CA1321681C - Functional and biocompatible intervertebral disc spacer - Google Patents

Functional and biocompatible intervertebral disc spacer

Info

Publication number
CA1321681C
CA1321681C CA000602353A CA602353A CA1321681C CA 1321681 C CA1321681 C CA 1321681C CA 000602353 A CA000602353 A CA 000602353A CA 602353 A CA602353 A CA 602353A CA 1321681 C CA1321681 C CA 1321681C
Authority
CA
Canada
Prior art keywords
spacer according
laminae
elastomer
biocompatible
disc
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CA000602353A
Other languages
French (fr)
Inventor
Elizabeth H. Chen
Alastair J. Clemow
Casey K. Lee
Noshir A. Langrana
Harold Alexander
John R. Parsons
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
University of Medicine and Dentistry of New Jersey
Rutgers State University of New Jersey
Johnson and Johnson Professional Inc
Original Assignee
University of Medicine and Dentistry of New Jersey
Rutgers State University of New Jersey
Johnson and Johnson Orthopaedics Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by University of Medicine and Dentistry of New Jersey, Rutgers State University of New Jersey, Johnson and Johnson Orthopaedics Inc filed Critical University of Medicine and Dentistry of New Jersey
Application granted granted Critical
Publication of CA1321681C publication Critical patent/CA1321681C/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2/44Joints for the spine, e.g. vertebrae, spinal discs
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2/44Joints for the spine, e.g. vertebrae, spinal discs
    • A61F2/442Intervertebral or spinal discs, e.g. resilient
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2/30721Accessories
    • A61F2/30724Spacers for centering an implant in a bone cavity, e.g. in a cement-receiving cavity
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2/30767Special external or bone-contacting surface, e.g. coating for improving bone ingrowth
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2/3094Designing or manufacturing processes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2/3094Designing or manufacturing processes
    • A61F2/30965Reinforcing the prosthesis by embedding particles or fibres during moulding or dipping
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2002/30001Additional features of subject-matter classified in A61F2/28, A61F2/30 and subgroups thereof
    • A61F2002/30003Material related properties of the prosthesis or of a coating on the prosthesis
    • A61F2002/30004Material related properties of the prosthesis or of a coating on the prosthesis the prosthesis being made from materials having different values of a given property at different locations within the same prosthesis
    • A61F2002/30009Material related properties of the prosthesis or of a coating on the prosthesis the prosthesis being made from materials having different values of a given property at different locations within the same prosthesis differing in fibre orientations
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2002/30001Additional features of subject-matter classified in A61F2/28, A61F2/30 and subgroups thereof
    • A61F2002/30003Material related properties of the prosthesis or of a coating on the prosthesis
    • A61F2002/30004Material related properties of the prosthesis or of a coating on the prosthesis the prosthesis being made from materials having different values of a given property at different locations within the same prosthesis
    • A61F2002/30016Material related properties of the prosthesis or of a coating on the prosthesis the prosthesis being made from materials having different values of a given property at different locations within the same prosthesis differing in hardness, e.g. Vickers, Shore, Brinell
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2002/30001Additional features of subject-matter classified in A61F2/28, A61F2/30 and subgroups thereof
    • A61F2002/30003Material related properties of the prosthesis or of a coating on the prosthesis
    • A61F2002/3006Properties of materials and coating materials
    • A61F2002/30065Properties of materials and coating materials thermoplastic, i.e. softening or fusing when heated, and hardening and becoming rigid again when cooled
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2002/30001Additional features of subject-matter classified in A61F2/28, A61F2/30 and subgroups thereof
    • A61F2002/30003Material related properties of the prosthesis or of a coating on the prosthesis
    • A61F2002/3006Properties of materials and coating materials
    • A61F2002/30069Properties of materials and coating materials elastomeric
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2002/30001Additional features of subject-matter classified in A61F2/28, A61F2/30 and subgroups thereof
    • A61F2002/30108Shapes
    • A61F2002/3011Cross-sections or two-dimensional shapes
    • A61F2002/30112Rounded shapes, e.g. with rounded corners
    • A61F2002/30133Rounded shapes, e.g. with rounded corners kidney-shaped or bean-shaped
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2002/30001Additional features of subject-matter classified in A61F2/28, A61F2/30 and subgroups thereof
    • A61F2002/30316The prosthesis having different structural features at different locations within the same prosthesis; Connections between prosthetic parts; Special structural features of bone or joint prostheses not otherwise provided for
    • A61F2002/30535Special structural features of bone or joint prostheses not otherwise provided for
    • A61F2002/30563Special structural features of bone or joint prostheses not otherwise provided for having elastic means or damping means, different from springs, e.g. including an elastomeric core or shock absorbers
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2/30767Special external or bone-contacting surface, e.g. coating for improving bone ingrowth
    • A61F2002/30929Special external or bone-contacting surface, e.g. coating for improving bone ingrowth having at least two superposed coatings
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2/3094Designing or manufacturing processes
    • A61F2002/30968Sintering
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2/44Joints for the spine, e.g. vertebrae, spinal discs
    • A61F2002/4495Joints for the spine, e.g. vertebrae, spinal discs having a fabric structure, e.g. made from wires or fibres
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2210/00Particular material properties of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof
    • A61F2210/0071Particular material properties of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof thermoplastic
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2230/00Geometry of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof
    • A61F2230/0002Two-dimensional shapes, e.g. cross-sections
    • A61F2230/0004Rounded shapes, e.g. with rounded corners
    • A61F2230/0015Kidney-shaped, e.g. bean-shaped
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2250/00Special features of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof
    • A61F2250/0014Special features of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof having different values of a given property or geometrical feature, e.g. mechanical property or material property, at different locations within the same prosthesis
    • A61F2250/0019Special features of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof having different values of a given property or geometrical feature, e.g. mechanical property or material property, at different locations within the same prosthesis differing in hardness, e.g. Vickers, Shore, Brinell
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2250/00Special features of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof
    • A61F2250/0014Special features of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof having different values of a given property or geometrical feature, e.g. mechanical property or material property, at different locations within the same prosthesis
    • A61F2250/0028Special features of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof having different values of a given property or geometrical feature, e.g. mechanical property or material property, at different locations within the same prosthesis differing in fibre orientations
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2310/00Prostheses classified in A61F2/28 or A61F2/30 - A61F2/44 being constructed from or coated with a particular material
    • A61F2310/00389The prosthesis being coated or covered with a particular material
    • A61F2310/00395Coating or prosthesis-covering structure made of metals or of alloys
    • A61F2310/00407Coating made of titanium or of Ti-based alloys
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2310/00Prostheses classified in A61F2/28 or A61F2/30 - A61F2/44 being constructed from or coated with a particular material
    • A61F2310/00389The prosthesis being coated or covered with a particular material
    • A61F2310/00592Coating or prosthesis-covering structure made of ceramics or of ceramic-like compounds
    • A61F2310/00796Coating or prosthesis-covering structure made of a phosphorus-containing compound, e.g. hydroxy(l)apatite
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2310/00Prostheses classified in A61F2/28 or A61F2/30 - A61F2/44 being constructed from or coated with a particular material
    • A61F2310/00389The prosthesis being coated or covered with a particular material
    • A61F2310/00952Coating, pre-coating or prosthesis-covering structure made of bone cement, e.g. pre-applied PMMA cement mantle

Abstract

ABSTRACT OF THE DISCLOSURE

The construction and manufacturing technique for a functional biocompatible intervertebral disc spacer is described. This device is useful for a replacement for a degenerated disc in certain treatments of back pain and spinal disease. The disc spacer possesses mechanical properties akin to those of the normal disc and will preserve normal functions of the spinal motion segment. The device achieves the desired properties by providing reinforcing fibers of appropriate orientation and number within an elastomeric matrix.

Description

~- 1321~1 BACKGROUND OF THE INVENrION

The intervertebral disc is a complex joint anatomically and functionally. It is composed of three component structures: the nucleus pulposus, the annulus fibrosus and the vertebral endplates. The biomedical composition and anatomical arrangements within these component structures are related to the biomechanical function of the disc.

The nucleus pulposus occupies 25-40 percent of the total disc cross-sectional area. It is composed mainly of mucoid material containing mainly proteoglycans with a small amount of collagen.
Due to these constituents, the nucleus pulposus has the capacity to bind water and usually contains 70-90 percent water by weight.
Because of this high water content, the nucleus may be mechanically described as an incompressible hydrostatic material.
The disc is under constant compressive forces even when the spine is not weight bearing as a result of the tension applied by the annulus fibrosus and the intervertebral ligaments.

The annulus fibrosus is a concentrically laminated structure which contains highly aligned collagen fibers and fibrocartilage embedded in amorphous ground substance. The annular layers are oriented at + 30 degrees to the longitudinal axis of the spine.
In the inner laminae, these annular layers are anchored to the cartilaginous endplate while the outermost layer is attached directly into the osseous tissue of the vertebral body. Usually, the annulus fibrosus has approximately 8-12 layers and has an anterior portion which is about 1.2-1.5 times thicker than its posterior region. Mechanically, the annulus fibrosus is the main stabilizing structure which resists torsional and bending forces applied to the disc. A normal isolated disc provides approximately 35 percent of the torsional rigidity of a whole intervertebral joint.

The two vertebral endplates are composed of hyaline cartilage and separates the disc from the adjacent vertebral bodies. This layer acts as a transitional zone between the hard, bony 32~8~
!

vertebral bodies and the softer disc.

The spinal disc may be displaced or damaged due to trauma or a disease process. If this occurs, the nucleus pulposus may herniate and protrude into the vertebral canal or intervertebral foramen, in which case, it is known as a herniated or "slipped"
disc. This disc may in turn press upon the spinal nerve, that exits the vertebral canal through the partially obstructed foramen, causing pain or paralysis in the area of its distribution. The most frequent site of occurrence of a herniated disc is in the lower lumbar region. A disc herniation in this area often involves the inferior extremities by compressing the sciatic nerve. To alleviate this condition, it may be necessary to remove the involved disc surgically and fuse the two adjacent vertebrae. A number of procedures have been identified and are described in the orthopaedic literature. One such is described in "Orthopedics-Principles and Their Application", Samuel L. Turek, M.D., Lippincott Company, Third Edition, pp. 761-763. In this procedure, a hole is drilled in the spinal column straddling the damaged disc space and the two adjacent vertebral bodies. The hole is then filled with a cylindrical plug or dowel in order to fuse the vertebrae together. The fusion procedure is an excellent method of eliminating symptoms and yet maintaining joint stability, but at the expense of total loss of motion of the fused vertebral joint.
The adjacent discs will have increased motion and stress due to the increased majority of the fused segment. In the long term, this change in mechanics of the motion of the spine causes these adjacent discs to degenerate. Obviously, a more desirable situation would involve replacing the damaged disc with a suitable biofunctional equivalent so as to return the patient's spine to normalcy. Heretofore, the development of a prosthetic joint device to replace the injured intervertebral disc has been unsuccessful due to the complexity of the structure and biomechanics of the normal disc.

Other spacers for spinal repair have been developed, see for instance those of U.S. Patent No. 3,867,728, U.S. Patent No.

132:L~81 , 4,309,777, U.S. Patent No. 4,349,921 and U.S. Patent No.
4,553,273. None of these, however, have been commercially developed. U.S. Patent Nos. 4,349,921 and 4,553,273 are essentially rigid bodies which serve to stabilize the spine but do not allow motion within the disc itself. U.S. Patent No.
4,309,777 consists of a disc which allows motion, but this is achieved by the use of springs contained within the body of the disc. This system suffers from the disadvantage of extreme complexity and doubtful long-term survival.

U.S. Patent No. 3,867,728 by Stubstad et al. discloses a device which replaces the natural disc with one of similar shape and strength. The disc may be constructed from an elastic polymer such as silicone and reinforced with fabric. The top and bottom surfaces may be provided with an open pored material such as a velour to encourage tissue ingrowth. The purpose of this invention is to provide a system capable of withstanding the loads imposed upon it during normal human activities. As a result, the preferred construction of the disc provides for reinforcement against only compressional loads. In practice, the spine is subjected to both compressional and torsional loading and, to be successful, any device must be capable of withstanding both forms. In addition to strength, any prosthetic disc must deform elastically in a similar manner to the natural structure in order that normal stresses are induced within the adjacent vertebral bodies. If too stiff a structure is used, then the disc will deform too little, and the natural discs both superior and inferior to the prosthetic device will be required to deform excessively. This is a similar situation to that which occurs when bony fusion across the disc is employed. If, on the other hand, the device possesses too little stiffness, either in compression or torsion, then excessive motion will occur, the device will bulge out and pain may result. This is an equivalent situation to a failed bony fusion. U.S. Patent No. 3,867,728 describes a device which is concerned only with the ultimate strength and not with any elastic properties. Therefore, the reinforcement of the elastomer through a fabric layer results only in an increase in compressional strength and fails to .

-" '1321~1 address the equally important problem of elasticity in compression and torsion. The fabric disclosed by U.S. Patent No.
3,867,728 does not possess the necessary correct construction to provide the desired functional characteristics. As a result, U.S. Patent No. 3,867,728 fails to teach a method of manufacturing a disc which satisfies the present functional criterion for a replacement disc.

OBJ~CTS OF TH~ INvE~IIQ~

It is the object of the present invention to provide a novel intervertebral disc spacer which can be used to replace a damaged or diseased disc with a device that i8 both strong and elastically comparable to the natural structure.

It is a further object of this invention to provide a novel method of manufacturing a functional and biocompatible intervertebral disc spacer having similar or equivalent biomechanical properties to those of a normal disc.

It is a still further object of the present invention to provide a novel method of alleviating the pain and/or paralysls of a damaged or diseased disc which comprises replacing the damaged or diseased disc with a functional and biocompatible intervertebral disc spacer.

S ~ TION

The present invention relates to a novel functional and biocompat$ble intervertebral disc spacer, its method of manufacture, and methods of use therefor. More particularly, the present invention concerns a functional and biocompatible intervertebral disc spacer having biomechanical properties similar or equivalent to those of a normal disc.

BRIEF pE$CRIP~lON QE~RAWINGS

FIGURE 1 is a view in perspective of a spinal disc spacer ~6~ 2 l ~
manufactured according to the present invention.

FIGURE 2 is a planar view of a disc spacer manufactured according to the present invention. _ FIGURE 3 is a cutaway view showing the laminae having the poly~er -S fibers in the various orientations.

FIGURES 4 and 5 are views of the sheets having thread guides for wrapping the polymer fiber so as to provide laminae having the desired fiber orientation.

FIGURE 6 is a graph showing the results of the mechanical ~crc n behavior of silicone-dacron spacers in the axial compression test.

FIGURE 7 is a graph showing the results of the mechanical behavior of silicone-dacron spacers in the compression torsion test.

FIGURE 8 is a graph showing the results of the mechanical behavior of polyurethane-dacron spacers in the axial compression test.

FIGURE 9 is a graph showing the results of the mechanical behavior of polyurethane-dacron spacers in the compression torsion test.

