CA2014235A1 - Micropump having a constant output - Google Patents

Micropump having a constant output

Info

Publication number
CA2014235A1
CA2014235A1 CA002014235A CA2014235A CA2014235A1 CA 2014235 A1 CA2014235 A1 CA 2014235A1 CA 002014235 A CA002014235 A CA 002014235A CA 2014235 A CA2014235 A CA 2014235A CA 2014235 A1 CA2014235 A1 CA 2014235A1
Authority
CA
Canada
Prior art keywords
pumping chamber
micropump
flexible wall
wall
stop
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
CA002014235A
Other languages
French (fr)
Inventor
Harald T. G. Van Lintel
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Westonbridge International Ltd
Original Assignee
Harald T. G. Van Lintel
Westonbridge International Limited
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Harald T. G. Van Lintel, Westonbridge International Limited filed Critical Harald T. G. Van Lintel
Publication of CA2014235A1 publication Critical patent/CA2014235A1/en
Abandoned legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B43/00Machines, pumps, or pumping installations having flexible working members
    • F04B43/02Machines, pumps, or pumping installations having flexible working members having plate-like flexible members, e.g. diaphragms
    • F04B43/04Pumps having electric drive
    • F04B43/043Micropumps
    • F04B43/046Micropumps with piezoelectric drive
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M2205/00General characteristics of the apparatus
    • A61M2205/02General characteristics of the apparatus characterised by a particular materials
    • A61M2205/0244Micromachined materials, e.g. made from silicon wafers, microelectromechanical systems [MEMS] or comprising nanotechnology
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M2205/00General characteristics of the apparatus
    • A61M2205/02General characteristics of the apparatus characterised by a particular materials
    • A61M2205/0272Electro-active or magneto-active materials
    • A61M2205/0294Piezoelectric materials

Abstract

ABSTRACT

A micropump comprising a pumping chamber, an inlet channel communicating with the pumping chamber by an inlet valve and an outlet channel communicating with the pumping chamber via an outlet valve, these elements being manufactured by etching a silicon wafer which is then sealed to glass wafers, the micropump also comprising a piezoelectric wafer to vary the volume of the pumping chamber by bending a wall forming part of the wall of this pumping chamber.
In accordance with the invention the pumping chamber has a stop which determines the amplitude of movement of the flexible wall. The variation in the volume of the chamber caused by the displacement of the flexible wall is precisely defined, thus making it possible to maintain the output of the micropump constant during normal operating conditions.

Figure 7A

Description

- 1 2~ 3~

~IC~OPUMP HAVING A CONSTANT OUTPUT

The present invention relates to a micropump in which at least part of the pump mechanism is made by machining a silicon 05 wafer using photolithographic technology.
Micropumps can be used in particular for the in situ administration of medicaments, the miniaturization of the pump making it possible to implant them permanently in the body.

Using these pumps, small quantities of liquid to be injected can be accurately metered.
Micropumps of this type are in particular described in the article "A piezoelectric micropump based on micromachining of silicon" by H. van Lintel et al. which appeared in Sensors and Actuators, No. 15, 1988, pages 153-157. These micropumps ]5 substantially comprise a stack of three wafers, i.e. a wafer of silicon arranged between two wafers of glass.
The wafer of silicon is etched to form a cavity which, together with one of the glass wafers, defines the pumping chamber, at least one inlet valve and at least one outlet valve enabling the pumping chamber to communicate with one inlet channel and one outlet channel respectively. The part of the glass wafer forming a wall of the pumping chamber can be bent by a control element composed, for example, of a piezoelectric disc. This is provided with two electrodes which, when connected to a source of electrical potential, cause the disc to bend and, S consequently bend the glass wafer, causing a variation in the volume of the pumping chamber. The flexible wall of the pumping chamber can therefore be displaced between a first position, in which it is relatively far from the opposing wall when the piezoelectric disc is not subjected to any electrical potential, ] and a second position in which it is closer to the opposite wall when a potential is applied between the electrodes of the piezoelectric disc.
The micropuMp operates in the following manner. When no electrical potential is applied to the piezoelectric disc, the ]5 inlet and outlet valves are in the closed position. When an electrical potential is applied, the pressure inside the pumping chamber increases, causing the outlet valve to open as soon as the pressure in the chamber is greater than the sum of the pressure in the outlet channel and the pressure created by the pre-tension o~ khe valve. The fluid contained in the pumping chamber is then forced towards the outlet channel by the displacement of the flexible wall from the first position towards the second position. During this phase the inlet valve is kept closed b~ the pressure prevailing in the pumping chamber.

In contrast, the pressure in ~he pumping chamber falls when the electrical potential is reduced. ~his closes the outlet valve as soon as the pressure in the pumping chamber is lower than the sum of the pressure in the outlet channel and the S pressure created by the pre-tension of the valve, and opens the inlet valve as soon as the sum of the pressure in the pumping chamber and the pressure created by the pre-tension of the valve is less than the pressure in the inlet channel. Fluid is then sucked into the pumping chamber via the inlet channel as a ] result of the displacement of the flexible wall from the second position towards the first position.
As has already been stated, these micropumps are used in particular for the administration of medicaments. It is therefore important for the output of the micropump to be well determined so that the medication to be injected can be metered in a very precise manner. However, conventional micropumps have certain defects in this respect.
The output of the micropump depends on the variation in the volume of the pumping chamber between the two positions of the flexible wall. This variation in volume depends on various parameters, including the electrical potential applied to the piezoelectric disc and the physical characteristics of the piezoelectric disc (thickness, diameter, dielectric constant) and of the flexible wall (material, thickness). The same electrical potential applied to seemingly identical micropumps could cause differing bending o~ the pumping chambe~s of these micropumps which would consequently have different outputs.

The output from one and the same micropump could, moreover, also change in the course of time due to ageing of the materials. Finally, the output of the micropump depends on the pressure in the outlet channel, since the outlet valve only 05 opens when the pressure in the pumping chamber is greater than the sum of the pressure in the outlet channel and the pressure created by the pre-tension of the valve.
In the above mentioned article, H. van Lintel et al.
describe a micropump provided with an additional valve which ]0 makes it possible to render the output less dependent on the pressure in the outlet channel. However, this micropump does not overcome the other disadvantages mentioned earlier.
It is the main object of the invention to overcome the above-mentioned disadvantages in order to ensure that the output lS of the micropump is as constant as possible and, in particular, independent of the manufacturing tolerances of the micropump, of the ageing thereof and of the pressure in the outlet channel.
The micropump of the invention comprises a plurality of wafers bonded to one another in a sealed manner in which are formed a pumping chamber defined by two bonded wafers defining a cavity obtained by etching at least one of these wafers, at least one inlet valve and at least one outlet valve enabling the 2 ~

