CA1317173C - Plate for broken bone fixation - Google Patents

Plate for broken bone fixation

Info

Publication number
CA1317173C
CA1317173C CA000597650A CA597650A CA1317173C CA 1317173 C CA1317173 C CA 1317173C CA 000597650 A CA000597650 A CA 000597650A CA 597650 A CA597650 A CA 597650A CA 1317173 C CA1317173 C CA 1317173C
Authority
CA
Canada
Prior art keywords
bone
plate
screws
holes
fracture
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CA000597650A
Other languages
French (fr)
Inventor
Amnon Foux
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Research Council of Canada
Original Assignee
National Research Council of Canada
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Research Council of Canada filed Critical National Research Council of Canada
Application granted granted Critical
Publication of CA1317173C publication Critical patent/CA1317173C/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/56Surgical instruments or methods for treatment of bones or joints; Devices specially adapted therefor
    • A61B17/58Surgical instruments or methods for treatment of bones or joints; Devices specially adapted therefor for osteosynthesis, e.g. bone plates, screws, setting implements or the like
    • A61B17/68Internal fixation devices, including fasteners and spinal fixators, even if a part thereof projects from the skin
    • A61B17/80Cortical plates, i.e. bone plates; Instruments for holding or positioning cortical plates, or for compressing bones attached to cortical plates
    • A61B17/8033Cortical plates, i.e. bone plates; Instruments for holding or positioning cortical plates, or for compressing bones attached to cortical plates having indirect contact with screw heads, or having contact with screw heads maintained with the aid of additional components, e.g. nuts, wedges or head covers
    • A61B17/8047Cortical plates, i.e. bone plates; Instruments for holding or positioning cortical plates, or for compressing bones attached to cortical plates having indirect contact with screw heads, or having contact with screw heads maintained with the aid of additional components, e.g. nuts, wedges or head covers wherein the additional element surrounds the screw head in the plate hole
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/56Surgical instruments or methods for treatment of bones or joints; Devices specially adapted therefor
    • A61B17/58Surgical instruments or methods for treatment of bones or joints; Devices specially adapted therefor for osteosynthesis, e.g. bone plates, screws, setting implements or the like
    • A61B17/68Internal fixation devices, including fasteners and spinal fixators, even if a part thereof projects from the skin
    • A61B17/84Fasteners therefor or fasteners being internal fixation devices
    • A61B17/86Pins or screws or threaded wires; nuts therefor
    • A61B17/8695Washers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S606/00Surgery
    • Y10S606/907Composed of particular material or coated
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S606/00Surgery
    • Y10S606/907Composed of particular material or coated
    • Y10S606/909Bone
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S606/00Surgery
    • Y10S606/907Composed of particular material or coated
    • Y10S606/91Polymer
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S606/00Surgery
    • Y10S606/907Composed of particular material or coated
    • Y10S606/911Memory material

Abstract

???????. ????? ????
Haifa, Israel Assignee: National Research Council of Canada Ottawa, Canada Abstract An implantable plate for joining together two pieces of a broken bone is formed to have a plurality of elongated holes for the screws that fasten the plate to the bone on both sides of the fracture.
The screws are positioned at the end of the elongated hole that is farthest from the fracture. The portion of each elongated hole that is not occupied by the screw is filled with a cushion of elastic material that may be deformed elastically when the screw shank is pressed against it, thereby allowing lateral movement of the screw in the hole. When the plate is implanted in the body of a person and fastened to a fractured bone by means of screws through the elongated holes, the plate stabilizes the bone pieces but permits the screws, and hence the bone pieces, to move a short distance back and forth in the direction of the axis of the bone in order to promote healing.

Description

PIATE FOF~ BROKEN 13ONE FI~ATION

Backqround of the Invention 1. Field of the Invention The invention relates to internal bone fixation plates which are used by sur~eons to hold together broken bones so as to facilitate healing of the bone.
2. Description of the Prior Art The development of implantable plates for internal fixation of fractured long bones was first introduced late in the nineteenth century. The basic concept is to place a plate in contact with the bone so that the plate spans the fracture, and to fasten the plate to the bone on both sides of the fracture by means of screws.
The plate and the screws must, of course, be made of materials that will not cause adverse reactions in the body and that will not deteriorate in any reasonable time. Internal fixation plates are clinically appealing because they produce the significant advanta~es of a rapid return of functional weight bearing, improved rehabilitation of surrounding soft tissues, and shortened hospital stay.

Fundamental changes in the concept of fracture fixation took place in 1946 with the introduction of compression plates. These plates load the bone in compression at the time of fixation. Such plates are of-ten very rigid, and rigidity deprives the bone of normal stresses. The lack of stresses results in loss of bone mass and local weakening of the cortex of the bone, which is the bone's outer wall. It also restricts load-induced deformations at the fracture site, which ir~ibits the healing process by restricting the exchange of liquids via the canaliculi. The exchange of liquids is important for the nutrition of the osteocytes.

- 2 - ;~

An important unfavourable effect of rigid fixation is the suppression of the osteogenic potential of th~ periosteum during the healing phase, so that limited or no external callus develops around the fracture. This makes radiologic assessment of the state of union of a fracture impossible. It also delays the process of union, since the healing has to rely mostly on the direct growth of the Haversian envelope across the fracture. During the phase of remodelliny, the fact that the plate bears most of the load leads the loss of beneficial structural alignment of newly-formed osteons and lamellae, and thus to a weak union.

Delayed union and loss of bone mass and structure have led to refractures after removal of the plate. No objective criteria exist to define the best time to remove these devices, which are designed to fulfil a temporary function. Too-early removal might cause a refracture due to incomplete healing, and too-late removal might cause a refracture due to weakening of the bone under the plate.

