CA2086333C - Self-expanding prosthesis having stable axial length - Google Patents

Self-expanding prosthesis having stable axial length

Info

Publication number
CA2086333C
CA2086333C CA002086333A CA2086333A CA2086333C CA 2086333 C CA2086333 C CA 2086333C CA 002086333 A CA002086333 A CA 002086333A CA 2086333 A CA2086333 A CA 2086333A CA 2086333 C CA2086333 C CA 2086333C
Authority
CA
Canada
Prior art keywords
stent
axial length
segments
fixation
diameter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CA002086333A
Other languages
French (fr)
Other versions
CA2086333A1 (en
Inventor
Christopher H. Porter
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Schneider USA Inc
Original Assignee
Schneider USA Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Schneider USA Inc filed Critical Schneider USA Inc
Publication of CA2086333A1 publication Critical patent/CA2086333A1/en
Application granted granted Critical
Publication of CA2086333C publication Critical patent/CA2086333C/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/82Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/86Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure
    • A61F2/90Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure characterised by a net-like or mesh-like structure
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/82Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/852Two or more distinct overlapping stents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/82Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2002/826Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents more than one stent being applied sequentially
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/82Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/848Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents having means for fixation to the vessel wall, e.g. barbs
    • A61F2002/8486Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents having means for fixation to the vessel wall, e.g. barbs provided on at least one of the ends
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2220/00Fixations or connections for prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof
    • A61F2220/0008Fixation appliances for connecting prostheses to the body
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2220/00Fixations or connections for prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof
    • A61F2220/0008Fixation appliances for connecting prostheses to the body
    • A61F2220/0016Fixation appliances for connecting prostheses to the body with sharp anchoring protrusions, e.g. barbs, pins, spikes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2230/00Geometry of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof
    • A61F2230/0063Three-dimensional shapes
    • A61F2230/0073Quadric-shaped
    • A61F2230/0078Quadric-shaped hyperboloidal
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2250/00Special features of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof
    • A61F2250/0014Special features of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof having different values of a given property or geometrical feature, e.g. mechanical property or material property, at different locations within the same prosthesis
    • A61F2250/0023Special features of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof having different values of a given property or geometrical feature, e.g. mechanical property or material property, at different locations within the same prosthesis differing in porosity
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2250/00Special features of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof
    • A61F2250/0058Additional features; Implant or prostheses properties not otherwise provided for
    • A61F2250/006Additional features; Implant or prostheses properties not otherwise provided for modular
    • A61F2250/0063Nested prosthetic parts

Abstract

A body implantable stent (16) consists of two or more generally tubular, coaxial and slidably connected stent segments (20, 22).
Each segment (20, 22) is of open weave construction, formed of multiple braided, helically wound strands of resilient material. The stent is elastically deformed to a reduced radius when deployed.
When released after positioning, the stent (16) self-expands radially and each segment (20, 22) contracts in the axial direction.
To preserve a consistent length of the stent (16) the axially outward and non-overlapping portions (30, 32) of the stent (16) can be designed for secure fixation to the tissue, for example as radially outward flares (34, 36). Alternative approaches to maintain axial length include the addition of reinforcing filaments (62) near the stent opposite ends to increase the restoring force, the provision of fixation hooks (70) at opposite ends of the stent, and securing an elongate, axially directed, flexible and inextensible wire (104) to the opposite ends of the stent.

