CA2018928A1 - Semiconductor laser device - Google Patents

Semiconductor laser device

Info

Publication number
CA2018928A1
CA2018928A1 CA2018928A CA2018928A CA2018928A1 CA 2018928 A1 CA2018928 A1 CA 2018928A1 CA 2018928 A CA2018928 A CA 2018928A CA 2018928 A CA2018928 A CA 2018928A CA 2018928 A1 CA2018928 A1 CA 2018928A1
Authority
CA
Canada
Prior art keywords
semiconductor laser
laser device
wavelength
tunable
abstract
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CA2018928A
Other languages
French (fr)
Other versions
CA2018928C (en
Inventor
Akihiko Oka
Shinji Sakano
Naoki Chinone
Tsukuru Ohtoshi
Kazuhisa Uomi
Tomonobu Tsuchiya
Makoto Okai
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Publication of CA2018928A1 publication Critical patent/CA2018928A1/en
Application granted granted Critical
Publication of CA2018928C publication Critical patent/CA2018928C/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/10Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y20/00Nanooptics, e.g. quantum optics or photonic crystals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/06Arrangements for controlling the laser output parameters, e.g. by operating on the active medium
    • H01S5/062Arrangements for controlling the laser output parameters, e.g. by operating on the active medium by varying the potential of the electrodes
    • H01S5/0625Arrangements for controlling the laser output parameters, e.g. by operating on the active medium by varying the potential of the electrodes in multi-section lasers
    • H01S5/06255Controlling the frequency of the radiation
    • H01S5/06258Controlling the frequency of the radiation with DFB-structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/10Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
    • H01S5/12Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region the resonator having a periodic structure, e.g. in distributed feedback [DFB] lasers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/06Arrangements for controlling the laser output parameters, e.g. by operating on the active medium
    • H01S5/062Arrangements for controlling the laser output parameters, e.g. by operating on the active medium by varying the potential of the electrodes
    • H01S5/06209Arrangements for controlling the laser output parameters, e.g. by operating on the active medium by varying the potential of the electrodes in single-section lasers
    • H01S5/06213Amplitude modulation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/06Arrangements for controlling the laser output parameters, e.g. by operating on the active medium
    • H01S5/062Arrangements for controlling the laser output parameters, e.g. by operating on the active medium by varying the potential of the electrodes
    • H01S5/0625Arrangements for controlling the laser output parameters, e.g. by operating on the active medium by varying the potential of the electrodes in multi-section lasers
    • H01S5/06255Controlling the frequency of the radiation
    • H01S5/06256Controlling the frequency of the radiation with DBR-structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/10Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
    • H01S5/1028Coupling to elements in the cavity, e.g. coupling to waveguides adjacent the active region, e.g. forward coupled [DFC] structures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/10Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
    • H01S5/1053Comprising an active region having a varying composition or cross-section in a specific direction
    • H01S5/106Comprising an active region having a varying composition or cross-section in a specific direction varying thickness along the optical axis
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/20Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers
    • H01S5/22Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers having a ridge or stripe structure
    • H01S5/227Buried mesa structure ; Striped active layer
    • H01S5/2275Buried mesa structure ; Striped active layer mesa created by etching
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/30Structure or shape of the active region; Materials used for the active region
    • H01S5/34Structure or shape of the active region; Materials used for the active region comprising quantum well or superlattice structures, e.g. single quantum well [SQW] lasers, multiple quantum well [MQW] lasers or graded index separate confinement heterostructure [GRINSCH] lasers
    • H01S5/3428Structure or shape of the active region; Materials used for the active region comprising quantum well or superlattice structures, e.g. single quantum well [SQW] lasers, multiple quantum well [MQW] lasers or graded index separate confinement heterostructure [GRINSCH] lasers layer orientation perpendicular to the substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/30Structure or shape of the active region; Materials used for the active region
    • H01S5/34Structure or shape of the active region; Materials used for the active region comprising quantum well or superlattice structures, e.g. single quantum well [SQW] lasers, multiple quantum well [MQW] lasers or graded index separate confinement heterostructure [GRINSCH] lasers
    • H01S5/343Structure or shape of the active region; Materials used for the active region comprising quantum well or superlattice structures, e.g. single quantum well [SQW] lasers, multiple quantum well [MQW] lasers or graded index separate confinement heterostructure [GRINSCH] lasers in AIIIBV compounds, e.g. AlGaAs-laser, InP-based laser
    • H01S5/34306Structure or shape of the active region; Materials used for the active region comprising quantum well or superlattice structures, e.g. single quantum well [SQW] lasers, multiple quantum well [MQW] lasers or graded index separate confinement heterostructure [GRINSCH] lasers in AIIIBV compounds, e.g. AlGaAs-laser, InP-based laser emitting light at a wavelength longer than 1000nm, e.g. InP based 1300 and 1500nm lasers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/30Structure or shape of the active region; Materials used for the active region
    • H01S5/34Structure or shape of the active region; Materials used for the active region comprising quantum well or superlattice structures, e.g. single quantum well [SQW] lasers, multiple quantum well [MQW] lasers or graded index separate confinement heterostructure [GRINSCH] lasers
    • H01S5/343Structure or shape of the active region; Materials used for the active region comprising quantum well or superlattice structures, e.g. single quantum well [SQW] lasers, multiple quantum well [MQW] lasers or graded index separate confinement heterostructure [GRINSCH] lasers in AIIIBV compounds, e.g. AlGaAs-laser, InP-based laser
    • H01S5/34313Structure or shape of the active region; Materials used for the active region comprising quantum well or superlattice structures, e.g. single quantum well [SQW] lasers, multiple quantum well [MQW] lasers or graded index separate confinement heterostructure [GRINSCH] lasers in AIIIBV compounds, e.g. AlGaAs-laser, InP-based laser with a well layer having only As as V-compound, e.g. AlGaAs, InGaAs
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/30Structure or shape of the active region; Materials used for the active region
    • H01S5/34Structure or shape of the active region; Materials used for the active region comprising quantum well or superlattice structures, e.g. single quantum well [SQW] lasers, multiple quantum well [MQW] lasers or graded index separate confinement heterostructure [GRINSCH] lasers
    • H01S5/343Structure or shape of the active region; Materials used for the active region comprising quantum well or superlattice structures, e.g. single quantum well [SQW] lasers, multiple quantum well [MQW] lasers or graded index separate confinement heterostructure [GRINSCH] lasers in AIIIBV compounds, e.g. AlGaAs-laser, InP-based laser
    • H01S5/3434Structure or shape of the active region; Materials used for the active region comprising quantum well or superlattice structures, e.g. single quantum well [SQW] lasers, multiple quantum well [MQW] lasers or graded index separate confinement heterostructure [GRINSCH] lasers in AIIIBV compounds, e.g. AlGaAs-laser, InP-based laser with a well layer comprising at least both As and P as V-compounds