pumping chamber to communicate with one inlet channel and one outlet channel respectively, this micropump comprising in addition a control element for resiliently bending the part of a wafer constituting one wall of the pumping chamber between a 05 first position in which this bent wall is further from the opposing wall of the pumping chamber and a second position in which this wall is relatively close to this opposing wall, the displacements of the flexible wall causing the suction or delivery of a fluid. According to the invention, this micropump ]0 is characterized in that the pumping chamber has a stop which determines the second position of the flexible wall.
This stop limits the movement of the flexible wall towards the opposing wall of the pumping chamber. This makes it possible to define the volume of the pumping chamber in a very precise ]5 manner at the end of the fluid delivery operation.
In addition, the presence of this stop means that it is no longer necessary for the electrical control potential of the piezoelectric disc, or more generally, the intensity of the signal applied to the bending control unit of the flexible wall, to have a precise value. It suffices if this potential is greater than that needed to effect a contact between the stop and the opposing wall of the pumping chamber.
Finally, the stop permits an output substantially independent of the pressure prevailing in the outlet channel since it is possible to impart a high potential to the piezoelectric disc, inducing a high pressure in the pumping 3 ~

chamber which is higher than the sum of the pressure prevailing in the outlet channel in normal conditions of use and the pressure created by the pre-tension of the outlet valve, without this latter being altered by an increase in the amplitude of S movement of the flexible wall which remains fixed by the stop.
This stop can in particular take the form of one or several projections which can be formed on the bottom of the cavity during the etching of the wafer in which this cavity is effected and/or provided by etching, bonding or the like on the flexible wall. The stop can also be simply composed of the bottom of the cavity itself provided the height of the pumping chamber is selected so that it is equal to the desired amplitude of the movement of the flexible wall.
The characteristics and advantages of the invention are better illustrated by the following description, given for purposes of example and which is not limiting, with reference to the accompanying drawings, in which:
- Figure 1A shows a section along the line I-I of a pumping chamber of a micropump according to the invention in which the flexible wall is shown in the first position, - Figure 1B shows a plan view of the pumping chamber shown in Figure 1A, 2 ~

- Figure 2 shows a section along the line I-I of the pumping chamber of Figures 1A and As in which the flexible wall is in the second position, - Figures 3A and 3B respectively show a section along the 05 line III-III and a plan view of an embodiment of a pumping chamber for a micropump according to the invention, - Figure 4 is a transverse section of another embodiment of a pumping chamber for a micropump according to the invention in which the flexible wall is in the first position, - Figure 5 shows, in transverse section, the pumping chamber of Figure 4 in which the flexible wall is in the second position, - Figures 6A and 6B respectively show a section along the line VI-VI and a plan view of a micropump of the invention, - Figures 7A and 7s respectively show a section along the line VII-VII and a plan view of another micropump of the invention, and - Figure 8 is a diagram illustrating the output of a micropump as a function of the pressure in the outlet channel for a micropump having two valves of conventional t~pe for a micropump according to the invention.
A first embodiment of a pumping chamber for a micropump according to the invention will be described with reference to Figures 1A, 1B, 1C. This pumping chamber is determined by the wafers 2, 4 sealed to each other, for example by anodic welding or by adhesion. These wafers are generally of the order of a few tenths of a millimetre thick. The cavity 6 defining the pumping chamber as well as an inlet channel 8 and an outlet channel 10 are obtained by etching the wafer 2 using conventional photolithographic techniques, such as wet etching. The diameter S of the cavity is of the order of 1 cm and it is between 5 and 200 micrometres high~ The wafer 2 is of a material which can be easily etched, such as monocrystalline silicon; the wafer 4 is for example of glass.
A control element such as, for example, a piezoelectric disc 1 n 12 is bonded to the outside face of the wafer 4 at the level of the cavity 6. Each face of this piezoelectric disc is covered by an electrode connected to a source of potential (not shown).
Figures 1A and 2 respectively illustrate the position of the wafer 4 in which no electrical potential is applied to the piezoelectric disc 12 (first position) or in which an electrical potential is applied to this piezoelectric disc (second position).
According to the invention the pumping chamber is provided with a stop 14 which, in limiting the amplitude of the movement of the flexible wall 13 of the wafer 4, precisely defines the second position of this flexible wall. As a result, the volume of the pumping chamber at the end of the delivery operation-, i.e. when the flexible wall 13 is in the second position, has a value that is precisely definable and reproducible.

When the flexible wall is in the first position the distance between the stop and the opposing wall of the chamber is of the order of 10~um or less. This distance clearly depends on the dimensions of the pumping chamber and on the fluid output 05 desired.

In the embodiment shown in Figur~s 1A, 1s and 2, the piezoelectric disc 12 is fixed to the glass wafer 4. It is of course possible to fix the pie~oelectric disc 12 onto the silicon wafer 2. A pumping chamber of this type is shown in section along the line III-III and in plan view in Figures 3A

and 3s respectively.
In these figures the elements identical to those shown in Figures 1A, 1B and 2 have the same reference numerals. When the silicon wafer 2 supports the piezoelectric disc 12~ a layer 16 of SiO2 is interposed between the disc 2 and the piezoelectric disc 12 for purposes of electrical insulation. Finally, it should be noted that, in this embodiment, the diameter of the stop 14 must be substantially lower than that of the piezoelectric disc so as not to excessively restrict the flexibility of the w fer 2.

In the two first described embodiments, the stop 14 is composed of a stop which extends from one wall of the pumping chamber. This protection is provided in the silicon wafer 2 during the etching of the cavity and of the inlet and outlet channels. The upper surface 18 of the projection, against which the opposing wall of the pumping chamber impinges when the 2 ~ 3 ~
- 10 ~
piezoelectric disc is subjected to an electrical potential is preferably planar. This makes it possible to define the second position of the flexible wall more precisely.

It is also possible to use the bottom of the cavity itself 05 as the stop. This is the case when a cavity is provided, the height of which is equal to the desired amplitude of movement of the flexible wall. Figures 4 and 5 show transverse sections through a pumping chamber of this kind in the first and second positions respectively of the flexible wafer 4. In these figures, the pumping chamber is defined by a cavity 6 linked to an inlet channel ~ and an outlet channel (not shown). This pumping chamber is composed of a silicon wafer 2 and a glass wafer 4 as in the previous figures. The piezoelectric disc is disposed on the glass wafer 4; this wafer 12 may of course also be disposed on the silicon disc 2, as in Figures 3A and 3B.

The advantage of using the bottom 20 of the cavity 6 as a stop for the flexible wall is that it reduces the number of operations needed to etch the silicon wafer 2 in comparison to the previous embodiments in which the stop is composed of a projection. Moreover, as shown in Figure 5, the volume of the chamber at the end of the delivery phase is very small. This ensures effective pumping, even if the liquid contains many gas bubbles (provided the parasite volume between the valves and the chamber itself is also very small). On the other hand, if the volume of the pumping chamber remains relatively large at the end of the delivery phase, and this is generally the case when 2/~6~

the stop is a projection, the gas bubbles can be compressed without being expelled from the pumping chamber.
In contradistinction it should be noted that the resistance to fluid flow is greater with a pumping chamber as shown in 05 Figure 4 which is thus particularly suitable for very low output micropumps.
One embodiment of a micropump of the invention is shown in section along the line VI-VI and in plan view in Figures 6A and 6B respectively. This micropump mainly comprises a silicon wafer 10 22 disposed between glass wafers 2~ and 26. The wafer 22 is etched on one face to form a cavity 28 defining the pumping chamber and on the other face to regulate the thickness of the part of the wafer 22 which constitutes the flexible wall 30 of the pumping chamber. This thickness is for example 150 ~m.
]5 The two faces of the wafer 22 are in addition engraved to form a membrane 32 and an annular rib 34 of an inlet valve, a membrane 36 and an annular rib 38 of an outlet valve, and an inlet channel 40a, 40b and an outlet channel 42a, 42b. To prevent the valves adhering to the glass wafers, the former are 20 covered with a fine layer 35, 39 of SiO2.
The piezoelectric disc 44 which controls the movement of the flexible wall 30 is bonded using cyano acrylate glue after the flexible wall has been covered with a fine layer 46 of SiO2 to provide electrical insulation. The piezoelectric disc 44 can be of the PXE-5 type, manufactured by Philips, 10 mm in diameter and 0.20 mm thick.