FIGURE 10 is a graph showing the results of the mechanical behavior of natural di5c and spacers in the axial compression test.

FIGURE 11 is a graph showing the results of the mechanical behavior of natural disc and spacers in the compression torsion test.

~ t~ m a r k , - 1321t~81 --`

DETAILED DESCRIPTION OF THE IN~IENTION

The functional and biocompatible intervertebral spacer of the present invention comprises a central core ~ of biocompatible _ elastomer shaped so as to approximate the nucleus pulposus of a natural intervertebral disc; laminae 4 wrapping said central core comprised of strips of sheets of reinforcing fiber embedded in a biocompatible elastomer; said laminae being bound together by biocompatible elastomer, and wrapped to sufficient thickness so as to approximate the shape of a natural intervertebral spacer;
said laminae arranged in layered structure having specific fiber orientations and having 3-24 laminae; and endplates 8 and ~Q
comprised of a suitably stiff biocompatible material and affixed, one to each end, to the laminae/central core.

The selection of the number of laminae and the orientation of the fibers in the laminae is accomplished so that the resulting spacer has the approximate mechanical behavior of the natural disc it is designed to replace. Certain combinations of orientations in the fibers of the laminae are preferable. The spacer preferably contains 6-15 laminae, said laminae being applied in patterns of particular fiber orientation.

The biocompatible elastomer utilized in the present invention may be any suitable biocompatible elastomer. Preferred elastomers are thermoset elastomers and thermoplastic elastomers. Suitable thermoset elastomers are those such as silicones and polyurethanes. Suitable thermoplastic elastomers are polyurethanes and thermoplastic silicones. Examples of such biocompatible polyurethane materials are those available as Ethicon Biomer ~ , a segmented polyether polyurethane which is fabricated into devices by solution casting techniques (Ethicon Inc., Somerville, NJ). Other polyurethane materials exhibiting appropriate mechanical properties include Conathane~ TU400 (Conap Inc., Olean, NY) and Monothane A40, A50 and A?0 (Synair Corp., Chattanooga, TN).

The Conathane ~ polyurethane elastomer is a two-part, non-TDI

- 1321 ~81 t ~ uid polyurethane casting system. The two components should be mixed thoroughly in plastic or glass containers using plastic or glass stirrers. For example, D PEN ~ -8488 product is made by mixing equal parts of A and B, whereas TU400 is made by mixing _ one part of A to 0.867 parts of B. On the other hand, Ethicon Biomer ~ and Monothane ~ resins are single compound systems and therefore ready to use. The cure time and coating thickness differs for each type of material. For instance, Conathane ~ , products have no restrictions for coating thickness in each layer and take about 20 hours to completely cure. For Ethicon Biomer ~, a 2 mm thickness at each coating is permissible while a longer time period and higher temperature is needed for curing.
Monothane ~ resins have to be preheated in order to minimize viscosity. Since the polyurethane elastomers release an isocyanate vapor throughout the curing process, the work is necessarily conducted in well ventilated areas with protective clothing, safety glasses, gloves and a mask.

The reinforcing fiber utilized in the laminae can also be any of a number of suitable reinforcing fibers possessing a combination of high strength and stiffness. Potential fibers include polyethylene (Spectra ~ ), polyester (Dacron ~ ) or polyaramid (Xevlar ~ E. I. Dupont DeNemours) fibers, or carbon or glass fibers. For the purposes of this invention, polyester fiber, such as that available as Dacron ~ Type 56 from Dupont, is preferred.

The reinforcing fiber is embedded in a sheet of the polyurethane elastomer by first wrapping the fiber on thread guides and casting the polyurethane elastomer on the sheets of fiber. After curing, the sheets of fiber are then cut into strips to be utilized to form the laminae of the disc spacer.

The laminae 4 of the disc spacer are formed from strips wherein the orientation of the fibers differ. Preferably, some laminae are formed from strips where the polymer fibers are oriented at 0 degrees and some laminae are formed from strips where the polymer fibers are oriented at from 20 to about 50 degrees, either plus 132~68i ( or minus, with + 45 degrees being preferred. Figure 4 and 5 illustrate sheets having thread guides for wrapping the polymer fibers so as to provide laminae having the desired 0 degree and 45 degree fiber orientation. Other fiber orientations may be _ used depending on the actual mechanical properties of constituent materials and on the desired final properties of the disc spacer.
For the purposes of this invention, the O degree orientation refers to the direction along the long axis of the strips. See Figure 3.

After the sheets of fiber embedded elastomers are formed, they are cut into strips of a suita~le width, i.e., preferably about 5-10 mm wide, so as to be utilized to form the laminae. Each spacer contains 3-24 laminae, arranged in layers.
The strips of laminae 4 can be formed with or without protruding fibers. The optional feature of these protruding fibers provides additional torsional strength by coupling with the endplates in a spacer of this invention.

The formation of the strips of laminae with protruding fiber is accomplished by forming the net of reinforcing fibers on the thread guides and then covering portions of the net with an elastomer-resistant tape prior to the step of coating the fibers with elastomer. After the sheet of fibers is coated with elastomer and cut into strips, the tape is removed to leave uncoated fibers protruding from each strip.

For the polyurethane spacer, a disc-shaped mold may be utilized to form the laminae around the appropriate core shape.
The laminae are wrapped around the core-shaped mold. Multiple laminae may be wrapped about the mold with an appropriate coupling resin between layers. Such a lay-up forms the fiber-reinforced annulus. Upon removal of the mold, the annulus isplaced in a cavity mold and resin added to fill the central area.
The entire structure is then cured to form the final bonded structure.

The endplates 8 and 10 for use in the spacer of the present - ~ 3 2 ~

invention can be manufactu;ed form a variety of biocompatible materials. The endplates may also incorporate mechanism for attachment to adjacent bony vertebral bodies. Such mechanisms include, but are not limited to, mechanical interlock, frictional _ fit, ingrowth into a porous structure such as a porous siRtered surface, hydroxyapatite coatings or cementing agents such as polymethyl methylacrylate "bone cement." Typically, they are formed from substances such as a biocompatible metal, for instance, precut titanium discs or formed in a mold from polyurethane elastomer or other similar resins. Other metals having similar mechanical properties, e.g. aluminum, can also be utilized. These resins can contain additives such as hydroxyapatite which additionally contribute to their biochemical properties as well as provide a mechanism of bonding of the adjacent bony vertebral bodies to the spacer. When metal endplates are utilized, they are sized so as to approximate the natural vertebral endplate since their function in the spacer is to simulate the vertebral endplate as well as contribute to the overall structural strength of the spacer. Metal endplates may have a porous surface for bone ingrowth stabilization or polymethyl methylacrylate bone cement fixation.

Tbe novel method of manufacture of the spacer of the present invention involves three separate steps; the first being the preparation of the lamina strips for use in the spacer ;and the second being the fabrication of the endplates; and the third being actual assembly of the spacer itself. This assembly can be accomplished in a variety of ways depending primarily on the nature of the constituent materials, e.g., thermoset resins or thermoplastics.

The actual formation of the lamina strip is dependent upon the particular reinforcing fiber and elastomer being utilized. If a thermoset resin is utilized, the mixing and curing of each individual elastomer is typically accomplished according to the manufacturer's directions for use of the particular elastomer.
It is envisioned that thermoplastic elastomers may also be used in which case molding under heat and pressure according to the ' ' 132~6~

manufacturer's directions may be used to fabricate said laminae strip. Typical molding or casting techniques can be used to form polymer endplates. Metallurgical techniques can be used to form metal endplates. Both metal endplates and polymer endplates may have porous surfaces or hydroxyapatite surfaces to aid in attachment to adjacent bony vertebral bodies.

The assembly of the spacer typically begins with the formation of a suitably shaped and sized core formed of the elastomeric material. See Figure 1. A metal mold i8 utilized to form the core ~, to which, after removal from the mold, the strips of laminae 4 are applied circumferentially to a desired thickness.
The sides of the disc may then optionally be coated with additional elastomer 6 and the entire structure bonded or cured under heat and pressure in an appropriate sized cavity mold.
Finally, the endplates 8 and 10 are applied with additional elastomer to the top and bottom of the disc. Alternately, the endplates may be applied during the bonding/curing process.

Typically, molds are utilized to manufacture spacers having a geometry consistent with that of a natural disc. Suitable molds can be made from aluminum. although the disc size can, of course, be varied, a suitable size for the spacer is one having a cross section area of 1100 mm2, a major diameter of 44 mm and a minor diameter of 30 mm.

The present invention contemplates manufacture of the spacers in a variety of sizes since one size is not suitable for all people.
Additionally, the spacer of the present invention can be sized so that its total diameter is smaller than that of a natural disc, i.e., a size which approximates 30-80% of the diameter of the natural disc. This size of spacer can then be utilized by a physician in cases where only a central part of the natural disc is removed and replaced. In such cases, the damaged or diseased central portion is replaced by a spacer of approximately the same size as the portion removed. This type of replacement is particularly advantageous since the healthy portion of a patient's disc is retained. Obviously, molds can be developed - , ~.~.,, ., , . ~ . .

1 b ~1 for the various sizes necessary, and it is envisioned that the disc spacer of this invention will be manufactured in a variety of sizes 80 as to make the necessary selection available to the treating physician.
In this invention, we have found that certain configurations of the lamina strips within the spacer contribute to the enhancement of its mechanical properties. Thus, it is preferable to apply the laminae to the core according to certain "patternsn. A
preferred method utilizes a pattern of a -45 degree fiber strip 1~ as the inner lamina, followed by a +45 degree fiber strip, 1~, followed by a 0 degree fiber strip lC. See Figure 3. This -45/+45/0 degree orientation is continued until 2-5 sets of the -45/+45/0 pattern are applied (a total of 6-15 laminae).
Particularly preferred spacers each contain 3-5 sets of the -45/+45/0 degree laminae.

For instance, a disc spacer utilizing Biomer ~ as the elastomer, aluminum endplates, and having a wrapping configuration of 3 layers each of 0, +45, -45 degree fiber strips has been ~ound to possess similar properties to that of a natural spinal disc in compression and torsion testing.

The disc spacer of the present invention thus provides a novel method of alleviating the pain and paralysis of a damaged or disease spine which comprises surgically replacing the damaged or diseased natural disc with one manufactured according to the present invention. Depending upon the patient's age and the position of the diseased or damaged disc, a physician will select a suitably sized replacement disc for insertion between the natural vertebrae.

This invention may be embodied in other forms or carried out in other ways without departing from the spirit or essential characteristics thereof. ~he present disclosure is therefore to be considered as in all respects illustrative and not restrictive, the scope of the invention being indicated by the appended claims, and all changes which come within the meaning and range of equivalency are intended to be embraced therein.

, -- 13216~

ExAMPLE 1 ~re~aration of Thermoset Elastome~-Fiber Laminae (Steps A-D~ _ A. Preparation of 0 and 45 degree fiber sheets The reinforcing fibers are wrapped around a square mandrel as shown in Figure 4 and 5. The number of fiber wraps should correspond to the intended construction of the annular layer. When exposed fibers are desired, the surface of the wired sheet is taped with suitable adhesive tape.

B. Preparation of Coating Elastomer 1. Silastic The silastic elastomer of choice, i.e., MDX-4-4210 is mixed according to manufacturer's instructions with care being taken to ensure that no entrapped air is present in the final polymer.
2. Conathane ~

The two components are mixed according to manufacturer's instruction. For example, for TU400, 100 parts of A are mixed with 100 parts B by weight.
The two are mixed thoroughly and then the mixture is degassed to remove entrapped air.
3. Biomer ~

Biomer is provided in a solution of dimethyl acetamide which is evaporated off to produce the final product.
In order to achieve good resultant mechanical properties, care is required at this step to ensure the absence of any water vapor.

~ ~r~ de rn;~ r k : - :
' 4. Monothane ~

Articles may be produced from Monothane by heating the resin to a suitable temperature. For 50A hardness _ material, this is 70-C for 20 minutes. Different grades of Monothane require different temperatures and time.

C. Formulation of 0, +45/-4S Lamina Strip The amount of resin used is about 60 mls for making an 11 inch square plate of 1/32 inch thick lamina layer. The manufacturing processes for 0, +45/-45, and 0~+45/-45 degree laminae are similar for each different material.

D. Coating the Prewired Fiber Sheet Pour a coating of the semi-deaired resin on top of the prewired fiber sheet and cure according to specification of the manufacturer, a process that varies from material to material.

1. Silicone (MDX 4-4210 Silastic) Cure at 60 to 80 degrees C for 20 to 30 minutes. Full curing is accomplished in three days at room temperature. Cut the finished sheet into 7 to 8 mm strips, with a scalpel, parallel with fibers for 0 degree lamina, and along the centerline of the end tape for 45 degrees lamina. Coat one side of the 0 and +45/-45 degrees laminae with Medical Adhesive Silicone Type A. Apply enough pressure on top of the sandwich strip to secure it in place without sgueezing out the bonding glue. Cure at 60 to 80 degrees C for 30 minutes. Twenty-four hours are required for complete vulcanization.

- ~
, ~ 321681 , --2. Conathane ~ (TU400) Heat at 80 degrees C in a nitrogen environment for 4 hours and continue to cure at room temperature for 16 _ hours. Cut the cured fiber-elastomer composite sheet in a diagonal direction with spacing of 7 mm to form a +45/-45 lamina. For a 0 degree lamina, cut parallel to the fiber direction. To make a 0/+45/-45 lamina, coat one side of a 0 degree lamina sheet and one side of +45/-45 strips with a 0.4 mm layer of fresh deaired polyurethane. Then align the +45/-45 degree laminae on top of the 0 degree sheet. Apply enough pressure on top of the strip to hold it, but avoid squeezing out the polyurethane. Cure the o/+45/-45 sheet in the nitrogen oven as before. Cut along the ~unction line to form 0/+45/-45 lamina strips.

3. Monothane ~ (A100) Heat prewired fiber plate in oven at 135 degrees C for one hour and warm Monothane resins to 70 degrees C for 20 minutes. The preheating time and temperature vary slightly for monothanes of different hardnesses. Pour 60 mls of liquid resin onto the preheated plate. Then cure in an oven at 135 degrees C for 1 hour. Minimum viscosity is obtained between llOand 115 degrees C.
Cut 45 degree strips, 7 mm wide from one 6ide of the plate. The other side still has dacron fibers running along the X and Y axes. Remove one side of fibers form the other side of the plate to prepare radial fiber lamina. Unscrew the borders and place the sheet of radial fibers on the other side. For 0/+45/-45 lamina, pour 60 mls of preheated resin onto fiber sheet, then place in oven at 135 degrees C for 20 min. Remove the plate from the oven and place all 7 mm +45/-45 strips on top of the plate. The +45/-45 laminae should be placed parallel to the X or Y axis of the plate. Cure the 0~+45/-45 plate in the oven at 135 degrees C for 1 :.

1321~81( hour and 15 min. Finally, cut 7 ~m strips of 0/+45/-45 lamina. Each cut should be parallel with the axis.

