CA2080840C - Sensor for measuring the quantity of a dissolved component - Google Patents

Sensor for measuring the quantity of a dissolved component

Info

Publication number
CA2080840C
CA2080840C CA002080840A CA2080840A CA2080840C CA 2080840 C CA2080840 C CA 2080840C CA 002080840 A CA002080840 A CA 002080840A CA 2080840 A CA2080840 A CA 2080840A CA 2080840 C CA2080840 C CA 2080840C
Authority
CA
Canada
Prior art keywords
sensor
measuring electrode
mediator
mixture
conducting material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
CA002080840A
Other languages
French (fr)
Other versions
CA2080840A1 (en
Inventor
Michael Graetzel
David Fraser
Shaik M. Zakeeruddin
Jean-Paul Randin
Erik J. Frenkel
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asulab AG
Original Assignee
Asulab AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asulab AG filed Critical Asulab AG
Publication of CA2080840A1 publication Critical patent/CA2080840A1/en
Application granted granted Critical
Publication of CA2080840C publication Critical patent/CA2080840C/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/001Enzyme electrodes
    • C12Q1/005Enzyme electrodes involving specific analytes or enzymes
    • C12Q1/006Enzyme electrodes involving specific analytes or enzymes for glucose
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/001Enzyme electrodes
    • C12Q1/004Enzyme electrodes mediator-assisted
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S435/00Chemistry: molecular biology and microbiology
    • Y10S435/817Enzyme or microbe electrode

Abstract

ABSTRACT

A sensor for measuring the amount of a component in solution is disclosed. The sensor has a measuring electrode with at least one current collector, electrically connected to one of the electrical contacts and coated with a mixture comprising at least one oxidation-reduction enzyme specific to said component and at least one mediator transferring the electrons between said enzyme and said current collector wherein the mediator is a transition metal complex with at least one bipyridine, terpyridine or phenanthroline ligand substituted by at least one electron donor group. This sensor is particularly useful in the detection of glucose.

Description

20808~0 SENSOR FOR MEASU~ THE AMOUNT OF A COMPONENT IN SOLUTION

The instant invention relates to a sensor for measuring the amount of a component in solution designed to be used in an amperometric device for measuring the concentration of said component in the solution. This sensor is in particular suitable for analysing glucose.

Many patients with diabetes frequently have to measure their blood glucose level, or glycemia. If they detect a state of hyperglycemia they immediately have to take medication to regulate their glucose level. To simplify the daily life of these patients, numerous miniaturized glucose measuring devices which can be used by a layperson have appeared on the market.
The implantation of insulin pumps in diabetics has also been proposed. These insulin pumps have to be supplied with devices for measuring glucose that can also be implanted and which, as a function of the glycemia measured, supply information to the pump and possibly start it operating.
The majority of these devices for measuring glycemia use an enzyme specific to glucose - glucose oxidase (GOD).
As shown in the appended Figure 1, GOD is a flavoprotein (obtained for example from moulds) which catalyses the oxidation of glucose, in this case for example blood glucose, into gluconolactone, with the formation of hydrogen 2 20~08~

peroxide H202, starting from the molecular oxygen 2 present in the solution to be tested, in this case blood.
This enzyme (GOD) and oxygen have thus frequently been used in devices for measuring glucose in which the oxidation of the glucose was detected by an electrical or optical transducer.
Similarly, this enzyme (GOD) and oxygen have frequently been used in amperometric devices and their use is described in the literature.
These amperometric devices comprise on the one hand a measuring apparatus provided with at least two electrical contacts connected to an ammeter and to display means and, on the other hand, a sensor which may be disposable and which can be connected to these two electrical contacts.
This sensor comprises at least two electrodes: a reference electrode and a measuring electrode. The measuring electrode comprises a metal conductor coated with an enzyme specific to the product to be detected.
The appended Figure 2 illustrates the chemical reactions occurring on the surface of this measuring electrode. When the solution to be tested is deposited on the measuring electrode, the product to be tested (in this case glucose~
reacts with the enzyme (in this case the oxidized GOD) located on the electrode to form gluconolactone while the GOD passes into the reduced state [GOD(H2)(red)]. This reduced GOD then reacts with oxygen 2 which passes into the reduced state H2O2 and which then transfers two electrons e~
towards the electrical conductor C, the potential of which 2~8084~

is fixed and is in the region of 650 mV. The fact that it is necessary to work at elevated potentials causes additional interference problems. The oxygen thus plays the part of mediator since it permits the transfer of electrons. This transfer of electrons, which is proportional to the amount of glucose present in the solution to be tested, is then measured by the ammeter and the amount of glucose present in the solution is displayed by the display means of the measuring apparatus.
Additional research has shown that amperometric devices using non-physiological, organic, inorganic or organometallic mediators can supplant devices using oxygen as the mediator. Indeed, as shown in Figure 2, devices using oxygen as the mediator cannot be used in solutions where the stoichiometric oxygen content is less than the concentration of the component to be measured. Otherwise, in this case, while the total amount of the component to be measured is able to react with the oxidized enzyme to form the reduced enzyme, only part of the total amount of the reduced enzyme can react with the oxygen present, in proportion to this amount of oxygen. The rest of the reduced enzyme is unable to react and the quantity of electrons transmitted to the conductor C is less than it should be.
Consequently, when this type of device is used, one is either restricted by the respective concentrations of the oxygen and the component to be measured, or compelled to use a membrane to limit the diffusion of said component. This 4 20~8~0 explains why attempts have been made to produce amperometric devices using a specific mediator to replace oxygen.
Very many mediators have been proposed in the literature, such as monomeric ferrocenes (Cass, A.E.G. et al (1984), Anal. Chem. 56, 667-671; Degani, Y. and Heller, A.
(1987), J. Phys. Chem. 91, 1285-1289), ferrocenes grafted onto a polymer (Foulds, N.C. and Lowe, C.R. ~1988) Anal.
Chem. 60, 2473-2478), charge transfer conducting salts (Albery, W.J. sartlett, P.N. and Craston, D.H. (1985) J.
Electroanal. Chem. Interfacial. Electrochem. 194, 223-235), nickel cyclamates (Taniguchi, I., Matsushita, K., Okamoto, M., Collin, J-P and Sauvage, J-P (1990) J. Electroanal.
Chem. Interfacial. Electrochem. 280, 221-226) and organic components such as quinones and benzoquinones (Kulys, J.J., and Cénas, N.K. (1983) siochim. Biophys. Acta 744, 57).
Because of major work by Hill et al, for example Erew, J.E., and Hill, H.A.O. (1987) Phil. Trans. R. Soc. Lond. B316, 95-106), the family of ferrocene components has become widely established and used as mediator for GOD and other flavoproteins. As a result, a sensor currently on the market is known to use a member of the ferrocene component family as mediator.
Unfortunately, mediators currently available rarely have the requisite ideal properties, namely an electrochemical potential adapted to the selected enzyme, adequate solubility and good chemical stability to light, temperature and pH and rapid interaction with the selected enzyme.

2 0 ~

Moreover, the oxygen that may be present in the solutions to be tested competes with some mediators according to the diagram in the appended Figure 3. While the mediator Med present on the conductor C continues to react with some molecules of reduced GOD, it is possible that a certain amount of the oxygen 2 which may be present also reacts with other molecules of reduced GOD to form H202, as previously shown in Figure 2. When measurements are made with a small potential between the measuring electrode and the reference electrode, the H202 traps the electrons derived from the reaction between the GOD and oxygen and these electrons no longer pass towards the electrode. Since the amount of oxygen in solution can vary, the amount of trapped electrons also varies. AS a result, there is no longer any proportionality between the quantity of electrons passing towards the electrode and the amount of glucose in the solution to be tested. Under this conditions, these sensors consequently do not give reliable results.
It is an object of the invention to overcome the above mentioned disadvantages.

The invention therefore relates to a sensor for measuring the amount of a component in solution, comprising:
- at least one measuring electrode and one reference electrode, electrically insulated from one another and designed to come into contact with said solution, said electrodes comprising respectively electrical contacts 6 2~0840 adapted to be connected to a device for processing the signal supplied by said sensor, - the measuring electrode comprising at least one current collector electrically connected to one of said electrical contacts and coated with a mixture comprising at least one oxidation-reduction enzyme specific to said component and at least one mediator transferring electrons between said enzyme and said current collector.
According to the invention, the mediator is selected from complexes of a transition metal with at least one bipyridine, terpyridine or phenanthroline ligand substituted by at least one electron donor group.
As a result of the features of the sensor of the invention and especially due to the new mediators used, a family of sensors is obtained having a wide range of low oxidation-reduction potentials that remain stable in air and provide a more rapid response than the other sensors of the prior art.