Description

W092/0~3 2 ~ 8 6 3 3 ~ PCT/US91/02854 SELF-EXPANDING PROSTHESIS HAVING STABLE AXIAL LENGTH
Technical Field ~-~
The present invention relates to body implantable devices, and more particularly to prostheses and grafts intended for long-term or permanent fixation in body cavities.
Background Art A wide variety of patient treatment and diagnostic procedures involve the use of devices inserted into the body of the patient, with some of these devices being permanently implanted. Among these devices are prostheses or grafts for transluminal implantation, for example as disclosed in U. S. Patent No. 4,655,771 (Wallsten). The ~ lS prosthesis described in Wallsten is a flexible ; ~ tubular braided structure formed of helically wound thread elements. Gripping members at opposite ends of the prosthesis initially secure it to a catheter, with the proximal gripping member being movable distally to give the prosthesis the shape of a balloon. In deployment, the gripping members and catheter are removed, leaving the prosthesis to . .
assume a substantially cylindrical shape as it slightly expands and substantially conforms to a blood vessel wall or other tissue. Another prosthesis is disclosed in U. S. Patent No. 4,681,110 (Wiktor). A flexible tubular liner, constructed of braided strands of a flexible plastic, is insertable into the aorta, whereupon it self-expands against an aneurysm to direct blood flow past the aneurysm. The ~braided stents of Wallsten and Wiktor axially contract as they radially expand.
Another elastic stent is shown in U. S. Patent No. 4,830,003 (Wolff et al). The stent includes a W092/00~3 2 ~ ~ ~ 3 ~ ~ PCT/US91/02854 series of generally longitudinal wires welded together in pairs, with the wires in ea~h pair then bent into a "V" shape. Like the braided stents, this stent shortens axially as it radially expands.
Prostheses also have been constructed of plastically deformable materials. U. S. Patent No.
4,733,665 (Palmaz) discloses intralum`inal vascular grafts radially expanded using angioplasty balloons.
The grafts are wire mesh tubes, and axially shorten as they radially expand. U~ S. Patent No. 4,800,882 (Gianturco) features a stent formed of wire, including a plurality of serpentine bends to form opposed loops. A balloon is inflated to radially expand the stent, without substantial axial -~
shortening.
Yet another approach to prosthesis design is shown in U. S. Patent No. 3,868,956 (Alfidi et al).
Alfidi et al discloses a strainer or screen with a plurality of generally longitudinal wires, bound together by a cylindrical sleeve. The wires are deformable into a longitudinal, straight-line configuration for implantation. Once implanted, the device is heated. Due to the recovery property of the metal forming the wires (e.g. nitinol alloy), heating causes the wires to flare radially outward at the opposite ends, thus to secure the device at the desired location. A stent including meanæ for maintaining a constant axial length in spite of radial expansion or contraction, is disclosed in U.
S. Patent No. 4,553,545 (Maass et al), as a prosthesis in the form of a helical coil spring. In ~ne embodiment, a constant axial length of the spring is maintained, with opposite ends of the spring rotated relative to one another to change the spring W092/0~43 2 ~ g ~ 3 3 3 PCT/USgl/028~ ~-pitch and radius. An alternative approach involves maintaining a constant pitch over a given section of a spring, by providing spring material to a "constant length" section from a more compressed section of the spring. In each case, the spring preferably is elastic, with a memory favoring the radially expanded configuration. `
A self-expanding stent or prosthesis often is preferred over a plastically deformed device.
10 Resilient stents can be deployed without dilatation `
balloons or other stent expanding means. A -`
self-expanding stent can be preselected in accordance `
with the diameter of the blood vessel or other `
fixation site. While deployment requires skill in positioninq the prosthesis, the added skill of properly dilating the balloon to plastically expand a prosthesi~ to a selected diameter is not required.
Also, the self-expanding device remains at least slightly compressed after fixation, and thus has a restoring force which facilitates acute fixation. By contrast, the plastically expanded stent must rely on the restoring force of deformed tissue, or on hooks, - barbs or other independent fixation means. ` Further advantages arise from constructing the prosthesis of multiple, braided and helically wound strands or filaments as in the aforementioned Wallsten patent. The filaments themselves have a restoring force which causes the filaments to bear against tissue walls of the body cavity in which the stent is fixed, thus maintaining the cavity open. At the same time there is sufficient space between adjacent filaments to promote embedding of the stent into the tissue, and fibrotic growth to enhance long-term fixation. A further advantage of this -W092/00~3 2 0 ~ S 3 3 3 PCT/US91/02854 construction .is that it enables a substantial radial contraction of the prosthesis during deployment, for ;
example to as little as about one-fourth of the normal diameter (the diameter in the relaxed state, i.e. when subject to no external forces). This facilitates deployment of the prosthesis through narrow vessels or other constrictions on the way to the point of fixation.
At the same time, a substantial axial elongation accompanies the radial contraction. There is a substantial axial contraction or shortening as the stent self expands, once free of its radial constraint. Thus, there is a rubbing or scraping action axially along tissue as the radially expanding lS stent also axially shortens. Should tissue at the fixation area further yield to radial prosthesis expansion in the longer term, such expansion causes further axial shortening and wiping action, and presents further risk of injury to tissue. A further drawback is that a stent during its fixation may radially expand more than expected, retaining less than the intended or minimum necessary axial length.
Likewise, a plastically deformable stent may require more than the anticipated radial expansion and axial shortening.
Therefore, it is an object of the present invention to provide a prosthesis of open weave, helical and braided construction capable of substantially maintaining its axial length as it radially self-expands.
Another object is to provide a radially ~expanding tubular stent cQmprised of at least two stent segments, with an area of overlap of the sections variable in axial length to maintain a W092/00043 ~9~ 3 3 3 PCT/US91/02854 consistent axi`al separation between non-overlapping ends of the stent.
Yet another object is to provide a stent with a medial portion variable in axial length, in s combination with means at the opposite end portions of the stent for fixing the stent to bodily tissue, such that the bodily tissue maintains a substantially ;
constant axial separation of the two end portions during any radial expansion or contraction of the stent.
Disclosure of Invention To achieve these and other objects, there is - provided a body implantable device, including coaxial first and second open weave stent segments slidably engaged to form a stent. The stent segments are engaged along respective concentric first and second axially inward portions overlapping one another t~
form a medial region of the stent. Further, the stent segments include opposite non-overlapping first 20 and second axially outward regions with respective :
and opposite first and second ends of the stent. The stent segments, at least along the axially inward portions, have a predetermined first diameter and a predetermined first axial length. The stent segments are radially compressible to a second diameter less than the first diameter and to a second axial length longer than the first axial length, to facilitate an axial insertion of the stent into a body cavity for delivery to a selected location along the body cavity and subsequent fixation of the stent to a cavity wall segment defining the body cavity. During its fixation, the stent radially expands. The first and second axially inward portions slide relative to one another to reduce the axial length of the medial W092/00~3 2 0 ~ ~ 3 ~t 3 PCT/US91/02854 region during the radial expansion. Thus the stent maintains a substantially constant axial length during radial expansion.
A preferred approach uses means for fixing the outward ends of a self-expanding stent, e.g.
respective first and second flared outer end portions along the axially outward regions of the stent. The first and second ends have diameters greater than the first diameter when the stent is in the relaxed state, and when compressed tend to have a greater restoring force against the cavity wall segment, as compared to the remainder of the stent. The end diameters should be greater than the medial region diameter by five percent or more, ensuring a substantial difference in restoring force for a relatively constant diameter of the cavity along the tissue wall segment.
.
Alternatively, the outer end portion of each stent segment can have the same diameter as the -20 medial region, but be composed of larger diameter -filaments, added windings of filaments or otherwise have increased stiffness or resistance to radial contraction as compared to the medial region. Yet another alternative is to provide fixation elements, for example hooks, at the opposite ends of the stent.
In combination with positive fixation of the -stent ends, a substantial medial overlapping region is provided when the stent segments are in a radially compressed or delivery configuration. For example, the overlapping region may comprise three-fourths or more of the axial length of the compressed stent.
~Then, upon deployment of the stent, both stent segments radially expand and axially shorten. With the outer ends of the stent fixed, the axial W O 92/00043 2 ~ 3 ~ ~ PC~r/US91/02854 shortening occurs only along the medial region, substantially shortening the region of overlap but maintaining the desired axial separation of the opposite stent ends.
An open weave of braided, helically wound strands or filaments is the preferred structure of the tubular stent. The open weave structure enables substantial self-expansion in the stent, for example ~
to a fixation diameter at least three times the `
diameter during delivery. This of course results in a substantial corresponding axial shortening in each of the stent segments, but due to the overlapping medial region of the stent, the overall axial length `remains virtually constant.
A pliable c~theter is a suitable apparatus for delivery and deployment of ~he stent. More particularly, a pliable sheath can surround at least the distal end portion of the catheter and extend beyond the distal tip to surround the stent segments as wel}, maintaining them in a radially compressed delivery configuration. The catheter can be provided with a lumen, through which a guide wire may be `-`
inserted to facilitate travel of the catheter and compressed stent through blood vessels or other body cavities to the fixation area. Once the catheter is inserted properly to position the stent at the desired fixation point, the outer sheath is withdrawn ;~
proximally, with the stent abutting the catheter and thus secured against proximal travel with the sheath.
The distal portion of the stent self-expands first, and in expanding against tissue, secures the stent - ~segment against proximal travel. With one end of the stent constrained by tissue and the opposite end constrained by a stationary catheter, the axial `

W092/00043 ~ ~ 6 3 3 3 PCT/US91/028S4 -length of the stent remains substantially constant.
Axial shortening of the stent segments, which accompanies their radial expansion, tends to diminish the length of the medial region and leave the overall 5 axial length unaffected. ~;
Following fixation, further yielding of the tissue segment can result in further radial expansion of the stent. However, with the opposite ends of the ~
stent secure, any axial shortening of the stent `
segments again affects only the medial overlapping region. Thus, the advantages of the open weave construction are retained, without an undesirable -~
shortening of the stent as it radially self-expands.
Brief Description of ~rawings For a further understanding of the above and `;
other features and advantages, reference is made to -the following detailed description and the drawings, in which:
Figure 1 is a side elevation of a body 20 implantable device constructed in accordance with the `
- ~ present invention;
Figure 2 is a side sectional view of a catheter and sheath retaining the implantable device in a radially compressed condition;
Figure 3 is an end view of the device, catheter and sheath; `
Figure 4 is a side sectional view showing `~
deployment of the device within a body cavity;
Figure 5 is a side view of the device fixated ~`
30 within the cavity; ^;
Figure 6 is a side elevation of an alternative ~embodiment device in the relaxed or fully radially expanded condition; -W092/00043 2 ~ ~ S 3 3 3 PCT/US91/02854 `~