Abstract

ABSTRACT OF THE DISCLOSURE
A wavelength-tunable semiconductor laser device presenting a large wavelength-tunable range or a very-high-speed modulating semiconductor laser device having a distributed feedback structure including a diffraction grating as in the case of a DBR laser or a DFB laser incorporates therein a plurality of active layers differing from one another in constituent elements or composition ratio or thickness for reducing spectral line widths, while improving single-mode spectral oscillation characteristics.
CA002018928A 1989-06-14 1990-06-13 Semiconductor laser device Expired - Fee Related CA2018928C (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP01-149603 1989-06-14
JP14960389 1989-06-14
JP01-224463 1989-09-01
JP22446389 1989-09-01

Publications (2)

Publication Number Publication Date
CA2018928A1 true CA2018928A1 (en) 1990-12-14
CA2018928C CA2018928C (en) 1994-07-26

Family

ID=26479438

Family Applications (1)

Application Number Title Priority Date Filing Date
CA002018928A Expired - Fee Related CA2018928C (en) 1989-06-14 1990-06-13 Semiconductor laser device

Country Status (3)

Country Link
US (1) US5119393A (en)
EP (1) EP0402907A3 (en)
CA (1) CA2018928C (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113328339A (en) * 2021-05-27 2021-08-31 华中科技大学 High-power distributed feedback laser