~ d~

Since the flexible wall 30 and the membranes 32, 36 are formed in the silicon wafer 22, the latter is preferably a wafer of monocrystalline silicon of <100> orientation with good mechanical properties and which is very suitable for etching.
05 This disc can be 5 cm in diameter and be of the order of 300 micrometres thick.
The wafers 24 and 26 are of polished glass. They are 5 cm in diameter and 1 mm thick. The wafer 24 is pierced by an inlet hole 4~ and an outlet hole 50. The wafers 24 and 26 are sealed ~ to the wafer 22 using the technique known as anodic welding.
In the embodiment shown in Figures 6A and 6B, the height of the pumping chamber, that is the distance between the flexible wall 30 and the wafer 26 when no electrical potential is applied to the piezoelectric disc 44, is selected (during etching of the wafer 22) so that the stop is formed by the surface of the wafer 26. The pumping chamber is thus similar to that described with reference to Figures 4 and 5, the only difference being that the piezoelectric disc is fixed onto the silicon wafer instead of onto the glass wafer.
Figures 7A and 7B respectively show a section along the line VII-VII and a plan view of a micropump according to another embodiment of the invention. This micropump is more compact than the micropump shown in Figures 6A and 6B. This is achieved by placing the inlet valve of the micropump directly onto one of the walls of the pumping chamber. It wo~ld be possible also to place a part of the outlet valve thereon.

2 ~9 ~ 13 ~
This micropump is composed of a silicon wafer 52 disposed between two glass wafers 54 and 56. One face of the wafer 52 is etched to form a cavity 58, defining the pumping chamber and during this etching operation a projection 60 is formed to 05 constitute a stop according to the invention. The two faces of the silicon wafer 52 are also etched to form a membrane 62 and an annular rib 64 of an inlet valve, and an inlet channel 70 and an outlet channel 72a, 72b. Layers 65, 67 of SiO2 are formed on the annular ribs 64, 68 to prevent the valves adhering to the glass wafers.
The inlet valve is preferably centered on the cavity 58. In this case, the projection 60, also centered in relation to the cavity 58 and to the inlet valve, is in the form of a ring. The valves can be provided with an amplitude limiter to reduce the risk of breakage of the membrane. In the case of the outlet valve, this limiter is composed of an annular rib 69; in the ; case of the inlet valve, it is the projection 60 which acts as the limiter. Channels 71, 73 are preferably provided in the amplitude limiters of the valves to permit flow of li~uid when these limiters are in contact with the glass wafers 54, 56.
After the etching operations, the glass wafers 54 and 56 are sealed by anodic welding to the silicon wafer 52, the glass wafer 54 being provided with an inlet opening 74 and an outlet opening 76. The flexible wall 78 of the pumping chamber is composed of part of the glass wafer 56; its thickness is of the order of 200 ~m.

~ ~ ~ L~

A piezoelectric disc 80 is bonded to this wall 78 to control its movement. In accordance with the invention the annular projection 60 limits the amplitude of movement of the flexible wall which makes it possible to precisely define the volume of S the pumping chamber at the end of the delivery operation.
This stop also makes it possible to keep the output of the micropump constant under normal use. As may be seen from the diagram of Figure 8, the output 0 of a conventional two-valve micropump is a linear function of the pressure p prevailing at the outlet of the micropump (curve A). In contrast, the output 0 of a micropump of the invention is substantially constant in the normal operating pressure range (curve B). This is because, for a pressure below the maximum operating pressure, the variation in volume caused by displacement of the flexible wall is limited. The output is thus virtually the same as that corresponding to the maximum operating pressure.

Claims (10)

1. A micropump comprising a plurality of wafers sealed to one another so as to form a pumping chamber defined by two bonded wafers defining a cavity formed by etching at least one of these wafers, at least one inlet valve and at least one outlet valve enabling the pumping chamber to communicate with one inlet channel and one outlet channel respectively, said micropump also comprising a control element to resiliently bend the part of a wafer constituting a wall of the pumping chamber between a first position in which said flexible wall is relatively far from the opposing wall of the pumping chamber and a second position in which said flexible wall is closer to said opposing wall, the displacements of the flexible wall causing suction of a fluid into the pumping chamber or the delivery thereof, said micropump being characterized in that said pumping chamber comprises a stop which defines said second position of the flexible wall.
2. A micropump according to claim 1, wherein the stop is a projection formed on an inner face of the pumping chamber.
3. A micropump according to claim 2 wherein the surface of the stop which comes into contact with an inner face of the pumping chamber when the flexible wall assumes the second position is planar.
4. A micropump according to either of claim 2 or claim 3 wherein the projection is formed in the bottom of the cavity during the etching thereof.
5. A micropump according to claim 1 wherein the stop is composed of the inner face of the wall of the pumping chamber located facing the flexible wall.
6. A micropump according to any one of claims 1 to 5 wherein one of the wafers defining the pumping chamber is of silicon and the other of glass, the cavity and the stop being formed by etching the silicon wafer.
7. A micropump according to claim 6 wherein the flexible wall is one part of the silicon wafer.
8. A micropump according to any one of claims 6 and 7 wherein the silicon wafer is of monocrystalline silicon.
9. A micropump according to any one of claims 1 to 8 wherein one inlet valve is disposed in the wall of the pumping chamber opposite the flexible wall and wherein at least one part of this valve constitutes the stop.
10. A micropump according to any one of claims 1 to 7 in which the control element comprises a piezoelectric disc fixed to the flexible wall.
CA002014235A 1989-04-11 1990-04-10 Micropump having a constant output Abandoned CA2014235A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CH1369/89A CH679555A5 (en) 1989-04-11 1989-04-11
CH01369/89-0 1989-04-11

Publications (1)

Publication Number Publication Date
CA2014235A1 true CA2014235A1 (en) 1990-10-11

Family

ID=4208807

Family Applications (1)

Application Number Title Priority Date Filing Date
CA002014235A Abandoned CA2014235A1 (en) 1989-04-11 1990-04-10 Micropump having a constant output

Country Status (8)

Country Link
US (1) US5085562A (en)
EP (1) EP0392978A1 (en)
JP (1) JPH03505771A (en)
AU (1) AU628153B2 (en)
CA (1) CA2014235A1 (en)
CH (1) CH679555A5 (en)
PT (1) PT93712A (en)
WO (1) WO1990012209A1 (en)