The invention will be better understood from a study of the following description of preferred embodiments of the invention given as non-limiting examples, this description being given in association with the accompanying drawings, in which:
- Figure 1 illustrates the degradation of glucose in the presence of glucose oxidase GOD, 7 20~0~40 - Figures 2 and 3 are diagrams illustrating the various chemical reactions occurring on the surface of the sensors, - Figure 4 is a plan view of a measuring apparatus equipped with a sensor according to the invention, - Figure 5 shows the cyclic voltametric curves of the complex tris(4,4~-dimethoxy-2,2~-bipyridine) osmium in the absence of GOD and of glucose at different scanning speeds, - Figure 6 shows substantially the same curves as Figure 5, but in the presence of GOD and glucose, - Figure 7 shows three curves illustrating the variation in the current density obtained after 30 seconds (D30) as a function of the glucose concentration in a physiological solution for measurements made using three types of sensor according to the invention in which the amount of carbon powder varies, - Figure 8 shows the gradient and the ordinate at the origin of the curves of Figure 7 as a function of the amount of carbon powder, - Figure 9 shows three curves illustrating the variation in current density obtained after 30 seconds (D30) as a function of the glucose concentration in a physiological solution for measurements conducted with three types of sensor according to the invention, in which the amount of glucose oxidase varies, - Figure 10 shows the gradient and the ordinate at the origin of the curves of Figure 9 as a function of the amount of glucose oxidase, 8 20808~

- Figure 11 shows three graphs illustrating the variation in current density obtained after 30 seconds (D30) as a function of the glucose concentration in a physiological solution for the measurements conducted with three types of sensor according to the invention, in which the amount of mediator varies, - Figure 12 shows the gradient and the ordinate at the origin of the curves of Figure 11 as a function of the amount of mediator, - Figure 13 shows the current density measurements obtained as a function of the glucose concentration, these measurements being effected in blood and in a phosphate buffer with the glucose sensors equipped respectively with one of the two preferred mediators of the invention, - Figure 14 shows the current density measurements obtained as a function of the glucose concentration, these measurements being carried out with the sensors of the invention in blood samples having different hematocrits, - Figures 15 and 16 show current density measurements obtained as a function of glucose concentration, these measurements being effected using the sensors of the invention in samples of physiological solution presenting respectively various concentrations of acetaminophenol and ascorbic acid.

As shown in Figure 4, the apparatus 2 for measuring the amount of a given component in a solution comprises a sensor 6 of the invention and a device 4 for processing the signal 20~0~4~

supplied by said sensor. This device 4 is known per se and is substantially shaped like a pen. The invention is of course not limited to this shape.
This pen 4 comprises at one of its extremities, bearing reference numeral 8, a cavity 10 in which are housed two first electrical contacts 12, 14 connected electrically to an ammeter (not shown). This ammeter is itself connected to a display 16 showing the concentration of the component investigated in a given solution. This concentration is displayed, for example in mg/dl or in mmol/l. The pen 4 also comprises a stopper 18 which covers its extremity 8 and protects the contacts 12, 14 when said pen is not in use.
The sensor 6 of the invention is for example shaped like an insulating rectangular wafer which can be introduced by one of its extremities bearing reference numeral 19 into the cavity 10 of the pen 4. It will be noted that this sensor 6 is disposable.
It comprises a measuring electrode 20 and a reference electrode 22 disposed, for example, longitudinally parallel on the sensor 6. The reference electrode 22 comprises a band 24 made of an electrically conducting material. This band 24 has three zones, one zone 26 termed the electrical contact provided towards the extremity 19 of said sensor, a central zone 28 termed the "conducting track'l and a zone 30 provided at the other extremity of the sensor and termed the "current collector~. In a somewhat similar manner, the measuring electrode 20 has a band 32 made of electrically conducting material. This band 32 also has three zones, an electrical 2~8~8~

contact 34, a conducting track 36 and a current collector 37, coated, unlike the collector 30, with a mixture 38.
On Figure 4, this collector 37 is not clearly visible because it is hidden by the mixture 38. It will be noted that in each of these electrodes, the current collector and the current conductor could be in two parts connected electrically with one another and would not necessarily have to be in the form of a single band 24 or 32. The mixture 38 comprises at least one oxidation-reduction enzyme specific to the component to be measured and at least one mediator transferring the electrons between said enzyme and the current collector formed in the band 32.
In optional manner, the above-mentioned mixture 38 may also comprise at least one active conducting material and/or at least one additive which will be described below. In the event of the mixture 38 comprising an active conducting material, the mediator transfers the electrons between the enzyme and this active conducting material which, in turn, transfers the electrons towards the current collector.
The drop 40 of the sample of the solution to be tested is deposited across the two electrodes 20 and 22 as shown in Figure 4. In this way, the electrical circuit composed of the ammeter, the contacts 14 and 26, the conducting track 28, the collector 30, the drop of solution 40, the mixture 38, the collector 37, the conducting track 36 and the contacts 34 and 12 is closed.
The measuring apparatus 2 which has just been described is adapted to effect measurements in vitro although it is 20~0~0 obvious that the sensor 6 could be used in vivo in implantable measuring apparatuses. In this case, its shape or its dimensions would be adapted to this new application.
Moreover, to ensure lasting accuracy, it would be possible to add a second measuring electrode, identical to measuring electrode 20, but without the enzyme or with the denaturized enzyme.
The drop 40 of solution to be tested can be biological in nature, for example human or animal blood or urine, or a microorganism fermentation medium. It may possibly be of synthetic origin, for example a synthetic buffer containing the elements to be analyzed.
The oxidation-reduction enzyme used is an enzyme specific to the component to be measured. In accordance with the invention the enzyme used is preferably chosen from the oxidases and flavoproteins. If it is desired to make a glucose sensor, one would use glucose oxidase GOD, for example a GOD having an activity of about 250 IU, obtained using a cuiture of As~erqillus niaer.
The active conducting material optionally used preferably takes the form of a powder of carbon, graphite, gold, platinum, palladium or of a conducting metal oxide, for example ruthenium oxide or in the form of a film of a conducting polymer, for example polypyrrole. The carbon preferably used is a carbon powder.
As has been previously seen, it is also possible to add an additive forming an immobilization network of the enzyme, of the mediator and/or of the active conducting material on 12 20~84~

the surface of the collector 37 of the measuring electrode 20. This additive is for example bovine serum albumin (sSA), glutaraldehyde, carbodiimide or water-soluble polymers.
The bands of electrically conducting material 24, 32 are for example made in the form of a layer of material chosen from gold, silver, platinum, palladium, carbon, graphite or an oxide of a conducting metal, such for example a ruthenium oxide. The band 24 corresponding to the reference electrode 22 is preferably silver and the band 32 corresponding to the measuring electrode 20 is platinum. More specifically, the part of the band 24 corresponding to the current collector 30 is partially chlorinated.
It has been found that a new family of complexes of a transition metal with at least one bipyridine, terpyridine or phenanthroline ligand substituted by at least one electron donor group has good mediator properties.
The electron donor group is preferably an OH group, an alkoxy group, an aryloxy group or a primary, secondary or tertiary amine group.
In the case of a glucose sensor and when the enzyme used is glucose oxidase (GOD), of the above-mentioned mediators one would preferably choose the complex tris(4,4~-dimethoxy-2,2'-bipyridine) osmium or bis(4,4'-dimethoxy-2,2~-bipyridine)- mono(4,4~-dimethyl-2,2~-bipyridine) osmium.
In the case of a glucose sensor, the mixture 38 deposited on the collector of the measuring electrode 20 comprises per 1 ml of phosphate buffer 10 mM adjusted to pH
6.8; 1 to 1000 mg of carbon powder, preferably 1 to 100 mg 13 20~084~

or better about 10 mg; 1 to 2000 IU of glucose oxidase per mg of carbon powder, preferably 10 to 300 IU or better 100 IU and 1 to 10000 ~mol of mediator per mg of carbon powder, preferably 10 to 300 ~mol or better 50 ~mol. This mixture is deposited at the rate of 10 to 300 ~l/cm2 of active surface, preferably 30 to 150 ~l/cm2 or better 70 ~l/cm2.
In the finished, dried sensor, the mixture 38 is thus supposed to comprise 1 to 2000 IU of glucose oxidase per mg of carbon powder, preferably 10 to 3000 IU or better 100 IU
and 1 to 10000 ~mol of mediator per mg of carbon powder, preferably 10 to 300 ~mol or better 50 ~mol.
The sensor of the invention, supplied with the above-mentioned mediators presents a certain number of properties that vary as a function of the ligands used and of the substitutions effected on these ligands.
Several experiments have been conducted which prove the performance and efficacy of these new mediators and which give optimization conditions of the various elements constituting the measuring electrode. These experiments are described below.

Experiment 1 :

Measurements of various mediators usina cvclic voltametry.

a) measurements made usina the comD1ex tris(4.4'-dimethoxv-2,2~-bipvridine) osmium.

14 2~8~

The above-mentioned complex was tested using cyclic voltametry in direct current in order to determine on the one hand its normal oxidation-reduction potential E and, on the other hand, the k rate constant. This constant k corresponds to the electron transfer reaction starting from the GOD towards the mediator. Cyclic voltametry consists of arranging a working electrode, a counter-electrode and a reference electrode in the solution to be analysed, in then scanning the potential of the working electrode at constant speed and between two terminals, and in measuring the intensity of the current obtained. The curves of Eigures 5 and 6 show the results obtained using this method. These experiments were conducted with a vitreous carbon working electrode, a mercurous chloride reference electrode, a platinum counter-electrode and an electrochemical cell of 5 to 20 ml. The measurements were taken in a phosphate buffer PBS (NaCl lOOmM, NaH2PO4 lOmM, adjusted to p~ 7.4; EDTA
(ethylenediamintetra-acetic acid) O.lmM; PMSF
(phenylmethylsulfonate fluoride) O.OlmM and with the above-mentioned complex in a concentration of 5.10-4M. Various scanning speeds of the potentials were used: 5, 10, 25, 50 and 100 mV.s 1. The curves of Figure 5 and a value for E of 225 mV are obtained. Addition of a saturated glucose solution has no effect on the curves of Eigure 5, which is normal since no glucose oxidase (GOD) iS present.
In contrast, addition of GOD (in an amount greater than 5.10-8 M, preferably 4.10-6 M gives rise to the curves of Figure 6, presenting a characteristic shape so-called "catalytic wave". In this Figure 6 the potential scanning speed used was 10, 25, 50 and 100 mv.s~1.
One obtains a first reaction:

MediatOr(oxidized)+GOD(reduced)-> Mediatortreduced)+GOD(o~idized) which is irreversible, (with a constant k), and a second reaction Mediatr(reduced) + e -> mediator(Oxidized) which is electrochemically reversible and extremely fast.
The mediator effects an electrochemically reversible transfer of an electron towards the previously described current collectors.
During the first reaction it is possible to measure the second order constant k. Eor the complex studied here k =
2.5.106 + 0.5 M 1.s~1.

b) measurements made usina o~her com~lexes.

