CA2080869C - Medical technical compression implant - Google Patents

Medical technical compression implant Download PDF

Info

Publication number
CA2080869C
CA2080869C CA002080869A CA2080869A CA2080869C CA 2080869 C CA2080869 C CA 2080869C CA 002080869 A CA002080869 A CA 002080869A CA 2080869 A CA2080869 A CA 2080869A CA 2080869 C CA2080869 C CA 2080869C
Authority
CA
Canada
Prior art keywords
threaded
bore
threaded spindle
clamp jaws
compression implant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CA002080869A
Other languages
French (fr)
Other versions
CA2080869A1 (en
Inventor
Walter Muller
Georg Piotrowski
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Pina Vertriebs AG
Original Assignee
Pina Vertriebs AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Pina Vertriebs AG filed Critical Pina Vertriebs AG
Publication of CA2080869A1 publication Critical patent/CA2080869A1/en
Application granted granted Critical
Publication of CA2080869C publication Critical patent/CA2080869C/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/56Surgical instruments or methods for treatment of bones or joints; Devices specially adapted therefor
    • A61B17/58Surgical instruments or methods for treatment of bones or joints; Devices specially adapted therefor for osteosynthesis, e.g. bone plates, screws, setting implements or the like
    • A61B17/68Internal fixation devices, including fasteners and spinal fixators, even if a part thereof projects from the skin
    • A61B17/70Spinal positioners or stabilisers ; Bone stabilisers comprising fluid filler in an implant
    • A61B17/7001Screws or hooks combined with longitudinal elements which do not contact vertebrae
    • A61B17/7035Screws or hooks, wherein a rod-clamping part and a bone-anchoring part can pivot relative to each other
    • A61B17/704Screws or hooks, wherein a rod-clamping part and a bone-anchoring part can pivot relative to each other the longitudinal element passing through a ball-joint in the screw head
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/56Surgical instruments or methods for treatment of bones or joints; Devices specially adapted therefor
    • A61B17/58Surgical instruments or methods for treatment of bones or joints; Devices specially adapted therefor for osteosynthesis, e.g. bone plates, screws, setting implements or the like
    • A61B17/68Internal fixation devices, including fasteners and spinal fixators, even if a part thereof projects from the skin
    • A61B17/70Spinal positioners or stabilisers ; Bone stabilisers comprising fluid filler in an implant
    • A61B17/7001Screws or hooks combined with longitudinal elements which do not contact vertebrae
    • A61B17/7002Longitudinal elements, e.g. rods
    • A61B17/7004Longitudinal elements, e.g. rods with a cross-section which varies along its length
    • A61B17/7005Parts of the longitudinal elements, e.g. their ends, being specially adapted to fit in the screw or hook heads
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/56Surgical instruments or methods for treatment of bones or joints; Devices specially adapted therefor
    • A61B17/58Surgical instruments or methods for treatment of bones or joints; Devices specially adapted therefor for osteosynthesis, e.g. bone plates, screws, setting implements or the like
    • A61B17/68Internal fixation devices, including fasteners and spinal fixators, even if a part thereof projects from the skin
    • A61B17/70Spinal positioners or stabilisers ; Bone stabilisers comprising fluid filler in an implant
    • A61B17/7001Screws or hooks combined with longitudinal elements which do not contact vertebrae
    • A61B17/7002Longitudinal elements, e.g. rods
    • A61B17/7014Longitudinal elements, e.g. rods with means for adjusting the distance between two screws or hooks
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/56Surgical instruments or methods for treatment of bones or joints; Devices specially adapted therefor
    • A61B17/58Surgical instruments or methods for treatment of bones or joints; Devices specially adapted therefor for osteosynthesis, e.g. bone plates, screws, setting implements or the like
    • A61B17/68Internal fixation devices, including fasteners and spinal fixators, even if a part thereof projects from the skin
    • A61B17/70Spinal positioners or stabilisers ; Bone stabilisers comprising fluid filler in an implant
    • A61B17/7074Tools specially adapted for spinal fixation operations other than for bone removal or filler handling
    • A61B17/7076Tools specially adapted for spinal fixation operations other than for bone removal or filler handling for driving, positioning or assembling spinal clamps or bone anchors specially adapted for spinal fixation
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/56Surgical instruments or methods for treatment of bones or joints; Devices specially adapted therefor
    • A61B17/58Surgical instruments or methods for treatment of bones or joints; Devices specially adapted therefor for osteosynthesis, e.g. bone plates, screws, setting implements or the like
    • A61B17/68Internal fixation devices, including fasteners and spinal fixators, even if a part thereof projects from the skin
    • A61B17/70Spinal positioners or stabilisers ; Bone stabilisers comprising fluid filler in an implant
    • A61B17/7074Tools specially adapted for spinal fixation operations other than for bone removal or filler handling
    • A61B17/7083Tools for guidance or insertion of tethers, rod-to-anchor connectors, rod-to-rod connectors, or longitudinal elements
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/02Surgical instruments, devices or methods, e.g. tourniquets for holding wounds open; Tractors
    • A61B17/025Joint distractors
    • A61B2017/0256Joint distractors for the spine
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T403/00Joints and connections
    • Y10T403/29Rotarily connected, differentially translatable members, e.g., turn-buckle, etc.
    • Y10T403/291Rotarily connected, differentially translatable members, e.g., turn-buckle, etc. having tool-engaging means or operating handle

Abstract

A medical technical compression implant (1) for the surgical repair of damage to the spine, especially in the cervical region, includes two clamp jaws (3, 4), which are directed toward each other, are hook-shaped, are connected by a threaded spindle (2), and can be compressed while reducing the distance (B) between them. A wrench profile (9) for attaching a rotating tool in an interlocking manner is arranged at the threaded spindle (2) between two threaded sections (7, 8) with right-hand threads and left-hand threads, respectively. Both the clamp jaws (3, 4) have threaded nuts (5, 6), which are pivotably mounted rotary bodies, with diametrical threaded bores for screwing on the threaded sections (7, 8). The threaded nuts are mounted in cylindrical transverse bores of the clamp jaws (3, 4). The bore walls (21) are provided with diametrical openings (22, 23) for passing through the threaded sections (7, .8) of the threaded spindle (2). The threaded spindle (2) has, at both ends, an outwardly tapering cone (12, 13) each, which brings about pivoting of the clamp jaw (3, 4) around the axis of the transverse bore in the pulling direction, in cooperation with the inner edge or inner surface of the opening (22) designed as a radial bore.