Families Citing this family (243)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7232671B2 (en) * 1989-02-15 2007-06-19 The United States Of America As Represented By The Secretary, Department Of Health And Human Services Pertussis toxin gene: cloning and expression of protective antigen
CA2009991A1 (en) * 1989-02-15 1990-08-15 Witold Cieplak Pertussis toxin gene: cloning and expression of protective antigen
JPH04501449A (en) * 1989-06-14 1992-03-12 ウエストンブリッジ インターナショナル リミティド micro pump
CH681168A5 (en) * 1989-11-10 1993-01-29 Westonbridge Int Ltd Micro-pump for medicinal dosing
DE4006152A1 (en) * 1990-02-27 1991-08-29 Fraunhofer Ges Forschung MICROMINIATURIZED PUMP
US5259737A (en) * 1990-07-02 1993-11-09 Seiko Epson Corporation Micropump with valve structure
JP3111319B2 (en) * 1990-08-31 2000-11-20 ウエストンブリッジ・インターナショナル・リミテッド Valve with position detector and micropump incorporating said valve
DE4035852A1 (en) * 1990-11-10 1992-05-14 Bosch Gmbh Robert MULTI-LAYER MICROVALVE
DE4143343C2 (en) * 1991-09-11 1994-09-22 Fraunhofer Ges Forschung Microminiaturized, electrostatically operated micromembrane pump
DE4138491C2 (en) * 1991-11-23 1995-07-20 Juergen Dipl Ing Joswig Micromechanical valve for micromechanical dosing devices
WO1993020351A1 (en) * 1992-04-02 1993-10-14 Seiko Epson Corporation Fluid controlling microdevice and method of manufacturing the same
US5433351A (en) * 1992-05-01 1995-07-18 Misuzuerie Co., Ltd. Controlled liquid dispensing apparatus
DE4223019C1 (en) * 1992-07-13 1993-11-18 Fraunhofer Ges Forschung Electromechanical valveless microminiature pump - has membrane actuator for applying oscillation perpendicular to fluid flow and anisotropic structure e.g. mfd by etching of silicon wafer.
DE4223067C2 (en) * 1992-07-14 1997-08-07 Univ Dresden Tech Micromechanical flow limiter in a multilayer structure
US5628719A (en) * 1992-11-25 1997-05-13 Scimed Life Systems, Inc. In vivo mechanical energy source and perfusion pump
DE4332720C2 (en) * 1993-09-25 1997-02-13 Karlsruhe Forschzent Micro diaphragm pump
WO1995009987A1 (en) * 1993-10-04 1995-04-13 Research International, Inc. Micromachined fluid flow regulators
DE69410487T2 (en) * 1993-12-28 1998-11-05 Westonbridge Int Ltd MICRO PUMP
DE4402119C2 (en) * 1994-01-25 1998-07-23 Karlsruhe Forschzent Process for the production of micromembrane pumps
DE4405026A1 (en) * 1994-02-17 1995-08-24 Rossendorf Forschzent Micro fluid manipulator
US5462256A (en) * 1994-05-13 1995-10-31 Abbott Laboratories Push button flow stop useable with a disposable infusion pumping chamber cassette
PT751794E (en) * 1994-05-13 2003-12-31 Abbott Lab INFUSO FLUID PUMP CAMERY CARTRIDGE THAT CAN BE DISTURBED OUT THAT HAS A PREMIUM BOTTLE THAT STOPS THE BLEEDING ON THE SAME
US5769608A (en) * 1994-06-10 1998-06-23 P.D. Coop, Inc. Resonant system to pump liquids, measure volume, and detect bubbles
WO1997005385A1 (en) * 1995-07-27 1997-02-13 Seiko Epson Corporation Microvalve and method of manufacturing the same, micropump using the microvalve and method of manufacturing the same, and apparatus using the micropump
DE19534137A1 (en) * 1995-09-14 1997-03-20 Univ Ilmenau Tech Semiconductor micro-valve apparatus for regulation of fluid or gas
EP0826109B1 (en) * 1995-09-15 1998-12-09 Hahn-Schickard-Gesellschaft Für Angewandte Forschung E.V. Fluid pump without non-return valves
US5919582A (en) 1995-10-18 1999-07-06 Aer Energy Resources, Inc. Diffusion controlled air vent and recirculation air manager for a metal-air battery
DE19546570C1 (en) * 1995-12-13 1997-03-27 Inst Mikro Und Informationstec Fluid micropump incorporated in silicon chip
CN1118628C (en) * 1996-02-09 2003-08-20 威斯顿布里奇国际有限公司 Micromachined filter for micropump
DE19637928C2 (en) * 1996-02-10 1999-01-14 Fraunhofer Ges Forschung Bistable membrane activation device and membrane
ATE294461T1 (en) 1996-02-10 2005-05-15 Fraunhofer Ges Forschung BISTABLE MICRO DRIVE WITH COUPLED MEMBRANES
DE19648695C2 (en) * 1996-11-25 1999-07-22 Abb Patent Gmbh Device for the automatic and continuous analysis of liquid samples
FR2757906A1 (en) * 1996-12-31 1998-07-03 Westonbridge Int Ltd MICROPUMP WITH INTEGRATED INTERMEDIATE PART
DE19802367C1 (en) * 1997-02-19 1999-09-23 Hahn Schickard Ges Microdosing device array and method for operating the same
JP3582316B2 (en) * 1997-08-20 2004-10-27 株式会社日立製作所 Chemical analyzer
DE69813569T2 (en) * 1997-08-20 2004-04-08 Westonbridge International Ltd., Wellington Quay MICROPUMP WITH AN INLET CONTROL UNIT FOR SELF-PRIMING
US7485263B2 (en) * 1997-08-26 2009-02-03 Eppendorf Ag Microproportioning system
US7214298B2 (en) * 1997-09-23 2007-05-08 California Institute Of Technology Microfabricated cell sorter
US6833242B2 (en) * 1997-09-23 2004-12-21 California Institute Of Technology Methods for detecting and sorting polynucleotides based on size
JP3543604B2 (en) * 1998-03-04 2004-07-14 株式会社日立製作所 Liquid sending device and automatic analyzer
US6247908B1 (en) * 1998-03-05 2001-06-19 Seiko Instruments Inc. Micropump
US7875440B2 (en) 1998-05-01 2011-01-25 Arizona Board Of Regents Method of determining the nucleotide sequence of oligonucleotides and DNA molecules
US6780591B2 (en) * 1998-05-01 2004-08-24 Arizona Board Of Regents Method of determining the nucleotide sequence of oligonucleotides and DNA molecules
US6436564B1 (en) 1998-12-18 2002-08-20 Aer Energy Resources, Inc. Air mover for a battery utilizing a variable volume enclosure
US6475658B1 (en) 1998-12-18 2002-11-05 Aer Energy Resources, Inc. Air manager systems for batteries utilizing a diaphragm or bellows
US7250305B2 (en) * 2001-07-30 2007-07-31 Uab Research Foundation Use of dye to distinguish salt and protein crystals under microcrystallization conditions
US20030022383A1 (en) * 1999-04-06 2003-01-30 Uab Research Foundation Method for screening crystallization conditions in solution crystal growth
US7214540B2 (en) * 1999-04-06 2007-05-08 Uab Research Foundation Method for screening crystallization conditions in solution crystal growth
US7244396B2 (en) * 1999-04-06 2007-07-17 Uab Research Foundation Method for preparation of microarrays for screening of crystal growth conditions
US7247490B2 (en) 1999-04-06 2007-07-24 Uab Research Foundation Method for screening crystallization conditions in solution crystal growth
US6210128B1 (en) * 1999-04-16 2001-04-03 The United States Of America As Represented By The Secretary Of The Navy Fluidic drive for miniature acoustic fluidic pumps and mixers
US7195670B2 (en) 2000-06-27 2007-03-27 California Institute Of Technology High throughput screening of crystallization of materials
US8709153B2 (en) 1999-06-28 2014-04-29 California Institute Of Technology Microfludic protein crystallography techniques
US7306672B2 (en) 2001-04-06 2007-12-11 California Institute Of Technology Microfluidic free interface diffusion techniques
US6818395B1 (en) * 1999-06-28 2004-11-16 California Institute Of Technology Methods and apparatus for analyzing polynucleotide sequences
US7244402B2 (en) * 2001-04-06 2007-07-17 California Institute Of Technology Microfluidic protein crystallography
US7501245B2 (en) * 1999-06-28 2009-03-10 Helicos Biosciences Corp. Methods and apparatuses for analyzing polynucleotide sequences
US6929030B2 (en) * 1999-06-28 2005-08-16 California Institute Of Technology Microfabricated elastomeric valve and pump systems
US8550119B2 (en) * 1999-06-28 2013-10-08 California Institute Of Technology Microfabricated elastomeric valve and pump systems
GB2352283A (en) 1999-06-28 2001-01-24 California Inst Of Techn Microfabricated valves, pumps, mirror array and refracting structure
US7052545B2 (en) * 2001-04-06 2006-05-30 California Institute Of Technology High throughput screening of crystallization of materials
US20080277007A1 (en) * 1999-06-28 2008-11-13 California Institute Of Technology Microfabricated elastomeric valve and pump systems
US7459022B2 (en) * 2001-04-06 2008-12-02 California Institute Of Technology Microfluidic protein crystallography
US6899137B2 (en) * 1999-06-28 2005-05-31 California Institute Of Technology Microfabricated elastomeric valve and pump systems
US7217321B2 (en) * 2001-04-06 2007-05-15 California Institute Of Technology Microfluidic protein crystallography techniques
US8052792B2 (en) * 2001-04-06 2011-11-08 California Institute Of Technology Microfluidic protein crystallography techniques
US7144616B1 (en) * 1999-06-28 2006-12-05 California Institute Of Technology Microfabricated elastomeric valve and pump systems
AU2001240040A1 (en) * 2000-03-03 2001-09-17 California Institute Of Technology Combinatorial array for nucleic acid analysis
US8105553B2 (en) * 2004-01-25 2012-01-31 Fluidigm Corporation Crystal forming devices and systems and methods for using the same
US7279146B2 (en) * 2003-04-17 2007-10-09 Fluidigm Corporation Crystal growth devices and systems, and methods for using same
US7867763B2 (en) 2004-01-25 2011-01-11 Fluidigm Corporation Integrated chip carriers with thermocycler interfaces and methods of using the same
US20050118073A1 (en) * 2003-11-26 2005-06-02 Fluidigm Corporation Devices and methods for holding microfluidic devices
US6296452B1 (en) 2000-04-28 2001-10-02 Agilent Technologies, Inc. Microfluidic pumping
US7242474B2 (en) * 2004-07-27 2007-07-10 Cox James A Cytometer having fluid core stream position control
US8329118B2 (en) * 2004-09-02 2012-12-11 Honeywell International Inc. Method and apparatus for determining one or more operating parameters for a microfluidic circuit
US7630063B2 (en) * 2000-08-02 2009-12-08 Honeywell International Inc. Miniaturized cytometer for detecting multiple species in a sample