Experiments similar to those which have just been described were conducted for other complexes. Table 1 gives the values of the k rate constant found and of the normal oxidation-reduction potentials E in mV in relation to a mercurous chloride (SCE) reference electrode.

16 2~8~8~0 Complex E (mV/scE) k(M 1.s 1) 1 Tris(4,4~-dimethoxy-2,2~-bipyridine) osmium complex 225 2.5.106 2 sis(4,4~-dimethoxy-2,2~-bipyridine)mono(4,4~-dimethyl -2,2'-bipyridine) osmium complex 340 2.106 3 Bis(4,4'-dimethyl-2,2'-bipyridine)mono(4,4'-dimethoxy -2,2~-bipyridine) osmium complex 390 N.D.
4 Mono(4,4'-dimethoxy-2,2'-bipyridine)mono(4,4'-dihydroxy-2,2~-bipyridine) mono(4,4~- pH<4.5 340 N.D.
dimethyl-2,2'-bipyridine) pH>4.5 190 2.105 osmium complex 5 Tris(4,4'-dimethyl-2,2' -bipyridine) osmium complex 425 1.5.106 6 Tris(4,4l-dihydroxy-2,2~-bipyridine) osmium complex -1000 _ 0 17 2 0 ~ 0 ~ ~ 0 7 Tris(4,4'-diamino-2,2~-bipyridine) ruthenium complex170 1.6.106 8 Tris(4,4'-diamino-2,2l-bipyridine) iron complex 70 1.4.105 N . D. = not determined.

-It will be noted from this Table 1 that the family ofmediators has a very wide range of redox potentials, varying between - 1000 mV and + 425 mV (in relation to a mercurous chloride SCE reference electrode). The lower limit of this range is much lower than all the redox potentials of the mediators hitherto described in the literature. Moreover, this range of potentials is also much wider than those obtained with the ferrocene family. This is due to the large number of substituents which can be used and to the larger number of combinations of possible substitutions.
The second order constant kf corresponding to the rate constant of the oxidation-reduction reaction between the enzyme and the mediator of the invention is much faster than with the other hitherto known mediators and is faster than with oxygen. Oxygen only has a constant k of 1.5.106M 1.s~1.
This limits the above-mentioned problems of competition between oxygen and the mediator during the electron transfer reaction from the GOD. Moreover, because the other competing 18 2~84~

reactions occur much more slowly, they do not influence the result of the measuring apparatus.
The mediators selected for the glucose sensors were consequently the complexes 1 and 2 which have at the same time a high k constant and a low normal oxidation-reduction potential E nonetheless greater than -300 mV, which corresponds to the normal potential of the group FAD/FADH2 of GOD.

Ex~eriment 2 :
ODtimization of various components of the mixture of the measurina electrode.

After having determined the two mediators which seem most favourable for a glucose sensor, an attempt was then made to try to determine the optimum amounts of respectively the various constituents of the mixture deposited on the collector of the measuring electrode.
This was done by preparing a mixture 38 comprising one of the two above-mentioned preferred complexes, of carbon powder, immobilized glucose oxidase and, as additive, bovine serum albumin and glutaraldehyde and then depositing on the current collector part 37 of the electrically conducting band 36 an amount of 70 ~1 of this mixture per cm2 so as to constitute a measuring electrode 20. Various types of measuring electrodes were then made by gradually varying one of the components of the mixture and maintaining the others constant.

2080~

The various sensors prepared in this manner were used for potentiostatic measurements at a potential of 300 mV in multiple blood samples containing various amounts of glucose.
The results are set out below.

a) O~timization of the amount of carbon Dowder.

Various different types of sensors have been made (but it was decided only to use three), by mixing into 3 ml of phosphate buffer PBS a constant amount of GOD, (36.9 mg), a constant amount of the complex bis(4,4'-dimethoxy-2,2~-bipyridine)- mono(4,4'-dimethyl-2,2'-bipyridine) osmium (3.0 mg), used as mediator, a constant amount of glutaraldehyde at 25 % (25 ~l), a constant amount of bovine serum albumin at 15 % (290 ~l) and, respectively, 25, 50 or 250 mg of carbon powder.
The phosphate buffer PBS used here and in the below-mentioned experiments is a 10 mM buffer adjusted to pH 6.8.
These three types of sensor were then tested in a physiological solution containing different amounts of glucose (between 0 and 20 mM of glucose) and the density of the current obtained after 30 seconds (D30) was measured.

The physiological solution is composed of NaCl 115 ~M, KCl 25 mM, K2HP04.3H20 5 mM and KH2PO4 0.5 mM-The results obtained are shown in Figure 7 where thestraight lines a, b, c correspond respectively to the results observed with the sensors containing 25, 50 and 250 mg of carbon in 3 ml of phosphate buffer PBS, or the 2~8~

approximate concentrations of 8, 17 and 83 mg per ml. There too, it should be noted that many more measurements were conducted, but it was decided only to show the straight lines a, b, c.
The gradient (m) was then calculated for all the straight lines representing the totality of the measures effected and these values were transferred to Figure 8 (curve C1) where the axis of the abscissae represents the amount of carbon in mg per ml of phosphate buffer PBS.
Similarly, the ordinate at the origin of these straight lines was calculated and these values were transferred to Figure 8 (curve 2) The ordinate at the origin corresponds to the value of the point of intersection of a straight line of Figure 7 and of the axis of the ordinates, that is to say to the value of the residual current.
It will be noted that the curve C1 is substantially horizontal between 17 and 83 mg of carbon, which signifies that between these two values the amount of carbon has little influence on the results of the sensor. Nonetheless, since a thin layer of carbon presents better mechanical and diffusional properties, preference was given to using as little carbon as possible. It will, moreover, be noted that the value of the ordinate at the origin of the straight line a (8 mg of carbon per ml) is smaller, which indicates that the smallest residual current has been reached.
It is consequently preferable to use about 10 mg of carbon per ml of phosphate buffer PBS .

21 20~84~

b) ODtimization of the amount of enzvme (GOD).

Several different types of sensors were made, tbut it was decided only to show three), by mixing in 3 ml of phosphate buffer PBS a constant amount of carbon (25 mg), a constant amount (3 mg) of the same mediator as that of paragraph a) constant amounts of glutaraldehyde at 25 %
(25 ~l) and of bovine serum albumin at 15 % (290 ul) and amounts of 2175, 4375 and 8750 IU of glucose oxidase GOD
respectively which gave concentrations of GOD of 87, 175 and 350 IU of glucose oxidase (GOD) per mg of carbon.
The same series of measurements and calculations were then conducted as in paragraph a). The straight lines a, b, c of the Figure 9 correspond respectively to the results observed with sensors containing 87, 175 and 350 IU of glucose oxidase per mg of carbon powder. The curves C1 and C2 of Figure 10 show the gradient (m) and the ordinate at the origin respectively. The axis of the abscissae of Figure 10 expresses the amount of GOD in IU per mg of carbon powder.

It will be noted that between 75 and 350 IU of GOD per mg of carbon powder, the curve C1 is substantially horizontal, which means that between these two values the amount of GOD has little influence on the results. Moreover, the ordinate at the origin of the line a is the smallest one which means that one has the smallest residual current.
It was consequently preferred to use about 100 IU of GOD

per mg of carbon powder.

22 2 0 ~ 0 c) ODtimization of the amQunt of mediator.

Three different types of sensor were made by mixing in 3 ml of phosphate buffer PBS a constant amount of carbon (25 mg), a constant amount of GOD (36.9 mg), constant amounts of glutaraldehyde at 25 % (25 ul) and of bovine serum albumin at 15 % (290 ul) and respectively 825; 1675 and 3325 ~mol of the complex bis(4,4'-dimethoxy-2,2'-bipyridine)- mono(4,4'-dimethyl-2,2~-bipyridine) osmium namely mediator concentrations of 33; 67 and 133 ~mol per mg of carbon powder.
The same series of measurements and calculations were then conducted as in paragraph a). The straight lines a, b, c of Figure 11 correspond respectively to the results observed with 33; 67 and 133 ~mol of this complex per mg of carbon. The curves C1 and C2 of Figure 12 represent respectively the gradient (m) and the ordinate at the origin. The axis of the abscissae of Figure 12 represents the amount of mediator in ~mol per mg of carbon powder.
It will be noted that the curves C1 and C2 are substantially horizontal. For mediator values lower than 50 ~mol it is necessary to effect measurements at a potential higher than 300 mV. Since it is preferred to work at the lowest possible potential it is therefore preferable to use about 50 ~mol of mediator per mg of carbon powder.
The optimizations effected for the complex bis(4,4 dimethoxy-2,2~-bipyridine)mono(4,4~-dimethyl-2,2~-23 20~08~

bipyridine) osmium are also valid for the complex tris(4,4-dimethoxy-2,2~-bipyridine) osmium.

