not shown) which amplifies the in-band FM signal coupled to the scaling amplifier 43 such that a 5 volt signal is always coupled to the scaling ~0 amplifier 43 input. ~he analog scaling amplifier 43 provides proper polarity selection and pre-scaling of the FM signal for the programmed frequency deviation to allow the ADC 21 to operate over its full range. The scaling amplifier 43 has an ad~ustable gain of 0.5 to 1.0 which provides scaling over each octave of programmed frequency deviation and provides a bipolar output around a 0 volt reference which varies from +2.5 volts to +5 volts as a function of the programmed deviation from the center VCO frequency; e.g., a programmed frequency deviation of -500 kHz would require a -2.5 volt output from the scaling amplifier 43.
The scaled FN analog signal is then coupled to the ADC 21 for conversion to a 12-bit digital data signal. A 12-bit ADC provides 212 or 4096 output steps or values. ADC 21 is referenced to a non-zero offset voltage such that it will respond to the bipolar analog input provided by the scaling amplifier 43. One-half (2048) of the digital steps are assigned to the negative portion (frequency decrease) of the analog input signal and the other half (2048) of the digital steps are assigned to the positive portion (frequency increase~ of the analog input signal. The ADC 21 input sensitivity is adjusted for each octave of programmed frequency deviation; e.g., if the programmed deviation range is +2 ` 35 kHz, the programmed ADC input sensitivity will be 0.98 Hz per step in the frequency range of 501-1000 Hz and in the frequency range of 1001-2000 Hz the programmed sensitivity will be 1.95 Hz per step. The programmable Case 186912 input sensitivity ensures that the ADC 21 will always be utilized over at least one-half of its full scale range regardless of programmed deviation and maximizes the signal to noise ratio. The processor 40 provides timing and control signals to the ADC 21 and other circuit components on line 44 for the digital conversion. The ADC 21 is a successive approximation ADC which utilizes a digital-to-analog convertor (DAC) to create an analog signal which is compared with the FM
analog input signal. After a binary search covering each of the 12 bits is concluded, the digitized FM
signal is clocked into the digital binary scaler 46.
Since the sensitivity of the ADC 21 changes from octave to octave of the programmed FM deviation, the ADC
output signal is related to the desired frequency deviation by a binary number and has to be scaled so that the loop divide number will be changed by the proper amount. Binary scaler 46 scales (multiples by 1, 1/2, 1/4, or 1/5) the ADC output signal to provide a binary representation of the programmed frequency deviation. The digital scaled binary signal is then coupled to the binary coded decimal (BCD) conversion block 45. The digital BCD conversion block performs a binary to BCD conversion under the control of the processor 40 to provide a BCD number which represents the magnitud~ of increase or decrease for each decade of the fractional-N divisor number to achieve the desired frequency deviation. For example, for a programmed deviation of 5 Hz, the BCD number will be equivalent to 5 and be added to the 10 column; for a programmed deviation of 50 Hz, the BCD number will also be equivalent to 5, but will be added to the 101 column.
Decade scaler 48 scales the BCD conversion block 45 output so that the BCD number is added to the proper decade of the fractional-N divisor number. Adder 47 performs digital addition of the scalsd BCD signal and a BCD signal on bus 18 representing the programmed VC0 11 center frequency input on bus 42 to the processor 40.
Case 186912 lZ9~ 3 The resulting BCD data is then coupled to the fractional N block 49 to modulate the loop frequency.
In the preferred embodiment, the binary scaler 46 and BCD conversion block 45 are implemented together as a ROM look up table. The ADC 21 output comprises a row address and the binary scaling factor input by the processor 40 comprises a column address to select the correct ~CD number output from the ROM. The decade scaler 48 and adder 47 comprise a serial adder wherein the BCD input is clocked into the decade scaler 48 register at the proper time to be added to the correct decade of the fractional-N divisor number to achieve the programmed frequency deviation.
The analog scaler 43, and the binary scaler 46 are controlled by the processor 40 to maximize the output of the ADC 21 over the deviation range of the instrument to maximize the signal-to-noise ratio: In addition, the analog scaler 43, the binary scaler 46 and the decade scaler 48 are cooperatively controlled by the processor 40 to maintain the overall gain of the in-band FM (digital) signal path equal to the overall gain of the out-of-band FM (analog) signal path to provide a constant FM sensitivity over the entire deviation range - and frequency range of the instrument.
The fractional-N block 49 controls both the integer divisor and the fractional-N divisor for the divide-by-N block 15 and also provides a BCD signal representing the programmed PLL center frequency to the analog phase interpretation (API) DAC 41. The API DAC
41 provides an analog signal to loop summer 39 to bias the VCO ll tune line for the programmed center frequency. A phase modulation signal may also be directly summed into the PLL loop at the summer 39.

