CA1320753C - Electro-optic device - Google Patents

Electro-optic device

Info

Publication number
CA1320753C
CA1320753C CA000600451A CA600451A CA1320753C CA 1320753 C CA1320753 C CA 1320753C CA 000600451 A CA000600451 A CA 000600451A CA 600451 A CA600451 A CA 600451A CA 1320753 C CA1320753 C CA 1320753C
Authority
CA
Canada
Prior art keywords
waveguide
electrode
ground plane
travelling
electro
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CA000600451A
Other languages
French (fr)
Inventor
Robert N. Shaw
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
BT&D Technologies Ltd
Original Assignee
BT&D Technologies Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by BT&D Technologies Ltd filed Critical BT&D Technologies Ltd
Application granted granted Critical
Publication of CA1320753C publication Critical patent/CA1320753C/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/21Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  by interference
    • G02F1/225Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  by interference in an optical waveguide structure
    • G02F1/2255Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  by interference in an optical waveguide structure controlled by a high-frequency electromagnetic component in an electric waveguide structure
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/29Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the position or the direction of light beams, i.e. deflection
    • G02F1/31Digital deflection, i.e. optical switching
    • G02F1/313Digital deflection, i.e. optical switching in an optical waveguide structure
    • G02F1/3132Digital deflection, i.e. optical switching in an optical waveguide structure of directional coupler type
    • G02F1/3134Digital deflection, i.e. optical switching in an optical waveguide structure of directional coupler type controlled by a high-frequency electromagnetic wave component in an electric waveguide structure
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F2203/00Function characteristic
    • G02F2203/21Thermal instability, i.e. DC drift, of an optical modulator; Arrangements or methods for the reduction thereof

Abstract

ABSTRACT

ELECTRO-OPTIC DEVICE

In electro-optic waveguides devices such as directional couplers and Mach-Zehnder interferometers having travelling-wave electrodes which overlie the waveguides, temperature sensitivity is reduced by arranging the ground plane electrode to overlie only part of the width of its associated waveguide portion. The invention has particular application to z-cut lithium niobate.

Figure 2.

Description

13 2 ~ r~ 3 3 This invention relates to electro-optic waveguide devices and in particular but not exclusively to inter~`erometers and directional couplers made from ferroelectric materials such as lithium niobate.
Electro-optic materia:Ls, such as lithium niobate (LNB) and KTP, have refractive indices which vary according to the magnitude and direction of applied elec~ric field.
Waveguide devices based on such materials are potentially useful for optical fibre communication and signal processing systems. Typically such devices are required to operate with light of wavelengths in the range 0.6 to 1.6~m, and in particular with light in the range l.3 to 1.6~m.
There are two basic device types: directional couplers; and Mach-Zehnder (MZ) interferometers. The first of these utilises the electro-optic effect to control the coupling between a pair of adjacent waveguides. By controlling their refractive indices it is possible to couple light from one waveguide to the other or vice versa. In an MZ interferometer an input waveguide is coupled to an output waveguide by a pair of waveguide arms. Each arm has an associated electrode by means of which it is possible to control the refractive indices of, and hence the velocity of propagation in, the two arms independently. It is therefore possible, by controlling the applied electric fields, to produce phase differences between signals travelling in the two arms resulting in constructive or destructive interference when they are combined.
Thus it is possible to amplitude modulate input optical signals according to the voltage difference between the electrodes. UnfortunatPly, materials such as LNB, which exhibit the electro-optic effect tend also to be pyroelectric:
electric fields are produced within the material as the result of a temperature changeO With some materials, notably z-cut LNB, the pyroe:lectric effect is so strong that a temperature change of a degree or less may be sufficient to produce an electric field comparable to that applied to produce switching ~32~7 33 of states in a directional coupler or MZ interferometer made of the material. Such electric fields strongly affect the optical states of the devices. Consequently it is necessary, with materials such as z-cut LNB which exhibit a strony pyroelectric effect, to provide very precise temperature control if reliable and repeatable performance is to be achieved from electro-optic waveguide devices based on such materials. Clearly the need to provide precise temperature control is a disadvantage and a disincentivs to the use of such materials. With z~cut LNB this disincentive is so strong that despite its stronger electro-optic effect, which would make possible the use of lower operating voltages and shorter devices, the material is eschewed in ~avour of x-cut LNB, which is less strongly pyroelectric, despite the latter's inferior electro-optic properties. Unfortunately, electro-optic devices made from x-cut LNB, unlike those made from z-cut LNB, require complex electrode structures which are g~nerally incompatible with high speed operation.
The problems of thermal instability are particularly severe in devices in which there is a non-symmetrical arrangement of electrodes. Examples of devices with non-symmetrical electrode arrangements include directional couplers and MZ interferometers having travelling-wave electrodes.
The use of travelling-wave electrodes potentially enables the production of devices capable of very high speed operation (typically switchable at gigabit rates). In such devices the electrode arranyement consists of a first electrode, overlying a first waveguide arm of the device and configured as a transmission line, generally in the form of a narrow strip, and a second electrode, the ground electrode, overlying a second waveguide arm of the device, and generally much more extensive than the first electrode. I'he problem of the thermal instability of devices made from z-cut LNB has been investigated, see for example the paper by Skeath et al, Appl. Phys. Lett., 49 (19), 10 November 1986, pp 1221-1223, ~32~