Experimen~ 3 :
Calibration of the sensor in blood and in buffer.

The curves of Figure 13 illustrate potentiostatic measurements conducted with sensors having as mediator the two preferred complexes of the invention and by varying the glucose concentration in samples of blood or of phosphate buffer PBS. Measurements were made at 300 mV and the reading of the current density D20 was made after 20 seconds.
The curves C1 and C3 correspond respectively to measurements effected in phosphate buffer and in blood with a sensor using the complex tris(4,4~-dimethoxy-2,2~-bipyridine) osmium, whereas the curves C2 and C4 correspond respectively to measurements effected in a phosphate buffer and in blood with a sensor using the complex bis(4,4~-dimethoxy-2,2'-bipyridine)- mono(4,4~-dime~hyl-2,2~-bipyridine) osmium.
As shown in Figure 13, the various curves are linear and have a sufficiently steep gradient up to values of 20 mM of glucose. Consequently, in a patient where the physiological values of glucose can vary typically between 3 to 20 mM the sensor of the invention is reliable because a small variation in the glucose concentration corresponds to sufficient variation in the density of the current measured.

24 2 0 ~ ~ 8 4 The differences observed between the measurements effected in PBS buffer and in whole blood are due to the same phenomenon as that described notably in (Fogh-Andersen, N. et al (1990), Clin. Chim. Acta 189, 33-38), for plasma and whole blood. This difference is mainly due to the volume occupied by proteins in whole blood.

Ex~eriment 4:

The influence of hematocrit on the results suD~lied by the SenSQr.

The curves of Figure 14 illustrate the variations in current density (~30) obtained after 30 seconds as a function of the glucose concentration in artificially reconstituted human blood. The blood samples were prepared in the following manner. Plasma and blood cells were separated by centrifugation at 3000 revolutions per minute for 15 minutes at 4C. The blood was then reconstituted so as to obtain various hematocrit values (0.35; 0.50 and 0.60) and known amounts of glucose were added to these samples.
The glucose concentration was measured using a calibrated laboratory apparatus, for example apparatus reference 23A

(supplied by Yellow Springs Instrument, Yellow Springs, Ohio). Potentiostatic measurements were conducted at 300 mV
with sensors having as mediator the complex bis(4,4'-dimethoxy-2,2~-bipyridine)mono(4,4~-dimethyl-2,2~-20~

bipyridine) osmium. The current density measurements were carried out after 30 seconds.
The curves C1, C2 and C3 correspond respectively to samples containing 35 % of cells and 65 % of plasma, 50 % ofcells and 50 % of plasma and 60 % of cells and 40 % of plasma.
The curve C2 corresponds to a normal hematocrit. It was found that the curve C3 (hematocrit 0.60) corresponding to an elevated hematocrit differs hardly at all from the curve C2 ~
In contradistinction thereto, the curve C1 (hematocrit 0.35) corresponding to the hematocrit of an anaemic patient differs from the curve C2.
Consequently, the sensor of the invention gives reliable results in a patient having an elevated hematocrit but less reliable ones in an anaemic patient.

Ex~eriment 5:

The influence of pH on the activitv of the mediator of the complex tris(4.4~-dimethoxy-2.2~-bi~vridine) osmium and of the com~lex bis(4.4~-dimethoxv-2,2~-bi~vridine)mono(4,4~-dimethvl-2.2'-biDvridine) osmium These two complexes were mixed in a PBS buffer phosphate solution in which the pH was varied and in which the normal oxidation-reduction potential E was measured.

26 2~8~0 A stable potential E was observed for a pH between 1 and 12. This potential E iS + 225 mV for the first complex and + 340 mV for the second. Since in practice the pH of human blood is about 7.4, small variations in blood pH do not affect the glycemia result given by the sensor of the invention.

Experiment 6:

The influence of the presence of certain medicaments on the results suDplied bv the sensor.

Finally, a last series of experiments was conducted to verify whether the results supplied by this sensor could be influenced by medicaments present in the blood at the moment of measurement. In practice, a patient may well have ingested medicaments such as Asprin or vitamin C before the glycemia is measured.
The possible influence of acetylsalicylic acid, acetaminophenol and ascorbic acid on the results supplied by the sensor of the invention was therefore tested.
The experiments were conducted with a sensor using as mediator the complex tris(4,4~-dimethoxy-2,2'-bipyridine) osmium.

Potentiostatic measurements were carried out at 300 mV.
Current density (D30) was read after 30 seconds. The various curves represent the variations in current density as a 27 2 0 g 0 8 4 function of glucose concentration, when different amounts of each of the medicaments tested are present in a sample of physiological solution.
The following results were obtained:

- Acetamino~henol:

Figure 15 illustrates the curves obtained. The curves C1, C2 (dotted line) and C3 correspond respectively to concentrations of 0, 50 and 500 uM acetaminophenol.
The value of 50 um corresponds to that encountered in a patient absorbing a normal dosage of acetaminophenol whereas the value of 500 um corresponds to an excess. It will be noted that between 4 and 10 mM of glucose (corresponding substantially to the physiological values), the presence of this mediator has hardly any influence on the results supplied by this sensor because all the curves are substantially superimposed.

- Ascorbic acid:

Figure 16 illustrates the curves obtained. The curves C1, C2 and C3 correspond respectively to the concentrations O, 100 and 1000 ~M of ascorbic acid per ml blood.
The value of 100 ~M (curve C2) corresponds to the values found in a patient absorbing a normal dose of vitamin C, whereas the value of 1000 ~M (curve C3) corresponds to an excess of ascorbic acid.

28 2 ~ ~ ~ 8 4 ~

It was thus found that when ascorbic acid is present in excess (curve C3), all the glucose concentration values are higher than normal. In contrast, curve C2 is substantially identical to C1 and to the physiological values and it is noted that the presence of ascorbic acid did not affect the results supplied by the sensor.

- Acet~lsalicvlic acid It was not considered necessary to present a figure illustrating the results obtained because it was found that an amount of acetylsalicylic acid of up to 25 mM yielded straight lines that were substantially identical to those corresponding to an amount of O mM of acetylsalicylic acid.
It is therefore deduced that the presence of acetylsalicylic acid does not affect the results supplied by the sensor.

Claims (14)

THE EMBODIMENT OF THE INVENTION IN WHICH AN EXCLUSIVE PROPERTY
OR PRIVILEGE IS CLAIMED ARE DEFINED AS FOLLOWS:
1. A sensor to be connected to a device for processing an electric signal provided by the sensor and representative of an amount of a component to be measured in a solution, said sensor comprising at least one measuring electrode and one reference electrode insulated from one another, said electrodes defining an area to receive said solution and comprising respective areas defining electrical contacts to be connected to the device for processing the signal, said measuring electrode comprising at least one current collector electrically connected to one of the electrical contacts and coated with a mixture comprisingglucose oxidase as an oxidation-reduction enzyme specific to said component and at least one mediator means for transferring electrons between said enzyme and saidcurrent collector, and said mediator means comprising tris(4,4'-dimethoxy-2,2'-bipyridine) osmium or bis(4,4'-dimethoxy-2,2'-bipyridine)mono(4,4'-dimethyl-2,2'-bipyridine) osmium.
2. A sensor according to claim 1 wherein the mixture of the measuring electrode further comprises an active conducting material and the mediator means transferselectrons between the enzyme and said active conducting material.
3. A sensor according to claim 2 wherein the active conducting material comprises a conducting polymer.
4. A sensor according to claim 1 wherein the mixture of the measuring electrode comprises an additive forming an immobilization network of at least one of the enzyme of the mixture and of an active conducting material on the surface of thecollector of the measuring electrode.
5. An apparatus comprising a sensor according to claim 1 and said device for processing the signal provided by said sensor, said device comprising at least two areas defining electrical contacts to be connected to at least two electrodes of said sensor, an ammeter and means for displaying the amount of the component measured in the solution.
6. A sensor according to claim 2 wherein the mixture of the measuring electrode comprises an additive forming an immobilization network of at least one of the enzyme and the active conducting material of the mixture on the surface of the collector of the measuring electrode.
7. A sensor according to claim 2 wherein the active conducting material comprises a powder of carbon, and wherein the mixture deposited on the collector of the measuring electrode comprises between 1 and 2000 IU of glucose oxidase per mg of carbon powder and between 1 and 10000 µmol of mediator per mg of carbonpowder.
8. A sensor to be connected to a device for processing an electric signal provided by the sensor and representative of an amount of a component to be measured in a solution, said sensor comprising at least one measuring electrode and one reference electrode insulated from one another;
said electrodes defining an area to receive said solution and comprising respective areas defining electrical contacts to be connected to the device for processing the signal;
said measuring electrode comprising at least one current collector electrically connected to one of the electrical contacts and coated with a mixture comprising an active conducting material, glucose oxidase as an oxidation-reduction enzyme specific to said component, at least one mediator means for transferring electrons between said enzyme and said current collector and between said enzyme and said active conducting material, and an additive forming an immobilization network of said mixture;
and said mediator means comprising tris(4,4'-dimethoxy-2,2'-bipyridine) osmium or bis(4,4'-dimethoxy-2,2'-bipyridine)mono(4,4'-dimethyl-2,2'-bipyridine)osmium.
9. A sensor according to claim 8 wherein the active conducting material comprises a powder selected from the group consisting of carbon, gold, platinum,palladium and a conducting metal oxide.
10. A sensor according to claim 8 wherein the additive is selected from the group consisting of bovine serum albumin, glutaraldehyde, carbodiimide and a water-soluble polymer.
11. A sensor according to claim 8 wherein the active conducting material comprises a powder of carbon, and wherein the mixture deposited on the collector of the measuring electrode comprises 1 and 2000 IU of glucose oxidase per mg of carbon powder and between 1 and 10000 µmol of mediator per mg of carbon powder.
12. A sensor according to claim 11 wherein the mixture deposited on the collector of the measuring electrode comprises between 10 and 300 IU of glucose oxidase per mg of carbon powder and between 10 and 300 µmol of mediator per mg of carbon powder.
13. A sensor according to claim 12 wherein the mixture deposited on the collector of the measuring electrode comprises about 100 IU of glucose oxidase per mg of carbon powder and about 50 umol of mediator per mg of carbon powder.
14. A sensor according to claim 9 wherein the active conducting material comprises a powder of carbon, and wherein the mixture deposited on the collector of the measuring electrode comprises between 1 and 2000 IU of glucose oxidase per mg of carbon powder and between 1 and 10000 µmol of mediator per mg of carbonpowder.
CA002080840A 1991-02-21 1992-02-19 Sensor for measuring the quantity of a dissolved component Expired - Lifetime CA2080840C (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR91/02200 1991-02-21
FR919102200A FR2673289B1 (en) 1991-02-21 1991-02-21 SENSOR FOR MEASURING THE QUANTITY OF A COMPONENT IN SOLUTION.