_ g _ .-:
Figure 7 is a side elevation showing yet another alternative device in the expanded or relaxed condition; ~;~
Figure 8 is a side elevation illustrating a further alternative device in a radially compressed state;
Figure 9 is a side elevation of the device of Figure ~ in the expanded condition; -Figure 10 is a side elevation showing yet `
another alternative device, in a radially compressed condition; and Figure ll is a side elevation of the device of -;
Figure lO in the radially expanded condition.
Modes for Carrying Out the Invention Turning now to the drawings, there is shown in Figure 1 a body implantable prosthesis or stent 16.
Stent 16 has an open mesh or weave construction~
formed of helically wound and braided strands or filaments 18 of a resilient material, for example a body compatible stainless steel or an elaslomer, e.g.
polypropylene, polyurethane, polysulfone or a polyester. ~`
Stent 16 includes coaxial proximal and distal stent segments 20 and 22. A medial region 24 is formed by the overlapping of respective axially inward portions of stent segments 20 and 22. Axially outward, non-overlapping portions of the stent ^
segments are indicated at 30 and 32, respectively.
At opposite ends of the stent are flared ends 34 and 36, each having a greater radius than the nominal radius over the majority of the stent length. As is ~ later explained, flared ends 34 and 36 provide a fixation feature useful to maintain a constant overall axial length in stent 16, even while stent W092J00043 2 ~ ~ S 3 3 ~ ` PCT/US91/02854 - 10 - :
segments 20 and 22 radially self-expand and axially contract during fixation.
In Figure 1, stent 16 is shown in its relaxed condition, with no external forces applied to radially contract the stent. Stent 16 is self-expanding in the sense that when not subject to external forces, it assumes a diameter much larger `
than the diameter illustrated in Figures 2 and 3. In these figures, the stent is elastically deformed and maintained in a radially reduced configuration by a pliable, dielectric sheath 38 surrounding the stent.
An elongate and pliable catheter 40, of which just the distal end region is shown in Figure 2, -includes a distal tip 42 which abuts the proximal end of the stent. The proximal portion of sheath 38 surrounds the distal end region of the catheter.
Catheter 40 has a central lumen 44 open to tip 42 and running the length of the catheter, to permit delivery of a drug, in liquid form, to the catheter `
distal tip from a supply at the proximal end of the catheter. Lumen 44 further enables the use of a guide wire (not shown) which can be intravenously inserted, by its distal end to the desired point of fixation for stent 16. With the guide wire in place, catheter 40, stent 16 and sheath 38 are positioned to surround the proximal end of the guide wire with the guide wire contained within lumen 44. Then, the catheter, sheath and stent are moved distally or advanced, directed by the guide wire to the fixation :
location, whereupon the guide wire can be withdrawn.
Sheath 38 preferably is constructed of silicone ~rubber or other suitable biocompatible material, and surrounds the stent and catheter at least along the catheter distal end region, or along the full length W092/00043 Z ~'S~ 3 3 3 PCT/US91/02854 of the catheter if desired. Sheath 38 preferably is thin to facilitate intravascu~ar insertion of the catheter, sheath and stent, yet is sufficiently thick - to maintain stent 16 in a reduced radius or delivery configuration against the restoring force of strands 18. The outside diameter of the assembly including the catheter, stent and sheath is approximately 2.3 millimeters.
Stent 16 is particularly well suited for use as a prosthesis or graft in a blood vessel or other body cavity. One advantageous use of the stent occurs in connection with percutaneous transluminal coronary angioplasty (YTCA) procedures. ~While such procedures afford significantly reduced cost and risk as i~
compared to coronary bypass operations, acute closure and recurrence of stenosis are significant problems in up to about thirty percent of constricted or blocked passages opened by balloon angioplasty. The ~ fixation of stent 16 within a blood vessel along a `~
; 20 préviously occluded region tends to keep this region permanently open. - ~, Fixation of stent 16, within a blood vessel 46 having a tissue wall segment 4~, begins with intravascular insertion of the stent, catheter and 25 sheath in the delivery configuration shown in Figures `
2 and 3. The reduced radius facilitates insertion of this assembly through blood vessel 46 until stent 16 reaches a predetermined fixation location along the blood vessel. Once the proper positioning of the 30 stent is confirmed, e.g. through use of one or more ;
radiopaque markings on the stent, sheath or catheter, sheath 38 is moved proximally with respect to catheter 40.

W092/0~043 2 ~ ~ ~ 3 3 3 PCT/US91/02854 With distal tip 42 abutting stent 16, the catheter prevents the stent from traveling proximally with sheath 38 as the sheath is withdrawn~. Thus, as seen from Figure 4, stent 16 becomes free of sheath 5 38 over an increasing distal portion of its axial length. As each of stent segments 20 and 22 becomes free, it radially self-expands until contacting tissue wall segment 48, then undergoes slightly further radial expansion until the tendency to 10 radially expand is counterbalanced by the restoring `
force exerted radially inward by the tissue wall segment. At the equilibrium condition, shown in Figure 5, stent is not fully radially expanded to the relaxed configuration shown in Figure 1, and thus 15 applies a restoring force which tends to maintain the stent at the fixation position within vessel 46. ` f .
A salient feature of the present invention is `
the concentric and slidable mounting of stent ~
segments 20 and 22 in combination with the fixation 20 provided by flared ends 34 and 36. During initial withdrawal of sheath 38, the distal flared end 36 is the first to encounter tissue wall segment 48. Due to its larger nominal (relaxed state) diameter, flared end 36 tends to radially expand somewhat more 25 than the remainder of axially outward portion 32 of this segment, and applies comparatively greater restoring force in the radially outward direction against the tissue wall segment. ;Accordingly, the axial shortening of distal stent segment 22 which 30 accompanies radial expansion, e.g. from a length of 100 mm when delivered to a fixation length of 50 mm, ~ccurs almost entirely by travel of axially inward portion 28, distally or rightwardly as viewed in Figure 4. The slidable engagement of segments 20 and W092/0~3 h ~ ~ 3 3 3 PCT/US91J02854 ;-- 13 - ;~
22 permits such distal travel while proximal segment 20 remains substantially fixed relative to catheter -40.
As sheath 38 is further withdrawn, proximal segment 20 likewise radially expands and axially shortens. As illustrated in Figure 4, much of axially outward portion 30 of segment 20 remains radially compressed~within sheath 38, and thus is `
held fixed with respect to the catheter.
10 Conseguently, the axial contraction of proximal stent ~;~
segment 20 during radial expansion occurs almost entirely by virtue of proximal travel of its axially inward portion. This of course involves further sliding of the stent segments relative to one 15 another, and further reduces the axi~l length of `~
medial overlapping region 24.
As seen from Figures 2 and 5, the total axial length of stent 16, designated "L", is substantially the same whether the stent is in the deployment 20 state, or the radially expanded to equilibrium or fixation. Proximal stent segment 20 and distal stent segment 22 are each substantially shorter in equilibrium. However, virtually all of the reduction in axial length is reflected in the substantially 25 reduced length of medial overlapping region 24, which accounts for more than three-fourths of the total stent length in Figure 2, and only about one-fifth of } the overall stent length in Figure 5.
Eventually, fixation of stent 16 becomes 30 permanent by ~-irtue of the embedding of strands 18 into tissue wall segment 48, and fibrotic qr~wth of tissue between and around strands to anchor the stent. This type of fixation occurs over a period of weeks, and in the inter~ening time, tissue wall .

W092~00043 2 ~ 3 PCT/US91/02854 segment 48 may yield to allow further radial expansion of a stent, and further axial shortening of stent segments 20 and 22. The axial length "L"
remains substantially constant nonethelëss, as this 5 further axial contraction is again reflected in a --further shortening of the medial overlapping region.
Axial contraction occurs along the medial region, since flared ends 34 and 36 continue to exert a comparatively greater restoring force against the lO tissue, thus more securely anchoring the ends as `~`
compared to the central portions of the stent. Thus, -the overall length of the stent is maintained not only during and immediately after fixation, but in the interim until fibrosis permanently secures the 15 stent. `~
Figure 6 shows an alternative embodiment stent 52, again with concentric and slidably connected proximal and distal stent segments as indicated at 54 and 56. Axially inward portions of the stent segments overlap to form a medial region 58. Stent S2 has an open mesh or weave construction, formed of helically wound and braided filaments 60.
Stent 52, illustrated in its relaxed or unstressed state, does not include radially outward ``
flares at its opposite ends. In lieu of flared ends, each of stent segments 54 and 56 includes at its axially outward end a plurality of reinforcing strands 62 connected to the braided filaments 60, thus to create respective proximal and distal reinforced end regions 64 and 66. The reinforcing strands 62 can, but need not, be of the same ~construction as the base filaments. In either event, the reinforcement strands lend further elastic resistance to radial compression, such that a given W092/00043 2 ~ ~ u ~3 ~ 3 PCT/US91/02854 elastic radial compression of stent 52 requires a greater force at reinforced end regions 64 and 66 as .
compared to the force required between these regions.