and that by Gee et al, ~ppl. Phys. Lett., 47 (3), 1 August 1985, pp 211-213, but as yet no one appears to have devised a workable solution which would enable the system application of z-cut LNB without very precise temperature control, particularly in the case that the electrodes are non-symmetrically disposed over the waveguide branches.
According to ths present invention, there is provided an electro-optic waveguide device comprising a travelling-wave structure having a ground plane electrode and a travelling-wave electrode, t:he ground plane electrode overlying an associated waveguide, wherein said associated waveguide has substantially constant width throughout that portion overlain by the ground plane electrode, the ground plane electrode overlying lass than the whole width of said associated waveguide throughou-t substantially the whole said portion, and the travelling-wave electrode overlying the full width of a second waveguide.
The present invention further provides an electro-optic waveguide device formed from a z-cut lithium niobate substrate, the device comprising a travelling-wave structure having a ground plane electrode and a travelling-wave electrode, the ground plane electrode overlying an associated waveguide, wherein said associated waveguide has substantially constant width throughout that portion overlain by the ground plane electrode, the ground plane electrode overlying less than the whole width of said associated waveguide throughout substantially the whole said portion, and the travelling-wave electrode overlying substantially the full width of a second waveguide.
The present invention further provides an electro-optic waveguide device formed on a z-cut lithium niobate substrate, the device having an asymmetric planar electrode structure comprising a pair of electrodes, a first electrode of said pair having a larger area than the second electrode of said pair, whPrein the first electrode overlies less than the whole width of its associated waveguide, the second ~2~7 ~3 electrode overlying a greater proportion of the width of its associated waveguide than the first electrode, so that the sensitivity of the device to pyroelectric fields is reduced.
Yet further provided by the present invention is an electro-optic waveguide device of the type in which first and second electrodes are formed on a surface of a substrate of a pyroelectric material, the substrate including first and second optical waveguides which are each at least partially overlain by a respective one of said electrodes, the optical waveguides having a refractive index which can be adjusted by application of an electric fieLd via said electrodes, the refractive index changing with changes in a component of said field, which component is substantially perpendicular to said surface on which said ~lectrodes are formed, wherein said first and second electrodes comprise respectively a ground plane electrode and a travelling-wave electrode, the improvement comprising fixing the ground plane electrode relative to said first waveguide such that throughout the entire overlain length of said first waveguide the ground plane electrode overlies less than the whole width thereof, thereby reducing the temperature sensitivity of the device.
By offsetting the electrodes in this way the temperature sensitivity of devices made from z-cut LNB is markedly reduced.
In Figure 1 of the above referenced paper by Gee et al there is shown a Mach-~ehnder interferometer with what is termed a "d. c bias" built-in by making a section of one interferometer arm, that under the ground electrode, appreciably wider than the second interferometer arm.
However, neither this nor the second described method of providing a built-in bias, that is by making the two arms of the interferometer different lengths, is favoured by Gee et al over the simpler alternative of applying, in operation, an appropriate ellectrical d. c bias. The relevance of the above referenced Figure 1 is that while the 'fattened' waveguide portion e~tends towards the other (second) interferometer arm, ~`