Publications (2)

Publication Number Publication Date
CA2080840A1 CA2080840A1 (en) 1992-08-22
CA2080840C true CA2080840C (en) 1999-04-06

Family

ID=9410039

Family Applications (1)

Application Number Title Priority Date Filing Date
CA002080840A Expired - Lifetime CA2080840C (en) 1991-02-21 1992-02-19 Sensor for measuring the quantity of a dissolved component

Country Status (14)

Country Link
US (1) US5378628A (en)
EP (1) EP0526602B1 (en)
JP (1) JP2770250B2 (en)
AT (1) ATE147107T1 (en)
AU (1) AU656360B2 (en)
BG (1) BG96988A (en)
CA (1) CA2080840C (en)
DE (1) DE69216319T2 (en)
FI (1) FI924726A0 (en)
FR (1) FR2673289B1 (en)
HU (1) HU212451B (en)
PL (1) PL169972B1 (en)
SK (1) SK316592A3 (en)
WO (1) WO1992014836A1 (en)

Families Citing this family (210)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04278450A (en) 1991-03-04 1992-10-05 Adam Heller Biosensor and method for analyzing subject
US5593852A (en) 1993-12-02 1997-01-14 Heller; Adam Subcutaneous glucose electrode
US5710011A (en) * 1992-06-05 1998-01-20 Medisense, Inc. Mediators to oxidoreductase enzymes
AT397513B (en) * 1992-12-15 1994-04-25 Avl Verbrennungskraft Messtech AMPEROMETRIC ENZYME ELECTRODE
FR2699170B1 (en) * 1992-12-15 1995-07-28 Asulab Sa Complexes of a transition metal with 2,2'-bipyridine ligands substituted by at least one alkyl ammonium radical, their manufacturing process and their use as redox mediator.
FR2701117B1 (en) * 1993-02-04 1995-03-10 Asulab Sa Electrochemical measurement system with multizone sensor, and its application to glucose measurement.
CH685458A5 (en) * 1993-03-01 1995-07-14 Disetronic Ag Sensor array for selective detection or measurement of at least one material component in an aqueous solution.
FR2705150B1 (en) * 1993-05-10 1995-07-21 Asulab Sa Multiple zone electrochemical sensor on disk and its application to glucose measurement.
FR2710411B1 (en) * 1993-09-21 1995-11-17 Asulab Sa Measuring device for removable multi-zone sensors.
US5589326A (en) * 1993-12-30 1996-12-31 Boehringer Mannheim Corporation Osmium-containing redox mediator
US5968745A (en) * 1995-06-27 1999-10-19 The University Of North Carolina At Chapel Hill Polymer-electrodes for detecting nucleic acid hybridization and method of use thereof
US6361951B1 (en) * 1995-06-27 2002-03-26 The University Of North Carolina At Chapel Hill Electrochemical detection of nucleic acid hybridization
US6127127A (en) * 1995-06-27 2000-10-03 The University Of North Carolina At Chapel Hill Monolayer and electrode for detecting a label-bearing target and method of use thereof
US6346387B1 (en) * 1995-06-27 2002-02-12 Xanthon, Inc. Detection of binding reactions using labels detected by mediated catalytic electrochemistry
US6180346B1 (en) 1995-06-27 2001-01-30 The Universtiy Of North Carolina At Chapel Hill Electropolymerizable film, and method of making and use thereof
US6387625B1 (en) 1995-06-27 2002-05-14 The University Of North Carolina At Chapel Hill Monolayer and electrode for detecting a label-bearing target and method of use thereof
US6132971A (en) * 1995-06-27 2000-10-17 The University Of North Carolina At Chapel Hill Microelectronic device
US5830341A (en) * 1996-01-23 1998-11-03 Gilmartin; Markas A. T. Electrodes and metallo isoindole ringed compounds
US5795453A (en) * 1996-01-23 1998-08-18 Gilmartin; Markas A. T. Electrodes and metallo isoindole ringed compounds
FR2744219B1 (en) * 1996-01-31 1998-03-20 Asulab Sa ELECTROCHEMICAL SENSOR WITHOUT CALIBRATION
US7112265B1 (en) 1996-02-14 2006-09-26 Lifescan Scotland Limited Disposable test strips with integrated reagent/blood separation layer
US6241862B1 (en) 1996-02-14 2001-06-05 Inverness Medical Technology, Inc. Disposable test strips with integrated reagent/blood separation layer
US5708247A (en) * 1996-02-14 1998-01-13 Selfcare, Inc. Disposable glucose test strips, and methods and compositions for making same
JPH09274010A (en) * 1996-04-04 1997-10-21 Matsushita Electric Ind Co Ltd Determination method for substrate
DE29723400U1 (en) * 1996-10-30 1998-09-10 Mercury Diagnostics Inc Synchronized analysis test system
ATE227844T1 (en) * 1997-02-06 2002-11-15 Therasense Inc SMALL VOLUME SENSOR FOR IN-VITRO DETERMINATION
GB9711395D0 (en) * 1997-06-04 1997-07-30 Environmental Sensors Ltd Improvements to electrodes for the measurement of analytes in small samples
US6036924A (en) 1997-12-04 2000-03-14 Hewlett-Packard Company Cassette of lancet cartridges for sampling blood
US6893552B1 (en) 1997-12-29 2005-05-17 Arrowhead Center, Inc. Microsensors for glucose and insulin monitoring
US6103033A (en) 1998-03-04 2000-08-15 Therasense, Inc. Process for producing an electrochemical biosensor
US6134461A (en) 1998-03-04 2000-10-17 E. Heller & Company Electrochemical analyte
US6391005B1 (en) 1998-03-30 2002-05-21 Agilent Technologies, Inc. Apparatus and method for penetration with shaft having a sensor for sensing penetration depth
US6949816B2 (en) 2003-04-21 2005-09-27 Motorola, Inc. Semiconductor component having first surface area for electrically coupling to a semiconductor chip and second surface area for electrically coupling to a substrate, and method of manufacturing same
US8465425B2 (en) 1998-04-30 2013-06-18 Abbott Diabetes Care Inc. Analyte monitoring device and methods of use
US8480580B2 (en) * 1998-04-30 2013-07-09 Abbott Diabetes Care Inc. Analyte monitoring device and methods of use
US9066695B2 (en) * 1998-04-30 2015-06-30 Abbott Diabetes Care Inc. Analyte monitoring device and methods of use
US8346337B2 (en) 1998-04-30 2013-01-01 Abbott Diabetes Care Inc. Analyte monitoring device and methods of use
US8688188B2 (en) 1998-04-30 2014-04-01 Abbott Diabetes Care Inc. Analyte monitoring device and methods of use
US8974386B2 (en) 1998-04-30 2015-03-10 Abbott Diabetes Care Inc. Analyte monitoring device and methods of use
US6175752B1 (en) * 1998-04-30 2001-01-16 Therasense, Inc. Analyte monitoring device and methods of use
US7001733B1 (en) 1998-05-12 2006-02-21 Rigel Pharmaceuticals, Inc. Methods and compositions for screening for modulations of IgE synthesis, secretion and switch rearrangement
WO1999062919A1 (en) 1998-06-01 1999-12-09 Roche Diagnostics Corporation Redox reversible bipyridyl osmium complex conjugates
US6251260B1 (en) 1998-08-24 2001-06-26 Therasense, Inc. Potentiometric sensors for analytic determination
US6599408B1 (en) 1998-09-17 2003-07-29 E. I. Du Pont De Nemours And Company Thick film conductor composition for use in biosensors
US6042751A (en) * 1998-09-17 2000-03-28 E. I. Du Pont De Nemours And Company Thick film conductor composition for use in biosensors
JP3694424B2 (en) * 1998-09-29 2005-09-14 松下電器産業株式会社 Glucose sensor
US6338790B1 (en) * 1998-10-08 2002-01-15 Therasense, Inc. Small volume in vitro analyte sensor with diffusible or non-leachable redox mediator
US6591125B1 (en) 2000-06-27 2003-07-08 Therasense, Inc. Small volume in vitro analyte sensor with diffusible or non-leachable redox mediator
DE69941563D1 (en) * 1999-02-23 2009-12-03 Asulab Sa Electrochemical system for the determination of blood clotting time
EP1192269A2 (en) 1999-06-18 2002-04-03 Therasense, Inc. MASS TRANSPORT LIMITED i IN VIVO /i ANALYTE SENSOR
SE9902608D0 (en) 1999-07-06 1999-07-06 Forskarpatent I Syd Ab Histamine detection and detector
WO2001025776A1 (en) 1999-10-05 2001-04-12 Matsushita Electric Industrial Co., Ltd. Glucose sensor
US6616819B1 (en) * 1999-11-04 2003-09-09 Therasense, Inc. Small volume in vitro analyte sensor and methods
US20060091006A1 (en) * 1999-11-04 2006-05-04 Yi Wang Analyte sensor with insertion monitor, and methods
US8268143B2 (en) * 1999-11-15 2012-09-18 Abbott Diabetes Care Inc. Oxygen-effect free analyte sensor
US8444834B2 (en) 1999-11-15 2013-05-21 Abbott Diabetes Care Inc. Redox polymers for use in analyte monitoring
AU1602601A (en) 1999-11-15 2001-05-30 Therasense, Inc. Polymeric transition metal complexes and uses thereof
EP1162453A1 (en) * 2000-06-07 2001-12-12 Asulab S.A. Electrochemical sensor with improved reproducibility
US8641644B2 (en) * 2000-11-21 2014-02-04 Sanofi-Aventis Deutschland Gmbh Blood testing apparatus having a rotatable cartridge with multiple lancing elements and testing means
DE10057832C1 (en) * 2000-11-21 2002-02-21 Hartmann Paul Ag Blood analysis device has syringe mounted in casing, annular mounting carrying needles mounted behind test strip and being swiveled so that needle can be pushed through strip and aperture in casing to take blood sample
US6560471B1 (en) * 2001-01-02 2003-05-06 Therasense, Inc. Analyte monitoring device and methods of use
US6627058B1 (en) 2001-01-17 2003-09-30 E. I. Du Pont De Nemours And Company Thick film conductor composition for use in biosensors
EP1397068A2 (en) * 2001-04-02 2004-03-17 Therasense, Inc. Blood glucose tracking apparatus and methods
US6676816B2 (en) * 2001-05-11 2004-01-13 Therasense, Inc. Transition metal complexes with (pyridyl)imidazole ligands and sensors using said complexes