A manipulating device in the form of a special expanding forceps is provided for implantation.

Description

~o~osoo MEDICAL TECHNICAL COMPRESSION IMPLANT
FIELD OF THE INVENTION
The present invention pertains to a medical technical compression implant for the surgical repair of damage to the spinal column, especially in the cervical region, consisting of two clamp jaws, which are bent in the shape of a hook, are directed against each other, are connected by a threaded spindle, and can be contracted by reducing the distance between them, and of a manipulating device for the compression implant.
2~~~~69 BACKGROUND OF THE INVENTION
Compression implants of this class are used in surgical medicine, especially in operations for restoring the normal functions of pathologic or injury-related damage to the spinal column.
Curvatures of the spine may be the consequence of, e.g., disturbances of growth, which lead to wedge-shaped changes in the spinal column, or they may be due to tuberculous collapse of individual vertebral bodies. Vitamin D deficiency has also been known to be able to lead to severe rachitic curvatures of the spine, and calcipenia has been known to be able to cause collapse of vertebrae after the menopause. In addition, accident-related vertebral fractures, which must be treated surgically, occur with increasing frequency.
To correct such postural defects or to stabilize these disease-related or traumatic vertebral fractures, individual vertebrae or vertebral prostheses are mutually braced, clamped, or fixed to or with one another in practice. Metal wires have hitherto been used for this purpose in order to stabilize the vertebrae affected or to attach the aforementioned vertebral prostheses to the vertebrae.
Screw clamps, whose jaws can be pushed over two or more vertebrae during the operation and which can be contracted with a conventional set screw, e.g., in the manner of pipe clamps or the like, have been known as well. 'These jaws have a hook-shaped design. While one jaw is provided with a smooth bore for passing through the screw shaft, the second jaw has a bore provided with internal threads, into which the screw can be screwed in order to move the huo jaws toward one another, and the screw head is located on the outside at the edge of the smooth bore.
These prior-art clamps are unsatisfactory for several reasons. First of all, it is impossible for a single surgeon to insert such a clamp. In addition, its manipulation is very complicated and, in particular, it requires' a large surgical incision opening to permit insertion of such a clamp, because the screw head, which is arranged at one end of the screw to which the rotating tool, e.g., a 90° offset screw driver, must be attached. In addition, the two jaws, must be held individually during rotation, as Long as screwing in of the screw is taking place, in order to prevent them from leaving the position required for their proper function. Due to the relatively long span distance and the simple, self locking thread, a very great number of rotations of the screw are also necessary in order to bring the two jaws to the intended final distance needed for proper function.
SUI~INARY OF THE INVENTION
It is a primary object of the present invention to provide an improved compression implant of the type described in the introduction, which can be manipulated with greater ease and greater simplicity, and which, in particular, can be implanted without the assistance of a second surgeon, and which requires only a short surgical incision in the patient despite its large span.
This task is accomplished according to the present invention by the threaded spindle having -- between two threaded sections, one with right-hand ~~~0~6~
threads and another with left-hand threads -- a wrench profile for. the interlocking attachment of a rotating tool, and by both clamp jaws having, as threaded nuts, pivotably mounted cylindrical rotary bodies with diametrical threaded bores for screwing in the threaded sections.
Of particular advantage is the use of a threaded spindle provided with threaded sections cut in opposite directions, with obligatorily self-locking threads, because double the amount of change is achieved by one rotation of the spindle compared with the prior-art clamp. In addition, the pivoting mount of the threaded nuts in the two clamp jaws offers the highly advantageous possibility for the clamp jaws to pivot apart additionally when .
they are located at the ends of the threaded spindle, in~ order to obtain a larger opening width or span. Due to the fact that the wrench profile of the threaded spindle is located in the middle between the two threaded sections with opposite thread directions, it is also possible to attach the wrench needed for rotating the threaded spindle, e.g., a hexagon head wrench, in the middle of the thread. As a result, the length of the necessary surgical incision can be kept substantially shorter than in the case of the use of the prior-art clamps. The pivoting apart of the clamp jaws may also be performed after introduction into the surgical opening. Another advantage is the fact that two clamp jaws may have completely identical design; a particularly favorable design of the clamp jaws in terms of the pivotabifity and mounting of the rotary bodies designed as threaded nuts wherein the threaded nuts are mounted in cylindrical transverse bores of the clamp jaws, the clamp jaws ~~~~~~9 having walls with diametrical openings for passing through the threaded section of the threaded spindle. The opening on the inner side of the clamp jaw has an elongated hole which permits the threaded spindle, which passes therethrough and is screwed into the threaded nut, to pivot by at least 15°
around the axis of the transverse bore.
A very substantial additional advantage is achieved by the design of the opening located on the outer side of the clamped jaw as a radial bore, with respect to the axis of the transverse bore, and wherein the threaded spindle has an outwardly tapering cone which allows the pivoting of the clamp jaw around the axis of the transverse bore in cooperation with the inner edge or inner surface opening designed as a radial bore. The additional pivoting movement of the two clamp jaws around the axis of the transverse bores permits not only a shorter threaded spindle to be used, but also a greater pulling movement of the two clamp jaws during the initial phase of the screwing in of the threaded spindle into the two threaded nuts to be achieved.
This also leads to substantially greater ease of manipulation and to time savings during insertion.
The clamp jaws are preferably of identical design and have a claw each, provided with an approximately semicylindrical inner surface, with a geometric axis of curvature extending at least approximately in parallel to the axis of the transverse bore. The inner surfaces of the claws have grooves or toothed profiles extending in the circumferential direction. The claws are preferably provided with a trapezoidal cross-sectional profile. The inner surface of the claw is provided with two different radii of curvature and the larger radius of curvature is located on the inner side located adjacent to the transverse bore. A semicircular in section of the opening designed as an elongated hole, the end adjacent to the claw, extends coaxially with the diametrically opposed opening designed as a radial bore. The axis of the opening designed as a radial bore forms a right angle with the rear side of the clamp jaw.
Using the manipulating with end section of grippers of an extending forceps, which grippers have a finger-like design, are provided with slots, which are open at their ends, and - in the area of the slots - with a depression on the outer side of the grippers for holding the clamp jaws in interlocking, non-rotatable manner, the compression implant according to the present invention can be inserted and held securely and in correct position in a highly advantageous and especially correctly functioningmanner and secured against rotation during the rotary movements of the threaded spindle, and it is guaranteed that the two opposite clamp jaws cannot be displaced in relation to one another. The design of the manipulating device wherein the grippers with the slots and depressions are hinged to fingers of handles, which fingers are laterally pivotable to a limited extent due to a joint and are connected to one another by a hinge, makes it possible, in particular, to achieve a large range of pivoting of the wrench to be attached to the wrench profile, so that the necessary fre9uency of transposing the wrench can be greatly reduced.
The various features of novelty which characterize the invention are ~D~d~6~
pointed out with particularity in the claims anne~ced to and forming a part of this disclosure. For a better understanding of the invention, its operating advantages and specific objects attained by its uses, reference is made to the accompanying drawings and descriptive matter in which preferred embodiments of the invention are illustrated.
BRIEF DESCRIPTION OF THE DRAWINGS
In the drawings:
Figure 1 is a top view of a clamp jaw according to the invention;
Figure 2 is a sectional view taken along line II-II from Figure 1;
Figure 3 is a claw profile according to a sectional view taken along line III-III from Figure 2;
Figure 4 is a top view of a threaded spindle;
Figure 5 is a lateral view of a threaded nut according to the invention;
Figure 6 is a sectional view taken along line VI-VI from Figure 5;
Figure 7 is a sectional view of another embodiment of the clamp jaw;
Figure 8 is a cutaway lateral view of the complete compression implant with the clamp jaws pivoted apart;
Figure 9 is a view of the compression implant according to Figure 8, in which the clamp jaws are located in an only partially pivoted position;
?0 Figure 10 is a view of the compression implant according to Figures 8 and 9, in which the two clamp jaws are in their normal position;
Figure 11 is a lateral view of an implanting forceps for the compression implant according to Figuxes 8 through 10;