Stent 52 can be deployed in the manner described ~:~
above in connection with stent 16. Following proper : positioning of the stent within a blood~vessel or other body cavity, a surrounding sheath similar to sheath 38 is withdrawn proximally from its surrounding relation with stent 52, allowing the ~
lO stent to radially self-expand into contact with the ~`
tissue forming the cavity. Again, stent 52 is - selected to have a nominal diameter (in the relaxed ..
state) greater than the diameter of the body cavity, ...
~ ~ so that base filaments 60 and reinforcement strands : 15 62 engage the tissue before full expansion, and are contained short of full expansion by body tissue, for `-an~equillbrium of the restoring force in the stent and the oppositely directed restoring.force in the ,~
:~ body tissue. With the stent in equilibrium (as shown :~: : : 20 in Figure 5 in connection with stent 16), reinforced .
: ~: end regions 64 and 66 may or may not flare slightly radially outward from the remainder of the stent. In : either event, the restoring force at the reinforced end regions is greater than the restoring force along ~ 25 the remainder of the stent length. Accordingly, the ~`
: opposite ends of stent 52 tend to remain secure in their axial positioning relative to the body tissue, : with axial contraction occurring as substantial reduction in the length of medial region 58.
: 30 Figure 7 illustrates yet another approach to : preserving the axial length of the stent, in this case, a plurality of fixation hooks 70 at the ; - opposite ends of a stent 72 having a sIidably W092/00043 2 ~ 3 3 PCT/US91/02854 interconnected and coaxial proximal and distal stent ~
segments 74 and 76. Fixation hooks 70 present some '".f~' risk of injury and thus are more limited in their i application than the fixation alternatives previously discussed. Nonetheless, hooks 70 provide a positive and immediate fixation of stent 72 within a cavity at ~
the opposite stent ends. Subsequent radial expansion -, and axial contraction of stent segments 74 and 76 ~:
serves to reduce the length of a medial region 78, 10 preserving the overall length of the stent. ~`
Figures 8 and 9 illustra~e a further embodiment stent or prosthesis 80 including a proximal segment 82, a distal segment 84 and a center segment 86 slidably engaged with the proximal and distal segments. All three segments of prosthesis 80 have ; ~ the previously described open mesh or weave construction of braided filaments. Stent 80 thus ii includes two overlapping regions intermediate its proximal and distal ends 88 and 90, name}y a proximal intermediate region 92 and a distal intermediate region 94. While center segment 86 is shown with a smaller radius than the other segments for `
convenience of illustration, all segments preferably have substantially the same radius. ~
Figure 9 illustrates stent 80 in the relaxed or i`
radially expanded state. Each of segments 82, 84 and 86 has a reduced axial dimension as well as a larger ~-radius. Nonetheless, the axial distance between proximal end 88 and distal end 90 remains about the same, with virtually all of the axial contraction reflected in the substantially reduced axial ~dimensions of intermediate overlapping regions 9~ and 94.

W092/00043 ~5~ ~ ~ 3 3 PCT/US91/0~854 Prosthesis 80 can be deployed in the manner described above in connection with other embodiments.
Following the desired positioning of the prosthesis within a blood vessel or other body cavity, a surrounding sheath is withdrawn slidably or folded back from a surrounding relation to the prosthesis, ~-permitting it to radially self-expand into contact with a tissue wall segment forming the cavity (not shown). Of course, the diameter of the cavity should be less than the normal or radially expanded diameter of the prosthesis. Prosthesis 80 does not utilize any special end fixation structure such as the earlier described hooks, reinforced ends or flared ends. Rather, the prosthesis is positioned by virtue of the self-expansion and restoring force of the segments, to maintain their relative positions, particularly during their deployment and release from a sheath or the like, but also after fixation. It should be noted that this approach is suitable for the two-segment stents earlier described, although some type of end fixation means facilitates maintaining a constant axial length of the stent. If desired, a fixation structure can be provided at ends 88 and 90.
Figures 10 and 11 illustrate yet another embodiment stent 96 including proximal and distal segments 98 and 100, slidably engaged and overlapping along a medial region 102. A strand or wire 104 runs parallel to stent 96 and is secured at points 106 and 108 near proximal and distal ends 110 and 112, respectively. Wire 104 is sufficiently flexible to bend along with stent segments 98 and 100 durin~
delivery of the stent to the point of fixation. Yet the wire is stiff and substantially inextensible in W092/00043 2 0 8 6 3 ~ ~ PCT/US91/02854 - the axial direction. Consequently wire 104 maintains a constant axial separation of proximal end llO and distal end 112, whether stent segments 98 and lO0 are radially confined as shown in Figure 10 or radially expanded as seen in Figure 11. With wire 104 positively determining the total length of stent 96, all of the axial contraction of stent segments 98 and lOO is reflected in the reduction of medial overlapping region 102. While the provision and securement of one or more wires 104 add to the cost of stent 96 as compared to other embodiments, the wire ensures that the stent length remains constant, regardless of the amount of radial expansion during -fixation. --The above embodiments all feature an open weave or braided construction of resilient filaments for a self-expanding stent or prosthesis. As an alternative, the stents can be constructed of plastically deformable strands. Such stents are delivered in a reduced-radius configuration, and after positioning, are radially expanded by dilating a catheter balloon or the like, e.g. as in the aforementioned Palmaz patent. Moreover, while the disclosed embodiments are employed in blood vessels, it is to be appreciated that these stent designs are suited for other body cavities as well, e.g. the urethra, biliary tree or tracheobronchial tree.
Regardless of whether hooks, reinforcing strands or `
outwardly flared end portions are employed for outer end fixation, the full axial length of the stent is maintained substantially constant, unaffected by ~adial expansion and accompanying axial contraction of the engaged stent segments. Accordingly, upon deployment and in the ensuing weeks after fixation, W092~00043 2 î~ ~ ~ 3 3 3 PCT/US91/02854 -- 19 -- .
- the functional advantages of a helically wound, braided filament design are achieved without the disadvantages associated with axial shortening.

Claims (10)

1. A device for fixation in a body cavity, comprising:
a stent (16) including generally tubular and coaxial first and second open weave stent segments (20, 22) slidably engaged along respective first and second axially inward portions overlapping one another to form a medial region (24) of the stent (16), said stent segments (20, 22) further including respective non-overlapping first and second axially outward regions (30, 32) including respective and opposite first and second ends (34, 36) of the stent (16);
said stent segments (20, 22), at least along said axially inward portions, having a predetermined first diameter and a predetermined first axial length, said stent segments (20, 22) being radially compressible to a second diameter less than said first diameter and to a second axial length longer than said first axial length, to facilitate an axial insertion of said stent (16) into a body cavity for delivery to a selected location therealong and subsequent fixation of the stent (16) within the cavity by effecting an engagement of the stent segments (20, 22) with a tissue wall segment defining said body cavity; and wherein said first and second axially inward portions slide relative to one another to reduce the axial length of said medial region (24) as said stent segments (20, 22) radially expand into said engagement, thus to maintain a substantially constant axial length of said stent (16) during said radial expansion.
2. The device of Claim 1 wherein:
each of said stent segments (20, 22) is an open weave construction of helically wound filaments (18) of a resilient, body-compatible material.
3. The device of Claim 2 further including:
a means for fixing said first and second ends (34, 36) to said tissue wall segment.
4. The device of Claim 3 wherein:
said stent segments (20, 22) are flexible and have said predetermined first diameter and first axial length when not subject to external force, and are elastically compressible to said second diameter.
5. The device of Claim 4 wherein:
said fixing means comprises first and second flared outer end portions of said first and second axially outward regions (30, 32), respectively, whereby said first and second ends (34, 36) have diameters greater than said first diameter when the stent (16) is in the relaxed state.
6. The device of Claim 5 wherein:
the diameters of said first and second ends (34, 36) are greater than said first diameter by at least five percent.
7. The device of Claim 6 wherein:
the axial length of each of said flared outer end portions is less than one-third of the axial length of its associated one of said stent segments (20, 22).
8. The device of Claim 4 wherein:
said fixing means comprises elastic reinforcing strands connected to said filaments along first and second outer end portions including said first and second ends (34, 36), respectively.
9. The device of Claim 3 wherein;