Various plates to hold the broken bone in a good position for healing while reducing the rigidity of fixation and the shielding from stress have been tried and are well known in the art. The previous method of achieving this goal was by making the plates of a material having a lower modulus of elasticity, or by reducing their cross section. However, reduction of plate rigidity by such methods affects the axial, bending and torsional stiffnesses, and this is in opposition to the basic immediate need of holding the broken portions of the bone in their desired relative position while also permitting the bone to endure axial stress. The dilemma in the design of bone fixation plates is in the need to maintain 1 3 1 7 1 7~

very great stability of the relative positions of the broken pieces of bone, for which high bending and torsional stiffnesses are needed, while at the same time to allow axial loading of the bone, for which low ax.ial sti~fness is needed.

Summary of the Inventîon By the present invention there is provided a device adapted for placement in the body of a person to span a fracture in a bone and to be connected by means of screws to the bone on both sides of the fracture, comprising a plate, cushions, and screws, all constructed of biologically-compatible material, in which:
said plate is substantially rigid;
said plate is provided with a plurality of holes that enable passage of said screws through said plate such that the central axis of each of said holes lies approximately in a plane that contains the long axis of the bone and is nearly perpendicular to said long axis when the device is installed;
at least all those holes which are on one side of the fracture when the device is installed are elongated in a direction substantially parallel to the long axis of the bone when the device is installed;
each hole which is an elongated hole is partially filled with a said cushion which is a elastic biologically-compatible material positioned with a snug fit in the portion of said elongated hole which is to be closer to the fracture when the device is installed, said cushion being of a shape and material that permits one of said screws to pass through the unfilled portion of said elongated hole for the purpose of fastening the device to the bone.

1317~73 It is an object of ~he present invention to provide an implantable plate for broken bone ~ixation which will allow a small amount of movement of the broken pieces o~ the bone in the diraction of the long axis of the bone only, thereby stimulating healing, while holding the pieces of the bone quite rigid with respect to shearing, torsional and bending movements.

The foregoing and other objects of the present invention are attained by a system comprising a rigid plate, elastic cushions, low-friction washers, and conventional bone screws.

Theterm "elastic", asused herein, describes a solid material which responds to pressure by temporarily deforming in the sense of reducing its dimension in the direction of the applied pressure.
Thematerial may ormay not simultaneously expand in anotherdirection.
When the pressure is removed, the material returns to essentially the same dimensions which it had before the pressure was applied.

In the preferred embodiment, the plate will be longer in the direction substantially parallel to the long axis of the bone when the plate is installed. In the descriptions herein, the plate will be assumed to have (i) a long dimension that is intended to lie substantially parallel to the long axis of the bone and is called the "length", 5 (ii) a smaller dimension that is perpendicular to the length and will be tanyential to the surface of the bone when the plate is installed, and is called the "width", and (iii) a third dimension, usually the smallest of the three, that is orthogonal to the other two and is called the "thickness".

The terms length, width and thickness are used herein for convenience.
It must be underskood, however, that an embodiment of the present invention could have a different shape for special needs ln relation to certain fractured bones, and ne~ertheless the principles o~
the present invention would apply.

The plate is substantially rigid and is provided with a plurality of holes that have their axes in the direction of the thickness and are elongated in the direction of the length o~ the plate. The plate is sufficiently long to span a fracture and to be connected to the bone on both sides of the fracture by means of screws passing through the elongated holes. Each screw passing through an elongated hole has a round shank which fits snugly in the narrowest width of the elongated hole, and is positioned at the end of th~ elongated hole which is farther from the fracture. The portion ofthe elongated hole between the screw and the end of the elongated hole which is closer to the fracture is filled with a cushion made of elastic material. The screws can move laterally within the hole a small distance towards the ~racture by deforming the elastic cushion.

The elastic cushion has a shape that, in the plane of plate, isapproximately describedasbeingbounded by twoequal semi-circles facing the same direction and two parallel lines tangent to the said semi-circles and also parall~l to the linejoining the centres of the two semi-circles. The dimension in ths direction perpendicular to this plane, which is the direction of the thickness of the plate, is usually uniform. The method of making the cushion can be any suitable method known in the art.

The head of each screw may be separated from the plate by a flat washer made ofa material having a low coefficient of friction, so that the head of the screw will not bind on the plate and the movement of the screw will be facilitated.

The amount of elongation of a hole can be described in terms of the distance between the centres of the two semi-circles that define the rounded ends of the elongated hole. The wîdth of the elongated hole in the direction of the width o~ the plate is constant in the region between the semi-circles that define the rounded ends of the hole. A typical amount of elongation is 2 millimetres.
Experimentation has shown that this amount of elongation is approximately theoptimum forpromotinghealing ofthebroken bone.

This displacement of the centres is always in a direction substantially parallel to the length of the plate.

There is no known reason for making the elongation of any hole in a plate different from that of any other hole in a plate, but the present invention is not limited to plates in which all holes have the same size. All the holes in a plate will be elongated in the same direction. The methods of making the plate with the elongated holes can be any suitable method known in the art.

When the plate is implanted on a fractured bone, the axial compression loads that may ac~ on the bone are transmitted through the screws to the elastic cushions, which are thereby temporarily deformed as the screws, along with the bone, move a small distance towards the fracture. The amount of elongation of the holes and hence the size of the cushions, the modulus of elasticity of the cushion, and the number of screws in elongated holes are the principal determinants of the amount of relative movement of the bone sections at the fracture. It must be understood, however, that an embodiment of the present invention could have cushions of different material, shape and thickness for needs in relation to the amount of relative motion of fractured bone sections, and nevertheless the principles of the present invention would apply.