~o~o~o~
Figure 12 is a perspective representation of the implanting forceps according to Figure 11 attached to a compression implant;
Figure 13 is a perspective representation of the end section of a finger-like gripper of the implanting forceps; and Figure 14 is a sectional view taken along line XIV-XIV from Figure 13.
DETAILED DESCRIPTION
OF THE PREFERRED EMBODIMENT
The compression implant 1, which is shown in Figures 8, 9 and 10, includes of a threaded spindle 2 and two clamp jaws 3 and 4 of completely identical design, each of which is provided with threaded nuts 5 and 6 mounted pivotably in them.
The threaded spindle 2 shown as a detail in Figure 4 has a first threaded section 7 with right-hand threads and a second threaded section 8 with left-hand threads. A wrench profile 9, which is separated from the threads of the two threaded sections 7 and 8 by two recesses 10 and 11, is located, in the form of a hexagon, between the two threaded sections 7 and 8. The end-face ends of the threaded sections 7 and 8 are provided with an outwardly tapering, rounded cone 12 and 13 each, which have a cone angle a of about 60°. The two threaded sections 7 and 8 each may be provided with metric threads with a diameter of, e.g., 4 mm.
The two clamp jaws 3 and 4 of identical design are represented as details in Figures 1 through 3. Each of them has an approximately semicircular claw 14, whose inner surface 15 is provided with triangular grooves or teeth 16 extending in the circumferential direction, and which has, as a whole, a trapezoidal or wedge-shaped cross-sectional shape with a wedge angle ~i of about 60°. The essentially semicylindrical inner surface 15 of the claw 14 has two different radii of curvature R1, R2, with a common axis of curvature 20, wherein the larger radius of curvature R2 is approximately 6 mm and is located on the inner side adjacent to the transverse bore.
To the claw 14 there is connected a round body 17, which is provided with a cylindrical transverse bore 18, whose axis 19 extends in parallel to the axis of curvature 20 of the inter surface 15 of the claw 14. The partially cylindrical wall 21 surrounding the transverse bare 18 is provided with two diametric openings 22 and 2.3, wherein the upper opening 22 located on the rear side 24 is designed as a radial bore in relation to the bore axis 19, and the lower opening 23 is designed as an elongated hole. The axis 25 of the opening 22, which is designed as a radial bore, which axis intersects the axis 19, is also the axis of curvature for the semicircular end section 26 of the elongated hole 23, while the opposite end section 27, which is likewise semicircular, forms an opening angle 8 of about 60° with the axis 25.
With such an opening width, the threaded spindle 2 screwed on can be pivoted by about 30°. The diameter D or the width W of the openings 22 and 23 are each selected to be such that the threaded sections 7 and 8 of the threaded spindle can be passed through freely. In the exemplary embodiment, this width is ca. 4.1 mm.
As is apparent from Figure 2, the axis 25 of the opening 22 in the clamp jaw 3, 4 shown forms a right angle y with the flat rear side 24 of the clamp jaw 3, 4. In contrast, Figure 7 shows another clamp jaw 3', in which the claw 14' has two smaller inner radii R3 and R4, and in which the axis 25 of the opening 22, designed as a radial bore, forms a smaller angle y' of about 23 ° with the rear side 24. This the clamp jaw 3' otherwise has the same design as the clamp jaw 3 or 4, so that it can be assembled into a compression implant 1 even with the threaded spindle 2 and the threaded nuts 5 and 6 to IO be described later, but the span of this compression implant is larger at equal threaded spindle length than in the case of the use of the clamp jaws 3 and 4.
The threaded nuts 5 and 6 are, in principle, of identical design, aside from the direction of their internal threads. As is apparent from Figures 5 I5 and 6, they consist of a cylindrical rotary body 28 each with plane-parallel end faces 26, 27, which has, in its axial center, a diametrically extending threaded bore 29, into which either the threaded section 7 with the right-hand threads or the threaded section 8 with left-hand threads of the threaded spindle 2 can be screwed. Consequently, the threaded bore 29 of the threaded nut 5 is 20 provided with right-hand threads, and the threaded nut 6 is provided with left-hand threads. The diameter of the rotary body 28 is adapted to the internal diameter of the transverse bore 18 such that it can easily be introduced into to the transverse bore 18 and can be mounted in it rotatably. The length of the rotary body corresponds to the width U of the clamp jaw 3, 4.
In the assembled state, the threaded spindle 2 with its the right-hand threaded section 7, which passes through the lower opening 23 designed as an S elongated hole, is screwed into the internal threaded section 28 of the threaded nut 5 to the extent that the rounding of the cone 12 is still located inside the transverse bore '18. In a mirror-inverted manner relative to this, the threaded section 8 with the left-hand thread is screwed analogously into the threaded nut 6 to the same extent, so that the two clamp jaws 3 and 4 can still be pivoted in the outward direction around the axes 19 of their the transverse bores 18 to the extent that the delimiting edges 27 of the end sections of their the openings 23, designed as elongated holes, are in contact with the circumference of the threaded sections 7 and 8, respectively. This position is shown in Figure 8. It can be recognized that the opening width A
of the two gripping clamps 3 and 4 is somewhat larger than the distance B
between the axes 19 of the transverse bores I8 in the same position.
In this state, the completely assembled compression implant 1 is placed surgically on the patient's vertebrae which are to be connected to one another, and this expansion of the clamp jaws 3 and 4 can be performed after introduction into the surgical incision. However, it may also be performed prior to introduction, if desired.
During the subsequent rotation of the threaded spindle 2 in the 2~8~869 tensioning direction, the expanded position as shown in Figure 8 will be increasingly reduced, and changed over into the normal position according to Figure 10, in which the axis of the threaded spindle 2 and the axis 25 of the upper apening 22 extend coaxially with one another, and the threaded spindle S 2 also forms a right angle y each with the rear side 24 of the clamp jaw 3 and 4.
This reduction of the expanded position is brought about, by the two cones 12 and 13 at the ends of the two threaded sections 7 and 8 penetrating into the openings 32 designed as radial bores and causing, in cooperation with the inner lateral edges or oblique guiding surfaces of the openings 22, the clamp jaws 3 and 4 to pivot in the tensioning direction, so that not only a contraction, i.e., reduction of the distance B between the two clamp jaws and 4, which is brought about by the threads, will take place, but a pivoting movement in the tensioning direction will also be brought about in the area in which the threaded spindle 2 is initially screwed into the two threaded nuts 5 and 6. Consequently, the tensioning effect is substantially stronger in this initial area of tensioning according to Figures 8 and 9 than thereafter, when the clamp jaws 3 and 4 assume their angular position shown in Figure 10 in relation to the axis of the threaded spindle 2.
The implantation of such compression implants 1 can be substantially facilitated with the manipulating device 30 represented in Figures 11 through 14, which is in the form of an expanding forceps. It consists of two bent ~0~~~~~
handles 32 and 33, which are hinged to one another by a hinge 31,. are pressed against one another by two leaf springs 34 and 35, and are provided with finger-like grippers 36 and 37 each. The grippers 36 and 37 are connected by joints 38 and 39 to fingers 40 and 41 of the handles 32 and 33, respectively, whose respective axes 42 and 43 each extend at right angles to the hinge axis 31'. Due to stop surfaces 44 and 45 on the respective fingers 40 and 41 and on the respective grippers 36 and 37, the grippers 36 and 37 can be pivoted, to a limited extent, in both directions by about 15 °
each from a central position aligned with the fingers 40 and 41, so that they axe able to occupy approximately the position shown in Figure 12 in one of the end positions.
The end sections 46 and 47 of the grippers 36 and 37 are eac>~
designed in a mirror-inverted manner, and each of them is provided with depressions 48, which have the cross-sectional shape of a cylinder section and into which a U-shaped slot 49 each, which is open at the front end, leads.
This shaping of the end sections 46 and 47 makes it possible to place these end sections, in the manner shown in Figure 12, on the clamp jaws 3 and 4, which had already been screwed onto the threaded spindle 2 according to Figure 8, from the inside, so that the clamp jaws 3 and 4 will be held nonrotatably in an interlocking manner, and will occupy mutually parallel positions.
Using this the manipulating device 30, a surgeon will be able to easily ~~~~~5~
implant the compression implant 1 according to the present invention without the assistance of a second person. Due to the two clamp jaws 3 and 4 being nonrotatably held in the end sections 46 and 47 of the grippers 36 and 37, it is also easy to rotate the threaded spindle 2 in the desired direction by applying a hexagon head wrench on the hexagon 9, so that compression, i.e., bringing together of the two clamp jaws 3 and 4, will be achieved.
It is also conceivable to screw the two clamp jaws 3 and 4 onto the threaded spindle 2 such that their the claws 14 will be directed to the outside, so that expansion rather than compression of vertebrae can be brought about.
While specific embodiments of the invention have been shown and described in detail to illustrate the application of the principles of the invention, it will be understood that the invention may be embodied otherwise without departing from such principles.