US7262838B2 (en) * 2001-06-29 2007-08-28 Honeywell International Inc. Optical detection system for flow cytometry
US6970245B2 (en) * 2000-08-02 2005-11-29 Honeywell International Inc. Optical alignment detection system
US7283223B2 (en) * 2002-08-21 2007-10-16 Honeywell International Inc. Cytometer having telecentric optics
US6568286B1 (en) 2000-06-02 2003-05-27 Honeywell International Inc. 3D array of integrated cells for the sampling and detection of air bound chemical and biological species
US7641856B2 (en) * 2004-05-14 2010-01-05 Honeywell International Inc. Portable sample analyzer with removable cartridge
US7130046B2 (en) * 2004-09-27 2006-10-31 Honeywell International Inc. Data frame selection for cytometer analysis
US8383043B2 (en) * 2004-05-14 2013-02-26 Honeywell International Inc. Analyzer system
US7016022B2 (en) * 2000-08-02 2006-03-21 Honeywell International Inc. Dual use detectors for flow cytometry
US7471394B2 (en) * 2000-08-02 2008-12-30 Honeywell International Inc. Optical detection system with polarizing beamsplitter
US6837476B2 (en) * 2002-06-19 2005-01-04 Honeywell International Inc. Electrostatically actuated valve
US7420659B1 (en) * 2000-06-02 2008-09-02 Honeywell Interantional Inc. Flow control system of a cartridge
US8071051B2 (en) * 2004-05-14 2011-12-06 Honeywell International Inc. Portable sample analyzer cartridge
US7215425B2 (en) * 2000-08-02 2007-05-08 Honeywell International Inc. Optical alignment for flow cytometry
US7978329B2 (en) * 2000-08-02 2011-07-12 Honeywell International Inc. Portable scattering and fluorescence cytometer
US20060263888A1 (en) * 2000-06-02 2006-11-23 Honeywell International Inc. Differential white blood count on a disposable card
US7351376B1 (en) * 2000-06-05 2008-04-01 California Institute Of Technology Integrated active flux microfluidic devices and methods
US6824915B1 (en) 2000-06-12 2004-11-30 The Gillette Company Air managing systems and methods for gas depolarized power supplies utilizing a diaphragm
US6759159B1 (en) 2000-06-14 2004-07-06 The Gillette Company Synthetic jet for admitting and expelling reactant air
WO2002000343A2 (en) * 2000-06-27 2002-01-03 Fluidigm Corporation A microfluidic design automation method and system
US6589229B1 (en) 2000-07-31 2003-07-08 Becton, Dickinson And Company Wearable, self-contained drug infusion device
US7277166B2 (en) * 2000-08-02 2007-10-02 Honeywell International Inc. Cytometer analysis cartridge optical configuration
US6382228B1 (en) 2000-08-02 2002-05-07 Honeywell International Inc. Fluid driving system for flow cytometry
US7061595B2 (en) * 2000-08-02 2006-06-13 Honeywell International Inc. Miniaturized flow controller with closed loop regulation
US7000330B2 (en) * 2002-08-21 2006-02-21 Honeywell International Inc. Method and apparatus for receiving a removable media member
EP2299256A3 (en) * 2000-09-15 2012-10-10 California Institute Of Technology Microfabricated crossflow devices and methods
US7097809B2 (en) * 2000-10-03 2006-08-29 California Institute Of Technology Combinatorial synthesis system
US7678547B2 (en) 2000-10-03 2010-03-16 California Institute Of Technology Velocity independent analyte characterization
US7258774B2 (en) * 2000-10-03 2007-08-21 California Institute Of Technology Microfluidic devices and methods of use
EP1336097A4 (en) * 2000-10-13 2006-02-01 Fluidigm Corp Microfluidic device based sample injection system for analytical devices
US7232109B2 (en) * 2000-11-06 2007-06-19 California Institute Of Technology Electrostatic valves for microfluidic devices
US7378280B2 (en) * 2000-11-16 2008-05-27 California Institute Of Technology Apparatus and methods for conducting assays and high throughput screening
WO2002060582A2 (en) * 2000-11-16 2002-08-08 Fluidigm Corporation Microfluidic devices for introducing and dispensing fluids from microfluidic systems
US20020098122A1 (en) * 2001-01-22 2002-07-25 Angad Singh Active disposable microfluidic system with externally actuated micropump
US20050143789A1 (en) * 2001-01-30 2005-06-30 Whitehurst Todd K. Methods and systems for stimulating a peripheral nerve to treat chronic pain
US20050196785A1 (en) * 2001-03-05 2005-09-08 California Institute Of Technology Combinational array for nucleic acid analysis
US7297518B2 (en) * 2001-03-12 2007-11-20 California Institute Of Technology Methods and apparatus for analyzing polynucleotide sequences by asynchronous base extension
US7670429B2 (en) * 2001-04-05 2010-03-02 The California Institute Of Technology High throughput screening of crystallization of materials
US20020164816A1 (en) * 2001-04-06 2002-11-07 California Institute Of Technology Microfluidic sample separation device
ATE500051T1 (en) * 2001-04-06 2011-03-15 Fluidigm Corp POLYMER SURFACE MODIFICATION
US6752922B2 (en) * 2001-04-06 2004-06-22 Fluidigm Corporation Microfluidic chromatography
US6960437B2 (en) 2001-04-06 2005-11-01 California Institute Of Technology Nucleic acid amplification utilizing microfluidic devices
TW561223B (en) * 2001-04-24 2003-11-11 Matsushita Electric Works Ltd Pump and its producing method
GB0112784D0 (en) * 2001-05-25 2001-07-18 The Technology Partnership Plc Pump
US6629820B2 (en) * 2001-06-26 2003-10-07 Micralyne Inc. Microfluidic flow control device
US20050149304A1 (en) * 2001-06-27 2005-07-07 Fluidigm Corporation Object oriented microfluidic design method and system
US7075162B2 (en) * 2001-08-30 2006-07-11 Fluidigm Corporation Electrostatic/electrostrictive actuation of elastomer structures using compliant electrodes
SG106631A1 (en) * 2001-08-31 2004-10-29 Agency Science Tech & Res Liquid delivering device
US6729856B2 (en) 2001-10-09 2004-05-04 Honeywell International Inc. Electrostatically actuated pump with elastic restoring forces
WO2003031066A1 (en) 2001-10-11 2003-04-17 California Institute Of Technology Devices utilizing self-assembled gel and method of manufacture
US8440093B1 (en) 2001-10-26 2013-05-14 Fuidigm Corporation Methods and devices for electronic and magnetic sensing of the contents of microfluidic flow channels
US6736796B2 (en) 2001-11-26 2004-05-18 Nili-Med Ltd. Fluid drug delivery device
US7311693B2 (en) * 2001-11-26 2007-12-25 Nilimedix Ltd. Drug delivery device and method
US7291126B2 (en) 2001-11-26 2007-11-06 Nilimedix Ltd. Drug delivery device and method
US7118910B2 (en) 2001-11-30 2006-10-10 Fluidigm Corporation Microfluidic device and methods of using same
US7691333B2 (en) * 2001-11-30 2010-04-06 Fluidigm Corporation Microfluidic device and methods of using same
US20040073175A1 (en) * 2002-01-07 2004-04-15 Jacobson James D. Infusion system
JP2005521425A (en) * 2002-04-01 2005-07-21 フルイディグム コーポレイション Microfluidic particle analysis system
US7312085B2 (en) * 2002-04-01 2007-12-25 Fluidigm Corporation Microfluidic particle-analysis systems
FR2839662B1 (en) * 2002-05-16 2005-12-02 Centre Nat Rech Scient DEVICE FOR LOCALLY DEPOSITING AT LEAST ONE BIOLOGICAL SOLUTION
US20070026528A1 (en) * 2002-05-30 2007-02-01 Delucas Lawrence J Method for screening crystallization conditions in solution crystal growth
JP2005531001A (en) * 2002-06-24 2005-10-13 フルイディグム コーポレイション Recirculating fluid network and use thereof
WO2004005898A1 (en) * 2002-07-10 2004-01-15 Uab Research Foundation Method for distinguishing between biomolecule and non-biomolecule crystals
US8220494B2 (en) * 2002-09-25 2012-07-17 California Institute Of Technology Microfluidic large scale integration
US7143785B2 (en) * 2002-09-25 2006-12-05 California Institute Of Technology Microfluidic large scale integration
EP1546412B1 (en) 2002-10-02 2014-05-21 California Institute Of Technology Microfluidic nucleic acid analysis
CN100344874C (en) 2003-01-28 2007-10-24 清华大学 Fluid transmission method and minisize peristaltic pump for realizing the same
US8828663B2 (en) * 2005-03-18 2014-09-09 Fluidigm Corporation Thermal reaction device and method for using the same
CA2521171C (en) * 2003-04-03 2013-05-28 Fluidigm Corp. Microfluidic devices and methods of using same
US7476363B2 (en) * 2003-04-03 2009-01-13 Fluidigm Corporation Microfluidic devices and methods of using same
US7604965B2 (en) 2003-04-03 2009-10-20 Fluidigm Corporation Thermal reaction device and method for using the same
US20050145496A1 (en) * 2003-04-03 2005-07-07 Federico Goodsaid Thermal reaction device and method for using the same
EP1636017A2 (en) 2003-05-20 2006-03-22 Fluidigm Corporation Method and system for microfluidic device and imaging thereof
US20050170367A1 (en) * 2003-06-10 2005-08-04 Quake Stephen R. Fluorescently labeled nucleoside triphosphates and analogs thereof for sequencing nucleic acids
AU2004261655A1 (en) * 2003-07-28 2005-02-10 Fluidigm Corporation Image processing method and system for microfluidic devices
US7413712B2 (en) * 2003-08-11 2008-08-19 California Institute Of Technology Microfluidic rotary flow reactor matrix
US7169560B2 (en) * 2003-11-12 2007-01-30 Helicos Biosciences Corporation Short cycle methods for sequencing polynucleotides
US20060172408A1 (en) * 2003-12-01 2006-08-03 Quake Steven R Device for immobilizing chemical and biochemical species and methods of using same
US7407799B2 (en) * 2004-01-16 2008-08-05 California Institute Of Technology Microfluidic chemostat
WO2005080605A2 (en) 2004-02-19 2005-09-01 Helicos Biosciences Corporation Methods and kits for analyzing polynucleotide sequences
US20060046258A1 (en) * 2004-02-27 2006-03-02 Lapidus Stanley N Applications of single molecule sequencing
US20050239085A1 (en) * 2004-04-23 2005-10-27 Buzby Philip R Methods for nucleic acid sequence determination