The method of preparing the bone, using bone drills and taps, and attaching the plate to the bone, are not significantly different wlth the present invention than with any bone fracture fixation plate known in the art.

The surgeon who implants theplate will lay open the surrounding tissue to expose as much of the bone as required, and will then position the pieces o~ broken bone by clamping them to a rigid template so that the fractured ends lineup and thebone is restored as nearly as possible to the configuration which it had before the fracture occurred. Various clamps well known in the art can be used to hold the bone in the desired position. The surgeon will then drill holes in the bone to rec~ive the screws, using holes in the template which position the drill so as to correctly space and align the holes. The template and clamps are then removed, and the holes in the bone are commonly tapped ko producean internal thread that will match the thread of the screw.

The surgeon will position the plate, with the cushions inserted in the elongated holes, against the bone and insert the screws through the washers and throuyh the plate so as to fasten the plate to the bone. Usually, care is taken to ensure that the screws are tightened with an equal torque.

There is no requirement with the present invention to separate the fractured ends of the bone by any distance, but neither is it desirable to force the fractured ends firml~ together. The surgeon, with experience, might find that it is advisable to introduce some small amount of separation of khe fractured ends, but this separation would always be less than the elongation of the holes.

Prior to installation of the plate, the surgeon might bend the plate at one or more places along its length in order to make it conform to the bone. However, it is important that no bending occurs at or very near the elongated holes, because a straight-line surface on the surface of the plate away from the bone is required in the vicinity of the elongated holes to permit the screw heads to slide back and forth along the plate.

Thenumber ofelongated holes depends on the size of the plate, which in turn depends on the size of the bone and the nature of the fracture that is to be fixed by the plate. The positioning of the plate is a matter for the judgement of the surgeon, and a variety of plates of different sizes and with different numbers of holes could be offered to the surgeon to suit different cases.
It is essential to have at least two screws on each side of the fracture, to prevent the section of the broken bone from pivoting about the screw as could happen if there is only one screw on one side of the fracture. It is highly desirable to have at least three screws on each side of the fracture, because that arrangement is safer.

A typical plate for use on a fractured long bone of the leg or arm would have much greater length than width, and would have at least six collinear elongated holes that would be placed so that at least three elongated holes were on each side of the fracture.

It is conceivable that in certain cases, where the piece of bone on one side of the fracture is small or oddly shaped, the holes in the plate on that side of the fracture should not be elongated and provided with a cushion but should be round like conventional holes in a bone fixation plate. If such a case, there is no requirement that the round holes be arrayed in straight lines parallel to the o length of the plate, as is required for elongated holes.

It is also conceivable that there could be, in the region of the principal fracture, additional pieces of bone which should be held in place so as to allow them to re-attach themselves to the bone, but which should not move during the healing process.
The plate could be provided with conventional holes, in additional to the elongated holes, and screws could be placed in the conventional holes for the purpose of securing such additional pieces of bone in a desired position.

It is further conceivable that large plates for large bones might have the elongated holes arranged in two or more parallel lines substantially parallel to the long axis of the bone when the plate is installed, or in some other useful pattern. Such a plate is likely to be curved to conform to the outer surface of the bone.

In all cases, the cushion is placed at the end of the elongated hole which is closer to the fracture. Therefore, on opposite sides ofthe fracture, the cushion will be at opposite ends ofthe elongated holes. When the plate and screws are first installed, and when the body is at rest, the screws will be fully towards the uncushioned end of the elongated hole~. When external forces on the broken bone tend to push the fractured ends together, a small amount of movement in that sense will occur, as the screws which are firmly fastened to the bone slide in the elongated hole and in so doing deform the elastic cushion.
When external forces on the broken bone tend to pull the fractured ends apart, the screws will not move from the rest position because they are at the rigid end of the elongated hole. Any force which might tend to rotate the pieces of bone around the long axis of the bone has no effect on the fracture, because the shank of the screw fits snugly in the elongated hole in the direction perpendicular to the long axis of the bone. Any force which might tend to bend the bone transversely to its long axis has no effect on the fracture, because the heads of the screws hold the bone firmly to the rigid plate and because the shank of the screw fits snugly in the elongated hole so as to prevent movement in the direction that is the width of the plate.

The cushion must, of course, be a substance that is biologically compatible, which means that it must not cause adverse reactions in the body and must not deteriorate for a reasonable time. Numerous plastics are known to have such properties, and examples of substances suitable for the present invention are "teflon" (trade mark for polytetrafluoroethylene) and polymethylmethacrylate. ~he cushion could also be made of natural or synthetic bone, and in that case the cushion would not simply be an inert part of the invention but would eventually merge with the pieces of broken bone. For the purpose of the present invention, the elasticity of the cushion is an important parameter. Clinical experience will determine the optimal choice of material for the cushion, ,~,,.

which might be different for different types of fractures, different bones of the body, and different people. It is known, however, that high elasticity such as is characteristic of latex for example, will not be appropriate. The elasticity that is characteristic of "nylon" is an example of the appropriate range.
The chosen material must also have the characteristic of quickly restoring itself to approximately its original shape and size when the deforming force is removed.

When the screws slide in the elongated holes and deform the cushions in the direction of the long axis of the bone, the cushions will tendtotemporarily expand in a perpendicular direction to compensate for the deformation. To allow for this distortion ofthe cushion, it is desirable that the cushions be slightly smaller than the thickness of the plate.