Claims (9)

1. Medical technical compression implant for surgical repair of damage to the spine, comprising:
first and second vertebral clamp jaws, each with a hook-shaped portion sized to be applied over a vertebra and each with a cylindrical transverse bore;
first and second threaded nuts, each of said threaded nuts being pivotably mounted in said cylindrical transverse bore of one of said first and second jaws to each form a cylindrical rotary body, said threaded nuts each having a diametrical threaded bore, extending radially with respect to said cylindrical transverse bore;
a threaded spindle connecting said clamp jaws with hook-shaped portions facing each other, said threaded spindle having a wrench profile for attaching a rotating tool in an interlocking manner between a first threaded section and a second threaded section, said first threaded section having right hand threads and said second threaded section having left hand threads, said clamp jaws having walls surrounding said transverse bores with diametrical openings for passing through said threaded sections of said threaded spindle, said diametrical openings including an inner side opening formed as an elongated hole defining a pivot region for said threaded spindle.
2. Compression implant according to claim 1, wherein:
said threaded spindle passes through said elongated hole, and is screwed into said threaded nut, said elongated hole pivot region allowing said thread spindle, screwed into said nut, to pivot by at least 15° around a central axis of said transverse bore.
3. Compression implant according to claim 2, wherein:
said diametrical openings include an outer side opening formed as a radial bore to said central axis of said transverse bore, said threaded spindle having at least one end, an outwardly tapering cone allowing pivoting of said clamp jaw, around said central axis of said transverse bore in a pulling direction, in cooperation with an inner edge of said outer opening formed as a radial bore.
4. Compression implant according to claim 2, wherein:
said two clamp jaws are formed of a substantially identical design with a claw provided with an approximately semicylindrical inner surface with a geometric axis of curvature extending at least approximately in parallel to said axis of said transverse bore.
5. Compression implant according to claim 4, wherein:
inner surfaces of said claws have grooves or tooth profiles extending in a circumferential direction.
6. Compression implant according to claim 4, wherein:
said claw has a trapezoidal cross-sectional profile.
7. Compression implant according to claim 4, wherein:
an inner surface of said claw has two different radii of curvature including a larger radius of curvature located on an inner side adjacent to said transverse bore.
8. Compression implant according to claim 3, wherein:
a semicircular end section of said inner opening, said end section being adjacent to said claw, extends coaxially with said outer opening designed as a radial bore.
9. Compression implant according to claim 2, wherein:
an axis of said inner opening forms a right angle with a rear side surface of said clamp jaw.
CA002080869A 1991-10-18 1992-10-19 Medical technical compression implant Expired - Fee Related CA2080869C (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CH03055/91A CH686610A5 (en) 1991-10-18 1991-10-18 Compression implant.
CH3055/91-0 1991-10-18