;

Case 186912

Claims (5)

1. A phase-locked loop frequency synthesizer for providing a frequency modulated output signal having a controllably selectable frequency, comprising:
voltage controlled oscillator means for generating an output signal having a frequency that is controllably variable over a predetermined frequency range;
frequency divider means coupled to the output of said voltage controlled oscillator for providing a first signal having a frequency equal to the frequency of said output signal divided by a predetermined divisor N;
phase detector means for comparing the phase of said first signal to the phase of a predetermined reference signal and providing an error signal representative of a phase difference between said first signal and said reference signal, said error signal coupled to a control input of said voltage controlled oscillator to control the frequency of said output signal;
input means for coupling a frequency modulation signal to said phase-locked loop, said input means having at least two outputs;
loop summing means interposed in said phase-locked loop between said phase detector means and said voltage controlled oscillator means and coupled to a first output of said input means, said loop summing means for summing an out-of-band component of said frequency modulation signal with said error signal;
first analog scaling means interposed between said first output of said input means and said loop summing means for scaling said out-of-band component of said frequency modulation signal;
second analog scaling means coupled to a second output of said input means for scaling an in-band component of said frequency modulation signal;

Case 186912 analog-to-digital converter means coupled to said second analog scaling means for providing a first digital signal representative of said in-band component of said scaled frequency modulation signal;
digital scaling means coupled to an output of said analog-to-digital converter means for scaling said first digital signal to provide a second digital signal indicative of a desired frequency deviation represented by said frequency modulation signal; and digital adder means coupled to said digital scaling means for adding said second digital signal to a third digital signal, said third digital signal representative of a predetermined phase-locked loop center frequency, said digital adder means providing a fourth digital signal to said frequency divide means to modify the frequency divisor N in response to said in-band frequency modulation signal thereby modulating said frequency-locked loop frequency.
2. A phase-locked loop frequency synthesizer as in Claim 1 further comprising control means responsive to a programmed frequency deviation value to cooperatively adjust said second analog scaling and said digital scaling means and to adjust said first analog scaling means such that the gain factor for said out-of-band component is equal to the gain factor of said in-band component at every programmed frequency deviation.
3. A phase-locked loop frequency synthesizer as in Claim 2 wherein said digital scaling means includes binary scaling means and binary to binary coded decimal conversion means for scaling said second digital signal and for providing said scaler second digital signal in a binary coded decimal format and said third digital signal comprising a digital signal in binary coded decimal format.

Case 186912
4. A phase-locked loop frequency synthesizer as in Claim 3 wherein said second analog scaling means and said binary scaling means scales said in-band component of said frequency modulation signal such that said analog-to-digital conversion means operates over a predetermined output range for each desired frequency deviation represented by said frequency modulation signal.
5. A phase-locked loop frequency synthesizer as in Claim 4 wherein said digital scaling means further includes decade scaling means interposed between said binary coded decimal conversion means and said digital adder means for decade scaling said second digital signal.
Case 186912
CA000572701A 1987-12-22 1988-07-21 Frequency modulation in phase-locked loops Expired - Lifetime CA1294013C (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US137,843 1987-12-22
US07/137,843 US4810977A (en) 1987-12-22 1987-12-22 Frequency modulation in phase-locked loops