Families Citing this family (59)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE69115624T2 (en) * 1990-09-28 1996-05-15 Nec Corp Circuit and electrode arrangement for generating a broadband frequency modulation characteristic in semiconductor lasers
US5274649A (en) * 1990-11-21 1993-12-28 Kabushiki Kaisha Toshiba Wavelength-tunable distributed-feedback semiconductor laser device
NL9100103A (en) * 1991-01-23 1992-08-17 Philips Nv SEMICONDUCTOR DIODE LASER WITH MONITOR DIOD.
EP0498736A3 (en) * 1991-02-08 1993-04-14 Fujitsu Limited Dfb laser diode having a modified profile of linewidth enhancement factor
US5220578A (en) * 1991-11-01 1993-06-15 At&T Bell Laboratories Long term mode stabilization for distributed bragg reflector laser
US5625878A (en) * 1991-11-11 1997-04-29 Nokia Telecommunications Oy Method of allocating radio channels
US5274225A (en) * 1991-12-31 1993-12-28 Biota Corp. Method of and means for controlling the electromagnetic output power of electro-optic semiconductor devices
FR2686753B1 (en) * 1992-01-24 1994-04-08 France Telecom PHOTORECEPTOR FOR FREQUENCY MODULATED OPTICAL SIGNALS, CORRESPONDING TRANSCEIVER AND OPTICAL LINK.
EP0753914B1 (en) * 1993-01-08 2000-09-06 Nec Corporation Laser diode element with excellent intermodulation distortion characteristic
JPH0794833A (en) * 1993-09-22 1995-04-07 Mitsubishi Electric Corp Semiconductor laser and its manufacturing method
US5418802A (en) * 1993-11-12 1995-05-23 Eastman Kodak Company Frequency tunable waveguide extended cavity laser
US5504772A (en) * 1994-09-09 1996-04-02 Deacon Research Laser with electrically-controlled grating reflector
JPH08255891A (en) * 1995-03-17 1996-10-01 Mitsubishi Electric Corp Optical integrated circuit device and drive method thereof
FR2736473B1 (en) * 1995-07-06 1997-09-12 Boumedienne Mersali LASER DEVICE WITH UNDERGROUND STRUCTURE FOR INTEGRATED PHOTONIC CIRCUIT AND MANUFACTURING METHOD
SE507376C2 (en) * 1996-09-04 1998-05-18 Ericsson Telefon Ab L M Wavelength tunable laser device
JPH10150244A (en) * 1996-11-20 1998-06-02 Mitsubishi Electric Corp Method of simulating semiconductor device
US5936994A (en) * 1997-09-18 1999-08-10 Northern Telecom Limited Two-section complex coupled distributed feedback semiconductor laser with enhanced wavelength tuning range
US6108362A (en) * 1997-10-17 2000-08-22 Lucent Technologies Inc. Broadband tunable semiconductor laser source
JP3111957B2 (en) * 1997-12-24 2000-11-27 日本電気株式会社 Surface emitting device
GB2354110A (en) * 1999-09-08 2001-03-14 Univ Bristol Ridge waveguide lasers
US6678301B1 (en) * 2000-07-14 2004-01-13 Triquint Technology Holding Co. Apparatus and method for minimizing wavelength chirp of laser devices
JP2002204032A (en) * 2000-10-31 2002-07-19 Fuji Photo Film Co Ltd Semiconductor laser element
GB2369492A (en) * 2000-11-28 2002-05-29 Kamelian Ltd (Ga,In)(N,As) Laser structures using distributed feedback
US6717964B2 (en) * 2001-07-02 2004-04-06 E20 Communications, Inc. Method and apparatus for wavelength tuning of optically pumped vertical cavity surface emitting lasers
US7145923B2 (en) * 2001-07-30 2006-12-05 Bookham Technology Plc Tuneable laser
US7139299B2 (en) * 2002-03-04 2006-11-21 Quintessence Photonics Corporation De-tuned distributed feedback laser diode
JP2003304035A (en) * 2002-04-09 2003-10-24 Mitsubishi Electric Corp Semiconductor optical element
US7564889B2 (en) * 2002-11-06 2009-07-21 Finisar Corporation Adiabatically frequency modulated source
US8792531B2 (en) * 2003-02-25 2014-07-29 Finisar Corporation Optical beam steering for tunable laser applications
JP2004273993A (en) * 2003-03-12 2004-09-30 Hitachi Ltd Wavelength variable distribution reflecting type semiconductor laser device
US8571082B2 (en) * 2004-08-19 2013-10-29 Maxion Technologies, Inc. Quantum cascade lasers with electrically tunable emission wavelengths
JP5234238B2 (en) * 2006-02-22 2013-07-10 日亜化学工業株式会社 Optical disk device
JP2007324474A (en) * 2006-06-02 2007-12-13 Sumitomo Electric Ind Ltd Optical integrated element and manufacturing method therefor
WO2008080171A1 (en) * 2006-12-22 2008-07-03 Finisar Corporation Optical transmitter having a widely tunable directly modulated laser and periodic optical spectrum reshaping element
US7941057B2 (en) * 2006-12-28 2011-05-10 Finisar Corporation Integral phase rule for reducing dispersion errors in an adiabatically chirped amplitude modulated signal
US8131157B2 (en) 2007-01-22 2012-03-06 Finisar Corporation Method and apparatus for generating signals with increased dispersion tolerance using a directly modulated laser transmitter
EP2111678B1 (en) * 2007-02-02 2015-04-08 Finisar Corporation Temperature stabilizing packaging for optoelectronic components in a transmitter module
US7991291B2 (en) * 2007-02-08 2011-08-02 Finisar Corporation WDM PON based on DML
US8027593B2 (en) 2007-02-08 2011-09-27 Finisar Corporation Slow chirp compensation for enhanced signal bandwidth and transmission performances in directly modulated lasers
US8204386B2 (en) 2007-04-06 2012-06-19 Finisar Corporation Chirped laser with passive filter element for differential phase shift keying generation
US7991297B2 (en) 2007-04-06 2011-08-02 Finisar Corporation Chirped laser with passive filter element for differential phase shift keying generation
JP4882088B2 (en) * 2007-05-21 2012-02-22 日本オプネクスト株式会社 Tunable laser device and wavelength control method therefor
US8160455B2 (en) 2008-01-22 2012-04-17 Finisar Corporation Method and apparatus for generating signals with increased dispersion tolerance using a directly modulated laser transmitter
US8260150B2 (en) 2008-04-25 2012-09-04 Finisar Corporation Passive wave division multiplexed transmitter having a directly modulated laser array
GB2465754B (en) * 2008-11-26 2011-02-09 Univ Dublin City A semiconductor optical amplifier with a reduced noise figure
JP2010232424A (en) * 2009-03-27 2010-10-14 Fujitsu Ltd Semiconductor optical amplifier, and optical module
US8391330B2 (en) * 2009-04-20 2013-03-05 Corning Incorporated Fracture resistant metallization pattern for semiconductor lasers
US8199785B2 (en) * 2009-06-30 2012-06-12 Finisar Corporation Thermal chirp compensation in a chirp managed laser
US20110134957A1 (en) * 2009-12-07 2011-06-09 Emcore Corporation Low Chirp Coherent Light Source
US20130044773A1 (en) * 2011-08-18 2013-02-21 Venkata Adiseshaiah Bhagavatula Optical sources having proximity coupled laser source and waveguide
EP2738889B1 (en) * 2011-12-20 2016-08-10 Huawei Technologies Co., Ltd. Laser, passive optical network system and apparatus, and method for controlling wavelength
CN104412148B (en) * 2012-05-17 2017-10-10 菲尼萨公司 The direct modulation laser applied for EPON (PON)
US9306672B2 (en) 2013-03-14 2016-04-05 Encore Corporation Method of fabricating and operating an optical modulator
US9306372B2 (en) 2013-03-14 2016-04-05 Emcore Corporation Method of fabricating and operating an optical modulator
US9059801B1 (en) 2013-03-14 2015-06-16 Emcore Corporation Optical modulator
US9564733B2 (en) 2014-09-15 2017-02-07 Emcore Corporation Method of fabricating and operating an optical modulator
US10074959B2 (en) 2016-08-03 2018-09-11 Emcore Corporation Modulated laser source and methods of its fabrication and operation
EP3678307A1 (en) * 2019-01-03 2020-07-08 Nokia Solutions and Networks Oy Laser apparatus
CN112670823B (en) * 2020-12-23 2022-03-11 中国科学院半导体研究所 Method for manufacturing electric absorption modulation laser