5 132~7~

the side of the ground plane electrode which lies closest to the second interferometer arm is straight and is aligned with the relevant edge of the waveguide regions which make up the bulk of the first interferometer arm. Consequently, part of the waveguide associated with the ground plane electrode is not actually covered by the ground plane electrode. It is not clear whether the illustrated electrode configuration is the result of a drafting error, as it is nowhere mentioned in the text and, significantly, differs Erom the more detailed Figure 1 in the similar paper of C. M. Gee and G. D. Thermond published in SPIE. Vol 47, Optical Technology for Microwave Applications (1984), pp 17-22, which shows an identical waveguide structure, but an electrode configuration in which the inner edges of the electrodes are coterminous with their respective waveguides.
A possible reason for Gee et al forming the ground plane electrode as shown in Figure 1 of the first referenced of -their papers is their interest in maximising the ratio of lateral resistance relative to longitudinal resistance for the purpose of minimising voltage induced drift. It is clear that Gee et al did not appreciate that the position of the edge of the ground plane electrode relative to the edge of the associated waveguide was in any way relevant to the problems of pyroelectric drift. Consequently, it is believed that the above referenced papers by Gee et al are o~ no further relevance to the present invention.
Preferred embodiments of the present invention will now be described, by way of example only, with reference to the accompanying drawings in which:
Figure l(a) is a schematic plan view of a conventional Mach-Zehnder interferometer with low speed electrodes;
Figure l(b~ shows schematically a cross section, along the line A-A', through the device of Figure l(a).