said fixing means comprises first and second pluralities of fixation hooks mounted to the stent (16) at said first and second ends (34, 36), respectively.
10. The device of Claim 1 further including:
an elongate, flexible and substantially inextensible member running axially and connected to said first and second stent segments (20, 22) proximate said first and second ends (34, 36), for maintaining the axial length of the stent (16) constant during said radial expansion.
CA002086333A 1990-06-28 1991-04-25 Self-expanding prosthesis having stable axial length Expired - Fee Related CA2086333C (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US07/544,923 US5064435A (en) 1990-06-28 1990-06-28 Self-expanding prosthesis having stable axial length
US544,923 1990-06-28

Publications (2)

Publication Number Publication Date
CA2086333A1 CA2086333A1 (en) 1991-12-29
CA2086333C true CA2086333C (en) 1994-05-31

Family

ID=24174142

Family Applications (1)

Application Number Title Priority Date Filing Date
CA002086333A Expired - Fee Related CA2086333C (en) 1990-06-28 1991-04-25 Self-expanding prosthesis having stable axial length

Country Status (9)

Country Link
US (1) US5064435A (en)
EP (1) EP0536164B1 (en)
JP (1) JPH0636807B2 (en)
AT (1) ATE102466T1 (en)
CA (1) CA2086333C (en)
DE (2) DE69101385T2 (en)
DK (1) DK0536164T3 (en)
ES (1) ES2050054T3 (en)
WO (1) WO1992000043A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7780720B2 (en) 1994-02-09 2010-08-24 Scimed Life Systems, Inc. Bifurcated endoluminal prosthesis
US8192482B2 (en) 1994-02-09 2012-06-05 Scimed Life Systems, Inc. Endoluminal stent