Formation of a Spacer with Protrudin~ Fibers ~Hairv ~isc) A. Preparation of the center core Clean the mold thoroughly, then apply an even coating of release agent; MR-1000 for Monothane products, then dry at 1~5 degrees C for 20 minutes. MR-5002 for Conathane then dry at 60 degrees C for five minutes.

Pour the deaired polyurethane or silicone into the metal disc-shaped core mold. Deair if needed and cure as before.
For Ethicon Biomer pour only 2 mm coating at a time. The mold has a height of about lS mm. The height of the core is about 7 mm.

B. Assembly of Spacer Coat a thin layer of fresh liquid phase polyurethane or silicone on one side of the lamina. Wrap the freshly coated lamina around the cured polyurethane or silicone core.
Tighten the spacer with back support in the posterior region and cure it as before. Remove the tape from the ~45/-45- laminae's fiber end.

C. Attachment of the Endplate 1. Metal Endplate Coat the free fibers and endplates by using a prepared epoxy with fibers pointing toward the periphery. The coating should be about 0.5 mm thick. Attach the spacer to the endplates and allow 30 minutes to cure.

:

"
' 32~8~, -Apply force - approximately lON - on top of the disc.

2. Polyurethane Endplate Place the protruding fiber spacer in hot water and thoroughly soak it. Arrange all the fibers towards the center or towards the periphery. Dry the arranged fibers face down on a flat surface in an oven at 90 degrees C for 20 minutes. Pour freshly deaired polyurethane liquid into the aluminum mold. Place one end of the spacer into the mold, cure in a nitrogen filled oven at a 50 degrees C for l hour. Form the other side of the polyurethane endplate as before and then cure at 80 degrees C for four hours. Continue to cure at room temperature for another 16 hours.

EXAMPLE ~

Formation of a Spacer Without Protrudinq Fibers A. Preparation of the Core Pour a thin layer of resin onto a 7mm o/45/-45 degrees lamina. Wrap desired length around plastic core in between pins. The pins act as guides to keep the laminate layers at a constant 7mm thickness. Once the wrap is completed, thread the back support screws upward until the laminate conforms to the plastic core shape. Cure the lamina with jig in the oven at 135 degrees C for one and one-half hours. Remove the ~ig from the oven, remove the press pins, and ~lide the annular laminae off the care. In a cavity mold, pour preheated resin on top of laminated core to fill up any voids and to flush the end surfaces. Cure as above.

,. . .

'"~ ~

. ~ - .

1321~8~ --B. Formation of the End Plates 1. Without Hvdroxya~atite (HA) Preheat tne disc mold (treated with release agent as detailed in Example 2) at 135 degrees C for 20 minutes. Inject hard grade resin into the mold up to a desired height; 2 ml without HA, 1 ml with hydroxyapatite. Cure in the oven at 135 degrees C. Check after 20 minutes to make sure that all entrapped air bubbles have escaped from the resin.
Place procured laminate core into the disc mold with smooth surface down. Cure at 135 degrees C
for one hour and 45 minutes. Preheat 10 mls of the soft grade polyurethane resin at 70 degrees C
and inject over the hard grade resin to form the center core and outermost region. Cure the soft grade resin at 135 degrees C for 45 minutes.
Inject 1 ml of endplate resin on top of semifinished spacer and cure for 4 hours. Inject another 1 ml resin on top of cured endplate and further cure for one hours.

2. With Hvdroxva~atite Remove the semi-cured endplate disc from the mold and press in a layer of hydroxyapatite, then cure for two and one-half hours. Put spacer back into mold with the hydroxyapatite side down. Pour 1 ml of a hard grade resin on the top of the already cured endplate and cure for ninety minutes. Press the layer of hydroxyapatite and cure for an additional two and one-half hours.

.

.

l 32~81 --Mechanical Tes~n~

MATERIAL PROPERTIES OF UNREINFORCED SILICONE
AND POLYURETHANE ELASTOMERS

A series of spacers constructed from unreinforced elastomers were mechanically tested to compare their properties with those of natural discs.

The results are shown in Table 1.

(Compressive Modulus (E) in Mpa) SAMPLE DESCRIPTION E
#4 Natural Disc 13.0 + 1.90 #13 Natural Disc 14.46 + 4.30 #15A Natural Disc 12.32 ~ 2.14 15 #10 Degenerated Disc 6.29 + 1.01 Silicone MDX 4-4210 1.01 Conathane TV-400 2.68 Biomer -- 4.1 Monothane A40 2.016 20 Monothane A50 4.5 Monothane A70 14.91 Monothane A100 23 Monothane D65 52 REINFORCED SPACER PROPERTIES:

A total 161 spacers were ~ade. The properties obtained from the mechanical tests are shown in Figures 6 to 11. the mechanical behavior of cadaver lumbar spine L4-5 motion segments are also included in these figures for comparison.

':. . : , ." .

..
- ~
,~ :
. ~ , ~ - 132168~ i 1. Silicone-Dacron comDos ite:

Twenty-four disc-shaped disc spacers were made of silicone-dacron composite. Fourteen spacers were manufactured with 45/-45 silicone-fiber laminae, and eight spacers were manufactured with o/+45/-45 silicone-fiber laminae. The 0/+45/-45 spacers have nine layers of 0/+45/-45 laminae and were wrapped in such a way that 4 layers were clockwise and the remaining 5 layers were counterclockwise. Figure 6 shows the results of the silicone-dacron composite compression tests, and Figure 7 shows the torsion behavior under an 800N axial compression load. The compressive modulus ranges from 5 to 9.5 MPa. The mechanical properties of a spacer changes dramatically with the orientation of fibers, number of fibers in each orientation and the order of orientation. For example, from the spacer manufactured with +45/-45 lamina, it was determined that the mechanical properties did not increase significantly when the number of layers increased from five to six. But when the 0/+45/-45 lamina was used, a significant increase in the compressive and torsional stiffness was obtained when the number of layers increased from 7 to 9.

The uniaxial compression test and combined compression torsional test indicated that a t3(0),4(45/-45),2(0)] silicone-dacron spacer provided the natural disc property in compression, but did not provide the satisfactory torsional results.

A unidirectional spiral wrapping provided high torsional stiffness in the wrapping direction but lower stiffness in the opposite direction. For compression there was no change.

In addition to the static axial compression testing and compression-torsion testing, five spacers were tested in long-term fatigue tests. the spacers were tested in simultaneouscompression and torsion fatigue. All of the fatigue tests were under an axial compression load control. The compression load cycled between 200 N and 800 N. The t3(0),l0(45)] spacer was tested under axial load control and angular displacement control ---- ( 132~81 21 f at a frequency of 3 Hz. The anguLar displacement was controlled at + 2.5 degrees. This fatigue test was terminated after one million cycles with no change in mechanical response. The t3(0),6(+45/-45),2(0)~ spacer was tested under axial load control and torque control at the same freguency. The torque was set at + 2NM. This fatigue test was ter~inated at one million cycles with no reduction in axial and torsional response. Two prostheses with nine layers of o/45/-45 laminae were tested in combined compression-torsion fatigue at + 3NM, 500 +200N and 3 Hz. Due to the slippage between the aluminum endplate and the PMMA in the holding cup, one test was terminated at 720,000 cycles. The other one was terminated after one million cycles with no reduction in either axial displacement or angular rotation. In the last fatigue test, the spacer was the 8iomer fiber (0/45/-45) lamina disc with high modulus polyurethane end plate. The controllers were set at + 3 NM, 500+200N and 4 Hz frequency. The disc spacer survived more than one million cycles.

2. ~ :

One spacer was made of nine layers of o/+45/-45 Ethicon Biomer-Fiber laminae with an aluminum endplate, and another was made to twelve layers of 0/45/-45 biomer laminae with a Conathane DPEN-8488 polyurethane endplate. Figures 10 and 11 show the results of the former composite. The compressive modulus of the former was 17 MPa compared to the later one of 8.5 MPa.

The nine layered Biomer ~ -Dacron 0/+45/-45 spacer with aluminum endplates provided a superior compression stiffness and torsional stiffness.

The mechanical properties of the twelve layered Biomer ~ -Dacron spacer with high modulus polyurethane end plates are within the range of the natural dlscs. The lower stiffness of a twelve layer spacer as compared to those mentioned above is due to the lower compressive modulus of polyurethane endplates (125 MPa) as compared to higher modulus aluminum endplates (21000 MPa) in a ! ;` 132t68~

nine-layer spacer.

3. Conathane ~ Spacer:

A total of thirty-six spacers were made of Conathane ~ . Ten spacers were made of Conathane R only, nine spacers were TU-DPEN
sandwich disc, four spacers had four layers of ~45/-45 laminae with DPEN endplates, and 6iX spacers had 8iX layers of +45/-45 laminae. The results of the mechanical tests showed that the composite had low compressive modulus ranging from 4 to 7 MPa.

4. Monathane ~ Sacer:

A total of fifty seven Monothane ~ polyurethane spacers were made using a combination of Monothane ~ A40 or A70 as the soft matrix and Monothane ~ and A100 or D65 as the endplate. The compression test results are presented as load-strain curves in Figure 8. The compression-torsion test results are shown as applied torque versus angle of twist per unit length in Figure 9.
The compressive modulus of the A100-A40 composite ranges from 3.5 to 6 MPa, D6S-A40 ranges from 9 to 17 MPa, and A100-A70 ranges from 30 to 50 MPa.
5. Summary Figures 10 and 11 are the results of compression tests and compression-torsion tests on three different composites ISilicone, Biomer ~ , and Monothane ~ ) with a comparison to natural discs. The functional specifications of the natural disc can be achieved by manufacturing a spacer with appropriate number of fibers, the orientation and their order. It can be seen from these figures that the compressive properties as well as the torsional properties of normal lumbar spine discs have been achieved by disc spacers of this invention. The mechanical functional behavior of an intervertebral joint can be reproduced by these spacers.

Claims (29)

1. A biocompatible intervertebral spacer comprising a central core having upper, lower and side surfaces and formed of a biocompatible elastomer shaped so as to approximate the nucleus pulposus of a natural intervertebral disc, a layered structure wrapped around the side surfaces, wherein said layered structure com-prises between 3-24 separated laminae, each of said laminae comprised of strips of biocompatible elastomer having unidirectional reinforcing fiber embedded therein, said fiber of each lamina having specific orientation, said laminae being bound together by biocompatible elastomer and wrapped to sufficient thicknesses so as to approximate the shape of a natural intervertebral disc, and endplates comprised of a suitably stiff biocompatible material and affixed, one to each end, to the laminae/central core.
2. A spacer according to claim 1 wherein the biocompatible elastomer utilized is a thermoset polyurethane elastomer
3. A spacer according to claim 1 wherein the biocompatible elastomer utilized is a thermoplastic polyurethane elastomer.
4. A spacer according to claim 1 wherein the biocompatible elastomer utilized is the polyurethane elastomer Biomer R.
5. A spacer according to claim 1 wherein the laminae wrapping the central core possess protruding fibers.
6. A spacer according to claim 1 wherein the endplates contain hydroxyapatite.
7. A spacer according to claim 1 wherein at least one of said laminae having fibers oriented at 0 degrees and at least one of the other laminae having fibers oriented at 20-50 degrees, said fiber orienta-tion in each lamina being selected from the group consisting of 0 degrees and + 20-50 degrees
8. A spacer according to claim 7 wherein the biocompatible elastomer utilized is a thermoset polyurethane elastomer
9. A spacer according to claim 7 wherein the biocompatible elastomer utilized is a thermoplastic polyurethane elastomer.
10. A spacer according to claim 7 wherein the biocompatible elastomer utilized is the polyurethane elastomer Biomer ?.
11. A spacer according to claim 7 wherein the laminae wrapping the central core possess protruding fibers.
12. A spacer according to claim 7 wherein the endplates contain hydroxyapatite.
13. A spacer according to claim 7 wherein the layered structure comprises 6-15 laminae.
14. A spacer according to claim 13 wherein the biocompatible elastomer utilized is a thermoset polyurethane elastomer.
15. A spacer according to claim 13 wherein the biocompatible elastomer utilized is a thermoplastic polyurethane elastomer.
16. A spacer according to claim 13 wherein the biocompatible elastomer utilized is the polyurethane elastomer Biomer ?.
17. A spacer according to claim 13 wherein the laminae wrapping the central core possess protruding fibers.
18. A spacer according to claim 13 wherein the endplates contain hydroxyapatite.
19. A spacer according to claim 1 wherein the layered structure comprises 6-15 laminae and at least one of said laminae having fibers oriented at O
degrees and at least one of the other laminae having fibers oriented at 45 degrees.
20. A spacer according to claim 19 wherein the biocompatible elastomer utilized is a thermoset polyurethane elastomer.
21. A spacer according to claim 19 wherein the biocompatible elastomer utilized is a thermoplastic polyurethane elastomer.
22. A spacer according to claim 19 wherein the biocompatible elastomer utilized is the polyurethane elastomer Biomer ?.
23. A spacer according to claim 19 wherein the laminae wrapping the central core possess protruding fibers.
24. A spacer according to claim 19 wherein the endplates contain hydroxyapatite.
25. A spacer according to claim 1 wherein the endplates are metal.
26. A spacer according to claim 1 wherein the endplates have a porous sintered surface.
27. A spacer according to claim 1 sized so as to approximate the size of a natural disc.
28. A spacer according to claim 1 sized so as to approximate 30-80% of the size of a natural disc.
29. A spacer according to claim 22 wherein 6-15 laminae are arranged in a layered structure in a pattern of -45/+45/0 degree fiber orientation.
CA000602353A 1988-06-10 1989-06-09 Functional and biocompatible intervertebral disc spacer Expired - Fee Related CA1321681C (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US205,076 1988-06-10
US07/205,076 US4911718A (en) 1988-06-10 1988-06-10 Functional and biocompatible intervertebral disc spacer

Publications (1)

Publication Number Publication Date
CA1321681C true CA1321681C (en) 1993-08-31

Family

ID=22760693

Family Applications (1)

Application Number Title Priority Date Filing Date
CA000602353A Expired - Fee Related CA1321681C (en) 1988-06-10 1989-06-09 Functional and biocompatible intervertebral disc spacer

Country Status (10)

Country Link
US (1) US4911718A (en)
EP (1) EP0346129A1 (en)
JP (1) JPH02224659A (en)
KR (1) KR910000094A (en)
AU (1) AU624143B2 (en)
CA (1) CA1321681C (en)
DK (1) DK283689A (en)
FI (1) FI892851A (en)
GR (1) GR890100383A (en)
NO (1) NO892380L (en)