Publications (2)

Publication Number Publication Date
CA2080869A1 CA2080869A1 (en) 1993-04-19
CA2080869C true CA2080869C (en) 2003-01-28

Family

ID=4247605

Family Applications (1)

Application Number Title Priority Date Filing Date
CA002080869A Expired - Fee Related CA2080869C (en) 1991-10-18 1992-10-19 Medical technical compression implant

Country Status (6)

Country Link
US (1) US5395370A (en)
EP (1) EP0537598B1 (en)
AT (1) ATE133325T1 (en)
CA (1) CA2080869C (en)
CH (1) CH686610A5 (en)
DE (1) DE59205155D1 (en)

Families Citing this family (146)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB9217578D0 (en) * 1992-08-19 1992-09-30 Surgicarft Ltd Surgical implants,etc
FR2709411B1 (en) * 1993-09-03 1995-11-17 Sofamor Stabilizing forceps of a cervical spinal segment.
DE69526113D1 (en) * 1994-11-16 2002-05-02 Advanced Spine Fixation Syst GRAPPING HOOKS FOR FIXING THE SPINE SEGMENTS
US5752955A (en) * 1995-10-30 1998-05-19 Fastenetix, L.L.C. Sliding shaft variable length cross-link device for use with dual rod apparatus
FR2757761B1 (en) * 1996-12-27 1999-08-20 Stryker France Sa SPINE OTEOSYNTHESIS SYSTEM WITH POSITION ADJUSTMENT
US7959652B2 (en) * 2005-04-18 2011-06-14 Kyphon Sarl Interspinous process implant having deployable wings and method of implantation
US20080086212A1 (en) 1997-01-02 2008-04-10 St. Francis Medical Technologies, Inc. Spine distraction implant
US8128661B2 (en) * 1997-01-02 2012-03-06 Kyphon Sarl Interspinous process distraction system and method with positionable wing and method
US7201751B2 (en) * 1997-01-02 2007-04-10 St. Francis Medical Technologies, Inc. Supplemental spine fixation device
US7306628B2 (en) * 2002-10-29 2007-12-11 St. Francis Medical Technologies Interspinous process apparatus and method with a selectably expandable spacer
US6068630A (en) * 1997-01-02 2000-05-30 St. Francis Medical Technologies, Inc. Spine distraction implant
US6695842B2 (en) * 1997-10-27 2004-02-24 St. Francis Medical Technologies, Inc. Interspinous process distraction system and method with positionable wing and method
US20080215058A1 (en) * 1997-01-02 2008-09-04 Zucherman James F Spine distraction implant and method
FR2763832B1 (en) * 1997-05-29 1999-10-01 Materiel Orthopedique En Abreg VERTEBRAL ROD FOR INSTRUMENTATION OF RACHIDIAN OSTEOSYNTHESIS, AND OSTEOSYNTHESIS INSTRUMENTATION COMPRISING SUCH ROD
DE19732187C2 (en) * 1997-07-26 1999-05-27 Ulrich Gmbh & Co Kg Hooks for implants to correct and stabilize the spine
JPH1189860A (en) * 1997-09-18 1999-04-06 Senko Medical Instr Mfg Co Ltd Artificial ligament
US5971669A (en) * 1998-05-15 1999-10-26 L.B. Foster Company Mechnically stabilized retaining wall system having adjustable connection means for connecting precast concrete facing panels thereto
US6352537B1 (en) * 1998-09-17 2002-03-05 Electro-Biology, Inc. Method and apparatus for spinal fixation
WO2000019911A2 (en) 1998-10-02 2000-04-13 Synthes Ag Chur Spinal disc space distractor
US6283967B1 (en) 1999-12-17 2001-09-04 Synthes (U.S.A.) Transconnector for coupling spinal rods
US6234705B1 (en) 1999-04-06 2001-05-22 Synthes (Usa) Transconnector for coupling spinal rods
FR2794357B1 (en) * 1999-06-01 2001-09-14 Frederic Fortin DISTRACTION DEVICE FOR BONES OF CHILDREN HAVING HANGING AND ADJUSTMENT MEANS FOR TRACKING GROWTH
US6432108B1 (en) * 2000-01-24 2002-08-13 Depuy Orthopaedics, Inc. Transverse connector
JP2002095672A (en) 2000-09-22 2002-04-02 Showa Ika Kohgyo Co Ltd Instrument for joining bone and its joining component
JP2002095674A (en) * 2000-09-22 2002-04-02 Showa Ika Kohgyo Co Ltd Hook cable for atlantoaxial joint fixation and fixation system
US6620164B2 (en) 2000-09-22 2003-09-16 Showa Ika Kohgyo Co., Ltd. Rod for cervical vertebra and connecting system thereof
FR2827498B1 (en) * 2001-07-18 2004-05-14 Frederic Fortin FLEXIBLE VERTEBRAL CONNECTION DEVICE CONSISTING OF PALLIANT ELEMENTS OF THE RACHIS
FR2828398B1 (en) * 2001-08-08 2003-09-19 Jean Taylor VERTEBRA STABILIZATION ASSEMBLY
US6656180B2 (en) 2001-09-05 2003-12-02 Stahurski Consulting Inc. Apparatus for retaining vertebrae in a desired spatial relationship
US20030114853A1 (en) * 2001-10-12 2003-06-19 Ian Burgess Polyaxial cross connector
ATE272374T1 (en) * 2001-12-10 2004-08-15 Link Waldemar Gmbh Co INSERTION INSTRUMENT FOR SLED PROSTHESES
FR2843538B1 (en) * 2002-08-13 2005-08-12 Frederic Fortin DEVICE FOR DISTRACTING AND DAMPING ADJUSTABLE TO THE GROWTH OF THE RACHIS
US20040087948A1 (en) * 2002-08-29 2004-05-06 Loubert Suddaby Spinal facet fixation device
US7066938B2 (en) * 2002-09-09 2006-06-27 Depuy Spine, Inc. Snap-on spinal rod connector
FR2844179B1 (en) * 2002-09-10 2004-12-03 Jean Taylor POSTERIOR VERTEBRAL SUPPORT KIT
US7749252B2 (en) * 2005-03-21 2010-07-06 Kyphon Sarl Interspinous process implant having deployable wing and method of implantation
US8070778B2 (en) * 2003-05-22 2011-12-06 Kyphon Sarl Interspinous process implant with slide-in distraction piece and method of implantation
US8048117B2 (en) 2003-05-22 2011-11-01 Kyphon Sarl Interspinous process implant and method of implantation
US20060264939A1 (en) * 2003-05-22 2006-11-23 St. Francis Medical Technologies, Inc. Interspinous process implant with slide-in distraction piece and method of implantation
US7549999B2 (en) * 2003-05-22 2009-06-23 Kyphon Sarl Interspinous process distraction implant and method of implantation
US20060271194A1 (en) * 2005-03-22 2006-11-30 St. Francis Medical Technologies, Inc. Interspinous process implant having deployable wing as an adjunct to spinal fusion and method of implantation
US20080021468A1 (en) * 2002-10-29 2008-01-24 Zucherman James F Interspinous process implants and methods of use
US8147548B2 (en) 2005-03-21 2012-04-03 Kyphon Sarl Interspinous process implant having a thread-shaped wing and method of implantation
WO2004084742A1 (en) 2003-03-24 2004-10-07 Theken Surgical Llc Spinal implant adjustment device
US7717939B2 (en) 2004-03-31 2010-05-18 Depuy Spine, Inc. Rod attachment for head to head cross connector
US7645294B2 (en) * 2004-03-31 2010-01-12 Depuy Spine, Inc. Head-to-head connector spinal fixation system
US20050228377A1 (en) * 2004-04-07 2005-10-13 Depuy Spine, Inc. Spinal cross-connectors
US7585316B2 (en) * 2004-05-21 2009-09-08 Warsaw Orthopedic, Inc. Interspinous spacer
US7717938B2 (en) * 2004-08-27 2010-05-18 Depuy Spine, Inc. Dual rod cross connectors and inserter tools
US20060184248A1 (en) * 2005-02-17 2006-08-17 Edidin Avram A Percutaneous spinal implants and methods
US8038698B2 (en) * 2005-02-17 2011-10-18 Kphon Sarl Percutaneous spinal implants and methods
US20070276493A1 (en) * 2005-02-17 2007-11-29 Malandain Hugues F Percutaneous spinal implants and methods
US8157841B2 (en) * 2005-02-17 2012-04-17 Kyphon Sarl Percutaneous spinal implants and methods
US8007521B2 (en) * 2005-02-17 2011-08-30 Kyphon Sarl Percutaneous spinal implants and methods
US20080288078A1 (en) * 2005-02-17 2008-11-20 Kohm Andrew C Percutaneous spinal implants and methods
US20070276372A1 (en) * 2005-02-17 2007-11-29 Malandain Hugues F Percutaneous Spinal Implants and Methods
US8034080B2 (en) * 2005-02-17 2011-10-11 Kyphon Sarl Percutaneous spinal implants and methods
US7998174B2 (en) 2005-02-17 2011-08-16 Kyphon Sarl Percutaneous spinal implants and methods
US8097018B2 (en) * 2005-02-17 2012-01-17 Kyphon Sarl Percutaneous spinal implants and methods
US20080039944A1 (en) * 2005-02-17 2008-02-14 Malandain Hugues F Percutaneous Spinal Implants and Methods
US7988709B2 (en) * 2005-02-17 2011-08-02 Kyphon Sarl Percutaneous spinal implants and methods
US8100943B2 (en) 2005-02-17 2012-01-24 Kyphon Sarl Percutaneous spinal implants and methods
US20070055237A1 (en) * 2005-02-17 2007-03-08 Edidin Avram A Percutaneous spinal implants and methods
US8057513B2 (en) * 2005-02-17 2011-11-15 Kyphon Sarl Percutaneous spinal implants and methods
US8029567B2 (en) * 2005-02-17 2011-10-04 Kyphon Sarl Percutaneous spinal implants and methods
US8096994B2 (en) * 2005-02-17 2012-01-17 Kyphon Sarl Percutaneous spinal implants and methods
US20060241757A1 (en) * 2005-03-31 2006-10-26 Sdgi Holdings, Inc. Intervertebral prosthetic device for spinal stabilization and method of manufacturing same
US8034079B2 (en) * 2005-04-12 2011-10-11 Warsaw Orthopedic, Inc. Implants and methods for posterior dynamic stabilization of a spinal motion segment
US7727233B2 (en) * 2005-04-29 2010-06-01 Warsaw Orthopedic, Inc. Spinous process stabilization devices and methods
US20060271045A1 (en) * 2005-05-27 2006-11-30 Depuy Spine, Inc. Spinal cross-connector