The plate and the screws must not cause adverse reactions in the body and must not deteriorate for a reasonable time~ Various materials with such properties are known and used in other types o~
bone fixation plates. The material of the plate is chosen for high rigidity, and may be stainless steel. The material ofthe screws is chosen as for typical surgical screws, and may be stainless steel.

The screws in the present invention must be able to slide a short distance in the elongated holeback and forth in the direction of the elongation, and hence the heads of the screws must not bind against the plate and must not be shaped so as to be rigidly confined in the elongated hole. To facilitate the sliding motion of the screws, a washer of low-friction material may be inserted between the head of the screw and the plate. In one embodiment of the invention, this washer and ths cushion at the end of the elongated hole are integral parts of the same thing, although they are not necessarily made of the same material. The screws required for this invention usually have a flat-bottomed head to conform to the usual flat-topped surface 5 of the plate. This is uncommon in surgical screws, because an object of most existing bone fixation plates and accompanying screws is to fasten the bone to the plate in a manner which allows absolutely no movement. An alternative embodiment of the present invention would use conically or spherically tapered screw heads which conform 10 to tapered sockets in the washers through which the screws pass, but experience and intuition indicate that the preferred embodiment, and the simplest, uses screw heads with flat bottoms.

The screws must be installed so that they all are very nearly 15 parallel to each other, because the sides of the elongated holes in the plate are all parallel. If the screws are not substantially parallel to the sides of the elongated holes, they will bind against the sides of the elongated holes so as to prevent or limit the sliding of the screws.

The side of the pla-te adjacent to the bone may be somewhat concave in order to conEorm to the approximately round outer surface of the bone. The desired degree of concavity depends on the diameter of the bone.

In all cases, the surEace of the plate on the side adjacent to the bone must be smooth to facilitate the sliding of the bone on the plate. In one embodiment of the invention, this surface may be coated with a thin layer of a material having a low coefficient 30 of friction. Various materials with that property are known in the art, but the chosen material must not cause adverse reactions in the body and must not deteriorate for a reasonable time. "Teflon"
is one such material. In another embodiment of the invention, a thin strip of low-~riction material is placed between the plate and the bone when the bone is installed.

The surface on the side of the plate away from the bone must be flat and smooth, at least in the regions close to each of the elongated holes. In one embodiment of the invention, to facilitate the sliding on the plate of the washers through which the screws pass, this surface is coated with a layer of low-friction material.

In an alternative embodiment of the invention, the axes of all the screws passing through the elongated holes in the plate nearly intersect the long axis ofthe bone but are not perpendicular to it. The axes of all screws on the same side of the fracture would typically be nearly parallel to each other, but not parallel to the axes of the screws on the other side of the fracture. The sides of each elongated hole are defined by a surface traced by a straight line moving parallel to the axis of the ~crew passing through that hole when the plate is installed. The portion of the elongated hole between the screw and the end of the elongated hole which is closest to the fracture is filled with an appropriately shaped cushion. The appropriate shape for the cushion includes sides that will be parallel to the axis of the screw when other sides are parallel to the surface of the plate. The head of each screw is separated from the plate by a wedge-shaped washer made of a material having a low coefficient of friction and positioned so that one wedge side is perpendicular to the axis of the screw passing through the wedge--shaped washer and the other wedge side is parallel to the surface of the plate which is away from the bone.

To facilitate the sliding motion of the screws, a washer of low-friction material may be inserted between the screw head and the plate. In one embodiment of the invention, this washer and the cushion at the end of the elongated hole are integral parts of the same thing, although they are not necessarily made of the same material.

The top of the screw head, containing the recess by which the screw driving tool engages the screw, can be any convenient shape. The recess in the top of the screw head by which the screw driving tool engages the screw can be any design that conforms to a screw driving tool, but for convenience would conform to standard screw driving tools so that a special screw driving tool is not required ~or the present invention.

The surgPon who installs the plate will usually drill and tap holes in the bone to receive the screws. These holes must, of course, be properly positioned to align with the pre-existing holes itl the plate. These holes must also be nearly parallel to the axes of the holes in the plate when the plate is installed, or the screws will not be positioned as they are required to be.
It would be inadvisable to drill the holes in the bone using the plate as a guide for two reasons: first because the drill would be likely to damage the sides of the holes in the plate, and the cushion if it is already in place, and second because elongated holes are not a reliable drilling guide.

Accordingly, a template for drilling the holes in the bone will normally be provided with the plate. The template must, of course, correspond to the particular plate. The template would have drill guides with round holes rather than elongated holes.
The round holes in the template must be spaced so that they align with the particular ends of the holes in the plate that are not the ends containing the cushion. The drill guides should also be designed to ensure that the holes drilled through them would be aligned with the axis of each screw passingthrough the elongated hole in the corresponding bone plate when the plate i5 installed.

An alternative embodiment of the invention uses a plate in which the narrowest width of each elongated hole, and thus of the cushion, is slightly larger than the diameter of the shank of the screw in that hole. In this embodiment, the cushion extends to all sides of the elongated hole and contains a substantially round hole for the screw in which the screw fits snugly and which is towards the end of the elongated hole farther from the fracture so that the amount of motion possible by deforming the part of the cushion farther from the fracture is small and is not inconsistent with the desire to allow a small amount of movement back and forth in the direction of the long axis of the bone. The size of the screw is not much smaller than the narrowest width of the elongated hole and the cushion is not highly elastic, so that the amount of movement which is possible in the direction transverse to the plate and to the long axis of the bone is small and is not inconsistent with the desire for substantial rigidity in all directions except the direction of the long axis of the bone.