Families Citing this family (510)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5108438A (en) * 1989-03-02 1992-04-28 Regen Corporation Prosthetic intervertebral disc
CN1128944A (en) 1988-06-13 1996-08-14 卡林技术公司 Apparatus and method of inserting spinal implants
US7452359B1 (en) 1988-06-13 2008-11-18 Warsaw Orthopedic, Inc. Apparatus for inserting spinal implants
US6923810B1 (en) * 1988-06-13 2005-08-02 Gary Karlin Michelson Frusto-conical interbody spinal fusion implants
US7491205B1 (en) 1988-06-13 2009-02-17 Warsaw Orthopedic, Inc. Instrumentation for the surgical correction of human thoracic and lumbar spinal disease from the lateral aspect of the spine
US6210412B1 (en) 1988-06-13 2001-04-03 Gary Karlin Michelson Method for inserting frusto-conical interbody spinal fusion implants
US6120502A (en) 1988-06-13 2000-09-19 Michelson; Gary Karlin Apparatus and method for the delivery of electrical current for interbody spinal arthrodesis
US6770074B2 (en) 1988-06-13 2004-08-03 Gary Karlin Michelson Apparatus for use in inserting spinal implants
US5772661A (en) 1988-06-13 1998-06-30 Michelson; Gary Karlin Methods and instrumentation for the surgical correction of human thoracic and lumbar spinal disease from the antero-lateral aspect of the spine
US5484437A (en) 1988-06-13 1996-01-16 Michelson; Gary K. Apparatus and method of inserting spinal implants
US5015247A (en) 1988-06-13 1991-05-14 Michelson Gary K Threaded spinal implant
US7534254B1 (en) * 1988-06-13 2009-05-19 Warsaw Orthopedic, Inc. Threaded frusto-conical interbody spinal fusion implants
US6123705A (en) 1988-06-13 2000-09-26 Sdgi Holdings, Inc. Interbody spinal fusion implants
US7431722B1 (en) * 1995-02-27 2008-10-07 Warsaw Orthopedic, Inc. Apparatus including a guard member having a passage with a non-circular cross section for providing protected access to the spine
US5593409A (en) 1988-06-13 1997-01-14 Sofamor Danek Group, Inc. Interbody spinal fusion implants
CA1333209C (en) 1988-06-28 1994-11-29 Gary Karlin Michelson Artificial spinal fusion implants
US5609635A (en) 1988-06-28 1997-03-11 Michelson; Gary K. Lordotic interbody spinal fusion implants
AU624627B2 (en) * 1988-08-18 1992-06-18 Johnson & Johnson Orthopaedics, Inc. Functional and biocompatible intervertebral disc spacer containing elastomeric material of varying hardness
US5545229A (en) * 1988-08-18 1996-08-13 University Of Medicine And Dentistry Of Nj Functional and biocompatible intervertebral disc spacer containing elastomeric material of varying hardness
CA1318469C (en) * 1989-02-15 1993-06-01 Acromed Corporation Artificial disc
US5047055A (en) * 1990-12-21 1991-09-10 Pfizer Hospital Products Group, Inc. Hydrogel intervertebral disc nucleus
US5192326A (en) * 1990-12-21 1993-03-09 Pfizer Hospital Products Group, Inc. Hydrogel bead intervertebral disc nucleus
JP2660111B2 (en) * 1991-02-13 1997-10-08 株式会社東芝 Semiconductor memory cell
JPH04126516U (en) * 1991-05-07 1992-11-18 春雄 高村 Bone replacement material for anterior spinal fixation
US5306307A (en) * 1991-07-22 1994-04-26 Calcitek, Inc. Spinal disk implant
GB9204263D0 (en) * 1992-02-28 1992-04-08 Limbs & Things Ltd Artificial spinal disc
ATE141149T1 (en) * 1992-04-21 1996-08-15 Sulzer Medizinaltechnik Ag ARTIFICIAL DISC BODY
US5306309A (en) * 1992-05-04 1994-04-26 Calcitek, Inc. Spinal disk implant and implantation kit
US5358525A (en) * 1992-12-28 1994-10-25 Fox John E Bearing surface for prosthesis and replacement of meniscal cartilage
US5534028A (en) * 1993-04-20 1996-07-09 Howmedica, Inc. Hydrogel intervertebral disc nucleus with diminished lateral bulging
DK0703757T3 (en) * 1993-06-10 2003-12-29 Karlin Technology Inc Spinal implant insertion device
FR2709949B1 (en) * 1993-09-14 1995-10-13 Commissariat Energie Atomique Intervertebral disc prosthesis.
BE1007549A3 (en) 1993-09-21 1995-08-01 Beckers Louis Francois Charles Implant.
GB9413855D0 (en) * 1994-07-08 1994-08-24 Smith & Nephew Prosthetic devices
GB9417288D0 (en) * 1994-08-25 1994-10-19 Howmedica Prosthetic bearing element and process for making such an element
ATE203885T1 (en) * 1994-09-08 2001-08-15 Stryker Technologies Corp HYDROGEL DISC CORE
US5674296A (en) 1994-11-14 1997-10-07 Spinal Dynamics Corporation Human spinal disc prosthesis
US6344057B1 (en) 1994-11-22 2002-02-05 Sdgi Holdings, Inc. Adjustable vertebral body replacement
CA2207336A1 (en) * 1994-12-09 1996-06-13 Jean-Louis Chevalier Adjustable vertebral body replacement
TW316844B (en) * 1994-12-09 1997-10-01 Sofamor Danek Group Inc
FR2730156B1 (en) * 1995-02-03 1997-04-30 Textile Hi Tec INTER SPINOUS HOLD
US5599576A (en) * 1995-02-06 1997-02-04 Surface Solutions Laboratories, Inc. Medical apparatus with scratch-resistant coating and method of making same
US6758849B1 (en) 1995-02-17 2004-07-06 Sdgi Holdings, Inc. Interbody spinal fusion implants
US5860973A (en) * 1995-02-27 1999-01-19 Michelson; Gary Karlin Translateral spinal implant
ES2196154T3 (en) * 1995-06-07 2003-12-16 Michelson Gary K TRANSLATERAL VERTEBRAL IMPLANT.
US5836311A (en) * 1995-09-20 1998-11-17 Medtronic, Inc. Method and apparatus for temporarily immobilizing a local area of tissue
US5645597A (en) * 1995-12-29 1997-07-08 Krapiva; Pavel I. Disc replacement method and apparatus
US5865845A (en) * 1996-03-05 1999-02-02 Thalgott; John S. Prosthetic intervertebral disc
US5964807A (en) * 1996-08-08 1999-10-12 Trustees Of The University Of Pennsylvania Compositions and methods for intervertebral disc reformation
US5827328A (en) * 1996-11-22 1998-10-27 Buttermann; Glenn R. Intervertebral prosthetic device
US6017366A (en) * 1997-04-18 2000-01-25 W. L. Gore & Associates, Inc. Resorbable interposition arthroplasty implant
US6022376A (en) * 1997-06-06 2000-02-08 Raymedica, Inc. Percutaneous prosthetic spinal disc nucleus and method of manufacture
GB9713330D0 (en) * 1997-06-25 1997-08-27 Bridport Gundry Plc Surgical implant
US5824094A (en) 1997-10-17 1998-10-20 Acromed Corporation Spinal disc
US20010016773A1 (en) * 1998-10-15 2001-08-23 Hassan Serhan Spinal disc
US6139579A (en) 1997-10-31 2000-10-31 Depuy Motech Acromed, Inc. Spinal disc
DE29720022U1 (en) * 1997-11-12 1998-01-15 Schaefer Micomed Gmbh Intervertebral implant
US5932552A (en) 1997-11-26 1999-08-03 Keraplast Technologies Ltd. Keratin-based hydrogel for biomedical applications and method of production
FR2772594B1 (en) * 1997-12-19 2000-05-05 Henry Graf REAR PARTIAL DISCAL PROSTHESIS
US6482233B1 (en) 1998-01-29 2002-11-19 Synthes(U.S.A.) Prosthetic interbody spacer
US6132465A (en) * 1998-06-04 2000-10-17 Raymedica, Inc. Tapered prosthetic spinal disc nucleus
US6136031A (en) * 1998-06-17 2000-10-24 Surgical Dynamics, Inc. Artificial intervertebral disc
US6296664B1 (en) * 1998-06-17 2001-10-02 Surgical Dynamics, Inc. Artificial intervertebral disc
AU748746B2 (en) 1998-07-22 2002-06-13 Spinal Dynamics Corporation Threaded cylindrical multidiscoid single or multiple array disc prosthesis
US6749635B1 (en) 1998-09-04 2004-06-15 Sdgi Holdings, Inc. Peanut spectacle multi discoid thoraco-lumbar disc prosthesis
CA2342633C (en) * 1998-09-04 2007-11-13 Spinal Dynamics Corporation Peanut spectacle multi discoid thoraco-lumbar disc prosthesis
US6193757B1 (en) 1998-10-29 2001-02-27 Sdgi Holdings, Inc. Expandable intervertebral spacers
FR2787017B1 (en) 1998-12-11 2001-04-27 Dimso Sa INTERVERTEBRAL DISC PROSTHESIS WITH IMPROVED MECHANICAL BEHAVIOR
FR2787018B1 (en) * 1998-12-11 2001-03-02 Dimso Sa INTERVERTEBRAL DISC PROSTHESIS WITH LIQUID ENCLOSURE
US6241770B1 (en) * 1999-03-05 2001-06-05 Gary K. Michelson Interbody spinal fusion implant having an anatomically conformed trailing end
US6368350B1 (en) 1999-03-11 2002-04-09 Sulzer Spine-Tech Inc. Intervertebral disc prosthesis and method
US6602291B1 (en) 1999-04-05 2003-08-05 Raymedica, Inc. Prosthetic spinal disc nucleus having a shape change characteristic
US6110210A (en) * 1999-04-08 2000-08-29 Raymedica, Inc. Prosthetic spinal disc nucleus having selectively coupled bodies
EP1198208B1 (en) * 1999-05-05 2013-07-10 Warsaw Orthopedic, Inc. Nested interbody spinal fusion implants
US6419704B1 (en) 1999-10-08 2002-07-16 Bret Ferree Artificial intervertebral disc replacement methods and apparatus
US20060247665A1 (en) * 1999-05-28 2006-11-02 Ferree Bret A Methods and apparatus for treating disc herniation and preventing the extrusion of interbody bone graft
US7273497B2 (en) * 1999-05-28 2007-09-25 Anova Corp. Methods for treating a defect in the annulus fibrosis
US20070038231A1 (en) * 1999-05-28 2007-02-15 Ferree Bret A Methods and apparatus for treating disc herniation and preventing the extrusion of interbody bone graft
US6969404B2 (en) * 1999-10-08 2005-11-29 Ferree Bret A Annulus fibrosis augmentation methods and apparatus
US6520996B1 (en) 1999-06-04 2003-02-18 Depuy Acromed, Incorporated Orthopedic implant
FR2897259B1 (en) 2006-02-15 2008-05-09 Ldr Medical Soc Par Actions Si INTERSOMATIC TRANSFORAMINAL CAGE WITH INTERBREBAL FUSION GRAFT AND CAGE IMPLANTATION INSTRUMENT
US6454804B1 (en) 1999-10-08 2002-09-24 Bret A. Ferree Engineered tissue annulus fibrosis augmentation methods and apparatus
US6685695B2 (en) * 1999-08-13 2004-02-03 Bret A. Ferree Method and apparatus for providing nutrition to intervertebral disc tissue
US6793677B2 (en) * 1999-08-13 2004-09-21 Bret A. Ferree Method of providing cells and other biologic materials for transplantation
US7201776B2 (en) * 1999-10-08 2007-04-10 Ferree Bret A Artificial intervertebral disc replacements with endplates
US6755863B2 (en) * 1999-10-08 2004-06-29 Bret A. Ferree Rotator cuff repair using engineered tissues
US7435260B2 (en) * 1999-08-13 2008-10-14 Ferree Bret A Use of morphogenetic proteins to treat human disc disease
US7998213B2 (en) * 1999-08-18 2011-08-16 Intrinsic Therapeutics, Inc. Intervertebral disc herniation repair
EP1624832A4 (en) * 1999-08-18 2008-12-24 Intrinsic Therapeutics Inc Devices and method for augmenting a vertebral disc nucleus
US7717961B2 (en) 1999-08-18 2010-05-18 Intrinsic Therapeutics, Inc. Apparatus delivery in an intervertebral disc
US6425919B1 (en) 1999-08-18 2002-07-30 Intrinsic Orthopedics, Inc. Devices and methods of vertebral disc augmentation
US7094258B2 (en) 1999-08-18 2006-08-22 Intrinsic Therapeutics, Inc. Methods of reinforcing an annulus fibrosis
US7553329B2 (en) * 1999-08-18 2009-06-30 Intrinsic Therapeutics, Inc. Stabilized intervertebral disc barrier
JP4247519B2 (en) * 1999-08-18 2009-04-02 イントリンジック セラピューティックス インコーポレイテッド Apparatus and method for nucleus augmentation and retention
US7972337B2 (en) 2005-12-28 2011-07-05 Intrinsic Therapeutics, Inc. Devices and methods for bone anchoring
US6936072B2 (en) * 1999-08-18 2005-08-30 Intrinsic Therapeutics, Inc. Encapsulated intervertebral disc prosthesis and methods of manufacture
US7507243B2 (en) 1999-08-18 2009-03-24 Gregory Lambrecht Devices and method for augmenting a vertebral disc
US8323341B2 (en) 2007-09-07 2012-12-04 Intrinsic Therapeutics, Inc. Impaction grafting for vertebral fusion
US6783546B2 (en) 1999-09-13 2004-08-31 Keraplast Technologies, Ltd. Implantable prosthetic or tissue expanding device
US6371984B1 (en) * 1999-09-13 2002-04-16 Keraplast Technologies, Ltd. Implantable prosthetic or tissue expanding device
US6264695B1 (en) * 1999-09-30 2001-07-24 Replication Medical, Inc. Spinal nucleus implant
US20030026788A1 (en) * 1999-10-08 2003-02-06 Ferree Bret A. Use of extracellular matrix tissue to preserve cultured cell phenotype
US20040172019A1 (en) * 1999-10-08 2004-09-02 Ferree Bret A. Reinforcers for artificial disc replacement methods and apparatus
US6875235B2 (en) * 1999-10-08 2005-04-05 Bret A. Ferree Prosthetic joints with contained compressible resilient members
US6645247B2 (en) * 1999-10-08 2003-11-11 Bret A. Ferree Supplementing engineered annulus tissues with autograft of allograft tendons
US7060100B2 (en) * 1999-10-08 2006-06-13 Ferree Bret A Artificial disc and joint replacements with modular cushioning components
US20040186573A1 (en) * 1999-10-08 2004-09-23 Ferree Bret A. Annulus fibrosis augmentation methods and apparatus
US6648920B2 (en) * 1999-10-08 2003-11-18 Bret A. Ferree Natural and synthetic supplements to engineered annulus and disc tissues
US20030004574A1 (en) * 1999-10-08 2003-01-02 Ferree Bret A. Disc and annulus augmentation using biologic tissue
US7201774B2 (en) * 1999-10-08 2007-04-10 Ferree Bret A Artificial intervertebral disc replacements incorporating reinforced wall sections
US6648919B2 (en) * 1999-10-14 2003-11-18 Bret A. Ferree Transplantation of engineered meniscus tissue to the intervertebral disc
US7052516B2 (en) * 1999-10-20 2006-05-30 Anulex Technologies, Inc. Spinal disc annulus reconstruction method and deformable spinal disc annulus stent
US8632590B2 (en) 1999-10-20 2014-01-21 Anulex Technologies, Inc. Apparatus and methods for the treatment of the intervertebral disc
US8128698B2 (en) 1999-10-20 2012-03-06 Anulex Technologies, Inc. Method and apparatus for the treatment of the intervertebral disc annulus
US7935147B2 (en) 1999-10-20 2011-05-03 Anulex Technologies, Inc. Method and apparatus for enhanced delivery of treatment device to the intervertebral disc annulus
US7615076B2 (en) * 1999-10-20 2009-11-10 Anulex Technologies, Inc. Method and apparatus for the treatment of the intervertebral disc annulus
US6592625B2 (en) * 1999-10-20 2003-07-15 Anulex Technologies, Inc. Spinal disc annulus reconstruction method and spinal disc annulus stent
US7004970B2 (en) * 1999-10-20 2006-02-28 Anulex Technologies, Inc. Methods and devices for spinal disc annulus reconstruction and repair
US20030153976A1 (en) * 1999-10-20 2003-08-14 Cauthen Joseph C. Spinal disc annulus reconstruction method and spinal disc annulus stent
US20020123807A1 (en) * 1999-10-20 2002-09-05 Cauthen Joseph C. Spinal disc annulus reconstruction method and spinal disc annulus stent
US7951201B2 (en) * 1999-10-20 2011-05-31 Anulex Technologies, Inc. Method and apparatus for the treatment of the intervertebral disc annulus
US20050027361A1 (en) * 1999-10-22 2005-02-03 Reiley Mark A. Facet arthroplasty devices and methods
US6811567B2 (en) * 1999-10-22 2004-11-02 Archus Orthopedics Inc. Facet arthroplasty devices and methods
US7691145B2 (en) * 1999-10-22 2010-04-06 Facet Solutions, Inc. Prostheses, systems and methods for replacement of natural facet joints with artificial facet joint surfaces
US7674293B2 (en) * 2004-04-22 2010-03-09 Facet Solutions, Inc. Crossbar spinal prosthesis having a modular design and related implantation methods
US6974478B2 (en) * 1999-10-22 2005-12-13 Archus Orthopedics, Inc. Prostheses, systems and methods for replacement of natural facet joints with artificial facet joint surfaces
EP1854433B1 (en) * 1999-10-22 2010-05-12 FSI Acquisition Sub, LLC Facet arthroplasty devices
US8187303B2 (en) 2004-04-22 2012-05-29 Gmedelaware 2 Llc Anti-rotation fixation element for spinal prostheses
US7291150B2 (en) * 1999-12-01 2007-11-06 Sdgi Holdings, Inc. Intervertebral stabilising device
US6899716B2 (en) * 2000-02-16 2005-05-31 Trans1, Inc. Method and apparatus for spinal augmentation
US7727263B2 (en) * 2000-02-16 2010-06-01 Trans1, Inc. Articulating spinal implant
US6629997B2 (en) * 2000-03-27 2003-10-07 Kevin A. Mansmann Meniscus-type implant with hydrogel surface reinforced by three-dimensional mesh
ATE390099T1 (en) * 2000-04-04 2008-04-15 Link Spine Group Inc INTERVERBEL PLASTIC IMPLANT
US6402750B1 (en) * 2000-04-04 2002-06-11 Spinlabs, Llc Devices and methods for the treatment of spinal disorders
US6805695B2 (en) * 2000-04-04 2004-10-19 Spinalabs, Llc Devices and methods for annular repair of intervertebral discs
US6350283B1 (en) * 2000-04-19 2002-02-26 Gary K. Michelson Bone hemi-lumbar interbody spinal implant having an asymmetrical leading end and method of installation thereof
US7462195B1 (en) 2000-04-19 2008-12-09 Warsaw Orthopedic, Inc. Artificial lumbar interbody spinal implant having an asymmetrical leading end
US20020111680A1 (en) * 2000-06-13 2002-08-15 Michelson Gary K. Ratcheted bone dowel
AU2001274821A1 (en) * 2000-06-13 2001-12-24 Gary K. Michelson Manufactured major long bone ring implant shaped to conform to a prepared intervertebral implantation space
CA2429246C (en) * 2000-08-08 2011-06-07 Vincent Bryan Implantable joint prosthesis
US7125380B2 (en) * 2000-08-08 2006-10-24 Warsaw Orthopedic, Inc. Clamping apparatus and methods
US7601174B2 (en) * 2000-08-08 2009-10-13 Warsaw Orthopedic, Inc. Wear-resistant endoprosthetic devices
US6949105B2 (en) 2000-08-08 2005-09-27 Sdgi Holdings, Inc. Method and apparatus for stereotactic implantation
US7226480B2 (en) * 2000-08-15 2007-06-05 Depuy Spine, Inc. Disc prosthesis
US6458159B1 (en) * 2000-08-15 2002-10-01 John S. Thalgott Disc prosthesis
CA2420898A1 (en) * 2000-08-28 2002-03-07 Advanced Bio Surfaces, Inc. Method for mammalian joint resurfacing
US20020026244A1 (en) * 2000-08-30 2002-02-28 Trieu Hai H. Intervertebral disc nucleus implants and methods
US7204851B2 (en) * 2000-08-30 2007-04-17 Sdgi Holdings, Inc. Method and apparatus for delivering an intervertebral disc implant
US7503936B2 (en) * 2000-08-30 2009-03-17 Warsaw Orthopedic, Inc. Methods for forming and retaining intervertebral disc implants
US6620196B1 (en) 2000-08-30 2003-09-16 Sdgi Holdings, Inc. Intervertebral disc nucleus implants and methods
US20050154463A1 (en) * 2000-08-30 2005-07-14 Trieu Hal H. Spinal nucleus replacement implants and methods
ES2303972T3 (en) 2000-08-30 2008-09-01 Warsaw Orthopedic, Inc. INTERVERTEBRAL DISK IMPLANTS.
GB0024060D0 (en) * 2000-10-02 2000-11-15 Matrice Material Systems Ltd A composite
US20080177310A1 (en) * 2000-10-20 2008-07-24 Archus Orthopedics, Inc. Facet arthroplasty devices and methods
US6733531B1 (en) 2000-10-20 2004-05-11 Sdgi Holdings, Inc. Anchoring devices and implants for intervertebral disc augmentation
EP1328220B1 (en) * 2000-10-24 2011-01-05 CryoLife, Inc. Bioprosthetic filler and methods, particularly for the in situ formation of vertebral disc bioprosthetics
AU2001297782B2 (en) * 2000-11-07 2006-03-02 Cryolife, Inc. Expandable foam-like biomaterials and methods
US20050080486A1 (en) * 2000-11-29 2005-04-14 Fallin T. Wade Facet joint replacement
US6579319B2 (en) * 2000-11-29 2003-06-17 Medicinelodge, Inc. Facet joint replacement
US6565605B2 (en) 2000-12-13 2003-05-20 Medicinelodge, Inc. Multiple facet joint replacement
US6419703B1 (en) 2001-03-01 2002-07-16 T. Wade Fallin Prosthesis for the replacement of a posterior element of a vertebra
ES2262621T3 (en) * 2001-01-30 2006-12-01 Synthes Ag Chur IMPLANT OF OSTEOSYNTHESIS, IN SPECIAL INTERVERTEBRAL IMPLANT.
US6562045B2 (en) 2001-02-13 2003-05-13 Sdgi Holdings, Inc. Machining apparatus
WO2002065954A1 (en) * 2001-02-16 2002-08-29 Queen's University At Kingston Method and device for treating scoliosis
US7090698B2 (en) * 2001-03-02 2006-08-15 Facet Solutions Method and apparatus for spine joint replacement
US6989031B2 (en) * 2001-04-02 2006-01-24 Sdgi Holdings, Inc. Hemi-interbody spinal implant manufactured from a major long bone ring or a bone composite
US6749636B2 (en) * 2001-04-02 2004-06-15 Gary K. Michelson Contoured spinal fusion implants made of bone or a bone composite material
US6890355B2 (en) * 2001-04-02 2005-05-10 Gary K. Michelson Artificial contoured spinal fusion implants made of a material other than bone
FR2824261B1 (en) * 2001-05-04 2004-05-28 Ldr Medical INTERVERTEBRAL DISC PROSTHESIS AND IMPLEMENTATION METHOD AND TOOLS
US7156877B2 (en) * 2001-06-29 2007-01-02 The Regents Of The University Of California Biodegradable/bioactive nucleus pulposus implant and method for treating degenerated intervertebral discs