132 ~7 ~3 Figure l(c) is a schematic plan view of a conventional Mach Zehnder interferometer with a travelling-wave electrode structure for high speed operation;
Figure l(d) is a schematic plan view of a conventional directional coupler with low speed electrodes;
Figure l(e) is a schematic plan view of a conventional directional coupler with a travelling-wave electrode structure for high speed operation;
Figure 2 is a schematic: plan view of a Mach-Zehnder interferometer according to the present invention;
Figure 3 is a schematic cross-sectional view along the line A-A of Figure 2;
Figure 4 is a schematic plan view of a directional coupler according to the present invention;
Figure 5 shows the transfer characteristic of an MZ
interferometer.
In Figure l(a) - l(e) are shown conventional directional couplers and MZ interferometers with electrode structures suitable for use with z-cut LNB. An optical waveguide pattern 1 is formed in a lithium niobate substrate 2 by selective diffusion of titanium. A buffer layer 3 of silicon dioxide, alumina or indium tin oxide is, optionally, formed over the waveguide pattern 1. Electrodes 5 and 6 of gold, aluminium or an aluminium alloy are formed on the buffer layer over part of the waveguide 1. The substrate 2, which is a sawn and polished slice of crystal, is typically 40mm long, lOmm wide and lmm thick. The underside of the substrate is metallised ~. For an M2 interferometer the waveguides are approximately 5~m wide, with the waveguide arms 17 and 18 separated by about lO~m. When a voltage is applied across the electrodes, some of the field passes through the waveguides.
For a z-cut LNB device, it is the vertical component of the field which changes the refractive index of the material.
The transfer characteristic of an MZ interferometer is shown in Figure 5. The characteristic is essentially a periodic cos squared function, with peaks occurring where '":' ~32~7~3 there is constructive interference, with troughs where there is destructive interference. The electrode voltage required to drive the output from a peak to a trough is the switching voltage V~. The voltage required to obtain the output peak nearest to zero volts is the phase bias voltage ~0. A typical switching voltage for 20mm long electrodes, on Z-GUt LNB, is about 3.5 volts. The phase bias voltage can be any value up to the switching voltage.
Figures l(a) and l(d) show devices having low speed electrode arrangements, in each case the electrode to which the modulating signal is applied, hereinafter the 'live electrode' 5,15, and the electrode which is connected to ground, hereinafter the 'ground electrode' 6,16, are the same size and shape and are disposed relative to their respective waveguide portions 7,17 and 8,18 in essentially the same way.
By way of contrast, Figures l(c) and l(e) show devices having electrodes arranged for high speed operation.
In each case there is a travelling-wave electrode 25,35 which is in the form of a stripline not much wider (width typically 13~m) than the associated waveguide portion 27, 37 (typical width 9~m) and which overlies and extends along the top of that waveguide portion, while the ground electrode 26,36 overlies its waveguide portion 28,38 to a similar extent but extends laterally to cover a much larger area of substrate than the travelling wave electrode does. Devices with such an electrode arrangement are particularly sensitive to temperature changes, especially when made from z-cut LNB.
We have discovered that if, instead of the electrode arrangement shown in Figures l(c) and l(e), an electrode arrangement of the type shown in Figure 2 and 4 is used the degree of temperature sensitivity can be markedly reduced, even in z-cut LNB. The difference between the old electrode arrangement and that according to the invention is that the larger electrode, in this case the ground electrode, instead of covering the entire width of its associated waveguide portion extends only part way over its associated waveguide ~3207~3 portion. Typically, optimum results will be obtained with the ground electrode offset to expose about half the width of its associated wav~guide portion. Where the limbs of the waveguide are 7-8~m wide the ground electrode will then tvpically be offset to expose 3-4~m of the width of the waveguide. There is no necessity for the electrode separation to be increased (a typical separation is 10~m), in effect the electrodes can both be moved by the same amount relative to the waveguides. Such a rearrangement is possible without exposing the waveguide "previously" covered by the travelling-wave electrode because the travelling-wave electrode is generally wider than the waveguide (to ease alignment problems and to reduce the risk of electro-migration~. If the waveguide which is under the travelling-wave electrode were to be part exposed as a result of that electrode's repositioning, some of the benefits of exposing the other waveguide could be lost as the result of unscreened pyroelectric charge being present over both waveguides.
Moreover, if the travelling-wave electrode were to cover only part of the width of its associated waveguide, it is likely that the switching voltage would be increased.
Our understanding of the origin of the improved temperature stability of device according to the invention is given below. Electrodes on the surface of a pyroelectric material give rise to local variations in any pyroelectric field produced. In devices made in z-cut LNB (but not generally in x-cut LNB) the electrodes are immediately over the waveguides, consequently the waveguides are likely to be subjected to the local variations in field associated with the presence of the electrodes. Where there is a symmetrical electrode arrangement~ both waveguide portions experience similar variations in pyroelectric field as the temperature of the substrate varies. If there is a non-symmetrical electrode arrangement it is likely that the two waveguide portions will be subject to unequal pyroelectric fields as the temperature of the substrate varies. The imbalance in the .~

~32~7~3 pyroelectric fields results in a temperature induced shift of the electro-optic transfer characteristic and thus an increased temperature sensitivity.
By uncovering part of the waveguide associated with the ground plane electrode, the field lines associated with the unscreened charge are caused to pass through the waveguide as they do through the waveguide associated with the other electrode. This contrasts with the situation in prior art devices, where the ground plane electrode covers and extends significantly beyond the edges of its associated waveguide, which results in the field lines associated with the unscreened pyroelectric charge and largely or wholly missing the waveguide.
Clearly the invention is applicable to any material which exhibits both the electro-optic effect and the pyroelectric effect and for which the electrodes are arranged generally to overlie the waveguides/waveguide portions, that is those in which the component of electric field normal to the substrate surface (the 'vertical' field) influences the refractive index of the waveguide. With x~cut LNB the usual electrode arrangement involves the electrodes lying adjacent rather than above the waveguides, since in the x-cut material it is the component oE electric field parallel to the substrate surface which influences the refractive index of the waveguide. Generally temperature sensitivity ascribable to distortions of the pyroelectric field caused by unbalanced electrode disposition are likely to be worst where there is a travelling-wave electrode arrangement and it is to such applications that the present invention is particularly directed.