Families Citing this family (982)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5133732A (en) * 1987-10-19 1992-07-28 Medtronic, Inc. Intravascular stent
US5571169A (en) * 1993-06-07 1996-11-05 Endovascular Instruments, Inc. Anti-stenotic method and product for occluded and partially occluded arteries
US5622188A (en) * 1989-08-18 1997-04-22 Endovascular Instruments, Inc. Method of restoring reduced or absent blood flow capacity in an artery
US6344053B1 (en) 1993-12-22 2002-02-05 Medtronic Ave, Inc. Endovascular support device and method
US5344426A (en) * 1990-04-25 1994-09-06 Advanced Cardiovascular Systems, Inc. Method and system for stent delivery
US5242399A (en) * 1990-04-25 1993-09-07 Advanced Cardiovascular Systems, Inc. Method and system for stent delivery
AU8850391A (en) * 1990-10-18 1992-05-20 Ho Young Song Self-expanding endovascular stent
US5158545A (en) * 1991-05-02 1992-10-27 Brigham And Women's Hospital Diameter expansion cannula
US20060161173A1 (en) * 1991-07-03 2006-07-20 Maginot Thomas J Endoscopic bypass grafting method utilizing an inguinal approach
US5304220A (en) * 1991-07-03 1994-04-19 Maginot Thomas J Method and apparatus for implanting a graft prosthesis in the body of a patient
US7597697B1 (en) * 1991-07-03 2009-10-06 Boston Scientific Scimed, Inc. Bypass grafting method
FR2678508B1 (en) * 1991-07-04 1998-01-30 Celsa Lg DEVICE FOR REINFORCING VESSELS OF THE HUMAN BODY.
US6515009B1 (en) 1991-09-27 2003-02-04 Neorx Corporation Therapeutic inhibitor of vascular smooth muscle cells
US5811447A (en) 1993-01-28 1998-09-22 Neorx Corporation Therapeutic inhibitor of vascular smooth muscle cells
WO1993006792A1 (en) * 1991-10-04 1993-04-15 Scimed Life Systems, Inc. Biodegradable drug delivery vascular stent
US5662713A (en) 1991-10-09 1997-09-02 Boston Scientific Corporation Medical stents for body lumens exhibiting peristaltic motion
US5876445A (en) * 1991-10-09 1999-03-02 Boston Scientific Corporation Medical stents for body lumens exhibiting peristaltic motion
JP2961287B2 (en) * 1991-10-18 1999-10-12 グンゼ株式会社 Biological duct dilator, method for producing the same, and stent
CA2380683C (en) * 1991-10-28 2006-08-08 Advanced Cardiovascular Systems, Inc. Expandable stents and method for making same
FR2683449A1 (en) * 1991-11-08 1993-05-14 Cardon Alain ENDOPROTHESIS FOR TRANSLUMINAL IMPLANTATION.
US5439467A (en) * 1991-12-03 1995-08-08 Vesica Medical, Inc. Suture passer
US5405377A (en) * 1992-02-21 1995-04-11 Endotech Ltd. Intraluminal stent
US5683448A (en) 1992-02-21 1997-11-04 Boston Scientific Technology, Inc. Intraluminal stent and graft
US5333624A (en) * 1992-02-24 1994-08-02 United States Surgical Corporation Surgical attaching apparatus
CA2090000A1 (en) * 1992-02-24 1993-08-25 H. Jonathan Tovey Articulating mesh deployment apparatus
CA2089999A1 (en) * 1992-02-24 1993-08-25 H. Jonathan Tovey Resilient arm mesh deployer
FR2688401B1 (en) * 1992-03-12 1998-02-27 Thierry Richard EXPANDABLE STENT FOR HUMAN OR ANIMAL TUBULAR MEMBER, AND IMPLEMENTATION TOOL.
US6277084B1 (en) 1992-03-31 2001-08-21 Boston Scientific Corporation Ultrasonic medical device
EP0633798B1 (en) 1992-03-31 2003-05-07 Boston Scientific Corporation Vascular filter
US5540712A (en) * 1992-05-01 1996-07-30 Nitinol Medical Technologies, Inc. Stent and method and apparatus for forming and delivering the same
EP0639958A1 (en) * 1992-05-08 1995-03-01 Schneider (Usa) Inc. Esophageal stent and delivery tool
US5817102A (en) * 1992-05-08 1998-10-06 Schneider (Usa) Inc. Apparatus for delivering and deploying a stent
US5304187A (en) * 1992-06-30 1994-04-19 United States Surgical Corporation Surgical element deployment apparatus
JP3904598B2 (en) * 1992-10-13 2007-04-11 ボストン サイエンティフィック コーポレイション Method for manufacturing a system for delivering a stent to a body
US5382259A (en) * 1992-10-26 1995-01-17 Target Therapeutics, Inc. Vasoocclusion coil with attached tubular woven or braided fibrous covering
US5690666A (en) * 1992-11-18 1997-11-25 Target Therapeutics, Inc. Ultrasoft embolism coils and process for using them
ATE207728T1 (en) * 1993-01-19 2001-11-15 Schneider Usa Inc IMPLANTABLE WIRE IN COMPOSITE CONSTRUCTION
US5630840A (en) 1993-01-19 1997-05-20 Schneider (Usa) Inc Clad composite stent
DE4407079B4 (en) * 1993-03-03 2007-01-18 Boston Scientific Ltd., St. Michael Intraluminal jig and graft
US5334201A (en) * 1993-03-12 1994-08-02 Cowan Kevin P Permanent stent made of a cross linkable material
US5342370A (en) * 1993-03-19 1994-08-30 University Of Miami Method and apparatus for implanting an artifical meshwork in glaucoma surgery
AU689094B2 (en) * 1993-04-22 1998-03-26 C.R. Bard Inc. Non-migrating vascular prosthesis and minimally invasive placement system therefor
ES2114964T3 (en) 1993-04-23 1998-06-16 Schneider Europ Ag ENDOPROTESIS WITH A COAT OF ELASTIC MATERIAL COATING AND METHOD FOR APPLYING THE COAT ON ENDOPROTESIS.
US5441515A (en) * 1993-04-23 1995-08-15 Advanced Cardiovascular Systems, Inc. Ratcheting stent
US5456667A (en) * 1993-05-20 1995-10-10 Advanced Cardiovascular Systems, Inc. Temporary stenting catheter with one-piece expandable segment
DE69435342D1 (en) 1993-07-19 2011-05-05 Angiotech Pharm Inc Anti-angiogenic agents and methods of use
US5409495A (en) * 1993-08-24 1995-04-25 Advanced Cardiovascular Systems, Inc. Apparatus for uniformly implanting a stent
KR970004845Y1 (en) * 1993-09-27 1997-05-21 주식회사 수호메디테크 Stent for expanding a lumen
DE69433617T2 (en) 1993-09-30 2005-03-03 Endogad Research Pty Ltd. INTRALUMINAL TRANSPLANT
US6689158B1 (en) 1993-09-30 2004-02-10 Endogad Research Pty Limited Intraluminal graft
DE4333836C2 (en) * 1993-10-05 1998-07-02 Angiomed Ag Device for bridging a bag
US5445646A (en) * 1993-10-22 1995-08-29 Scimed Lifesystems, Inc. Single layer hydraulic sheath stent delivery apparatus and method
US5571135A (en) * 1993-10-22 1996-11-05 Scimed Life Systems Inc. Stent delivery apparatus and method
US5989280A (en) * 1993-10-22 1999-11-23 Scimed Lifesystems, Inc Stent delivery apparatus and method
EP0657147B1 (en) * 1993-11-04 1999-08-04 C.R. Bard, Inc. Non-migrating vascular prosthesis
US5476505A (en) * 1993-11-18 1995-12-19 Advanced Cardiovascular Systems, Inc. Coiled stent and delivery system
US5607444A (en) * 1993-12-02 1997-03-04 Advanced Cardiovascular Systems, Inc. Ostial stent for bifurcations
JP2703510B2 (en) * 1993-12-28 1998-01-26 アドヴァンスド カーディオヴァスキュラー システムズ インコーポレーテッド Expandable stent and method of manufacturing the same
DE4401227C2 (en) * 1994-01-18 1999-03-18 Ernst Peter Prof Dr M Strecker Endoprosthesis implantable percutaneously in a patient's body
AU776872B2 (en) * 1994-02-09 2004-09-23 Boston Scientific Technology Inc. Bifurcated endoluminal prosthesis
US6165213A (en) * 1994-02-09 2000-12-26 Boston Scientific Technology, Inc. System and method for assembling an endoluminal prosthesis
US6039749A (en) 1994-02-10 2000-03-21 Endovascular Systems, Inc. Method and apparatus for deploying non-circular stents and graftstent complexes
WO1995023563A1 (en) * 1994-03-04 1995-09-08 Universite De Montreal Endovascular hepatic prostheses
US5556413A (en) * 1994-03-11 1996-09-17 Advanced Cardiovascular Systems, Inc. Coiled stent with locking ends
US6001123A (en) * 1994-04-01 1999-12-14 Gore Enterprise Holdings Inc. Folding self-expandable intravascular stent-graft
US6165210A (en) * 1994-04-01 2000-12-26 Gore Enterprise Holdings, Inc. Self-expandable helical intravascular stent and stent-graft
US5683411A (en) * 1994-04-06 1997-11-04 William Cook Europe A/S Medical article for implantation into the vascular system of a patient