US8226814B2 (en) * 2001-05-11 2012-07-24 Abbott Diabetes Care Inc. Transition metal complexes with pyridyl-imidazole ligands
US8070934B2 (en) 2001-05-11 2011-12-06 Abbott Diabetes Care Inc. Transition metal complexes with (pyridyl)imidazole ligands
US9226699B2 (en) * 2002-04-19 2016-01-05 Sanofi-Aventis Deutschland Gmbh Body fluid sampling module with a continuous compression tissue interface surface
CA2448902C (en) * 2001-06-12 2010-09-07 Pelikan Technologies, Inc. Self optimizing lancing device with adaptation means to temporal variations in cutaneous properties
US9795747B2 (en) 2010-06-02 2017-10-24 Sanofi-Aventis Deutschland Gmbh Methods and apparatus for lancet actuation
US8337419B2 (en) 2002-04-19 2012-12-25 Sanofi-Aventis Deutschland Gmbh Tissue penetration device
US7033371B2 (en) * 2001-06-12 2006-04-25 Pelikan Technologies, Inc. Electric lancet actuator
US7344507B2 (en) 2002-04-19 2008-03-18 Pelikan Technologies, Inc. Method and apparatus for lancet actuation
US7981056B2 (en) 2002-04-19 2011-07-19 Pelikan Technologies, Inc. Methods and apparatus for lancet actuation
US7749174B2 (en) * 2001-06-12 2010-07-06 Pelikan Technologies, Inc. Method and apparatus for lancet launching device intergrated onto a blood-sampling cartridge
US20070100255A1 (en) * 2002-04-19 2007-05-03 Pelikan Technologies, Inc. Method and apparatus for body fluid sampling and analyte sensing
US7041068B2 (en) * 2001-06-12 2006-05-09 Pelikan Technologies, Inc. Sampling module device and method
DE60234597D1 (en) 2001-06-12 2010-01-14 Pelikan Technologies Inc DEVICE AND METHOD FOR REMOVING BLOOD SAMPLES
US7699791B2 (en) 2001-06-12 2010-04-20 Pelikan Technologies, Inc. Method and apparatus for improving success rate of blood yield from a fingerstick
US7244265B2 (en) * 2002-04-19 2007-07-17 Pelikan Technologies, Inc. Method and apparatus for penetrating tissue
US7371247B2 (en) 2002-04-19 2008-05-13 Pelikan Technologies, Inc Method and apparatus for penetrating tissue
US7291117B2 (en) 2002-04-19 2007-11-06 Pelikan Technologies, Inc. Method and apparatus for penetrating tissue
US7892183B2 (en) * 2002-04-19 2011-02-22 Pelikan Technologies, Inc. Method and apparatus for body fluid sampling and analyte sensing
US7648468B2 (en) * 2002-04-19 2010-01-19 Pelikon Technologies, Inc. Method and apparatus for penetrating tissue
US8784335B2 (en) * 2002-04-19 2014-07-22 Sanofi-Aventis Deutschland Gmbh Body fluid sampling device with a capacitive sensor
US9314194B2 (en) 2002-04-19 2016-04-19 Sanofi-Aventis Deutschland Gmbh Tissue penetration device
US7226461B2 (en) 2002-04-19 2007-06-05 Pelikan Technologies, Inc. Method and apparatus for a multi-use body fluid sampling device with sterility barrier release
US8221334B2 (en) * 2002-04-19 2012-07-17 Sanofi-Aventis Deutschland Gmbh Method and apparatus for penetrating tissue
US7909778B2 (en) * 2002-04-19 2011-03-22 Pelikan Technologies, Inc. Method and apparatus for penetrating tissue
US9795334B2 (en) 2002-04-19 2017-10-24 Sanofi-Aventis Deutschland Gmbh Method and apparatus for penetrating tissue
US7229458B2 (en) 2002-04-19 2007-06-12 Pelikan Technologies, Inc. Method and apparatus for penetrating tissue
US7232451B2 (en) 2002-04-19 2007-06-19 Pelikan Technologies, Inc. Method and apparatus for penetrating tissue
US8360992B2 (en) * 2002-04-19 2013-01-29 Sanofi-Aventis Deutschland Gmbh Method and apparatus for penetrating tissue
US7976476B2 (en) 2002-04-19 2011-07-12 Pelikan Technologies, Inc. Device and method for variable speed lancet
US8579831B2 (en) 2002-04-19 2013-11-12 Sanofi-Aventis Deutschland Gmbh Method and apparatus for penetrating tissue
US7717863B2 (en) * 2002-04-19 2010-05-18 Pelikan Technologies, Inc. Method and apparatus for penetrating tissue
US7547287B2 (en) 2002-04-19 2009-06-16 Pelikan Technologies, Inc. Method and apparatus for penetrating tissue
US7410468B2 (en) * 2002-04-19 2008-08-12 Pelikan Technologies, Inc. Method and apparatus for penetrating tissue
US7674232B2 (en) * 2002-04-19 2010-03-09 Pelikan Technologies, Inc. Method and apparatus for penetrating tissue
US7297122B2 (en) * 2002-04-19 2007-11-20 Pelikan Technologies, Inc. Method and apparatus for penetrating tissue
US7901362B2 (en) 2002-04-19 2011-03-08 Pelikan Technologies, Inc. Method and apparatus for penetrating tissue
US20060200044A1 (en) * 2002-04-19 2006-09-07 Pelikan Technologies, Inc. Method and apparatus for measuring analytes
US7524293B2 (en) * 2002-04-19 2009-04-28 Pelikan Technologies, Inc. Method and apparatus for penetrating tissue
US8372016B2 (en) 2002-04-19 2013-02-12 Sanofi-Aventis Deutschland Gmbh Method and apparatus for body fluid sampling and analyte sensing
US8702624B2 (en) * 2006-09-29 2014-04-22 Sanofi-Aventis Deutschland Gmbh Analyte measurement device with a single shot actuator
US8267870B2 (en) * 2002-04-19 2012-09-18 Sanofi-Aventis Deutschland Gmbh Method and apparatus for body fluid sampling with hybrid actuation
US7491178B2 (en) 2002-04-19 2009-02-17 Pelikan Technologies, Inc. Method and apparatus for penetrating tissue
US20070142748A1 (en) * 2002-04-19 2007-06-21 Ajay Deshmukh Tissue penetration device
US7331931B2 (en) * 2002-04-19 2008-02-19 Pelikan Technologies, Inc. Method and apparatus for penetrating tissue
US20040067481A1 (en) * 2002-06-12 2004-04-08 Leslie Leonard Thermal sensor for fluid detection
US7381184B2 (en) 2002-11-05 2008-06-03 Abbott Diabetes Care Inc. Sensor inserter assembly
US7265881B2 (en) * 2002-12-20 2007-09-04 Hewlett-Packard Development Company, L.P. Method and apparatus for measuring assembly and alignment errors in sensor assemblies
US8574895B2 (en) * 2002-12-30 2013-11-05 Sanofi-Aventis Deutschland Gmbh Method and apparatus using optical techniques to measure analyte levels
AU2003303597A1 (en) 2002-12-31 2004-07-29 Therasense, Inc. Continuous glucose monitoring system and methods of use
US7205153B2 (en) 2003-04-11 2007-04-17 Applied Materials, Inc. Analytical reagent for acid copper sulfate solutions
ES2347248T3 (en) 2003-05-30 2010-10-27 Pelikan Technologies Inc. PROCEDURE AND APPLIANCE FOR FLUID INJECTION.
WO2004107964A2 (en) 2003-06-06 2004-12-16 Pelikan Technologies, Inc. Blood harvesting device with electronic control
US8066639B2 (en) * 2003-06-10 2011-11-29 Abbott Diabetes Care Inc. Glucose measuring device for use in personal area network
WO2006001797A1 (en) 2004-06-14 2006-01-05 Pelikan Technologies, Inc. Low pain penetrating
US7306641B2 (en) * 2003-09-12 2007-12-11 Hewlett-Packard Development Company, L.P. Integral fuel cartridge and filter
WO2005033659A2 (en) * 2003-09-29 2005-04-14 Pelikan Technologies, Inc. Method and apparatus for an improved sample capture device
US9351680B2 (en) 2003-10-14 2016-05-31 Sanofi-Aventis Deutschland Gmbh Method and apparatus for a variable user interface
USD914881S1 (en) 2003-11-05 2021-03-30 Abbott Diabetes Care Inc. Analyte sensor electronic mount
US7160245B2 (en) * 2003-11-17 2007-01-09 Virginijus Burneikis Method and device for umbilicus protection during abdominal surgery
US7822454B1 (en) 2005-01-03 2010-10-26 Pelikan Technologies, Inc. Fluid sampling device with improved analyte detecting member configuration
EP1706026B1 (en) 2003-12-31 2017-03-01 Sanofi-Aventis Deutschland GmbH Method and apparatus for improving fluidic flow and sample capture
EP1718198A4 (en) 2004-02-17 2008-06-04 Therasense Inc Method and system for providing data communication in continuous glucose monitoring and management system
RU2386960C2 (en) * 2004-05-14 2010-04-20 БАЙЕР ХЕЛТКЭР ЭлЭлСи Voltammetric system for analysing biological substances
US8828203B2 (en) * 2004-05-20 2014-09-09 Sanofi-Aventis Deutschland Gmbh Printable hydrogels for biosensors
CN103954668B (en) 2004-05-21 2016-11-23 埃葛梅崔克斯股份有限公司 Electrochemical cell and the method producing electrochemical cell
US9820684B2 (en) 2004-06-03 2017-11-21 Sanofi-Aventis Deutschland Gmbh Method and apparatus for a fluid sampling device
US9775553B2 (en) * 2004-06-03 2017-10-03 Sanofi-Aventis Deutschland Gmbh Method and apparatus for a fluid sampling device
US20060211126A1 (en) 2004-09-16 2006-09-21 Banks Bruce A Method for using texturing surfaces of optical fiber sensors for blood glucose monitoring
US7883464B2 (en) 2005-09-30 2011-02-08 Abbott Diabetes Care Inc. Integrated transmitter unit and sensor introducer mechanism and methods of use
US9788771B2 (en) 2006-10-23 2017-10-17 Abbott Diabetes Care Inc. Variable speed sensor insertion devices and methods of use
US8613703B2 (en) 2007-05-31 2013-12-24 Abbott Diabetes Care Inc. Insertion devices and methods
US7731657B2 (en) 2005-08-30 2010-06-08 Abbott Diabetes Care Inc. Analyte sensor introducer and methods of use
US7697967B2 (en) 2005-12-28 2010-04-13 Abbott Diabetes Care Inc. Method and apparatus for providing analyte sensor insertion
US8571624B2 (en) * 2004-12-29 2013-10-29 Abbott Diabetes Care Inc. Method and apparatus for mounting a data transmission device in a communication system
US20110054275A1 (en) * 2009-08-31 2011-03-03 Abbott Diabetes Care Inc. Mounting Unit Having a Sensor and Associated Circuitry