US20090234457A1 (en) * 2001-06-29 2009-09-17 The Regents Of The University Of California Systems, devices and methods for treatment of intervertebral disorders
JP4744023B2 (en) * 2001-07-24 2011-08-10 日本電産サーボ株式会社 Permanent magnet 3-phase stepping motor
ATE398430T1 (en) * 2001-08-24 2008-07-15 Zimmer Gmbh ARTIFICIAL DISC
EP1287795B1 (en) * 2001-08-24 2008-06-18 Zimmer GmbH Artificial spinal disc
US7179295B2 (en) * 2001-10-05 2007-02-20 Nebojsa Kovacevic Prosthetic shock absorber
US6783721B2 (en) * 2001-10-30 2004-08-31 Howmedica Osteonics Corp. Method of making an ion treated hydrogel
JP3993855B2 (en) * 2001-11-01 2007-10-17 スパイン・ウェイブ・インコーポレーテッド Device for spinal disc recovery
EP1465521A4 (en) 2001-11-01 2008-10-08 Spine Wave Inc System and method for the pretreatment of the endplates of an intervertebral disc
US7025787B2 (en) * 2001-11-26 2006-04-11 Sdgi Holdings, Inc. Implantable joint prosthesis and associated instrumentation
US6736850B2 (en) * 2001-12-28 2004-05-18 Spinal Concepts, Inc. Vertebral pseudo arthrosis device and method
US20060129242A1 (en) * 2001-12-28 2006-06-15 Brian Bergeron Pseudo arthrosis device
US6761723B2 (en) * 2002-01-14 2004-07-13 Dynamic Spine, Inc. Apparatus and method for performing spinal surgery
US20030220692A1 (en) * 2002-02-09 2003-11-27 Shapiro Irving M. Preparations of nucleus pulposus cells and methods for their generation, identification, and use
US6824278B2 (en) * 2002-03-15 2004-11-30 Memx, Inc. Self-shadowing MEM structures
US20060106462A1 (en) * 2002-04-16 2006-05-18 Tsou Paul M Implant material for minimally invasive spinal interbody fusion surgery
US7156848B2 (en) * 2002-04-24 2007-01-02 Ferree Bret A Check reins for artificial disc replacements
US8696749B2 (en) * 2002-04-25 2014-04-15 Blackstone Medical, Inc. Artificial intervertebral disc
JP4315816B2 (en) * 2002-04-25 2009-08-19 ブラックストーン メディカル,インコーポレーテッド Artificial disc
US7001433B2 (en) 2002-05-23 2006-02-21 Pioneer Laboratories, Inc. Artificial intervertebral disc device
US8388684B2 (en) 2002-05-23 2013-03-05 Pioneer Signal Technology, Inc. Artificial disc device
US6793678B2 (en) 2002-06-27 2004-09-21 Depuy Acromed, Inc. Prosthetic intervertebral motion disc having dampening
JP4456481B2 (en) 2002-08-15 2010-04-28 ガーバー,デイヴィッド Controlled artificial disc implant
JP4256345B2 (en) * 2002-08-15 2009-04-22 コップス,ジャスティン,ケー. Intervertebral disc implant
US20040054413A1 (en) * 2002-09-16 2004-03-18 Howmedica Osteonics Corp. Radiovisible hydrogel intervertebral disc nucleus
GB0223327D0 (en) * 2002-10-08 2002-11-13 Ranier Ltd Artificial spinal disc
US7156876B2 (en) * 2002-10-09 2007-01-02 Depuy Acromed, Inc. Intervertebral motion disc having articulation and shock absorption
AU2003286531A1 (en) * 2002-10-21 2004-05-13 3Hbfm, Llc Intervertebral disk prosthesis
US7273496B2 (en) * 2002-10-29 2007-09-25 St. Francis Medical Technologies, Inc. Artificial vertebral disk replacement implant with crossbar spacer and method
US6966929B2 (en) * 2002-10-29 2005-11-22 St. Francis Medical Technologies, Inc. Artificial vertebral disk replacement implant with a spacer
US7083649B2 (en) * 2002-10-29 2006-08-01 St. Francis Medical Technologies, Inc. Artificial vertebral disk replacement implant with translating pivot point
US7497859B2 (en) * 2002-10-29 2009-03-03 Kyphon Sarl Tools for implanting an artificial vertebral disk
US20040133278A1 (en) * 2002-10-31 2004-07-08 Marino James F. Spinal disc implant
FR2846550B1 (en) 2002-11-05 2006-01-13 Ldr Medical INTERVERTEBRAL DISC PROSTHESIS
NL1022023C2 (en) * 2002-11-29 2004-06-03 Dsm Nv Artificial intervertebral disc.
US6974479B2 (en) * 2002-12-10 2005-12-13 Sdgi Holdings, Inc. System and method for blocking and/or retaining a prosthetic spinal implant
US20040210310A1 (en) * 2002-12-10 2004-10-21 Trieu Hai H. Implant system and method for intervertebral disc augmentation
ATE404134T1 (en) * 2002-12-17 2008-08-15 Coligne Ag CYLINDRICAL FIBER REINFORCED IMPLANT
US20040158254A1 (en) * 2003-02-12 2004-08-12 Sdgi Holdings, Inc. Instrument and method for milling a path into bone
AU2004212942A1 (en) 2003-02-14 2004-09-02 Depuy Spine, Inc. In-situ formed intervertebral fusion device
US20060015182A1 (en) * 2003-02-25 2006-01-19 Tsou Paul M Patch material for intervertebral disc annulus defect repair
WO2004089240A2 (en) * 2003-04-04 2004-10-21 Theken Disc, Llc Artificial disc prosthesis
US8012212B2 (en) * 2003-04-07 2011-09-06 Nuvasive, Inc. Cervical intervertebral disk prosthesis
US7429270B2 (en) 2003-04-14 2008-09-30 Synthes (U.S.A.) Intervertebral implant
US20050143824A1 (en) * 2003-05-06 2005-06-30 Marc Richelsoph Artificial intervertebral disc
US7291173B2 (en) 2003-05-06 2007-11-06 Aesculap Ii, Inc. Artificial intervertebral disc
US7105024B2 (en) * 2003-05-06 2006-09-12 Aesculap Ii, Inc. Artificial intervertebral disc
US20040230304A1 (en) * 2003-05-14 2004-11-18 Archus Orthopedics Inc. Prostheses, tools and methods for replacement of natural facet joints with artifical facet joint surfaces
US7608104B2 (en) * 2003-05-14 2009-10-27 Archus Orthopedics, Inc. Prostheses, tools and methods for replacement of natural facet joints with artifical facet joint surfaces
US20040230201A1 (en) * 2003-05-14 2004-11-18 Archus Orthopedics Inc. Prostheses, tools and methods for replacement of natural facet joints with artifical facet joint surfaces
DE20308171U1 (en) * 2003-05-21 2003-07-31 Aesculap Ag & Co Kg Vertebral body replacement implant
ATE499910T1 (en) * 2003-06-20 2011-03-15 Intrinsic Therapeutics Inc DEVICE FOR DELIVERING AN IMPLANT THROUGH AN ANNUAL DEFECT IN A DISC
US20040260300A1 (en) * 2003-06-20 2004-12-23 Bogomir Gorensek Method of delivering an implant through an annular defect in an intervertebral disc
US7008452B2 (en) * 2003-06-26 2006-03-07 Depuy Acromed, Inc. Dual durometer elastomer artificial disc
US20040267367A1 (en) * 2003-06-30 2004-12-30 Depuy Acromed, Inc Intervertebral implant with conformable endplate
DE10330698B4 (en) * 2003-07-08 2005-05-25 Aesculap Ag & Co. Kg Intervertebral implant
DE20310433U1 (en) 2003-07-08 2003-09-04 Aesculap Ag & Co Kg Surgical device for inserting dual component implant into appropriate space at spine, comprising particularly shaped holding area
US7074238B2 (en) * 2003-07-08 2006-07-11 Archus Orthopedics, Inc. Prostheses, tools and methods for replacement of natural facet joints with artificial facet joint surfaces
NL1023926C2 (en) 2003-07-15 2005-01-18 Univ Groningen Prosthesis based on a fiber-reinforced hydrogel and method for manufacturing the prosthesis and its application.
US20050015150A1 (en) * 2003-07-17 2005-01-20 Lee Casey K. Intervertebral disk and nucleus prosthesis
US7153325B2 (en) * 2003-08-01 2006-12-26 Ultra-Kinetics, Inc. Prosthetic intervertebral disc and methods for using the same
US7909869B2 (en) 2003-08-05 2011-03-22 Flexuspine, Inc. Artificial spinal unit assemblies
US7799082B2 (en) * 2003-08-05 2010-09-21 Flexuspine, Inc. Artificial functional spinal unit system and method for use
US7753958B2 (en) 2003-08-05 2010-07-13 Gordon Charles R Expandable intervertebral implant
EP1651150B1 (en) * 2003-08-07 2021-03-24 Dynamic Spine, Inc. Intervertebral prosthetic device and associated devices and methods for implanting the intervertebral prosthetic device
DE10337088A1 (en) * 2003-08-12 2005-03-10 Biedermann Motech Gmbh Placeholder for vertebral bodies or intervertebral discs
DE20313183U1 (en) * 2003-08-22 2003-10-16 Aesculap Ag & Co Kg Intervertebral implant
US20050055099A1 (en) * 2003-09-09 2005-03-10 Ku David N. Flexible spinal disc
US7655012B2 (en) * 2003-10-02 2010-02-02 Zimmer Spine, Inc. Methods and apparatuses for minimally invasive replacement of intervertebral discs
DE10347175B4 (en) * 2003-10-08 2005-10-20 Aesculap Ag & Co Kg Intervertebral implant
DE102004021861A1 (en) 2004-05-04 2005-11-24 Biedermann Motech Gmbh Implant for temporary or permanent replacement of vertebra or intervertebral disk, comprising solid central element and outer elements with openings
AU2003285751A1 (en) * 2003-10-20 2005-05-05 Impliant Ltd. Facet prosthesis
US9445916B2 (en) 2003-10-22 2016-09-20 Pioneer Surgical Technology, Inc. Joint arthroplasty devices having articulating members
US7320707B2 (en) * 2003-11-05 2008-01-22 St. Francis Medical Technologies, Inc. Method of laterally inserting an artificial vertebral disk replacement implant with crossbar spacer
US20050116400A1 (en) * 2003-11-14 2005-06-02 White Moreno J. Non-linear fiber/matrix architecture
US20050149192A1 (en) * 2003-11-20 2005-07-07 St. Francis Medical Technologies, Inc. Intervertebral body fusion cage with keels and implantation method
US7837732B2 (en) * 2003-11-20 2010-11-23 Warsaw Orthopedic, Inc. Intervertebral body fusion cage with keels and implantation methods
US7691146B2 (en) * 2003-11-21 2010-04-06 Kyphon Sarl Method of laterally inserting an artificial vertebral disk replacement implant with curved spacer
US20050283237A1 (en) * 2003-11-24 2005-12-22 St. Francis Medical Technologies, Inc. Artificial spinal disk replacement device with staggered vertebral body attachments
US20050209603A1 (en) * 2003-12-02 2005-09-22 St. Francis Medical Technologies, Inc. Method for remediation of intervertebral disks
US20050154462A1 (en) * 2003-12-02 2005-07-14 St. Francis Medical Technologies, Inc. Laterally insertable artificial vertebral disk replacement implant with translating pivot point
US7217291B2 (en) * 2003-12-08 2007-05-15 St. Francis Medical Technologies, Inc. System and method for replacing degenerated spinal disks
US7588590B2 (en) 2003-12-10 2009-09-15 Facet Solutions, Inc Spinal facet implant with spherical implant apposition surface and bone bed and methods of use
US7695517B2 (en) * 2003-12-10 2010-04-13 Axiomed Spine Corporation Apparatus for replacing a damaged spinal disc
US20050143826A1 (en) * 2003-12-11 2005-06-30 St. Francis Medical Technologies, Inc. Disk repair structures with anchors
US20050131406A1 (en) * 2003-12-15 2005-06-16 Archus Orthopedics, Inc. Polyaxial adjustment of facet joint prostheses
US7250060B2 (en) 2004-01-27 2007-07-31 Sdgi Holdings, Inc. Hybrid intervertebral disc system
US20050165487A1 (en) * 2004-01-28 2005-07-28 Muhanna Nabil L. Artificial intervertebral disc
FR2865629B1 (en) 2004-02-04 2007-01-26 Ldr Medical INTERVERTEBRAL DISC PROSTHESIS
PT2113227E (en) 2004-02-04 2015-10-16 Ldr Medical Intervertebral disc prosthesis
CA2558661C (en) 2004-02-06 2012-09-04 Georgia Tech Research Corporation Load bearing biocompatible device
US7846183B2 (en) * 2004-02-06 2010-12-07 Spinal Elements, Inc. Vertebral facet joint prosthesis and method of fixation
WO2005077013A2 (en) 2004-02-06 2005-08-25 Georgia Tech Research Corporation Surface directed cellular attachment
US8333789B2 (en) 2007-01-10 2012-12-18 Gmedelaware 2 Llc Facet joint replacement
US8900273B2 (en) * 2005-02-22 2014-12-02 Gmedelaware 2 Llc Taper-locking fixation system
US7993373B2 (en) * 2005-02-22 2011-08-09 Hoy Robert W Polyaxial orthopedic fastening apparatus
US8562649B2 (en) * 2004-02-17 2013-10-22 Gmedelaware 2 Llc System and method for multiple level facet joint arthroplasty and fusion
US8636802B2 (en) 2004-03-06 2014-01-28 DePuy Synthes Products, LLC Dynamized interspinal implant
JP4563449B2 (en) * 2004-03-26 2010-10-13 ヌヴァシヴ インコーポレイテッド Artificial spinal disc
US7051451B2 (en) * 2004-04-22 2006-05-30 Archus Orthopedics, Inc. Facet joint prosthesis measurement and implant tools
US20080082171A1 (en) * 2004-04-22 2008-04-03 Kuiper Mark K Crossbar spinal prosthesis having a modular design and systems for treating spinal pathologies
US7406775B2 (en) * 2004-04-22 2008-08-05 Archus Orthopedics, Inc. Implantable orthopedic device component selection instrument and methods
US7282165B2 (en) * 2004-04-27 2007-10-16 Howmedica Osteonics Corp. Wear resistant hydrogel for bearing applications
FR2869528B1 (en) 2004-04-28 2007-02-02 Ldr Medical INTERVERTEBRAL DISC PROSTHESIS
US20070093833A1 (en) * 2004-05-03 2007-04-26 Kuiper Mark K Crossbar spinal prosthesis having a modular design and related implantation methods
US20080269900A1 (en) * 2004-05-20 2008-10-30 Christopher Reah Surgical Implants
US20060100304A1 (en) * 2004-05-21 2006-05-11 Synthes Inc. Replacement or supplementation of a nucleus pulposus using a hydrogel
US7588578B2 (en) * 2004-06-02 2009-09-15 Facet Solutions, Inc Surgical measurement systems and methods
US8764801B2 (en) * 2005-03-28 2014-07-01 Gmedelaware 2 Llc Facet joint implant crosslinking apparatus and method
US20050273172A1 (en) * 2004-06-07 2005-12-08 Patil Arun A Artificial disc and uses therefor
US9504583B2 (en) 2004-06-10 2016-11-29 Spinal Elements, Inc. Implant and method for facet immobilization
DE102004028967B4 (en) * 2004-06-16 2006-05-24 Aesculap Ag & Co. Kg Intervertebral implant
US7837733B2 (en) * 2004-06-29 2010-11-23 Spine Wave, Inc. Percutaneous methods for injecting a curable biomaterial into an intervertebral space
EP1773256B1 (en) * 2004-06-30 2019-11-27 Synergy Disc Replacement Inc. Artificial spinal disc
US8172904B2 (en) * 2004-06-30 2012-05-08 Synergy Disc Replacement, Inc. Artificial spinal disc
US9237958B2 (en) * 2004-06-30 2016-01-19 Synergy Disc Replacement Inc. Joint prostheses
US20060009541A1 (en) * 2004-07-09 2006-01-12 Yih-Fang Chen Saturant for friction material containing friction modifying layer
US20060041311A1 (en) * 2004-08-18 2006-02-23 Mcleer Thomas J Devices and methods for treating facet joints
CA2576636A1 (en) * 2004-08-18 2006-03-02 Archus Orthopedics, Inc. Adjacent level facet arthroplasty devices, spine stabilization systems, and methods
US8110003B2 (en) 2004-09-09 2012-02-07 University Of South Florida Prostheses for spine discs having fusion capability
US20060052870A1 (en) * 2004-09-09 2006-03-09 Ferree Bret A Methods and apparatus to prevent movement through artificial disc replacements
US20060058881A1 (en) * 2004-09-16 2006-03-16 Trieu Hai H Intervertebral disc nucleus implants and methods
WO2006034436A2 (en) 2004-09-21 2006-03-30 Stout Medical Group, L.P. Expandable support device and method of use
US7303074B2 (en) * 2004-09-22 2007-12-04 Dombrowski Trudy M Foldable organizer device
US7575600B2 (en) * 2004-09-29 2009-08-18 Kyphon Sarl Artificial vertebral disk replacement implant with translating articulation contact surface and method
US7481840B2 (en) * 2004-09-29 2009-01-27 Kyphon Sarl Multi-piece artificial spinal disk replacement device with selectably positioning articulating element
US20060069438A1 (en) * 2004-09-29 2006-03-30 Zucherman James F Multi-piece artificial spinal disk replacement device with multi-segmented support plates
US20060079895A1 (en) * 2004-09-30 2006-04-13 Mcleer Thomas J Methods and devices for improved bonding of devices to bone
US20060085075A1 (en) * 2004-10-04 2006-04-20 Archus Orthopedics, Inc. Polymeric joint complex and methods of use
US20060089719A1 (en) * 2004-10-21 2006-04-27 Trieu Hai H In situ formation of intervertebral disc implants
US8221461B2 (en) 2004-10-25 2012-07-17 Gmedelaware 2 Llc Crossbar spinal prosthesis having a modular design and systems for treating spinal pathologies
ATE524121T1 (en) 2004-11-24 2011-09-15 Abdou Samy DEVICES FOR PLACING AN ORTHOPEDIC INTERVERTEBRAL IMPLANT
US20070016196A1 (en) * 2005-05-10 2007-01-18 Winslow Charles J Inter-cervical facet implant with implantation tool
US8118838B2 (en) * 2004-12-13 2012-02-21 Kyphon Sarl Inter-cervical facet implant with multiple direction articulation joint and method for implanting
US8100944B2 (en) * 2004-12-13 2012-01-24 Kyphon Sarl Inter-cervical facet implant and method for preserving the tissues surrounding the facet joint
US20060247633A1 (en) * 2004-12-13 2006-11-02 St. Francis Medical Technologies, Inc. Inter-cervical facet implant with surface enhancements
US20060247650A1 (en) * 2004-12-13 2006-11-02 St. Francis Medical Technologies, Inc. Inter-cervical facet joint fusion implant
US8029540B2 (en) 2005-05-10 2011-10-04 Kyphon Sarl Inter-cervical facet implant with implantation tool
US8066749B2 (en) * 2004-12-13 2011-11-29 Warsaw Orthopedic, Inc. Implant for stabilizing a bone graft during spinal fusion
US7776090B2 (en) * 2004-12-13 2010-08-17 Warsaw Orthopedic, Inc. Inter-cervical facet implant and method
FR2879436B1 (en) 2004-12-22 2007-03-09 Ldr Medical INTERVERTEBRAL DISC PROSTHESIS
EP1833430A2 (en) * 2005-01-08 2007-09-19 Alphaspine, Inc. Modular disc device
KR20070115886A (en) * 2005-01-19 2007-12-06 넥스젠 스파인 인코포레이티드 Elastomeric intervertebral disc prosthesis
ES2387194T3 (en) * 2005-01-19 2012-09-17 Nexgen Spine, Inc. Fastening elastomer to rigid structures
US7591853B2 (en) * 2005-03-09 2009-09-22 Vertebral Technologies, Inc. Rail-based modular disc nucleus prosthesis
US7722647B1 (en) 2005-03-14 2010-05-25 Facet Solutions, Inc. Apparatus and method for posterior vertebral stabilization
JP2008534063A (en) * 2005-03-22 2008-08-28 アーカス・オーソペディクス・インコーポレーテッド Minimally invasive spinal recovery system, apparatus, method and kit
US8496686B2 (en) 2005-03-22 2013-07-30 Gmedelaware 2 Llc Minimally invasive spine restoration systems, devices, methods and kits
US7632312B2 (en) * 2005-03-24 2009-12-15 Neurocare International, Inc. Artifical lumbar disc
US20060276801A1 (en) * 2005-04-04 2006-12-07 Yerby Scott A Inter-cervical facet implant distraction tool
EP1868539A2 (en) * 2005-04-15 2007-12-26 Musculoskeletal Transplant Foundation Vertebral disc repair
US7674296B2 (en) * 2005-04-21 2010-03-09 Globus Medical, Inc. Expandable vertebral prosthesis
US7799080B2 (en) * 2005-04-22 2010-09-21 Doty Keith L Spinal disc prosthesis and methods of use
US7361192B2 (en) * 2005-04-22 2008-04-22 Doty Keith L Spinal disc prosthesis and methods of use
US7182783B2 (en) * 2005-04-25 2007-02-27 Sdgi Holdings, Inc. Selectively expandable composite structures for spinal arthroplasty
WO2006116761A2 (en) * 2005-04-27 2006-11-02 Stout Medical Group, L.P. Expandable support device and methods of use
US20060276900A1 (en) * 2005-06-01 2006-12-07 Carpenter Clyde T Anatomic total disc replacement
GB0514891D0 (en) * 2005-07-20 2005-08-24 Pearsalls Ltd Improvements in and relating to implants
WO2006133130A2 (en) * 2005-06-03 2006-12-14 Nuvasive, Inc. Fibrous spinal implant and method of implantation
US20060282166A1 (en) * 2005-06-09 2006-12-14 Sdgi Holdings, Inc. Compliant porous coating
FR2887762B1 (en) 2005-06-29 2007-10-12 Ldr Medical Soc Par Actions Si INTERVERTEBRAL DISC PROSTHESIS INSERTION INSTRUMENTATION BETWEEN VERTEBRATES
WO2007009107A2 (en) * 2005-07-14 2007-01-18 Stout Medical Group, P.L. Expandable support device and method of use
CA2621154A1 (en) 2005-09-01 2007-03-08 Spinal Kinetics, Inc. Prosthetic intervertebral discs
US7731753B2 (en) 2005-09-01 2010-06-08 Spinal Kinetics, Inc. Prosthetic intervertebral discs
US20070050032A1 (en) * 2005-09-01 2007-03-01 Spinal Kinetics, Inc. Prosthetic intervertebral discs
US20070083200A1 (en) * 2005-09-23 2007-04-12 Gittings Darin C Spinal stabilization systems and methods
FR2891135B1 (en) 2005-09-23 2008-09-12 Ldr Medical Sarl INTERVERTEBRAL DISC PROSTHESIS
US20080287959A1 (en) * 2005-09-26 2008-11-20 Archus Orthopedics, Inc. Measurement and trialing system and methods for orthopedic device component selection
CA2627345A1 (en) 2005-10-24 2007-05-03 Nexgen Spine, Inc. Intervertebral disc replacement and associated instrumentation
US7857193B2 (en) * 2005-11-23 2010-12-28 Babcock & Wilcox Technical Services Y-12, Llc Method of forming and assembly of parts
FR2893838B1 (en) * 2005-11-30 2008-08-08 Ldr Medical Soc Par Actions Si PROSTHESIS OF INTERVERTEBRAL DISC AND INSTRUMENTATION OF INSERTION OF THE PROSTHESIS BETWEEN VERTEBRATES
WO2007126428A2 (en) * 2005-12-20 2007-11-08 Archus Orthopedics, Inc. Arthroplasty revision system and method
FR2894808B1 (en) * 2005-12-20 2009-02-06 Spineart Sa Sa ANATOMICAL DISC DISC SPACER AND ITS APPLICATIONS