US5554181A (en) * 1994-05-04 1996-09-10 Regents Of The University Of Minnesota Stent
ATE176587T1 (en) * 1994-05-19 1999-02-15 Scimed Life Systems Inc IMPROVED TISSUE SUPPORT DEVICES
DE4418336A1 (en) * 1994-05-26 1995-11-30 Angiomed Ag Stent for widening and holding open receptacles
DE69518435T3 (en) * 1994-06-08 2004-07-22 CardioVascular Concepts, Inc., Portola Valley A branching graft manufacturing system
US6123715A (en) 1994-07-08 2000-09-26 Amplatz; Curtis Method of forming medical devices; intravascular occlusion devices
US5725552A (en) * 1994-07-08 1998-03-10 Aga Medical Corporation Percutaneous catheter directed intravascular occlusion devices
WO1996001591A1 (en) 1994-07-08 1996-01-25 Microvena Corporation Method of forming medical devices; intravascular occlusion devices
US5846261A (en) * 1994-07-08 1998-12-08 Aga Medical Corp. Percutaneous catheter directed occlusion devices
US6736843B1 (en) * 1994-07-25 2004-05-18 Advanced Cardiovascular Systems, Inc. Cylindrically-shaped balloon-expandable stent
US5636641A (en) * 1994-07-25 1997-06-10 Advanced Cardiovascular Systems, Inc. High strength member for intracorporeal use
FR2722678B1 (en) * 1994-07-25 1996-12-27 Braun Celsa Sa B PLUG-IN MEDICAL PROSTHESIS FOR USE IN THE TREATMENT OF ANEVRISMS, DEVICE COMPRISING SUCH A PROSTHESIS
US5575816A (en) * 1994-08-12 1996-11-19 Meadox Medicals, Inc. High strength and high density intraluminal wire stent
US6331188B1 (en) 1994-08-31 2001-12-18 Gore Enterprise Holdings, Inc. Exterior supported self-expanding stent-graft
US20020156523A1 (en) * 1994-08-31 2002-10-24 Lilip Lau Exterior supported self-expanding stent-graft
US6015429A (en) * 1994-09-08 2000-01-18 Gore Enterprise Holdings, Inc. Procedures for introducing stents and stent-grafts
US5649977A (en) * 1994-09-22 1997-07-22 Advanced Cardiovascular Systems, Inc. Metal reinforced polymer stent
AU3783195A (en) * 1994-11-15 1996-05-23 Advanced Cardiovascular Systems Inc. Intraluminal stent for attaching a graft
US5630829A (en) * 1994-12-09 1997-05-20 Intervascular, Inc. High hoop strength intraluminal stent
DE4446036C2 (en) * 1994-12-23 1999-06-02 Ruesch Willy Ag Placeholder for placement in a body tube
US5591226A (en) * 1995-01-23 1997-01-07 Schneider (Usa) Inc. Percutaneous stent-graft and method for delivery thereof
US5575818A (en) * 1995-02-14 1996-11-19 Corvita Corporation Endovascular stent with locking ring
US5683449A (en) 1995-02-24 1997-11-04 Marcade; Jean Paul Modular bifurcated intraluminal grafts and methods for delivering and assembling same
US5904697A (en) 1995-02-24 1999-05-18 Heartport, Inc. Devices and methods for performing a vascular anastomosis
US7204848B1 (en) 1995-03-01 2007-04-17 Boston Scientific Scimed, Inc. Longitudinally flexible expandable stent
US6896696B2 (en) 1998-11-20 2005-05-24 Scimed Life Systems, Inc. Flexible and expandable stent
US6981986B1 (en) 1995-03-01 2006-01-03 Boston Scientific Scimed, Inc. Longitudinally flexible expandable stent
ATE395014T1 (en) 1995-03-01 2008-05-15 Boston Scient Scimed Inc LONGITUDONLY FLEXIBLE AND EXPANDABLE STENT
US6818014B2 (en) * 1995-03-01 2004-11-16 Scimed Life Systems, Inc. Longitudinally flexible expandable stent
US5749851A (en) * 1995-03-02 1998-05-12 Scimed Life Systems, Inc. Stent installation method using balloon catheter having stepped compliance curve
US6579314B1 (en) * 1995-03-10 2003-06-17 C.R. Bard, Inc. Covered stent with encapsulated ends
US6451047B2 (en) 1995-03-10 2002-09-17 Impra, Inc. Encapsulated intraluminal stent-graft and methods of making same
US6264684B1 (en) 1995-03-10 2001-07-24 Impra, Inc., A Subsidiary Of C.R. Bard, Inc. Helically supported graft
US5709713A (en) * 1995-03-31 1998-01-20 Cardiovascular Concepts, Inc. Radially expansible vascular prosthesis having reversible and other locking structures
BE1009277A3 (en) * 1995-04-12 1997-01-07 Corvita Europ Guardian self-expandable medical device introduced in cavite body, and method of preparation.
BE1009278A3 (en) * 1995-04-12 1997-01-07 Corvita Europ Guardian self-expandable medical device introduced in cavite body, and medical device with a stake as.
US5837313A (en) * 1995-04-19 1998-11-17 Schneider (Usa) Inc Drug release stent coating process
US20020091433A1 (en) * 1995-04-19 2002-07-11 Ni Ding Drug release coated stent
US6638291B1 (en) 1995-04-20 2003-10-28 Micrus Corporation Three dimensional, low friction vasoocclusive coil, and method of manufacture
US6171326B1 (en) 1998-08-27 2001-01-09 Micrus Corporation Three dimensional, low friction vasoocclusive coil, and method of manufacture
US8790363B2 (en) 1995-04-20 2014-07-29 DePuy Synthes Products, LLC Three dimensional, low friction vasoocclusive coil, and method of manufacture
US5645558A (en) * 1995-04-20 1997-07-08 Medical University Of South Carolina Anatomically shaped vasoocclusive device and method of making the same
US5667523A (en) * 1995-04-28 1997-09-16 Impra, Inc. Dual supported intraluminal graft
US5807398A (en) * 1995-04-28 1998-09-15 Shaknovich; Alexander Shuttle stent delivery catheter
US5591228A (en) * 1995-05-09 1997-01-07 Edoga; John K. Methods for treating abdominal aortic aneurysms
US5746766A (en) * 1995-05-09 1998-05-05 Edoga; John K. Surgical stent
US5662614A (en) * 1995-05-09 1997-09-02 Edoga; John K. Balloon expandable universal access sheath
US6602281B1 (en) 1995-06-05 2003-08-05 Avantec Vascular Corporation Radially expansible vessel scaffold having beams and expansion joints
US5700269A (en) * 1995-06-06 1997-12-23 Corvita Corporation Endoluminal prosthesis deployment device for use with prostheses of variable length and having retraction ability
AU6093096A (en) 1995-06-06 1996-12-24 Corvita Corporation Endovascular measuring apparatus, loading and deployment means
US6010530A (en) * 1995-06-07 2000-01-04 Boston Scientific Technology, Inc. Self-expanding endoluminal prosthesis
US5728131A (en) * 1995-06-12 1998-03-17 Endotex Interventional Systems, Inc. Coupling device and method of use
US5782907A (en) * 1995-07-13 1998-07-21 Devices For Vascular Intervention, Inc. Involuted spring stent and graft assembly and method of use
US5824037A (en) * 1995-10-03 1998-10-20 Medtronic, Inc. Modular intraluminal prostheses construction and methods
US6193745B1 (en) * 1995-10-03 2001-02-27 Medtronic, Inc. Modular intraluminal prosteheses construction and methods
US6099558A (en) * 1995-10-10 2000-08-08 Edwards Lifesciences Corp. Intraluminal grafting of a bifuricated artery
US5758562A (en) * 1995-10-11 1998-06-02 Schneider (Usa) Inc. Process for manufacturing braided composite prosthesis
US6283983B1 (en) * 1995-10-13 2001-09-04 Transvascular, Inc. Percutaneous in-situ coronary bypass method and apparatus
US5669924A (en) * 1995-10-26 1997-09-23 Shaknovich; Alexander Y-shuttle stent assembly for bifurcating vessels and method of using the same
US5628788A (en) * 1995-11-07 1997-05-13 Corvita Corporation Self-expanding endoluminal stent-graft
US6929659B2 (en) 1995-11-07 2005-08-16 Scimed Life Systems, Inc. Method of preventing the dislodgment of a stent-graft
US6348066B1 (en) * 1995-11-07 2002-02-19 Corvita Corporation Modular endoluminal stent-grafts and methods for their use
US5788626A (en) 1995-11-21 1998-08-04 Schneider (Usa) Inc Method of making a stent-graft covered with expanded polytetrafluoroethylene
ATE218052T1 (en) 1995-11-27 2002-06-15 Schneider Europ Gmbh STENT FOR USE IN A PHYSICAL PASSAGE
US6576009B2 (en) 1995-12-01 2003-06-10 Medtronic Ave, Inc. Bifurcated intraluminal prostheses construction and methods