Publications (1)

Publication Number Publication Date
CA1294013C true CA1294013C (en) 1992-01-07

Family

ID=22479281

Family Applications (1)

Application Number Title Priority Date Filing Date
CA000572701A Expired - Lifetime CA1294013C (en) 1987-12-22 1988-07-21 Frequency modulation in phase-locked loops

Country Status (5)

Country Link
US (1) US4810977A (en)
EP (1) EP0325025B1 (en)
JP (1) JP2960730B2 (en)
CA (1) CA1294013C (en)
DE (1) DE3881859T2 (en)

Families Citing this family (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2214012B (en) * 1987-12-23 1992-01-22 Marconi Instruments Ltd Frequency or phase modulation
EP0465559A4 (en) * 1989-03-27 1992-05-06 Motorola, Inc. Frequency synthesizer with fm modulation
US4994768A (en) * 1989-03-27 1991-02-19 Motorola, Inc. Frequency synthesizer with FM modulation
GB8915719D0 (en) * 1989-07-08 1989-08-31 Plessey Co Plc Wide bandwidth direct synthesiser modulation
DE69026151T2 (en) * 1989-07-08 1996-08-22 Plessey Semiconductors Ltd Frequency synthesizer
US5055800A (en) * 1990-04-30 1991-10-08 Motorola, Inc. Fractional n/m synthesis
US5055802A (en) * 1990-04-30 1991-10-08 Motorola, Inc. Multiaccumulator sigma-delta fractional-n synthesis
JPH0431815U (en) * 1990-07-05 1992-03-16
US5021754A (en) * 1990-07-16 1991-06-04 Motorola, Inc. Fractional-N synthesizer having modulation spur compensation
US5093632A (en) * 1990-08-31 1992-03-03 Motorola, Inc. Latched accumulator fractional n synthesis with residual error reduction
US5070310A (en) * 1990-08-31 1991-12-03 Motorola, Inc. Multiple latched accumulator fractional N synthesis
US5111162A (en) * 1991-05-03 1992-05-05 Motorola, Inc. Digital frequency synthesizer having AFC and modulation applied to frequency divider
US5337024A (en) * 1993-06-22 1994-08-09 Rockwell International Corporation Phase locked loop frequency modulator using fractional division
US5495206A (en) * 1993-10-29 1996-02-27 Motorola, Inc. Fractional N frequency synthesis with residual error correction and method thereof
FR2716312B1 (en) * 1994-02-11 1996-03-22 Thomson Csf Continuous phase modulation device by phase locked loop frequency synthesizer.
JPH08125443A (en) * 1994-10-20 1996-05-17 Anritsu Corp Phase modulator
US5691669A (en) * 1996-01-11 1997-11-25 Hewlett-Packard Co. Dual adjust current controlled phase locked loop
US5742208A (en) * 1996-09-06 1998-04-21 Tektronix, Inc. Signal generator for generating a jitter/wander output
US6008703A (en) * 1997-01-31 1999-12-28 Massachusetts Institute Of Technology Digital compensation for wideband modulation of a phase locked loop frequency synthesizer
US5983077A (en) * 1997-07-31 1999-11-09 Ericsson Inc. Systems and methods for automatic deviation setting and control in radio transmitters
US6219397B1 (en) * 1998-03-20 2001-04-17 Samsung Electronics Co., Ltd. Low phase noise CMOS fractional-N frequency synthesizer for wireless communications
US6973138B1 (en) 2000-01-26 2005-12-06 Pmc-Sierra, Inc. Advanced adaptive pre-distortion in a radio frequency transmitter
US7046721B2 (en) * 2001-03-20 2006-05-16 Ericsson Inc. System and method to enhance the capacity of a communication link
US6856791B2 (en) * 2002-03-14 2005-02-15 Ericsson Inc. Direct automatic frequency control method and apparatus
US6993300B2 (en) * 2002-04-25 2006-01-31 Agere Systems Inc. Accurate gain direct modulation (KMOD) using a dual-loop PLL
KR100481504B1 (en) * 2002-11-12 2005-04-07 삼성전자주식회사 Controlling apparatus of sampling phase for digital display apparatus and controlling method thereof
JP3934585B2 (en) * 2003-08-22 2007-06-20 松下電器産業株式会社 Wideband modulation PLL, wideband modulation PLL timing error correction system, modulation timing error correction method, and wireless communication apparatus adjustment method including wideband modulation PLL
US7470849B2 (en) * 2005-10-04 2008-12-30 Via Telecom Co., Ltd. Waveform generation for FM synthesis
US8396112B2 (en) * 2006-11-28 2013-03-12 Seiko Epson Corporation Circuitry and method for transferring data, and circuitry and method utilizing clock pulses
DE602008005794D1 (en) * 2007-11-02 2011-05-05 St Ericsson Sa PLL CALIBRATION