US7662183B2 (en) * 2006-01-24 2010-02-16 Timothy Haines Dynamic spinal implants incorporating cartilage bearing graft material
US8038920B2 (en) 2006-01-25 2011-10-18 Carticept Medical, Inc. Methods of producing PVA hydrogel implants and related devices
US8603171B2 (en) 2006-01-25 2013-12-10 Mimedx Group, Inc. Spinal disc implants with flexible keels and methods of fabricating implants
US20070179615A1 (en) * 2006-01-31 2007-08-02 Sdgi Holdings, Inc. Intervertebral prosthetic disc
US7967820B2 (en) 2006-02-07 2011-06-28 P Tech, Llc. Methods and devices for trauma welding
US11253296B2 (en) * 2006-02-07 2022-02-22 P Tech, Llc Methods and devices for intracorporeal bonding of implants with thermal energy
US11278331B2 (en) 2006-02-07 2022-03-22 P Tech Llc Method and devices for intracorporeal bonding of implants with thermal energy
US8496657B2 (en) 2006-02-07 2013-07-30 P Tech, Llc. Methods for utilizing vibratory energy to weld, stake and/or remove implants
US8118869B2 (en) 2006-03-08 2012-02-21 Flexuspine, Inc. Dynamic interbody device
WO2007106573A2 (en) * 2006-03-15 2007-09-20 Archus Orthopedics, Inc. Facet and disc arthroplasty systems and methods
US20070225806A1 (en) * 2006-03-24 2007-09-27 Sdgi Holdings, Inc. Arthroplasty device
WO2007131002A2 (en) 2006-05-01 2007-11-15 Stout Medical Group, L.P. Expandable support device and method of use
US11246638B2 (en) 2006-05-03 2022-02-15 P Tech, Llc Methods and devices for utilizing bondable materials
FI119177B (en) 2006-05-05 2008-08-29 Bioretec Oy Bioabsorbable, deformable fixation material and implants
US20070276492A1 (en) * 2006-05-09 2007-11-29 Ranier Limited Artificial spinal disc implant
US20080071379A1 (en) * 2006-05-10 2008-03-20 Mark Rydell Intervertebral disc replacement
EP2029059A2 (en) * 2006-05-25 2009-03-04 Spinemedica Corporation Patient-specific spinal implants and related systems and methods
WO2010062971A1 (en) 2008-11-26 2010-06-03 Anova Corporation Methods and apparatus for anulus repair
US8834496B2 (en) 2006-06-13 2014-09-16 Bret A. Ferree Soft tissue repair methods and apparatus
US8764835B2 (en) * 2006-06-13 2014-07-01 Bret A. Ferree Intervertebral disc treatment methods and apparatus
US9232938B2 (en) 2006-06-13 2016-01-12 Anova Corp. Method and apparatus for closing fissures in the annulus fibrosus
US7951200B2 (en) * 2006-07-12 2011-05-31 Warsaw Orthopedic, Inc. Vertebral implant including preformed osteoconductive insert and methods of forming
EP2076220A2 (en) * 2006-07-25 2009-07-08 Musculoskeletal Transplant Foundation Packed demineralized cancellous tissue forms for disc nucleus augmentation, restoration, or replacement and methods of implantation
WO2008019397A2 (en) * 2006-08-11 2008-02-14 Archus Orthopedics, Inc. Angled washer polyaxial connection for dynamic spine prosthesis
EP2062290B1 (en) * 2006-09-07 2019-08-28 Taiwan Semiconductor Manufacturing Company, Ltd. Defect reduction using aspect ratio trapping
US8715350B2 (en) 2006-09-15 2014-05-06 Pioneer Surgical Technology, Inc. Systems and methods for securing an implant in intervertebral space
WO2008039850A2 (en) 2006-09-26 2008-04-03 Nexgen Spine, Inc. Intervertebral. prosthesis endplate having double dome and surgical tools for preparing the vertebral body endplate to receive the prosthesis
US9278007B2 (en) * 2006-09-26 2016-03-08 Spinal Kinetics, Inc. Prosthetic intervertebral discs having cast end plates and methods for making and using them
US8403987B2 (en) * 2006-09-27 2013-03-26 Spinal Kinetics Inc. Prosthetic intervertebral discs having compressible core elements bounded by fiber-containing membranes
US9381098B2 (en) * 2006-09-28 2016-07-05 Spinal Kinetics, Inc. Tool systems for implanting prosthetic intervertebral discs
US8066750B2 (en) 2006-10-06 2011-11-29 Warsaw Orthopedic, Inc Port structures for non-rigid bone plates
US20080177311A1 (en) * 2006-10-30 2008-07-24 St. Francis Medical Technologies, Inc. Facet joint implant sizing tool
US9439948B2 (en) 2006-10-30 2016-09-13 The Regents Of The University Of Michigan Degradable cage coated with mineral layers for spinal interbody fusion
US8275594B2 (en) * 2006-10-30 2012-09-25 The Regents Of The University Of Michigan Engineered scaffolds for intervertebral disc repair and regeneration and for articulating joint repair and regeneration
US9737414B2 (en) * 2006-11-21 2017-08-22 Vertebral Technologies, Inc. Methods and apparatus for minimally invasive modular interbody fusion devices
US8105382B2 (en) 2006-12-07 2012-01-31 Interventional Spine, Inc. Intervertebral implant
US8715352B2 (en) * 2006-12-14 2014-05-06 Depuy Spine, Inc. Buckling disc replacement
US7905922B2 (en) 2006-12-20 2011-03-15 Zimmer Spine, Inc. Surgical implant suitable for replacement of an intervertebral disc
US20080288077A1 (en) * 2006-12-28 2008-11-20 Spinal Kinetics, Inc. Prosthetic Disc Assembly Having Natural Biomechanical Movement
US9066811B2 (en) * 2007-01-19 2015-06-30 Flexuspine, Inc. Artificial functional spinal unit system and method for use
US7942104B2 (en) * 2007-01-22 2011-05-17 Nuvasive, Inc. 3-dimensional embroidery structures via tension shaping
WO2008092192A1 (en) * 2007-01-29 2008-08-07 The University Of Sydney An intervertebral disk prosthesis
US7946236B2 (en) * 2007-01-31 2011-05-24 Nuvasive, Inc. Using zigzags to create three-dimensional embroidered structures
WO2008098125A2 (en) * 2007-02-08 2008-08-14 Nuvasive, Inc. Medical implants with pre-settled cores and related methods
US8465546B2 (en) * 2007-02-16 2013-06-18 Ldr Medical Intervertebral disc prosthesis insertion assemblies
US8992533B2 (en) 2007-02-22 2015-03-31 Spinal Elements, Inc. Vertebral facet joint drill and method of use
US8652137B2 (en) 2007-02-22 2014-02-18 Spinal Elements, Inc. Vertebral facet joint drill and method of use
US20090118835A1 (en) * 2007-04-01 2009-05-07 Spinal Kinetics, Inc. Prosthetic Intervertebral Discs Having Rotatable, Expandable Cores That Are Implantable Using Minimally Invasive Surgical Techniques
US20080288074A1 (en) * 2007-05-15 2008-11-20 O'neil Michael J Internally reinforced elastomeric intervertebral disc implants
FR2916956B1 (en) * 2007-06-08 2012-12-14 Ldr Medical INTERSOMATIC CAGE, INTERVERTEBRAL PROSTHESIS, ANCHORING DEVICE AND IMPLANTATION INSTRUMENTATION
US8900307B2 (en) 2007-06-26 2014-12-02 DePuy Synthes Products, LLC Highly lordosed fusion cage
JP5509073B2 (en) 2007-07-12 2014-06-04 ディスクジェニクス Human disc tissue
US8052728B2 (en) * 2007-07-31 2011-11-08 Zimmer Spine, Inc. Method for stabilizing a facet joint
US8282681B2 (en) * 2007-08-13 2012-10-09 Nuvasive, Inc. Bioresorbable spinal implant and related methods
US20110196492A1 (en) 2007-09-07 2011-08-11 Intrinsic Therapeutics, Inc. Bone anchoring systems
US8162994B2 (en) * 2007-10-22 2012-04-24 Flexuspine, Inc. Posterior stabilization system with isolated, dual dampener systems
US8523912B2 (en) * 2007-10-22 2013-09-03 Flexuspine, Inc. Posterior stabilization systems with shared, dual dampener systems
US8157844B2 (en) * 2007-10-22 2012-04-17 Flexuspine, Inc. Dampener system for a posterior stabilization system with a variable length elongated member
US8182514B2 (en) * 2007-10-22 2012-05-22 Flexuspine, Inc. Dampener system for a posterior stabilization system with a fixed length elongated member
US8187330B2 (en) 2007-10-22 2012-05-29 Flexuspine, Inc. Dampener system for a posterior stabilization system with a variable length elongated member
US8267965B2 (en) * 2007-10-22 2012-09-18 Flexuspine, Inc. Spinal stabilization systems with dynamic interbody devices
AU2008316600B2 (en) 2007-10-25 2014-09-18 Jeffery D. Arnett Systems and methods for vertebral disc replacement
US8241294B2 (en) * 2007-12-19 2012-08-14 Depuy Spine, Inc. Instruments for expandable corpectomy spinal fusion cage
US8241363B2 (en) 2007-12-19 2012-08-14 Depuy Spine, Inc. Expandable corpectomy spinal fusion cage
CN101909548B (en) 2008-01-17 2014-07-30 斯恩蒂斯有限公司 An expandable intervertebral implant and associated method of manufacturing the same
US8377135B1 (en) 2008-03-31 2013-02-19 Nuvasive, Inc. Textile-based surgical implant and related methods
WO2009124269A1 (en) 2008-04-05 2009-10-08 Synthes Usa, Llc Expandable intervertebral implant
US20090270988A1 (en) * 2008-04-24 2009-10-29 Ranier Limited Artificial spinal disc implant
US8470045B2 (en) * 2008-05-05 2013-06-25 K2M, Inc. Endplate for an intervertebral prosthesis and prosthesis incorporating the same
NL1035724C2 (en) * 2008-07-18 2010-01-22 Univ Eindhoven Tech Prosthesis comprising a core of a gel material with a woven envelope and a method for the manufacture thereof and the application thereof.
CA2731048C (en) * 2008-07-23 2016-11-29 Marc I. Malberg Modular nucleus pulposus prosthesis
US9364338B2 (en) 2008-07-23 2016-06-14 Resspond Spinal Systems Modular nucleus pulposus prosthesis
US8163022B2 (en) 2008-10-14 2012-04-24 Anulex Technologies, Inc. Method and apparatus for the treatment of the intervertebral disc annulus
US20100204795A1 (en) 2008-11-12 2010-08-12 Stout Medical Group, L.P. Fixation device and method
US20100211176A1 (en) 2008-11-12 2010-08-19 Stout Medical Group, L.P. Fixation device and method
US8721723B2 (en) 2009-01-12 2014-05-13 Globus Medical, Inc. Expandable vertebral prosthesis
US9526620B2 (en) 2009-03-30 2016-12-27 DePuy Synthes Products, Inc. Zero profile spinal fusion cage
US8876905B2 (en) * 2009-04-29 2014-11-04 DePuy Synthes Products, LLC Minimally invasive corpectomy cage and instrument
US9028553B2 (en) 2009-11-05 2015-05-12 DePuy Synthes Products, Inc. Self-pivoting spinal implant and associated instrumentation
US8764806B2 (en) 2009-12-07 2014-07-01 Samy Abdou Devices and methods for minimally invasive spinal stabilization and instrumentation
US9393129B2 (en) 2009-12-10 2016-07-19 DePuy Synthes Products, Inc. Bellows-like expandable interbody fusion cage
US8652153B2 (en) * 2010-01-11 2014-02-18 Anulex Technologies, Inc. Intervertebral disc annulus repair system and bone anchor delivery tool
US8870880B2 (en) 2010-04-12 2014-10-28 Globus Medical, Inc. Angling inserter tool for expandable vertebral implant
US8591585B2 (en) 2010-04-12 2013-11-26 Globus Medical, Inc. Expandable vertebral implant
US9301850B2 (en) 2010-04-12 2016-04-05 Globus Medical, Inc. Expandable vertebral implant
US8282683B2 (en) 2010-04-12 2012-10-09 Globus Medical, Inc. Expandable vertebral implant
US8535380B2 (en) 2010-05-13 2013-09-17 Stout Medical Group, L.P. Fixation device and method
US9907560B2 (en) 2010-06-24 2018-03-06 DePuy Synthes Products, Inc. Flexible vertebral body shavers
US8979860B2 (en) 2010-06-24 2015-03-17 DePuy Synthes Products. LLC Enhanced cage insertion device
TW201215379A (en) 2010-06-29 2012-04-16 Synthes Gmbh Distractible intervertebral implant
EP2608747A4 (en) 2010-08-24 2015-02-11 Flexmedex Llc Support device and method for use
US9402732B2 (en) 2010-10-11 2016-08-02 DePuy Synthes Products, Inc. Expandable interspinous process spacer implant
US8353964B2 (en) 2010-11-04 2013-01-15 Carpenter Clyde T Anatomic total disc replacement
US9149286B1 (en) 2010-11-12 2015-10-06 Flexmedex, LLC Guidance tool and method for use
US8740949B2 (en) 2011-02-24 2014-06-03 Spinal Elements, Inc. Methods and apparatus for stabilizing bone
USD724733S1 (en) 2011-02-24 2015-03-17 Spinal Elements, Inc. Interbody bone implant
US9271765B2 (en) 2011-02-24 2016-03-01 Spinal Elements, Inc. Vertebral facet joint fusion implant and method for fusion
US8388687B2 (en) 2011-03-25 2013-03-05 Flexuspine, Inc. Interbody device insertion systems and methods
US8747479B2 (en) 2011-04-26 2014-06-10 Michael A. McShane Tibial component
FR2974497A1 (en) * 2011-04-27 2012-11-02 Centre Nat Rech Scient INTERVERTEBRAL DISC PROSTHESIS IN THERMOPLASTIC MATERIAL WITH A GRADIENT OF MECHANICAL PROPERTIES
EP2757964B1 (en) 2011-05-26 2016-05-04 Cartiva, Inc. Tapered joint implant and related tools
WO2013028808A1 (en) 2011-08-23 2013-02-28 Flexmedex, LLC Tissue removal device and method
US20150030619A1 (en) * 2011-09-06 2015-01-29 The Trustees Of Columbia University In The City Of New York Activation and Expansion of T Cell Subsets Using Biocompatible Solid Substrates with Tunable Rigidity
US8845728B1 (en) 2011-09-23 2014-09-30 Samy Abdou Spinal fixation devices and methods of use
USD739935S1 (en) 2011-10-26 2015-09-29 Spinal Elements, Inc. Interbody bone implant
US9526627B2 (en) 2011-11-17 2016-12-27 Exactech, Inc. Expandable interbody device system and method
US9241807B2 (en) 2011-12-23 2016-01-26 Pioneer Surgical Technology, Inc. Systems and methods for inserting a spinal device
US9125753B2 (en) 2012-02-17 2015-09-08 Ervin Caballes Elastomeric artificial joints and intervertebral prosthesis systems
US20130226240A1 (en) 2012-02-22 2013-08-29 Samy Abdou Spinous process fixation devices and methods of use
US9510953B2 (en) 2012-03-16 2016-12-06 Vertebral Technologies, Inc. Modular segmented disc nucleus implant
US20130261746A1 (en) * 2012-03-28 2013-10-03 Linares Medical Devices, Llc Implantable inter-vertebral disk having upper and lower layers of a metal exhibiting bone fusing characteristics and which sandwich therebetween a soft plastic cushioning disc for providing dynamic properties mimicking that of a natural inter-vertebral disc
US10350072B2 (en) 2012-05-24 2019-07-16 Cartiva, Inc. Tooling for creating tapered opening in tissue and related methods
USD747908S1 (en) * 2012-06-29 2016-01-26 Gerhea S. Tabares Pad for capturing cooking grease
US9198767B2 (en) 2012-08-28 2015-12-01 Samy Abdou Devices and methods for spinal stabilization and instrumentation
US9320617B2 (en) 2012-10-22 2016-04-26 Cogent Spine, LLC Devices and methods for spinal stabilization and instrumentation
US10022245B2 (en) 2012-12-17 2018-07-17 DePuy Synthes Products, Inc. Polyaxial articulating instrument
WO2014117107A1 (en) 2013-01-28 2014-07-31 Cartiva, Inc. Systems and methods for orthopedic repair
US9737294B2 (en) 2013-01-28 2017-08-22 Cartiva, Inc. Method and system for orthopedic repair
US9492288B2 (en) 2013-02-20 2016-11-15 Flexuspine, Inc. Expandable fusion device for positioning between adjacent vertebral bodies
US9522070B2 (en) 2013-03-07 2016-12-20 Interventional Spine, Inc. Intervertebral implant
US9913728B2 (en) 2013-03-14 2018-03-13 Quandary Medical, Llc Spinal implants and implantation system
US9820784B2 (en) 2013-03-14 2017-11-21 Spinal Elements, Inc. Apparatus for spinal fixation and methods of use
USD765853S1 (en) 2013-03-14 2016-09-06 Spinal Elements, Inc. Flexible elongate member with a portion configured to receive a bone anchor
US9421044B2 (en) 2013-03-14 2016-08-23 Spinal Elements, Inc. Apparatus for bone stabilization and distraction and methods of use
US9456855B2 (en) 2013-09-27 2016-10-04 Spinal Elements, Inc. Method of placing an implant between bone portions
US9839450B2 (en) 2013-09-27 2017-12-12 Spinal Elements, Inc. Device and method for reinforcement of a facet
AT14375U1 (en) 2014-02-12 2015-10-15 Ho Med Handelsgesellschaft M B H Implant for insertion between vertebral bodies of the spine
EP3129464B1 (en) 2014-04-10 2019-08-28 The Trustees of Columbia University in the City of New York Methods, compositions, and systems for activation and expansion of cells
US10398565B2 (en) 2014-04-24 2019-09-03 Choice Spine, Llc Limited profile intervertebral implant with incorporated fastening and locking mechanism
US9517144B2 (en) 2014-04-24 2016-12-13 Exactech, Inc. Limited profile intervertebral implant with incorporated fastening mechanism
US9782270B2 (en) * 2014-08-08 2017-10-10 Warsaw Orthopedic, Inc. Spinal implant system and method
CN106687077B (en) 2014-09-07 2021-07-27 奥西奥有限公司 Anisotropic biocomposite, medical implant comprising anisotropic biocomposite, and method of treatment thereof
US11478275B2 (en) 2014-09-17 2022-10-25 Spinal Elements, Inc. Flexible fastening band connector
SG10201913455YA (en) 2014-12-26 2020-03-30 Ossio Ltd Continuous-fiber reinforced biocomposite medical implants
WO2016122868A1 (en) 2015-01-27 2016-08-04 Spinal Elements, Inc. Facet joint implant
US11426290B2 (en) 2015-03-06 2022-08-30 DePuy Synthes Products, Inc. Expandable intervertebral implant, system, kit and method
EP3892241A1 (en) 2015-03-31 2021-10-13 Cartiva, Inc. Drill bit for carpometacarpal implant
WO2016161025A1 (en) 2015-03-31 2016-10-06 Cartiva, Inc. Hydrogel implants with porous materials and methods
US10857003B1 (en) 2015-10-14 2020-12-08 Samy Abdou Devices and methods for vertebral stabilization
US10617531B2 (en) 2015-10-26 2020-04-14 K2M, Inc. Cervical disc and instrumentation
US10561504B2 (en) 2016-01-19 2020-02-18 K2M, Inc. Surgical instrument and methods of use thereof
US10869954B2 (en) 2016-03-07 2020-12-22 Ossio, Ltd. Surface treated biocomposite material, medical implants comprising same and methods of treatment thereof
EP3448318A4 (en) 2016-04-26 2019-12-04 K2M, Inc. Orthopedic implant with integrated core
CN105877878B (en) * 2016-05-20 2018-10-23 北京爱康宜诚医疗器材有限公司 Low displacement artificial intervertebral disk
SG11201811090WA (en) 2016-06-27 2019-01-30 Ossio Ltd Fiber reinforced biocomposite medical implants with high mineral content
JP6995789B2 (en) 2016-06-28 2022-01-17 イーアイティー・エマージング・インプラント・テクノロジーズ・ゲーエムベーハー Expandable and angle adjustable intervertebral cage
JP7019616B2 (en) 2016-06-28 2022-02-15 イーアイティー・エマージング・インプラント・テクノロジーズ・ゲーエムベーハー Expandable and angle adjustable intervertebral cage with range of motion joints
US10973648B1 (en) 2016-10-25 2021-04-13 Samy Abdou Devices and methods for vertebral bone realignment
US10744000B1 (en) 2016-10-25 2020-08-18 Samy Abdou Devices and methods for vertebral bone realignment
US10888433B2 (en) 2016-12-14 2021-01-12 DePuy Synthes Products, Inc. Intervertebral implant inserter and related methods
US10398563B2 (en) 2017-05-08 2019-09-03 Medos International Sarl Expandable cage
US11344424B2 (en) 2017-06-14 2022-05-31 Medos International Sarl Expandable intervertebral implant and related methods
US10940016B2 (en) 2017-07-05 2021-03-09 Medos International Sarl Expandable intervertebral fusion cage
US10966843B2 (en) 2017-07-18 2021-04-06 DePuy Synthes Products, Inc. Implant inserters and related methods
CN107496060A (en) * 2017-08-09 2017-12-22 国家纳米科学中心 A kind of three-dimensional artificial total spinal disc and its preparation method and application
US11045331B2 (en) 2017-08-14 2021-06-29 DePuy Synthes Products, Inc. Intervertebral implant inserters and related methods
JP2020533070A (en) 2017-09-08 2020-11-19 パイオニア サージカル テクノロジー インコーポレイテッド Intervertebral implants, instruments, and methods
USD907771S1 (en) 2017-10-09 2021-01-12 Pioneer Surgical Technology, Inc. Intervertebral implant
CN108498870A (en) * 2018-06-08 2018-09-07 南京邦鼎生物科技有限公司 A kind of complete Biotype artificial interverbebral disc and preparation method thereof
US11179248B2 (en) 2018-10-02 2021-11-23 Samy Abdou Devices and methods for spinal implantation
US11446156B2 (en) 2018-10-25 2022-09-20 Medos International Sarl Expandable intervertebral implant, inserter instrument, and related methods
US11185419B2 (en) * 2019-02-01 2021-11-30 Central Michigan University Artificial intervertebral discs
US11457959B2 (en) 2019-05-22 2022-10-04 Spinal Elements, Inc. Bone tie and bone tie inserter
EP3972503A4 (en) 2019-05-22 2023-02-01 Spinal Elements Inc. Bone tie and bone tie inserter
US11304733B2 (en) 2020-02-14 2022-04-19 Spinal Elements, Inc. Bone tie methods
US11426286B2 (en) 2020-03-06 2022-08-30 Eit Emerging Implant Technologies Gmbh Expandable intervertebral implant
US11850160B2 (en) 2021-03-26 2023-12-26 Medos International Sarl Expandable lordotic intervertebral fusion cage
US11752009B2 (en) 2021-04-06 2023-09-12 Medos International Sarl Expandable intervertebral fusion cage