US8323564B2 (en) * 2004-05-14 2012-12-04 Honeywell International Inc. Portable sample analyzer system
US20050260609A1 (en) * 2004-05-24 2005-11-24 Lapidus Stanley N Methods and devices for sequencing nucleic acids
JP2008512084A (en) * 2004-05-25 2008-04-24 ヘリコス バイオサイエンシーズ コーポレイション Methods and devices for nucleic acid sequencing
US20070117103A1 (en) * 2005-11-22 2007-05-24 Buzby Philip R Nucleotide analogs
US7476734B2 (en) * 2005-12-06 2009-01-13 Helicos Biosciences Corporation Nucleotide analogs
US20070117104A1 (en) * 2005-11-22 2007-05-24 Buzby Philip R Nucleotide analogs
US20060024751A1 (en) * 2004-06-03 2006-02-02 Fluidigm Corporation Scale-up methods and systems for performing the same
US20060024678A1 (en) * 2004-07-28 2006-02-02 Helicos Biosciences Corporation Use of single-stranded nucleic acid binding proteins in sequencing
US7612871B2 (en) * 2004-09-01 2009-11-03 Honeywell International Inc Frequency-multiplexed detection of multiple wavelength light for flow cytometry
US7630075B2 (en) * 2004-09-27 2009-12-08 Honeywell International Inc. Circular polarization illumination based analyzer system
US20060118754A1 (en) * 2004-12-08 2006-06-08 Lapen Daniel C Stabilizing a polyelectrolyte multilayer
US20060134510A1 (en) * 2004-12-21 2006-06-22 Cleopatra Cabuz Air cell air flow control system and method
US7222639B2 (en) * 2004-12-29 2007-05-29 Honeywell International Inc. Electrostatically actuated gas valve
US7409902B2 (en) 2004-12-30 2008-08-12 Adaptivenergy, Llc. Actuators with connected diaphragms
US7220549B2 (en) 2004-12-30 2007-05-22 Helicos Biosciences Corporation Stabilizing a nucleic acid for nucleic acid sequencing
US20060172328A1 (en) * 2005-01-05 2006-08-03 Buzby Philip R Methods and compositions for correcting misincorporation in a nucleic acid synthesis reaction
US7328882B2 (en) * 2005-01-06 2008-02-12 Honeywell International Inc. Microfluidic modulating valve
US7445017B2 (en) * 2005-01-28 2008-11-04 Honeywell International Inc. Mesovalve modulator
US7482120B2 (en) * 2005-01-28 2009-01-27 Helicos Biosciences Corporation Methods and compositions for improving fidelity in a nucleic acid synthesis reaction
US20060194724A1 (en) * 2005-02-25 2006-08-31 Whitehurst Todd K Methods and systems for nerve regeneration
CN101438143B (en) 2005-04-29 2013-06-12 霍尼韦尔国际公司 Cytometer cell counting and size measurement method
US20060263790A1 (en) * 2005-05-20 2006-11-23 Timothy Harris Methods for improving fidelity in a nucleic acid synthesis reaction
US7320338B2 (en) * 2005-06-03 2008-01-22 Honeywell International Inc. Microvalve package assembly
WO2007005973A2 (en) * 2005-07-01 2007-01-11 Honeywell International, Inc. A microfluidic card for rbc analysis
WO2007005974A2 (en) * 2005-07-01 2007-01-11 Honeywell International, Inc. A flow metered analyzer
WO2007005907A1 (en) * 2005-07-01 2007-01-11 Honeywell International, Inc. A molded cartridge with 3-d hydrodynamic focusing
US7517201B2 (en) * 2005-07-14 2009-04-14 Honeywell International Inc. Asymmetric dual diaphragm pump
US7843563B2 (en) * 2005-08-16 2010-11-30 Honeywell International Inc. Light scattering and imaging optical system
US7666593B2 (en) 2005-08-26 2010-02-23 Helicos Biosciences Corporation Single molecule sequencing of captured nucleic acids
US20070051415A1 (en) * 2005-09-07 2007-03-08 Honeywell International Inc. Microvalve switching array
US20070117102A1 (en) * 2005-11-22 2007-05-24 Buzby Philip R Nucleotide analogs
US20070128610A1 (en) * 2005-12-02 2007-06-07 Buzby Philip R Sample preparation method and apparatus for nucleic acid sequencing
US7624755B2 (en) * 2005-12-09 2009-12-01 Honeywell International Inc. Gas valve with overtravel
US20090305248A1 (en) * 2005-12-15 2009-12-10 Lander Eric G Methods for increasing accuracy of nucleic acid sequencing
EP1963817A2 (en) * 2005-12-22 2008-09-03 Honeywell International Inc. Portable sample analyzer cartridge
JP5431732B2 (en) * 2005-12-29 2014-03-05 ハネウェル・インターナショナル・インコーポレーテッド Assay implementation in microfluidic format
US7815868B1 (en) * 2006-02-28 2010-10-19 Fluidigm Corporation Microfluidic reaction apparatus for high throughput screening
US7523762B2 (en) 2006-03-22 2009-04-28 Honeywell International Inc. Modulating gas valves and systems
WO2007114912A2 (en) * 2006-03-30 2007-10-11 Wayne State University Check valve diaphragm micropump
EP1862873A1 (en) 2006-06-02 2007-12-05 Montres Rado S.A. Display unit for a portable instrument, such as a watch
US8007704B2 (en) * 2006-07-20 2011-08-30 Honeywell International Inc. Insert molded actuator components
US7543604B2 (en) * 2006-09-11 2009-06-09 Honeywell International Inc. Control valve
US8202267B2 (en) * 2006-10-10 2012-06-19 Medsolve Technologies, Inc. Method and apparatus for infusing liquid to a body
US20080099082A1 (en) * 2006-10-27 2008-05-01 Honeywell International Inc. Gas valve shutoff seal
US7644731B2 (en) * 2006-11-30 2010-01-12 Honeywell International Inc. Gas valve with resilient seat
US20080161743A1 (en) * 2006-12-28 2008-07-03 Crowe John E Ablation device having a piezoelectric pump
US20080161754A1 (en) * 2006-12-29 2008-07-03 Medsolve Technologies, Inc. Method and apparatus for infusing liquid to a body
US20090020463A1 (en) * 2007-07-18 2009-01-22 Horn-Jiunn Sheen Triple-channel particle separation device
US8057198B2 (en) * 2007-12-05 2011-11-15 Ford Global Technologies, Llc Variable displacement piezo-electric pumps
US8708961B2 (en) * 2008-01-28 2014-04-29 Medsolve Technologies, Inc. Apparatus for infusing liquid to a body
US20100034704A1 (en) * 2008-08-06 2010-02-11 Honeywell International Inc. Microfluidic cartridge channel with reduced bubble formation
US8037354B2 (en) 2008-09-18 2011-10-11 Honeywell International Inc. Apparatus and method for operating a computing platform without a battery pack
EP2191796A1 (en) 2008-11-28 2010-06-02 Debiotech S.A. Artificial sphincter assembly
EP2204582B1 (en) * 2008-12-15 2011-02-16 Siemens Aktiengesellschaft Vibrating membrane jet cooler with coupled partial units and housing with such a membrane jet cooler
FR2952628A1 (en) * 2009-11-13 2011-05-20 Commissariat Energie Atomique PROCESS FOR MANUFACTURING AT LEAST ONE DEFORMABLE MEMBRANE MICROPUMP AND DEFORMABLE MEMBRANE MICROPUMP
EP2469089A1 (en) * 2010-12-23 2012-06-27 Debiotech S.A. Electronic control method and system for a piezo-electric pump
CN102787363A (en) * 2011-05-20 2012-11-21 浙江昱辉阳光能源有限公司 Crystal growth furnace and safety exhaust valve thereof
US8839815B2 (en) 2011-12-15 2014-09-23 Honeywell International Inc. Gas valve with electronic cycle counter
US8899264B2 (en) 2011-12-15 2014-12-02 Honeywell International Inc. Gas valve with electronic proof of closure system
US8905063B2 (en) 2011-12-15 2014-12-09 Honeywell International Inc. Gas valve with fuel rate monitor
US9846440B2 (en) 2011-12-15 2017-12-19 Honeywell International Inc. Valve controller configured to estimate fuel comsumption
US9557059B2 (en) 2011-12-15 2017-01-31 Honeywell International Inc Gas valve with communication link
US9074770B2 (en) 2011-12-15 2015-07-07 Honeywell International Inc. Gas valve with electronic valve proving system
US9995486B2 (en) 2011-12-15 2018-06-12 Honeywell International Inc. Gas valve with high/low gas pressure detection
US9835265B2 (en) 2011-12-15 2017-12-05 Honeywell International Inc. Valve with actuator diagnostics
US8947242B2 (en) 2011-12-15 2015-02-03 Honeywell International Inc. Gas valve with valve leakage test
US9851103B2 (en) 2011-12-15 2017-12-26 Honeywell International Inc. Gas valve with overpressure diagnostics
US8663583B2 (en) 2011-12-27 2014-03-04 Honeywell International Inc. Disposable cartridge for fluid analysis
US8741235B2 (en) 2011-12-27 2014-06-03 Honeywell International Inc. Two step sample loading of a fluid analysis cartridge
US8741234B2 (en) 2011-12-27 2014-06-03 Honeywell International Inc. Disposable cartridge for fluid analysis
US8741233B2 (en) 2011-12-27 2014-06-03 Honeywell International Inc. Disposable cartridge for fluid analysis
SG11201405072XA (en) 2012-02-21 2014-09-26 Fluidigm Corp Method and systems for microfluidic logic devices
US9234661B2 (en) 2012-09-15 2016-01-12 Honeywell International Inc. Burner control system
US10422531B2 (en) 2012-09-15 2019-09-24 Honeywell International Inc. System and approach for controlling a combustion chamber
EP2868970B1 (en) 2013-10-29 2020-04-22 Honeywell Technologies Sarl Regulating device
JP6157748B2 (en) 2013-12-12 2017-07-05 スリーエム イノベイティブ プロパティズ カンパニー Apparatus and method for preparing biological samples for analysis
US10024439B2 (en) 2013-12-16 2018-07-17 Honeywell International Inc. Valve over-travel mechanism
JP6213677B2 (en) * 2014-07-02 2017-10-18 株式会社村田製作所 Inhaler
US9841122B2 (en) 2014-09-09 2017-12-12 Honeywell International Inc. Gas valve with electronic valve proving system
US9645584B2 (en) 2014-09-17 2017-05-09 Honeywell International Inc. Gas valve with electronic health monitoring
US10503181B2 (en) 2016-01-13 2019-12-10 Honeywell International Inc. Pressure regulator
US10400915B2 (en) * 2016-04-14 2019-09-03 Triad National Security, Llc Magnetically controlled valve and pump devices and methods of using the same
US10564062B2 (en) 2016-10-19 2020-02-18 Honeywell International Inc. Human-machine interface for gas valve
CN107387378B (en) * 2017-08-16 2020-08-21 广州大学 Built-in flexible structure valveless piezoelectric pump
US11073281B2 (en) 2017-12-29 2021-07-27 Honeywell International Inc. Closed-loop programming and control of a combustion appliance
US10697815B2 (en) 2018-06-09 2020-06-30 Honeywell International Inc. System and methods for mitigating condensation in a sensor module