A principal advantage of the embodiment last mentioned is that the required degree of perpendicularity of the screws to the plate is not as great. When using screws that fit closely to the sides of the elongated holes in the plate, all screws must be very nearly parallel to each other or else they will bind on the sides of the elongated holes. Installation o~ the screws with this accuracy might be difficult. When using screws that are ~lightly smaller than the elongated hole and that are surrounded on all sides by the cushioning material, the screws may be slightly off parallel and the cushioning material will prevent the screws from binding on the sides of the elongated holes.

A possible disadvantage of the embodiment last mentioned is that the parts of the cushioning material on the sides of the elongated hole and at the end of the elongated hole farther from the fracture have a risk of deteriorating and breaking under the pressure of use because they are relatively thin, and in particular are thinner than the principal part of the cushion. Accordingly, it is especially important in this embodiment to use material that is strong as well as being elastic and biologically compatible.

Brie~ DescriptiGn of the Drawings The above and other objects, features and advantages of the present invention will become apparent from a consideration of the following detailed description presented in connection with the accompanying drawing.

FIG. 1 shows a part of a fractured bone and a part of the plate, including two elongated holes only, spanning the fracture.

FIG. 2 shows a longitudinal section of tha same portion of the fractured bone and plate as viewed by a section along the line A-A in FIG. 1.

FIG. 3 shows a cross-section of the same portion of the fractured bone and plate as viewed by a section along the line B-B in FIGr 1~

FIG. 4 shows a washer having the cushion as an integral part of it.
FIG. 5 shows a longitudinal section of a strip of material that fulfils the functions of several washers and includes the cushions for several elongated holes as integral parts of the strip.

Detailed Description of Pre~erred ~mbodiments FIGS. l to 3 show a portion o~ a bone which has been broken into two pieces 1 and 2 at the fracture 3. A typical bone consists of an inner marrow lb and an outer shell la. The objective of medical treatment is to facilitate the union of the two fracture surfaces, 4a and 4b. The distance between the surfaces 4a and 4b is minimal, possibly nothing and not likely greater than 1 millimetre.
The plate, 5, which is a principal component of the present invention and of which only part is shown, spans the fracture 3. The elongated holes 6 and 7 contain screws which are not shown in Fig. 1. The ends of the elongated hole nearer to the fracture contain the cushions 8 and 9. The sides of the elongated holes 6 and 8 are perpendicular to the top surface 17 of the plate 5, and the same is true for all holes.

FIG. 2 and 3 show the screws in more detail. Each screw has a threaded portion lo, an unthreaded shank 11 in the form of a right circular cylinderwith sides at least as long as thethickness of the plate, and a head 12. The head is bounded on the bottom by a flat surface 13, and on the top 14 by any suitable surface such as the flat top with rounded edges that is shown. The top of the head contains a recess, not shown, designed to engage a standard surgical screw driving tool, which commonly requires an essentially hexagonal recess.

FIGS. 2 and 3 show the washer 18 which facilitates the sliding of the bottom surface 13 of the screw head 12 over the top surface 17 of the plate 5, where the term top surface refers to the surface of the plate furthest away from the bone. The same situation obtains for the washer 19 and all other washers related to elongated holes.

FIG. 2 shows, looking for example to the left of the fracture 3 only, that the cushion B does not extend above the plate 5 on the side away from the bone piece 1. Neither does the cushion 8 extend below the plate 5 on the side adjacent to the bone piece 1, and furihermore it is desirable that a small space 16 be left between the cushion and the bone to permit expansion of the cushion as a result of the deformation that occurs repeatedly in normal use. The cushion B must be held in its position by the combination of thewasher 18 and the screw head 12. That consideration dictates a minimum size of the washer 1~ and the screw head 12. Moreover, the minimum size of the washer 1~ and the screw head 12 should be such that no part of either of their edges on the side nearest to the plate 5 will ever fall within the edge of the elongated hole 6.

`- 1317173 FIG. 3 shows the screw inserted in a typical fashion, which is to pass all the way through the bone but not extend significantly beyond it. The length of screws is chosen appropriately for each case. The surface of the plate adjacent to the bone, ~hich may be called the bottom surface 15, of the plate 5 is represented in FIG. 3 as conforming very closely to the bone piece 1, but such very close conformity is not essential.

FIG. 4 shows an embodiment in which the cushion 8 is an integral part of the washer 18. The washer 18 and the cushion ~ may be made of the same material. Alternatively, a material chosen for the desired elasticity of the cushion and another best suited for the purpose of the washer may be joined together at the contact surface 21.

FIG. 5 shows an alternative embodiment of the cushion which provides a single strip 27 of suitable material that fulfils the function ofseveral washers, such as washer 18 and all other washers for all other elongated holes (not shown) on the same side of the fracture 3. The strip 27 contains round holes 24a, 24b and 24c which are spaced so that the ends 25a, 25b and 25c of those holes will align with the ends of the elongated holes exemplified by hole 7 which are the ends farthest from the fracture 3 when the plate 5 is installed. The strip 27 bears the cushions ~6al 26b and 26c which will fit into the elongated holes exemplified by hole 7 on the plate 5 at the ends nearest to the fracture 3.

The cushions 26a, 26b and 26c, are integral parts of the strip 27 and are either made of the same material as the strip 27 or are a dissimilar material joined to it at the contact surfaces 23a, 23b and 23c.