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4397025A (en) * 1980-10-08 1983-08-02 Environmental Research & Technology, Inc. Dual frequency laser
JPS6179283A (en) * 1984-09-26 1986-04-22 Nec Corp Distributed bragg reflection type semiconductor laser
US4794346A (en) * 1984-11-21 1988-12-27 Bell Communications Research, Inc. Broadband semiconductor optical amplifier structure
US4680769A (en) * 1984-11-21 1987-07-14 Bell Communications Research, Inc. Broadband laser amplifier structure
GB8522308D0 (en) * 1985-09-09 1985-10-16 British Telecomm Semiconductor lasers
JPS63148692A (en) * 1986-12-12 1988-06-21 Nec Corp Multiple wave length distribution bragg reflection type semiconductor laser array
US4888783A (en) * 1987-03-20 1989-12-19 Mitsubishi Denki Kabushiki Kaisha Semiconductor laser device
JPS63274192A (en) * 1987-05-02 1988-11-11 Fujitsu Ltd Semiconductor light emitting device
JPS6414988A (en) * 1987-07-08 1989-01-19 Nec Corp Wavelength-tunable semiconductor laser
JPH084186B2 (en) * 1987-10-28 1996-01-17 国際電信電話株式会社 Semiconductor laser
US4961198A (en) * 1988-01-14 1990-10-02 Matsushita Electric Industrial Co., Ltd. Semiconductor device
US4976539A (en) * 1989-08-29 1990-12-11 David Sarnoff Research Center, Inc. Diode laser array