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3150592A (en) * 1962-08-17 1964-09-29 Charles L Stec Piezoelectric pump
US3215078A (en) * 1964-08-31 1965-11-02 Charles L Stec Controlled volume piezoelectric pumps
FR2127774A5 (en) * 1971-02-26 1972-10-13 Polypump Curacao Nv
DE2639992A1 (en) * 1976-09-04 1978-03-09 Sigdell Jan Erik Dr Infusion pump and flow meter - has single diaphragm for pump and inlet and outlet valves
US4265601A (en) * 1978-09-05 1981-05-05 Harold Mandroian Three valve precision pump apparatus with head pressure flowthrough protection
US4265600A (en) * 1978-09-05 1981-05-05 Harold Mandroian Pump apparatus
NL8302860A (en) * 1983-08-15 1985-03-01 Stichting Ct Voor Micro Elektr PIEZO ELECTRIC MICRO PUMP.
JPS61171891A (en) * 1985-01-25 1986-08-02 Nec Corp Piezo-electric pump
US4708600A (en) * 1986-02-24 1987-11-24 Abujudom Ii David N Piezoelectric fluid pumping apparatus
DE3618106A1 (en) * 1986-05-30 1987-12-03 Siemens Ag PIEZOELECTRICALLY OPERATED FLUID PUMP
US4911616A (en) * 1988-01-19 1990-03-27 Laumann Jr Carl W Micro miniature implantable pump
US4938742A (en) * 1988-02-04 1990-07-03 Smits Johannes G Piezoelectric micropump with microvalves