The strip 27 could extend for the length of that portion of the plate 5 which is on one side o* the fracture 3. Another strip on the other side of the fracture 3 would fulfil the functions of washer lg, cushion 9 and other cushions and washers (not shown) on that side of the fracture 3. The two strips may be identical but must be installed so that the cushions are on the side of the elongated hole nearer to the fracture. In order that the strips on opposite sides of the fracture 3 act like washers and independently slide back and forth in the direction allowed by the elongated holes 6 and 7 and similar holes~ at least one separate strip is required on each side of the fracture 3 and the strips on opposite sides of the fracture 3 must not touch each other when they have both slid as far as possible in the direction that deforms the cushions.

In yet another embodiment, a small part of the material of the cushion surrounds the screws on all sides that are not in contact with the principal cushion. In this embodiment, the narrowest widths of-the elongated holes, and thus of the cushions, are slightly larger than the diameter of the shanks of the screws, but the screws fit snugly into a substantially round hole in the cushioning material.

An alternative embodiment uses screws having tapered shanks which decrease in circumPerence at points farthsr away from the head of the screw, and the sides of the elongated holes and the sides of the cushions, which are in contact with the shanks of the screws, are tapered to match the taper of the shanks of the screws.

Other embodiments have a plate that has round holes without cushions on one side of the fracture, or have more than one line of elongated holes, but all elongated holes must be elongated parallel to the long axis of the bone.

It is to be understood that the above-described embodiments are only illustrative of the application of the principles of the present invention. Numerous other modifications and alternative arrangements may be devised by those skilled in the art without departing from the spirit and scope of the present invention, and the appended claims are intended to cover such modifications and arrangements.

Claims (12)

1. A device adapted for placement in the body of a person to span a fracture in a bone and to be connected by means of screws to the bone on both sides of the fracture, comprising a plate, cushions, and screws, all constructed of biologically-compatible material, in which:
said plate is substantially rigid;
said plate is provided with a plurality of holes that enable passage of said screws through said plate such that the central axis of each of said holes lies approximately in a plane that contains the long axis of the bone and is nearly perpendicular to said long axis when the device is installed;
at least all those holes which are on one side of the fracture when the device is installed are elongated in a direction substantially parallel to the long axis of the bone when the device is installed;
each hole which is an elongated hole is partially filled with a said cushion which is a elastic biologically-compatible material positioned with a snug fit in the portion of said elongated hole which is to be closer to the fracture when the device is installed, said cushion being of a shape and material that permits one of said screws to pass through the unfilled portion of said elongated hole for the purpose of fastening the device to the bone.
2. A device as defined in claim 1 in which one or more of said screws are provided with a washer installed between the head of said screws and the surface of said plate, said washer being made of a material having a low coefficient of friction.
3. A device as defined in claim 2 in which said washer is an integral part of said cushion.
4. A device as defined in claim 2 in which more than one of said washers comprise a strip that is long enough to completely span more than one of said elongated holes, said strip being provided with holes spaced to match said elongated holes so that said screws pass through said holes in the strip as wall as said elongated holes.
5. A device as defined in claim 4 in which said cushion in more than one of said elongated holes is an integral part of, and projects outwards from, said strip.
6. A device as defined in claim 1 in which all the holes are elongated holes and all are provided with said cushions.
7. A device as defined in claim 1 in which said cushion is an integral part of said plate.
8. A device as defined in claim 1 in which said cushion is made of natural or artificial bone.
9. A device as defined in claim 1 in which the surface of said plate that is farthest from the bone is essentially flat.
10. A device as defined in claim 1 in which the surface of said plate that is adjacent to the bone is concave.
11. A device as defined in claim 1 in which the same material that comprises said cushion extends to all sides of said elongated hole, with the greatest part of said material being towards the end of said elongated hole which is to be closer to the fracture when the device is installed, said screw having a shank that fits snugly across the narrowest width of said elongated hole allowing for the partial filling of the narrowest width by the cushion material.
12. A device as defined in claim 2 wherein said central axis of each of said elongated holes on one side of the fracture when the device is installed is not perpendicular to said long axis of the bone, and wherein each of said washers has non-parallel flat sides such that one of said flat sides is perpendicular to said central axis of said elongated hole and the other said flat side is parallel to the surface of said plate farthest from the bone.
CA000597650A 1989-11-08 1989-04-24 Plate for broken bone fixation Expired - Fee Related CA1317173C (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US07/433,144 US4943292A (en) 1989-11-08 1989-11-08 Plate for broken bone fixation

Publications (1)

Publication Number Publication Date
CA1317173C true CA1317173C (en) 1993-05-04

Family

ID=23719004

Family Applications (1)

Application Number Title Priority Date Filing Date
CA000597650A Expired - Fee Related CA1317173C (en) 1989-11-08 1989-04-24 Plate for broken bone fixation

Country Status (2)

Country Link
US (1) US4943292A (en)
CA (1) CA1317173C (en)