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1510910A1 (en) * 1962-11-13 1969-07-10 Scragg & Sons Cord or thread as an insert in molded parts
CA992255A (en) * 1971-01-25 1976-07-06 Cutter Laboratories Prosthesis for spinal repair
DE2263842A1 (en) * 1972-12-28 1974-07-04 Hoffmann Daimler Siegfried Dr DISC PROTHESIS
US4512038A (en) * 1979-04-27 1985-04-23 University Of Medicine And Dentistry Of New Jersey Bio-absorbable composite tissue scaffold
US4356571A (en) * 1979-10-12 1982-11-02 Robert Bosch Gmbh Prosthetic device
EP0030583B1 (en) * 1979-12-18 1984-06-13 Oscobal Ag Bone replacement material and process for producing a bone replacement material
SU895433A1 (en) * 1980-06-04 1982-01-07 Харьковский Научно-Исследовательский Институт Ортопедии И Травматологии Им. Проф. Н.И.Ситенко Intervertebral disk prothesis
US4711286A (en) * 1984-09-29 1987-12-08 The Yokohama Rubber Co., Ltd. Pneumatic radial tire for passenger car
DE3524020A1 (en) * 1985-03-30 1986-10-02 M A N Technologie GmbH, 8000 München METHOD FOR TREATING BONE REPLACEMENT IMPLANTS
CH671691A5 (en) * 1987-01-08 1989-09-29 Sulzer Ag