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3928813A (en) * 1974-09-26 1975-12-23 Hewlett Packard Co Device for synthesizing frequencies which are rational multiples of a fundamental frequency
DE2914814A1 (en) * 1979-04-11 1980-10-30 Siemens Ag FREQUENCY MODULATOR
GB2140234B (en) * 1983-05-17 1986-07-23 Marconi Instruments Ltd Signal generators
GB8313616D0 (en) * 1983-05-17 1983-06-22 Marconi Instruments Ltd Signal generators
US4546331A (en) * 1984-02-21 1985-10-08 Hewlett-Packard Company Frequency modulation in a phase-locked loop
US4573026A (en) * 1984-02-29 1986-02-25 Hewlett-Packard Company FM Modulator phase-locked loop with FM calibration

Also Published As

Publication number Publication date
EP0325025B1 (en) 1993-06-16
JP2960730B2 (en) 1999-10-12
DE3881859T2 (en) 1994-01-20
JPH01221904A (en) 1989-09-05
DE3881859D1 (en) 1993-07-22
EP0325025A1 (en) 1989-07-26
US4810977A (en) 1989-03-07

Similar Documents

Publication Publication Date Title
CA1294013C (en) Frequency modulation in phase-locked loops
US4573026A (en) FM Modulator phase-locked loop with FM calibration
JP2650492B2 (en) Fractional-N synthesizer with modulation spurious compensation
US5329253A (en) Frequency synthesis using frequency controlled carrier modulated with PLL feedback signal
US6141394A (en) Fractional-N frequency synthesizer with jitter compensation
US5604468A (en) Frequency synthesizer with temperature compensation and frequency multiplication and method of providing the same
US4546331A (en) Frequency modulation in a phase-locked loop
JPS61245629A (en) N fraction type frequency synthesizer
JP3079219B2 (en) Signal generator
US5821816A (en) Integer division variable frequency synthesis apparatus and method
US7271666B1 (en) Method and apparatus for canceling jitter in a fractional-N phase-lock loop (PLL)
GB2228840A (en) Frequency synthesisers
US4952889A (en) Loop filter modulated synthesizer
US4024464A (en) Frequency synthesizer of the phase lock loop type
EP1371167B1 (en) Fractional-n frequency synthesizer with fractional compensation method
US7605664B2 (en) All digital phase locked loop system and method
JPS58105631A (en) Frequency modulating transmitter
US4626787A (en) Application of the phaselock loop to frequency synthesis
EP0413475A2 (en) Analogue/digital phase locked loop
EP0497801B1 (en) A phase locked loop for producing a reference carrier for a coherent detector
JPH05122068A (en) Frequency synthesizer
KR101898585B1 (en) Spread Spectrum Clock generator based on Digitally Controlled Oscillator
US20050036580A1 (en) Programmable phase-locked loop fractional-N frequency synthesizer
KR100739998B1 (en) Phase locked loop with autocalibration device of voltage controlled oscillator
JPH0832350A (en) Frequency synthesizer

Legal Events

Date Code Title Description
MKLA Lapsed