Families Citing this family (70)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4026777A1 (en) * 1990-08-24 1992-03-05 Haerle Anton FOCUS BONE SCREW AND / OR TAP FOR OSTEOSYNTHESIS WORK
FR2683445B1 (en) * 1991-11-13 1999-04-02 Michel Lahille LOMBO-SACRED PLATE. - WITH ANGULAR CORRECTION SYSTEM - VISCO ELASTIC DEVICE.
US5318575A (en) * 1992-02-03 1994-06-07 United States Surgical Corporation Method of using a surgical repair suture product
GB9206018D0 (en) * 1992-03-19 1992-04-29 Dall Desmond Meiring Bone fixation system
US5417698A (en) * 1992-10-09 1995-05-23 United States Surgical Corporation Apparatus for tightening elongated wound closure elements
US5356412A (en) * 1992-10-09 1994-10-18 United States Surgical Corporation Sternum buckle with rotational engagement and method of closure
US5330489A (en) * 1992-10-09 1994-07-19 United States Surgical Corporation Sternum closure buckle
US5355913A (en) * 1992-10-09 1994-10-18 United States Surgical Corporation Surgical repair device
EP0599640B1 (en) * 1992-11-25 1998-08-26 CODMAN & SHURTLEFF INC. Osteosynthesis plate system
US5484445A (en) * 1993-10-12 1996-01-16 Medtronic, Inc. Sacral lead anchoring system
CA2158890C (en) * 1995-09-22 2002-01-22 John Runciman Spherical washer for use with a bone screw
US6004323A (en) * 1997-02-04 1999-12-21 The University Of Iowa Research Foundation Surgically implantable fastening system
US6017345A (en) * 1997-05-09 2000-01-25 Spinal Innovations, L.L.C. Spinal fixation plate
US6123709A (en) * 1997-07-25 2000-09-26 Jones; Andrew R. Bone buttress plate and method of using same
US6783529B2 (en) 1999-04-09 2004-08-31 Depuy Orthopaedics, Inc. Non-metal inserts for bone support assembly
US6296645B1 (en) 1999-04-09 2001-10-02 Depuy Orthopaedics, Inc. Intramedullary nail with non-metal spacers
EP1370183B1 (en) * 1999-07-07 2014-02-19 Children's Hospital Medical Center Spinal correction system
US6540746B1 (en) 1999-09-30 2003-04-01 Sulzer Orthopedics Ltd. Bone plate for splinting a fracture at a bone with a plurality of bone screws
US20040153073A1 (en) * 2000-02-01 2004-08-05 Hand Innovations, Inc. Orthopedic fixation system including plate element with threaded holes having divergent axes
US6808527B2 (en) 2000-04-10 2004-10-26 Depuy Orthopaedics, Inc. Intramedullary nail with snap-in window insert
US7153309B2 (en) 2002-11-19 2006-12-26 Acumed Llc Guide system for bone-repair devices
US20050240187A1 (en) 2004-04-22 2005-10-27 Huebner Randall J Expanded fixation of bones
US7578825B2 (en) 2004-04-19 2009-08-25 Acumed Llc Placement of fasteners into bone
US7326212B2 (en) 2002-11-19 2008-02-05 Acumed Llc Bone plates with reference marks
US7537596B2 (en) 2003-06-20 2009-05-26 Acumed Llc Bone plates with intraoperatively tapped apertures
US7537604B2 (en) 2002-11-19 2009-05-26 Acumed Llc Bone plates with slots
US7717945B2 (en) 2002-07-22 2010-05-18 Acumed Llc Orthopedic systems
US6755833B1 (en) * 2001-12-14 2004-06-29 Kamaljit S. Paul Bone support assembly
US7070599B2 (en) * 2002-07-24 2006-07-04 Paul Kamaljit S Bone support assembly
US20030187443A1 (en) * 2002-03-27 2003-10-02 Carl Lauryssen Anterior bone plate system and method of use
DE10224005B4 (en) * 2002-05-29 2015-08-13 Stryker Leibinger Gmbh & Co. Kg Cutting / bending system for fitting a bone plate
US7537603B2 (en) 2002-07-22 2009-05-26 Acumed Llc Bone fusion system
FR2845588B1 (en) * 2002-10-09 2006-12-15 Biotech Internat SELF-LOCKING OSTEOSYNTHESIS DEVICE
WO2004045455A2 (en) 2002-11-19 2004-06-03 Acumed Llc Deformable bone plates
US8172885B2 (en) 2003-02-05 2012-05-08 Pioneer Surgical Technology, Inc. Bone plate system
US7303577B1 (en) * 2003-02-05 2007-12-04 Dean John C Apparatus and method for use in repairs of injured soft tissue
DE10320855B4 (en) * 2003-05-09 2008-08-14 Aesculap Ag & Co. Kg Implant with a threaded hole for a bone screw
US7635365B2 (en) 2003-08-28 2009-12-22 Ellis Thomas J Bone plates
ES2379877T3 (en) 2003-12-01 2012-05-04 Smith & Nephew, Inc. Humeral nail with an insert to fix a screw
US7468069B2 (en) 2004-02-10 2008-12-23 Atlas Spine, Inc. Static anterior cervical plate
US7740649B2 (en) 2004-02-26 2010-06-22 Pioneer Surgical Technology, Inc. Bone plate system and methods
US8900277B2 (en) 2004-02-26 2014-12-02 Pioneer Surgical Technology, Inc. Bone plate system
US7485133B2 (en) * 2004-07-14 2009-02-03 Warsaw Orthopedic, Inc. Force diffusion spinal hook
US20060032770A1 (en) * 2004-08-11 2006-02-16 Orbay Jorge L Surgical tray containing a bone graft substitute resistant to autoclaving and method of using the same
US7288095B2 (en) 2004-08-12 2007-10-30 Atlas Spine, Inc. Bone plate with screw lock
US7438715B2 (en) * 2005-01-06 2008-10-21 Spinal Llc Spinal implant kit
US7322984B2 (en) 2005-01-06 2008-01-29 Spinal, Llc Spinal plate with internal screw locks
US7410488B2 (en) 2005-02-18 2008-08-12 Smith & Nephew, Inc. Hindfoot nail
US20070191848A1 (en) * 2006-02-01 2007-08-16 Zimmer Technology, Inc. Hydrogel bone plate spacer
US8361130B2 (en) 2006-10-06 2013-01-29 Depuy Spine, Inc. Bone screw fixation
US8702762B2 (en) * 2007-03-27 2014-04-22 Depuy Spine, Inc. Passive screw locking mechanism
US8309521B2 (en) * 2007-06-19 2012-11-13 Zimmer, Inc. Spacer with a coating thereon for use with an implant device
US8361126B2 (en) 2007-07-03 2013-01-29 Pioneer Surgical Technology, Inc. Bone plate system
WO2009006604A1 (en) 2007-07-03 2009-01-08 Pioneer Surgical Technology, Inc. Bone plate system
KR101570213B1 (en) * 2007-12-17 2015-11-18 신세스 게엠바하 Dynamic bone fixation element and method of using the same
US8282675B2 (en) * 2008-01-25 2012-10-09 Depuy Spine, Inc. Anti-backout mechanism
US20090234386A1 (en) * 2008-03-11 2009-09-17 Dean John C Suture Cleat for Soft Tissue Injury Repair
US9775657B2 (en) 2011-09-30 2017-10-03 Acute Innovations Llc Bone fixation system with opposed mounting portions
US9237910B2 (en) 2012-01-26 2016-01-19 Acute Innovations Llc Clip for rib stabilization
EP2410929B1 (en) 2009-03-24 2019-06-26 Stabiliz Orthopedics, LLC Orthopedic fixation device with bioresorbable layer
US8568417B2 (en) 2009-12-18 2013-10-29 Charles River Engineering Solutions And Technologies, Llc Articulating tool and methods of using
US8882815B2 (en) 2010-06-23 2014-11-11 Zimmer, Inc. Flexible plate fixation of bone fractures
US8790379B2 (en) 2010-06-23 2014-07-29 Zimmer, Inc. Flexible plate fixation of bone fractures
US9295508B2 (en) * 2012-02-03 2016-03-29 Zimmer, Inc. Bone plate for elastic osteosynthesis
EP2860407B1 (en) * 2013-10-08 2017-01-18 MAGNA STEYR Fahrzeugtechnik AG & Co KG Structured component
JP6594946B2 (en) 2014-07-03 2019-10-23 アキュームド・エルエルシー Bone plate with movable joint
EP3740145A1 (en) 2018-01-15 2020-11-25 GLW, Inc. Hybrid intramedullary rods
WO2020006089A1 (en) * 2018-06-29 2020-01-02 Pioneer Surgical Technology, Inc. Bone plate system
US11324538B2 (en) 2019-12-04 2022-05-10 Biomet Manufacturing, Llc Active bone plate
US11877779B2 (en) 2020-03-26 2024-01-23 Xtant Medical Holdings, Inc. Bone plate system