US9259175B2 (en) 2006-10-23 2016-02-16 Abbott Diabetes Care, Inc. Flexible patch for fluid delivery and monitoring body analytes
US9398882B2 (en) * 2005-09-30 2016-07-26 Abbott Diabetes Care Inc. Method and apparatus for providing analyte sensor and data processing device
US20090105569A1 (en) 2006-04-28 2009-04-23 Abbott Diabetes Care, Inc. Introducer Assembly and Methods of Use
US20110190603A1 (en) * 2009-09-29 2011-08-04 Stafford Gary A Sensor Inserter Having Introducer
US9743862B2 (en) 2011-03-31 2017-08-29 Abbott Diabetes Care Inc. Systems and methods for transcutaneously implanting medical devices
US20070027381A1 (en) * 2005-07-29 2007-02-01 Therasense, Inc. Inserter and methods of use
US9572534B2 (en) 2010-06-29 2017-02-21 Abbott Diabetes Care Inc. Devices, systems and methods for on-skin or on-body mounting of medical devices
US8512243B2 (en) 2005-09-30 2013-08-20 Abbott Diabetes Care Inc. Integrated introducer and transmitter assembly and methods of use
US8333714B2 (en) 2006-09-10 2012-12-18 Abbott Diabetes Care Inc. Method and system for providing an integrated analyte sensor insertion device and data processing unit
US20110060196A1 (en) * 2009-08-31 2011-03-10 Abbott Diabetes Care Inc. Flexible Mounting Unit and Cover for a Medical Device
US10226207B2 (en) 2004-12-29 2019-03-12 Abbott Diabetes Care Inc. Sensor inserter having introducer
US20080214917A1 (en) * 2004-12-30 2008-09-04 Dirk Boecker Method and apparatus for analyte measurement test time
US8652831B2 (en) 2004-12-30 2014-02-18 Sanofi-Aventis Deutschland Gmbh Method and apparatus for analyte measurement test time
US20060184065A1 (en) * 2005-02-10 2006-08-17 Ajay Deshmukh Method and apparatus for storing an analyte sampling and measurement device
US8112240B2 (en) * 2005-04-29 2012-02-07 Abbott Diabetes Care Inc. Method and apparatus for providing leak detection in data monitoring and management systems
DK1742063T3 (en) * 2005-07-07 2010-12-20 Asulab Sa System for differential determination of the amount of a proteolytic enzyme in a body fluid
US7851222B2 (en) * 2005-07-26 2010-12-14 Applied Materials, Inc. System and methods for measuring chemical concentrations of a plating solution
US9521968B2 (en) * 2005-09-30 2016-12-20 Abbott Diabetes Care Inc. Analyte sensor retention mechanism and methods of use
US20070276290A1 (en) * 2005-10-04 2007-11-29 Dirk Boecker Tissue Penetrating Apparatus
US20070191736A1 (en) * 2005-10-04 2007-08-16 Don Alden Method for loading penetrating members in a collection device
US20090054747A1 (en) * 2005-10-31 2009-02-26 Abbott Diabetes Care, Inc. Method and system for providing analyte sensor tester isolation
US7766829B2 (en) 2005-11-04 2010-08-03 Abbott Diabetes Care Inc. Method and system for providing basal profile modification in analyte monitoring and management systems
CA2636034A1 (en) 2005-12-28 2007-10-25 Abbott Diabetes Care Inc. Medical device insertion
US11298058B2 (en) 2005-12-28 2022-04-12 Abbott Diabetes Care Inc. Method and apparatus for providing analyte sensor insertion
US7885698B2 (en) 2006-02-28 2011-02-08 Abbott Diabetes Care Inc. Method and system for providing continuous calibration of implantable analyte sensors
US8226891B2 (en) 2006-03-31 2012-07-24 Abbott Diabetes Care Inc. Analyte monitoring devices and methods therefor
US7620438B2 (en) 2006-03-31 2009-11-17 Abbott Diabetes Care Inc. Method and system for powering an electronic device
US20090054749A1 (en) * 2006-05-31 2009-02-26 Abbott Diabetes Care, Inc. Method and System for Providing Data Transmission in a Data Management System
US7920907B2 (en) * 2006-06-07 2011-04-05 Abbott Diabetes Care Inc. Analyte monitoring system and method
US7382944B1 (en) 2006-07-14 2008-06-03 The United States Of America As Represented By The Administration Of The National Aeronautics And Space Administration Protective coating and hyperthermal atomic oxygen texturing of optical fibers used for blood glucose monitoring
GB0616566D0 (en) * 2006-08-19 2006-09-27 Rolls Royce Plc An alloy and method of treating titanium aluminide
US8319092B1 (en) 2006-11-03 2012-11-27 Solera Laboratories, Inc. Nano power cell and method of use
US9112447B2 (en) * 2006-11-03 2015-08-18 Solera Laboratories, Inc. Nano power cell and method of use
US8732188B2 (en) * 2007-02-18 2014-05-20 Abbott Diabetes Care Inc. Method and system for providing contextual based medication dosage determination
US8930203B2 (en) 2007-02-18 2015-01-06 Abbott Diabetes Care Inc. Multi-function analyte test device and methods therefor
US8123686B2 (en) 2007-03-01 2012-02-28 Abbott Diabetes Care Inc. Method and apparatus for providing rolling data in communication systems
US8665091B2 (en) 2007-05-08 2014-03-04 Abbott Diabetes Care Inc. Method and device for determining elapsed sensor life
US20080281179A1 (en) * 2007-05-08 2008-11-13 Abbott Diabetes Care, Inc. Analyte monitoring system and methods
US8456301B2 (en) 2007-05-08 2013-06-04 Abbott Diabetes Care Inc. Analyte monitoring system and methods
US7928850B2 (en) 2007-05-08 2011-04-19 Abbott Diabetes Care Inc. Analyte monitoring system and methods
US8461985B2 (en) * 2007-05-08 2013-06-11 Abbott Diabetes Care Inc. Analyte monitoring system and methods
US8182917B2 (en) * 2008-03-20 2012-05-22 The United States Of America, As Represented By The Secretary Of The Navy Reduced graphene oxide film
WO2009126900A1 (en) 2008-04-11 2009-10-15 Pelikan Technologies, Inc. Method and apparatus for analyte detecting device
US8637194B2 (en) 2008-09-02 2014-01-28 Bio-Nano Power, Llc Bio-nano power cells and their uses
US20100187132A1 (en) * 2008-12-29 2010-07-29 Don Alden Determination of the real electrochemical surface areas of screen printed electrodes
US8103456B2 (en) 2009-01-29 2012-01-24 Abbott Diabetes Care Inc. Method and device for early signal attenuation detection using blood glucose measurements
US9375169B2 (en) * 2009-01-30 2016-06-28 Sanofi-Aventis Deutschland Gmbh Cam drive for managing disposable penetrating member actions with a single motor and motor and control system
US20100198034A1 (en) * 2009-02-03 2010-08-05 Abbott Diabetes Care Inc. Compact On-Body Physiological Monitoring Devices and Methods Thereof
US20100213057A1 (en) * 2009-02-26 2010-08-26 Benjamin Feldman Self-Powered Analyte Sensor
US9226701B2 (en) * 2009-04-28 2016-01-05 Abbott Diabetes Care Inc. Error detection in critical repeating data in a wireless sensor system
WO2010138856A1 (en) 2009-05-29 2010-12-02 Abbott Diabetes Care Inc. Medical device antenna systems having external antenna configurations
WO2011025999A1 (en) * 2009-08-29 2011-03-03 Abbott Diabetes Care Inc. Analyte sensor
WO2011026148A1 (en) 2009-08-31 2011-03-03 Abbott Diabetes Care Inc. Analyte monitoring system and methods for managing power and noise
US20110106126A1 (en) * 2009-08-31 2011-05-05 Michael Love Inserter device including rotor subassembly
WO2011026147A1 (en) 2009-08-31 2011-03-03 Abbott Diabetes Care Inc. Analyte signal processing device and methods
US9320461B2 (en) * 2009-09-29 2016-04-26 Abbott Diabetes Care Inc. Method and apparatus for providing notification function in analyte monitoring systems
WO2011041531A1 (en) 2009-09-30 2011-04-07 Abbott Diabetes Care Inc. Interconnect for on-body analyte monitoring device
WO2011044386A1 (en) * 2009-10-07 2011-04-14 Abbott Diabetes Care Inc. Sensor inserter assembly having rotatable trigger
USD924406S1 (en) 2010-02-01 2021-07-06 Abbott Diabetes Care Inc. Analyte sensor inserter
CA3135001A1 (en) 2010-03-24 2011-09-29 Abbott Diabetes Care Inc. Medical device inserters and processes of inserting and using medical devices
US8965476B2 (en) 2010-04-16 2015-02-24 Sanofi-Aventis Deutschland Gmbh Tissue penetration device
US11064921B2 (en) 2010-06-29 2021-07-20 Abbott Diabetes Care Inc. Devices, systems and methods for on-skin or on-body mounting of medical devices
CA2838797C (en) 2011-07-27 2020-03-10 Agamatrix, Inc. Dry reagent comprising tetramethylammonium ferricyanide for electrochemical test strips
JP6443802B2 (en) 2011-11-07 2018-12-26 アボット ダイアベティス ケア インコーポレイテッドAbbott Diabetes Care Inc. Analyte monitoring apparatus and method
EP4344633A2 (en) 2011-12-11 2024-04-03 Abbott Diabetes Care, Inc. Analyte sensor methods
US9968306B2 (en) 2012-09-17 2018-05-15 Abbott Diabetes Care Inc. Methods and apparatuses for providing adverse condition notification with enhanced wireless communication range in analyte monitoring systems
US20140251836A1 (en) * 2013-03-08 2014-09-11 Magellan Diagnostics, Inc. Apparatus and method for analyzing multiple samples
US10213139B2 (en) 2015-05-14 2019-02-26 Abbott Diabetes Care Inc. Systems, devices, and methods for assembling an applicator and sensor control device
WO2016183493A1 (en) 2015-05-14 2016-11-17 Abbott Diabetes Care Inc. Compact medical device inserters and related systems and methods
EP3156788B1 (en) * 2015-10-15 2018-12-26 ARKRAY, Inc. Biosensor
CN115444410A (en) 2017-01-23 2022-12-09 雅培糖尿病护理公司 Applicator and assembly for inserting an in vivo analyte sensor