FR2887434B1 (en) 2005-06-28 2008-03-28 Jean Taylor SURGICAL TREATMENT EQUIPMENT OF TWO VERTEBRATES
KR20080040684A (en) * 2005-07-18 2008-05-08 동명 전 Bi-polar bone screw assembly
US7628799B2 (en) * 2005-08-23 2009-12-08 Aesculap Ag & Co. Kg Rod to rod connector
US8075597B2 (en) * 2005-09-23 2011-12-13 Applied Orthopaedics Llc Apparatus for retaining vertebrae
WO2007040553A1 (en) * 2005-09-26 2007-04-12 Dong Jeon Hybrid jointed bone screw system
FR2891727B1 (en) * 2005-10-06 2008-09-26 Frederic Fortin PERFECTED AUTOBLOCATION DEVICE FOR COSTAL DISTRACTION DEVICE
US8357181B2 (en) * 2005-10-27 2013-01-22 Warsaw Orthopedic, Inc. Intervertebral prosthetic device for spinal stabilization and method of implanting same
US8083795B2 (en) * 2006-01-18 2011-12-27 Warsaw Orthopedic, Inc. Intervertebral prosthetic device for spinal stabilization and method of manufacturing same
US20070173823A1 (en) 2006-01-18 2007-07-26 Sdgi Holdings, Inc. Intervertebral prosthetic device for spinal stabilization and method of implanting same
US7682376B2 (en) * 2006-01-27 2010-03-23 Warsaw Orthopedic, Inc. Interspinous devices and methods of use
US20070191838A1 (en) * 2006-01-27 2007-08-16 Sdgi Holdings, Inc. Interspinous devices and methods of use
US7691130B2 (en) 2006-01-27 2010-04-06 Warsaw Orthopedic, Inc. Spinal implants including a sensor and methods of use
US8262698B2 (en) * 2006-03-16 2012-09-11 Warsaw Orthopedic, Inc. Expandable device for insertion between anatomical structures and a procedure utilizing same
WO2007114834A1 (en) 2006-04-05 2007-10-11 Dong Myung Jeon Multi-axial, double locking bone screw assembly
FR2899788B1 (en) * 2006-04-13 2008-07-04 Jean Taylor TREATMENT EQUIPMENT FOR VERTEBRATES, COMPRISING AN INTEREPINOUS IMPLANT
US8118844B2 (en) 2006-04-24 2012-02-21 Warsaw Orthopedic, Inc. Expandable device for insertion between anatomical structures and a procedure utilizing same
US8048118B2 (en) 2006-04-28 2011-11-01 Warsaw Orthopedic, Inc. Adjustable interspinous process brace
US20070270824A1 (en) * 2006-04-28 2007-11-22 Warsaw Orthopedic, Inc. Interspinous process brace
US8062337B2 (en) * 2006-05-04 2011-11-22 Warsaw Orthopedic, Inc. Expandable device for insertion between anatomical structures and a procedure utilizing same
US8147517B2 (en) * 2006-05-23 2012-04-03 Warsaw Orthopedic, Inc. Systems and methods for adjusting properties of a spinal implant
US20070276496A1 (en) * 2006-05-23 2007-11-29 Sdgi Holdings, Inc. Surgical spacer with shape control
US8048119B2 (en) * 2006-07-20 2011-11-01 Warsaw Orthopedic, Inc. Apparatus for insertion between anatomical structures and a procedure utilizing same
US20080086115A1 (en) * 2006-09-07 2008-04-10 Warsaw Orthopedic, Inc. Intercostal spacer device and method for use in correcting a spinal deformity
US8097019B2 (en) 2006-10-24 2012-01-17 Kyphon Sarl Systems and methods for in situ assembly of an interspinous process distraction implant
FR2908035B1 (en) * 2006-11-08 2009-05-01 Jean Taylor INTEREPINE IMPLANT
US8361117B2 (en) 2006-11-08 2013-01-29 Depuy Spine, Inc. Spinal cross connectors
US20080114455A1 (en) * 2006-11-15 2008-05-15 Warsaw Orthopedic, Inc. Rotating Interspinous Process Devices and Methods of Use
US7879104B2 (en) * 2006-11-15 2011-02-01 Warsaw Orthopedic, Inc. Spinal implant system
WO2008091266A1 (en) * 2006-12-07 2008-07-31 Dong Myung Jeon Spinal rod transverse connector system
US7955392B2 (en) 2006-12-14 2011-06-07 Warsaw Orthopedic, Inc. Interspinous process devices and methods
US7744632B2 (en) * 2006-12-20 2010-06-29 Aesculap Implant Systems, Inc. Rod to rod connector
BRPI0806432A2 (en) * 2007-01-23 2011-09-13 Bio Smart Co Ltd spacer to be used in a surgical operation for spinal processes
WO2008094572A2 (en) * 2007-01-30 2008-08-07 Dong Myung Jeon Anterior cervical plating system
US7947066B2 (en) * 2007-05-22 2011-05-24 K2M, Inc. Universal transverse connector device
US20090093820A1 (en) * 2007-10-09 2009-04-09 Warsaw Orthopedic, Inc. Adjustable spinal stabilization systems
US8696714B2 (en) * 2007-11-02 2014-04-15 The Board Of Trustees Of The Leland Stanford Junior University Intervertebral stabilization devices
US20090171395A1 (en) * 2007-12-28 2009-07-02 Jeon Dong M Dynamic spinal rod system
US8940019B2 (en) * 2007-12-28 2015-01-27 Osteomed Spine, Inc. Bone tissue fixation device and method
US20090248090A1 (en) * 2007-12-28 2009-10-01 Pronto Products, Llc Rib bone tissue clamp
US20090192548A1 (en) * 2008-01-25 2009-07-30 Jeon Dong M Pedicle-laminar dynamic spinal stabilization device
US20090194206A1 (en) * 2008-01-31 2009-08-06 Jeon Dong M Systems and methods for wrought nickel/titanium alloy flexible spinal rods
US20090198241A1 (en) * 2008-02-04 2009-08-06 Phan Christopher U Spine distraction tools and methods of use
US20090198338A1 (en) * 2008-02-04 2009-08-06 Phan Christopher U Medical implants and methods
US8114136B2 (en) 2008-03-18 2012-02-14 Warsaw Orthopedic, Inc. Implants and methods for inter-spinous process dynamic stabilization of a spinal motion segment
US8202299B2 (en) * 2008-03-19 2012-06-19 Collabcom II, LLC Interspinous implant, tools and methods of implanting
US8025678B2 (en) * 2008-03-26 2011-09-27 Depuy Spine, Inc. Interspinous process spacer having tight access offset hooks
US8313512B2 (en) * 2008-03-26 2012-11-20 Depuy Spine, Inc. S-shaped interspinous process spacer having tight access offset hooks
FR2929830A1 (en) * 2008-04-15 2009-10-16 Warsaw Orthopedic Inc SURGICAL TOOL FOR HANDLING AN IMPLANT, ESPECIALLY AN ANCHOR ELEMENT IMPLANTED IN A VERTEBRA
WO2010003139A1 (en) * 2008-07-03 2010-01-07 Krause William R Flexible spine components having a concentric slot
US20100030549A1 (en) * 2008-07-31 2010-02-04 Lee Michael M Mobile device having human language translation capability with positional feedback
US20100106252A1 (en) * 2008-10-29 2010-04-29 Kohm Andrew C Spinal implants having multiple movable members
US8114131B2 (en) * 2008-11-05 2012-02-14 Kyphon Sarl Extension limiting devices and methods of use for the spine
US20090143823A1 (en) * 2008-11-13 2009-06-04 Jeon Dong M Transverse connector system for spinal rods
US8002748B2 (en) * 2009-04-24 2011-08-23 Kyphon Sarl Digital syringe with compensation control
US8372117B2 (en) * 2009-06-05 2013-02-12 Kyphon Sarl Multi-level interspinous implants and methods of use
US8157842B2 (en) * 2009-06-12 2012-04-17 Kyphon Sarl Interspinous implant and methods of use
AU2010270915A1 (en) 2009-06-23 2011-12-15 Osteomed Bone tissue clamp
US8636772B2 (en) 2009-06-23 2014-01-28 Osteomed Llc Bone plates, screws, and instruments
JP5701880B2 (en) 2009-08-10 2015-04-15 オステオメド リミテッド ライアビリティ カンパニー Spinous process fixation graft
US20110077686A1 (en) * 2009-09-29 2011-03-31 Kyphon Sarl Interspinous process implant having a compliant spacer
US8771317B2 (en) * 2009-10-28 2014-07-08 Warsaw Orthopedic, Inc. Interspinous process implant and method of implantation
US8317831B2 (en) * 2010-01-13 2012-11-27 Kyphon Sarl Interspinous process spacer diagnostic balloon catheter and methods of use
US8114132B2 (en) * 2010-01-13 2012-02-14 Kyphon Sarl Dynamic interspinous process device
US8147526B2 (en) 2010-02-26 2012-04-03 Kyphon Sarl Interspinous process spacer diagnostic parallel balloon catheter and methods of use
US8814908B2 (en) 2010-07-26 2014-08-26 Warsaw Orthopedic, Inc. Injectable flexible interspinous process device system
US8591548B2 (en) 2011-03-31 2013-11-26 Warsaw Orthopedic, Inc. Spinous process fusion plate assembly
US8591549B2 (en) 2011-04-08 2013-11-26 Warsaw Orthopedic, Inc. Variable durometer lumbar-sacral implant
AU2012340180B2 (en) 2011-11-17 2017-06-08 Howmedica Osteonics Corp. Interspinous spacers and associated methods of use and manufacture
US8828056B2 (en) 2012-04-16 2014-09-09 Aesculap Implant Systems, Llc Rod to rod cross connector
US8771319B2 (en) 2012-04-16 2014-07-08 Aesculap Implant Systems, Llc Rod to rod cross connector
US10098665B2 (en) 2012-08-01 2018-10-16 DePuy Synthes Products, Inc. Spine derotation system
DE202013105963U1 (en) * 2013-12-30 2014-01-22 Fehling Instruments Gmbh & Co. Kg Sternumoffenhalter
EP3131486B1 (en) 2014-04-16 2023-06-14 Dynamic Spine, LLC Adjustable screw-clamp orthopedic apparatus
FR3040285B1 (en) * 2015-08-31 2017-09-15 Bpath VERTEBRAL IMPLANT, METHOD FOR SETTING SUCH IMPLANT AND TOOL FOR IMPLANT PLACEMENT
WO2018009671A1 (en) 2016-07-07 2018-01-11 Stern Mark S Spinous laminar clamp assembly
CN114404010A (en) * 2021-12-23 2022-04-29 山东师范大学 Adjustable vertebral lamina hook internal fixation device for lumbar isthmus fissure