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US31628A (en) * 1861-03-05 Improvement in sewing-machines
US28241A (en) * 1860-05-08 richards
US2486303A (en) * 1948-04-29 1949-10-25 Harry Herschel Leiter Surgical appliance for bone fractures
FR1505513A (en) * 1966-11-02 1967-12-15 Benoist & Girard Reunis Osteosynthesis plate
FR1538053A (en) * 1967-08-18 1968-09-07 Osteosynthesis plate combined with its key
US3596656A (en) * 1969-01-21 1971-08-03 Bernd B Kaute Fracture fixation device
US3779240A (en) * 1972-03-31 1973-12-18 S Kondo Compression plate for osteosynthesis
DE2806609C2 (en) * 1978-02-16 1980-03-13 Anton Dr. 4400 Muenster Haerle Osteosynthesis aids
CH645013A5 (en) * 1980-04-14 1984-09-14 Wenk Wilh Ag Osteosynthetic COMPRESSION PLATE.
US4338926A (en) * 1980-11-21 1982-07-13 Howmedica, Inc. Bone fracture prosthesis with controlled stiffness
SU959771A1 (en) * 1981-04-20 1982-09-23 Ижевский Государственный Медицинский Институт Apparatus for osteosynthesis
FR2517536B1 (en) * 1981-12-09 1986-12-12 Zbikowski Juan FUNCTIONAL FIXING DEVICE FOR OSTEO-SYNTHESIS USING COMPRESSION PLATES

Also Published As

Publication number Publication date
US4943292A (en) 1990-07-24

Similar Documents

Publication Publication Date Title
CA1317173C (en) Plate for broken bone fixation
US10993751B1 (en) Orthopedic implant in the form of a plate to be fixed between two bone parts
JP4808621B2 (en) Bone plate
US8070784B2 (en) Plating system for stabilizing a bony segment
US7621914B2 (en) Adjustable bone plate
US6413259B1 (en) Bone plate assembly including a screw retaining member
AU2004208819B2 (en) Midline occipital vertebral fixation system
US7288095B2 (en) Bone plate with screw lock
EP2147647B1 (en) Bone plate with fixation device
KR100315572B1 (en) Front neck plate system
JP4427056B2 (en) Osteosynthesis fixation plate
JP5580403B2 (en) Applicable bone fixation plate
EP1906850B1 (en) Bone plates with movable locking elements
US5938664A (en) Orthopaedic bone plate
US7468069B2 (en) Static anterior cervical plate
JP2000501624A (en) Apparatus for linking adjacent rods in spinal instrumentation
JPH07506988A (en) Bone fixation system
JP2004531328A (en) Fixation device for fixing spinal part
US20110054539A1 (en) Bone anchor, orthopaedic device and orthopaedic system
JP2016527966A (en) Anchors for external fixator
JP2000139938A (en) Fixure for bone flap
US11849983B2 (en) Bone fixation system and method
JP2000135220A (en) Bone flap fixator
CA3213337A1 (en) Tibial plateau leveling osteotomy plate with offset
JP2000139939A (en) Fixure for bone flap

Legal Events

Date Code Title Description
MKLA Lapsed