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3278334D1 (en) * 1981-10-23 1988-05-19 Genetics Int Inc Sensor for components of a liquid mixture
JPS58153154A (en) * 1982-03-09 1983-09-12 Ajinomoto Co Inc Qualified electrode
DE3221339A1 (en) * 1982-06-05 1983-12-08 Basf Ag, 6700 Ludwigshafen METHOD FOR THE ELECTROCHEMICAL HYDRATION OF NICOTINAMIDADENINE-DINUCLEOTIDE
WO1985005119A1 (en) * 1984-04-30 1985-11-21 Stiftung, R., E. Process for the sensitization of an oxidoreduction photocalatyst, and photocatalyst thus obtained
GB8612861D0 (en) * 1986-05-27 1986-07-02 Cambridge Life Sciences Immobilised enzyme biosensors
US4974929A (en) * 1987-09-22 1990-12-04 Baxter International, Inc. Fiber optical probe connector for physiologic measurement devices
US5205920A (en) * 1989-03-03 1993-04-27 Noboru Oyama Enzyme sensor and method of manufacturing the same
US5198367A (en) * 1989-06-09 1993-03-30 Masuo Aizawa Homogeneous amperometric immunoassay

Also Published As

Publication number Publication date
EP0526602B1 (en) 1997-01-02
AU1221992A (en) 1992-09-15
DE69216319T2 (en) 1997-07-03
HUT66200A (en) 1994-10-28
BG96988A (en) 1994-03-31
HU212451B (en) 1996-06-28
AU656360B2 (en) 1995-02-02
SK316592A3 (en) 1995-04-12
JP2770250B2 (en) 1998-06-25
FI924726A (en) 1992-10-19
US5378628A (en) 1995-01-03
FR2673289B1 (en) 1994-06-17
WO1992014836A1 (en) 1992-09-03
ATE147107T1 (en) 1997-01-15
JPH05506102A (en) 1993-09-02
FI924726A0 (en) 1992-10-19
DE69216319D1 (en) 1997-02-13
CA2080840A1 (en) 1992-08-22
EP0526602A1 (en) 1993-02-10
FR2673289A1 (en) 1992-08-28
PL169972B1 (en) 1996-09-30

Similar Documents

Publication Publication Date Title
CA2080840C (en) Sensor for measuring the quantity of a dissolved component
Heller et al. Electrochemical glucose sensors and their applications in diabetes management
US9546974B2 (en) Concentration determination in a diffusion barrier layer
US6893552B1 (en) Microsensors for glucose and insulin monitoring
Wang et al. Comparison of oxygen-rich and mediator-based glucose-oxidase carbon-paste electrodes
Gajovic et al. Operation of a miniature redox hydrogel-based pyruvate sensor in undiluted deoxygenated calf serum
Palleschi et al. Ideal hydrogen peroxide-based glucose sensor
Kuhn Biosensors: blockbuster or bomb? Electrochemical biosensors for diabetes monitoring
JP2007509355A (en) Enzymatic electrochemical biosensor
Nakabayashi et al. Amperometric glucose sensors fabricated by electrochemical polymerization of phenols on carbon paste electrodes containing ferrocene as an electron transfer mediator
Quinto et al. Disposable interference-free glucose biosensor based on an electropolymerised poly (pyrrole) permselective film
Bartlett et al. Electrochemical immobilization of enzymes. Part VI. Microelectrodes for the detection of L-lactate based on flavocytochrome b 2 immobilized in a poly (phenol) film
Abdel-Hamid et al. Development of a needle-type biosensor for intravascular glucose monitoring
Wingard Jr et al. Potentiometric measurement of glucose concentration with an immobilized glucose oxidase/catalase electrode
Van Os et al. A glucose sensor, interference free for ascorbic acid
FR2677766A1 (en) Sensor for measuring the quantity of a component in solution
Lin et al. Mixed‐valence compound‐based biosensor
CZ316592A3 (en) sensor for measuring a component amount in a solution
AU2014274588B2 (en) Concentration determination in a diffusion barrier layer
AU2012203435B2 (en) Concentration determination in a diffusion barrier layer
Higgins et al. Harnessing biologically-catalysed electron transfer reactions for biosensors
AU2016202064A1 (en) Concentration determination in a diffusion barrier layer
Smyth with a glucose biosensor for interference compensation during glucose determinations by flow injection analysis

Legal Events

Date Code Title Description
EEER Examination request
MKEX Expiry