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE561561C (en) * 1929-02-12 1932-10-15 Heinrich C Ulrich Device for the treatment of broken bones
US2226651A (en) * 1938-12-16 1940-12-31 Raymond D York Crucible support
US4274401A (en) * 1978-12-08 1981-06-23 Miskew Don B W Apparatus for correcting spinal deformities and method for using
US4289123A (en) * 1980-03-31 1981-09-15 Dunn Harold K Orthopedic appliance
CH646857A5 (en) * 1980-11-18 1984-12-28 Sulzer Ag SPONDYLODESIS STABILIZER.
SU1074514A1 (en) * 1982-06-18 1984-02-23 Саратовский научно-исследовательский институт травматологии и ортопедии Apparatus for correction and fixation of spinal column
US4611582A (en) * 1983-12-27 1986-09-16 Wisconsin Alumni Research Foundation Vertebral clamp
DE3434753C2 (en) * 1984-03-14 1986-12-04 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V., 8000 München Implant for the surgical correction of the lateral curvature of the spine
US4771767A (en) * 1986-02-03 1988-09-20 Acromed Corporation Apparatus and method for maintaining vertebrae in a desired relationship
DE8703022U1 (en) * 1987-02-27 1987-04-30 Weber, Gerhard, 7238 Oberndorf, De
SU1517954A2 (en) * 1987-09-23 1989-10-30 Саратовский научно-исследовательский институт травматологии и ортопедии Arrangement for correcting and fixing spinal column
US5084049A (en) * 1989-02-08 1992-01-28 Acromed Corporation Transverse connector for spinal column corrective devices
DE9004240U1 (en) * 1990-04-11 1991-08-08 Waldemar Link Gmbh & Co, 2000 Hamburg, De