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113328339A (en) * 2021-05-27 2021-08-31 华中科技大学 High-power distributed feedback laser

Also Published As

Publication number Publication date
EP0402907A2 (en) 1990-12-19
EP0402907A3 (en) 1991-09-25
US5119393A (en) 1992-06-02
CA2018928C (en) 1994-07-26

Similar Documents

Publication Publication Date Title
CA2018928A1 (en) Semiconductor laser device
DE68909747T2 (en) Tunable semiconductor laser.
DE68906207T2 (en) Phase cover layer for DFB / DBR laser diodes.
AU4024689A (en) Substituted 4-azatricyclo (22.3.1.0 4,9) octacos-18-ene derivatives
EP0615321A3 (en) Article comprising a wavelength-stabilized semiconductor laser.
DE69111197D1 (en) Tunable semiconductor laser with distributed feedback.
CA2143944A1 (en) Multi-stripe array grating integrated cavity laser
AU8976091A (en) Directly compressible pulverulent composition based on xylitol and process for producing the same
DE58906978D1 (en) Tunable DFB laser.
DE69200654T2 (en) Tunable laser oscillator.
DE69300903D1 (en) Multi-quantum well semiconductor laser with strained grating and manufacturing process.
EP0446070A3 (en) Multiple wavelength semiconductor lasers
CA2068443A1 (en) Gain-coupled distributed-feedback semiconductor laser
CA2064726A1 (en) Monolithic semiconductor harmonic laser sources
ES2159683T3 (en) TRANSDERMIC FORMULATION OF A COMPOUND WITH MUSCARINIC ACTIVITY.
DE59004315D1 (en) Electrically wavelength tunable semiconductor laser.
DE69205924D1 (en) Continuously tunable laser oscillator.
DE59300103D1 (en) Modular laser diode for high frequencies.
JPS5660088A (en) Multiwavelength light source
CA2085514A1 (en) Solid wood spring blade
SE9803285D0 (en) Tunable laser and method of tuning the same
DE69004629D1 (en) Quantum structure semiconductor laser.
WO1999057790A3 (en) Laser diode having separate-confinement, highly strained quantum wells
AU7446594A (en) High power, single-frequency tunable laser
EP0260476A3 (en) Monolithically integrated planar lasers differing in emission wavelengths and processes for their preparation

Legal Events

Date Code Title Description
EEER Examination request
MKLA Lapsed