Claims (19)

1. An electro-optic waveguide device comprising a travelling-wave structure having a ground plane electrode and a travelling-wave electrode, the ground plane electrode overlying an associated waveguide, wherein said associated waveguide has substantially constant width throughout that portion overlain by the ground plane electrode, the ground plane electrode overlying less than the whole width of said associated waveguide throughout substantially the whole said portion, and the travelling-wave electrode overlying the full width of a second waveguide.
2. A device as claimed in claim 1, wherein the device is formed in a z-cut lithium niobate substrate.
3. An electro-optic waveguide device formed from a z-cut lithium niobate substrate, the device comprising a travelling-wave structure having a ground plane electrode and a travelling-wave electrode, the ground plane electrode overlying an associated waveguide, wherein said associated waveguide has substantially constant width throughout that portion overlain by the ground plane electrode, the ground plane electrode overlying less than the whole width of said associated waveguide throughout substantially the whole said portion, and the travelling-wave electrode overlying substantially the full width of a second waveguide.
4. A device as claimed in claim 3, wherein the travelling-wave electrode overlies the full width of the second waveguide.
5. A device as claimed in any one of claims 1, 2, 3 or 4, wherein no part of the ground plane electrode overlies more than 90% of the width of said associated waveguide.
6. A device as claimed in any one of claims 1, 2, 3 or 4, wherein the ground plane electrode overlies only 40%
to 60% of the width of said associated waveguide throughout the portion overlain.
7. A device as claimed in any one of claims 1, 2, 3 or 4, wherein the travelling-wave electrode is wider than the second waveguide.
8. A device as claimed in claim 7, wherein the portion of the travelling-wave electrode which overlies the second waveguide is between 10µm and 15µm wide, and the second waveguide is between 5µm and 10µm wide.
9. A device as claimed in any one of claims 1, 2, 3 or 4, wherein the device is an interferometer.
10. A device as claimed in any one of claims 1, 2, 3 or 4, wherein the device is a directional coupler.
11. An electro-optic waveguide device formed on a z-cut lithium niobate substrate, the device having an asymmetric planar electrode structure comprising a pair of electrodes, a first electrode of said pair having a larger area than the second electrode of said pair, wherein the first electrode overlies less than the whole width of its associated waveguide, the second electrode overlying a greater proportion of the width of its associated waveguide than the first electrode, so that the sensitivity of the device to pyroelectric fields is reduced.
12. An electro-optic waveguide device as claimed in claim 11, wherein said associated waveguide has substantially constant width throughout that portion overlain by the electrode of larger area.
13. An electro-optic waveguide device as claimed in claim 11 or 12, wherein throughout that portion overlain said electrode overlies said associated waveguide by a substantially constant amount.
14. An electro-optic waveguide device as claimed in claim 12, wherein said electrode overlies said associated waveguide to between 30% and 70%.
15. An electro-optic waveguide device of the type in which first and second electrodes are formed on a surface of a substrate of a pyroelectric material, the substrate including first and second optical waveguides which are each at least partially overlain by a respective one of said electrodes, the optical waveguides having a refractive index which can be adjusted by application of an electric field via said electrodes, the refractive index changing with changes in a component of said field, which component is substantially perpendicular to said surface on which said electrodes are formed, wherein said first and second electrodes comprise respectively a ground plane electrode and a travelling-wave electrode, the improvement comprising fixing the ground plane electrode relative to said first waveguide such that throughout the entire overlain length of said first waveguide the ground plane electrode overlies less than the whole width thereof, thereby reducing the temperature sensitivity of the device.
16. An electro-optic device according to claim 15, wherein the travelling-wave electrode overlies substantially the whole width of said second waveguide portion.
17. An electro-optic device according to claim 15 or claim 16, wherein the substrate comprises z-cut lithium niobate.
18. An electro-optic device comprising:

a substrate;
a pair of adjacent waveguides, comprising a first and a second waveguides, arranged on said substrate for guiding optical signals input thereto:
a pair of electrodes, comprising a ground plane electrode and a travelling-wave electrode, overlying said first and said second waveguide, respectively, for controlling the refractive indica thereof;
means for applying an external electric field to produce a phase difference between the optic signals travelling in the waveguides; and means for connecting said waveguides to an external optic circuit, wherein said first waveguide has substantially constant width throughout the portion overlain by the ground plane electrode; said ground plane electrode overlies less than the whole width of said first waveguide; and said travelling-wave electrode overlies substantially the full width of the second waveguide.
19. an electro-optic device according to claim 18 wherein the substrate comprises z-cut lithium niobate.
CA000600451A 1988-05-23 1989-05-23 Electro-optic device Expired - Fee Related CA1320753C (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
GB888812180A GB8812180D0 (en) 1988-05-23 1988-05-23 Electro-optic device
GB8812180.1 1988-05-23

Publications (1)

Publication Number Publication Date
CA1320753C true CA1320753C (en) 1993-07-27

Family

ID=10637377

Family Applications (1)

Application Number Title Priority Date Filing Date
CA000600451A Expired - Fee Related CA1320753C (en) 1988-05-23 1989-05-23 Electro-optic device

Country Status (10)

Country Link
US (1) US5189713A (en)
EP (1) EP0343939B1 (en)
JP (1) JPH03504899A (en)
AT (1) ATE95616T1 (en)
AU (1) AU628822B2 (en)
CA (1) CA1320753C (en)
DE (1) DE68909675T2 (en)
ES (1) ES2045429T3 (en)
GB (1) GB8812180D0 (en)
WO (1) WO1989011676A1 (en)

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5404412A (en) * 1991-12-27 1995-04-04 Fujitsu Limited Optical waveguide device
US5455876A (en) * 1992-10-23 1995-10-03 General Microwave Israel Corporation High-speed external integrated optical modulator
US5339369A (en) * 1992-10-23 1994-08-16 General Microwave Israel Corporation High-speed external modulator
JP3628342B2 (en) * 1993-09-17 2005-03-09 富士通株式会社 Dielectric optical waveguide device
JP2825056B2 (en) * 1994-02-24 1998-11-18 日本電気株式会社 Light control device
JPH07318986A (en) * 1994-05-25 1995-12-08 Nec Corp Waveguide type optical switch
WO1996002860A1 (en) * 1994-07-13 1996-02-01 General Microwave Israel Corporation High-speed external modulator
US5502781A (en) * 1995-01-25 1996-03-26 At&T Corp. Integrated optical devices utilizing magnetostrictively, electrostrictively or photostrictively induced stress
US5749132A (en) * 1995-08-30 1998-05-12 Ramar Corporation Method of fabrication an optical waveguide
EP0813092B1 (en) * 1996-06-14 2007-03-07 Sumitomo Osaka Cement Co., Ltd. Optical waveguide modulator with travelling-wave type electrodes
US5963034A (en) * 1996-09-19 1999-10-05 Ramar Corporation Electro-optic electromagnetic field sensor system with optical bias adjustment
US6128424A (en) * 1998-03-31 2000-10-03 Litton Systems Inc. Dual purpose input electrode structure for MIOCs (multi-function integrated optics chips)
US6372284B1 (en) 1998-06-11 2002-04-16 Optelecom, Inc. Fluoropolymer coating of lithium niobate integrated optical devices
US7426326B2 (en) * 2004-03-12 2008-09-16 The United States Of America As Represented By The Secretary Of The Navy Low loss bridge electrode with rounded corners for electro-optic modulators
WO2005089332A2 (en) * 2004-03-12 2005-09-29 The Government Of The United States Of America, As Represented By The Secretary Of The Navy Low loss electrodes for electro-optic modulators
JP4789460B2 (en) * 2004-12-22 2011-10-12 株式会社アドバンテスト Optical switch and optical test equipment
US8217665B2 (en) * 2008-11-25 2012-07-10 Wisconsin Alumni Research Foundation Radio-frequency ion channel probe
TW201344285A (en) * 2012-04-26 2013-11-01 Hon Hai Prec Ind Co Ltd Electrooptical modulator
DE102022203109A1 (en) 2022-03-30 2023-10-05 Q.ant GmbH Photonic circuit