Also Published As

Publication number Publication date
EP0537598B1 (en) 1996-01-24
CA2080869A1 (en) 1993-04-19
DE59205155D1 (en) 1996-03-07
CH686610A5 (en) 1996-05-15
US5395370A (en) 1995-03-07
ATE133325T1 (en) 1996-02-15
EP0537598A2 (en) 1993-04-21
EP0537598A3 (en) 1993-12-22

Similar Documents

Publication Publication Date Title
CA2080869C (en) Medical technical compression implant
US5382248A (en) System and method for stabilizing bone segments
US7618444B2 (en) Surgical instrument for moving a vertebra
JP5703307B2 (en) Reducer for treating spinal irregularities
US8075565B2 (en) Surgical instruments for delivering forces to bony structures
US7618440B2 (en) Temporary spinal fixation apparatuses and methods
US6641583B2 (en) Apparatus for retaining bone portions in a desired spatial relationship
US6689133B2 (en) Multi-axial bone anchor system
EP2050408B1 (en) Pedicle screw system
EP0929265B1 (en) A device for fixating and adjusting the positions of vertebrae in vertebral surgical operations
US7608078B2 (en) Expansion apparatus for adjustable spinal implant
US8361120B2 (en) Outrigger
US20090105774A1 (en) Rod insertion instrument and method of use
US8690923B2 (en) Bone fixation systems and methods
US20040176766A1 (en) Apparatus for connecting a longitudinal member to a bone portion
KR20020057790A (en) Pedicle screw assembly
AU2006236857A1 (en) Anti-backout mechanism for an implant fastener
JP2002543915A (en) Bone fixation device with rotary joint
JP2009511227A (en) Adjustable bone anchor assembly
JP2004537354A (en) Spinal stabilization system and method
JP2018509228A (en) Orthopedic reduction device and method for attaching the same
AU2017363425B2 (en) Expandable vertebral body replacement device and method
US9427276B2 (en) Method of changing position of bones
CA2896143A1 (en) Mtv implant set

Legal Events

Date Code Title Description
EEER Examination request
MKLA Lapsed