Also Published As

Publication number Publication date
AU3609989A (en) 1989-12-14
JPH02224659A (en) 1990-09-06
NO892380L (en) 1989-12-11
NO892380D0 (en) 1989-06-09
AU624143B2 (en) 1992-06-04
EP0346129A1 (en) 1989-12-13
GR890100383A (en) 1990-05-11
DK283689D0 (en) 1989-06-09
KR910000094A (en) 1991-01-29
FI892851A (en) 1989-12-11
FI892851A0 (en) 1989-06-09
DK283689A (en) 1989-12-11
US4911718A (en) 1990-03-27

Similar Documents

Publication Publication Date Title
CA1321681C (en) Functional and biocompatible intervertebral disc spacer
EP0356112B1 (en) Biocompatible elastomeric intervertebral disc
Langrana et al. Materials and design concepts for an intervertebral disc spacer. I. Fiber‐reinforced composite design
US8038718B2 (en) Multi-composite disc prosthesis
US5545229A (en) Functional and biocompatible intervertebral disc spacer containing elastomeric material of varying hardness
Bao et al. The artificial disc: theory, design and materials
US7156876B2 (en) Intervertebral motion disc having articulation and shock absorption
Bao et al. Artificial disc technology
US8197547B2 (en) Radiovisible hydrogel intervertebral disc nucleus
CA2094135C (en) Hydrogel intervertebral disc nucleus
Gloria et al. A multi-component fiber-reinforced PHEMA-based hydrogel/HAPEXTM device for customized intervertebral disc prosthesis
WO2010088766A1 (en) Implant for total disc replacement, and method of forming
US20040220672A1 (en) Orthopedic implants, methods of use and methods of fabrication
US20070164464A1 (en) Flexible spinal disc
CA2548993A1 (en) Artificial intervertebral disc
WO2002032349A1 (en) Procedure for repairing damaged discs
AU2001285488A1 (en) Method for mammalian joint resurfacing
Joshi Mechanical behavior of the human lumbar intervertebral disc with polymeric hydrogel nucleus implant: an experimental and finite element study
Hudgins Development and characterization of a prosthetic intervertebral disc
Gloria et al. Artificial intervertebral discs
WO2007007284A2 (en) Composite biomimetic total intervertebral disc prosthesis
WO2007023399A1 (en) A novel intervertebral disc prosthesis
Gloria et al. Journal of Biomaterials
CN101267783A (en) Multi-composite disc prosthesis
Hudgins et al. Performance of a Prosthetic Intervertebral Disc

Legal Events

Date Code Title Description
MKLA Lapsed