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2440265A1 (en) * 1978-11-04 1980-05-30 Hehl Karl REMOVABLE INJECTION UNIT FOR A MOLDING MACHINE FOR SYNTHETIC MATERIALS
FR2449291A1 (en) * 1979-02-15 1980-09-12 Carenco Alain METHOD FOR BALANCING AN INTEGRATED OPTICAL DEVICE USING A THIN METAL LAYER AND DEVICE OBTAINED THEREBY
FR2533714A1 (en) * 1982-09-28 1984-03-30 Thomson Csf NON-LINEAR INTEGRATED OPTICAL COUPLER DEVICE AND PARAMETRIC OSCILLATOR COMPRISING SUCH A DEVICE
FR2545947B1 (en) * 1983-05-10 1986-03-21 France Etat DIRECT ELECTRO-OPTICAL COUPLER WITH THREE ELECTRODES AND ALTERNATE PHASE
US4691984A (en) * 1985-09-26 1987-09-08 Trw Inc. Wavelength-independent polarization converter
GB2193337B (en) * 1986-07-30 1990-03-07 Gen Electric Plc Optical switch apparatus
GB8626152D0 (en) * 1986-11-01 1986-12-03 Plessey Co Plc Optical switch arrays
JP2928532B2 (en) * 1988-05-06 1999-08-03 株式会社日立製作所 Quantum interference optical device
US4940305A (en) * 1989-03-22 1990-07-10 The Boeing Company Optical switch based on 1×2 directional coupler

Also Published As

Publication number Publication date
AU3698289A (en) 1989-12-12
DE68909675D1 (en) 1993-11-11
DE68909675T2 (en) 1994-04-28
ES2045429T3 (en) 1994-01-16
WO1989011676A1 (en) 1989-11-30
AU628822B2 (en) 1992-09-24
GB8812180D0 (en) 1988-06-29
EP0343939A1 (en) 1989-11-29
EP0343939B1 (en) 1993-10-06
JPH03504899A (en) 1991-10-24
US5189713A (en) 1993-02-23
ATE95616T1 (en) 1993-10-15

Similar Documents

Publication Publication Date Title
CA1320753C (en) Electro-optic device
US6687425B2 (en) Waveguides and devices incorporating optically functional cladding regions
US4291939A (en) Polarization-independent optical switches/modulators
US4679893A (en) High switching frequency optical waveguide switch, modulator, and filter devices
US7088875B2 (en) Optical modulator
US4273411A (en) Optical wavelength filter
CA1298391C (en) Electro-optical switch
US4645293A (en) Optical waveguide coupler having a grating electrode
US4983006A (en) Polarization-independent optical waveguide switch
EP0669546B1 (en) Waveguide-type optical device
US4776656A (en) TE-TM mode converter
EP0153312B1 (en) Electro-optical filter device
WO2003010592B1 (en) Waveguides and devices incorporating optically functional cladding regions
CA2207712C (en) Optical waveguide device
JP3272064B2 (en) 4-section optical coupler
US6845183B2 (en) Slotted electrode electro-optic modulator
US5801871A (en) Wide band and low driving voltage optical modulator with improved connector package
JP3660529B2 (en) Optical waveguide device
US20220382118A1 (en) Optical modulator
CA2417298A1 (en) Optical modulation device having excellent electric characteristics for effectively restricting thermal drift and method for manufacturing the same
US20230069468A1 (en) Optical waveguide element and optical modulation element
US20230057036A1 (en) Optical modulation element
WO2021201131A1 (en) Electro-optical device
JPH0588123A (en) Variable wavelength filter
JPS6269247A (en) Optical switch

Legal Events

Date Code Title Description
MKLA Lapsed