Also Published As

Publication number Publication date
US5085562A (en) 1992-02-04
PT93712A (en) 1992-01-31
EP0392978A1 (en) 1990-10-17
CH679555A5 (en) 1992-03-13
AU628153B2 (en) 1992-09-10
WO1990012209A1 (en) 1990-10-18
JPH03505771A (en) 1991-12-12
AU5303490A (en) 1990-10-18

Similar Documents

Publication Publication Date Title
US5085562A (en) Micropump having a constant output
AU681470B2 (en) Micropump
US5171132A (en) Two-valve thin plate micropump
JP3948493B2 (en) Micro pump
JP4531563B2 (en) Peristaltic micropump
JP2824975B2 (en) Valve and micropump incorporating the valve
Smits Piezoelectric micropump with three valves working peristaltically
US5219278A (en) Micropump with improved priming
US5611676A (en) Micropump
US5336062A (en) Microminiaturized pump
US4938742A (en) Piezoelectric micropump with microvalves
CA2410306C (en) Micromachined fluidic device and method for making same
Esashi et al. Normally closed microvalve and mircopump fabricated on a silicon wafer
KR0119362B1 (en) Micro-miniaturized, electrostatically driven diaphragm micropump
US5271724A (en) Valve equipped with a position detector and a micropump incorporating said valve
US5224843A (en) Two valve micropump with improved outlet
US20080296523A1 (en) Low-power piezoelectric micro-machined valve
EP0435653A1 (en) Micropump
Smits Piezoelectric micropump with microvalves
JPH0762502B2 (en) Control valve
JP2912372B2 (en) Liquid micro valve
RU2030634C1 (en) Micro-pump
JPH03199682A (en) Micro pump
WO2000028213A1 (en) Micropump
JPH03225086A (en) Micropump

Legal Events

Date Code Title Description
EEER Examination request
FZDE Discontinued