US5824040A (en) 1995-12-01 1998-10-20 Medtronic, Inc. Endoluminal prostheses and therapies for highly variable body lumens
US6042605A (en) 1995-12-14 2000-03-28 Gore Enterprose Holdings, Inc. Kink resistant stent-graft
WO1997021402A1 (en) 1995-12-14 1997-06-19 Prograft Medical, Inc. Stent-graft deployment apparatus and method
WO1997025002A1 (en) * 1996-01-05 1997-07-17 Medtronic, Inc. Expansible endoluminal prostheses
AUPN775296A0 (en) 1996-01-25 1996-02-22 Endogad Research Pty Limited Directional catheter
US6258116B1 (en) 1996-01-26 2001-07-10 Cordis Corporation Bifurcated axially flexible stent
US5938682A (en) * 1996-01-26 1999-08-17 Cordis Corporation Axially flexible stent
US5980553A (en) * 1996-12-20 1999-11-09 Cordis Corporation Axially flexible stent
US5895406A (en) * 1996-01-26 1999-04-20 Cordis Corporation Axially flexible stent
WO1997027959A1 (en) 1996-01-30 1997-08-07 Medtronic, Inc. Articles for and methods of making stents
JPH09215753A (en) * 1996-02-08 1997-08-19 Schneider Usa Inc Self-expanding stent made of titanium alloy
US5843117A (en) * 1996-02-14 1998-12-01 Inflow Dynamics Inc. Implantable vascular and endoluminal stents and process of fabricating the same
US5868780A (en) * 1996-03-22 1999-02-09 Lashinski; Robert D. Stents for supporting lumens in living tissue
CA2199890C (en) * 1996-03-26 2002-02-05 Leonard Pinchuk Stents and stent-grafts having enhanced hoop strength and methods of making the same
NZ331269A (en) * 1996-04-10 2000-01-28 Advanced Cardiovascular System Expandable stent, its structural strength varying along its length
WO1997039699A1 (en) * 1996-04-24 1997-10-30 Legona Anstalt Endoprothesis intended to be set in place into a body channel
FR2747912B1 (en) * 1996-04-24 1999-01-22 Legona Anstalt INTRACORPOREAL STENT TO BE PLACED IN A BODY CHANNEL
JP4636634B2 (en) 1996-04-26 2011-02-23 ボストン サイエンティフィック サイムド,インコーポレイテッド Intravascular stent
US6241760B1 (en) 1996-04-26 2001-06-05 G. David Jang Intravascular stent
US20040106985A1 (en) 1996-04-26 2004-06-03 Jang G. David Intravascular stent
US6235053B1 (en) 1998-02-02 2001-05-22 G. David Jang Tubular stent consists of chevron-shape expansion struts and contralaterally attached diagonal connectors
US5718159A (en) 1996-04-30 1998-02-17 Schneider (Usa) Inc. Process for manufacturing three-dimensional braided covered stent
US6592617B2 (en) * 1996-04-30 2003-07-15 Boston Scientific Scimed, Inc. Three-dimensional braided covered stent
US5891191A (en) * 1996-04-30 1999-04-06 Schneider (Usa) Inc Cobalt-chromium-molybdenum alloy stent and stent-graft
UA58485C2 (en) * 1996-05-03 2003-08-15 Медінол Лтд. Method for manufacture of bifurcated stent (variants) and bifurcated stent (variants)
US5733326A (en) * 1996-05-28 1998-03-31 Cordis Corporation Composite material endoprosthesis
US6027528A (en) * 1996-05-28 2000-02-22 Cordis Corporation Composite material endoprosthesis
US7686846B2 (en) 1996-06-06 2010-03-30 Devax, Inc. Bifurcation stent and method of positioning in a body lumen
US8728143B2 (en) * 1996-06-06 2014-05-20 Biosensors International Group, Ltd. Endoprosthesis deployment system for treating vascular bifurcations
US7238197B2 (en) 2000-05-30 2007-07-03 Devax, Inc. Endoprosthesis deployment system for treating vascular bifurcations
US6312454B1 (en) * 1996-06-13 2001-11-06 Nitinol Devices & Components Stent assembly
WO1997048350A1 (en) * 1996-06-20 1997-12-24 Sulzer Vascutek Ltd. Prosthetic repair of body passages
US6077295A (en) 1996-07-15 2000-06-20 Advanced Cardiovascular Systems, Inc. Self-expanding stent delivery system
US5980514A (en) 1996-07-26 1999-11-09 Target Therapeutics, Inc. Aneurysm closure device assembly
US5800517A (en) * 1996-08-19 1998-09-01 Scimed Life Systems, Inc. Stent delivery system with storage sleeve
US5968068A (en) * 1996-09-12 1999-10-19 Baxter International Inc. Endovascular delivery system
US7749585B2 (en) 1996-10-08 2010-07-06 Alan Zamore Reduced profile medical balloon element
US8211167B2 (en) 1999-12-06 2012-07-03 Boston Scientific Scimed, Inc. Method of using a catheter with attached flexible side sheath
DE69736676T2 (en) * 1996-11-04 2007-01-11 Advanced Stent Technologies, Inc., Pleasanton EXPERIENCED DOUBLE STAR
US6692483B2 (en) 1996-11-04 2004-02-17 Advanced Stent Technologies, Inc. Catheter with attached flexible side sheath
US7591846B2 (en) 1996-11-04 2009-09-22 Boston Scientific Scimed, Inc. Methods for deploying stents in bifurcations
US7341598B2 (en) 1999-01-13 2008-03-11 Boston Scientific Scimed, Inc. Stent with protruding branch portion for bifurcated vessels
US6682536B2 (en) 2000-03-22 2004-01-27 Advanced Stent Technologies, Inc. Guidewire introducer sheath
US6325826B1 (en) * 1998-01-14 2001-12-04 Advanced Stent Technologies, Inc. Extendible stent apparatus
US6599316B2 (en) 1996-11-04 2003-07-29 Advanced Stent Technologies, Inc. Extendible stent apparatus
US6835203B1 (en) 1996-11-04 2004-12-28 Advanced Stent Technologies, Inc. Extendible stent apparatus
US7220275B2 (en) 1996-11-04 2007-05-22 Advanced Stent Technologies, Inc. Stent with protruding branch portion for bifurcated vessels
US6315791B1 (en) 1996-12-03 2001-11-13 Atrium Medical Corporation Self-expanding prothesis
US6352561B1 (en) 1996-12-23 2002-03-05 W. L. Gore & Associates Implant deployment apparatus
US6551350B1 (en) 1996-12-23 2003-04-22 Gore Enterprise Holdings, Inc. Kink resistant bifurcated prosthesis
US5925061A (en) * 1997-01-13 1999-07-20 Gore Enterprise Holdings, Inc. Low profile vascular stent
ATE275888T1 (en) 1997-01-29 2004-10-15 Endovascular Tech Inc MODULAR STENT FABRIC WITH BELL-SHAPED EXTENDED END
US20040267350A1 (en) * 2002-10-30 2004-12-30 Roubin Gary S. Non-foreshortening intraluminal prosthesis
US5827321A (en) * 1997-02-07 1998-10-27 Cornerstone Devices, Inc. Non-Foreshortening intraluminal prosthesis
US6102884A (en) 1997-02-07 2000-08-15 Squitieri; Rafael Squitieri hemodialysis and vascular access systems
US6423080B1 (en) * 1997-02-13 2002-07-23 Scimed Life Systems, Inc. Percutaneous and hiatal devices and methods for use in minimally invasive pelvic surgery
US6951572B1 (en) 1997-02-20 2005-10-04 Endologix, Inc. Bifurcated vascular graft and method and apparatus for deploying same
US6090128A (en) 1997-02-20 2000-07-18 Endologix, Inc. Bifurcated vascular graft deployment device
CA2229685C (en) * 1997-02-27 2003-09-02 Corvita Corporation Modular endoluminal stent-grafts and methods for their use
AU754236B2 (en) * 1997-02-27 2002-11-07 Corvita Corporation Self-expanding endoluminal stent-grafts and methods for their use
US20020133222A1 (en) * 1997-03-05 2002-09-19 Das Gladwin S. Expandable stent having a plurality of interconnected expansion modules
US6096071A (en) * 1998-03-26 2000-08-01 Yadav; Jay S. Ostial stent
WO1998043695A1 (en) * 1997-03-31 1998-10-08 Kabushikikaisha Igaki Iryo Sekkei Stent for vessels
US6273913B1 (en) 1997-04-18 2001-08-14 Cordis Corporation Modified stent useful for delivery of drugs along stent strut
US6019777A (en) * 1997-04-21 2000-02-01 Advanced Cardiovascular Systems, Inc. Catheter and method for a stent delivery system
US6776792B1 (en) 1997-04-24 2004-08-17 Advanced Cardiovascular Systems Inc. Coated endovascular stent
DE19720115C2 (en) * 1997-05-14 1999-05-20 Jomed Implantate Gmbh Stent graft
US5836966A (en) * 1997-05-22 1998-11-17 Scimed Life Systems, Inc. Variable expansion force stent
US5861035A (en) * 1997-05-23 1999-01-19 Griffith; Donald P. Modular prosthetic conduit
CA2241558A1 (en) 1997-06-24 1998-12-24 Advanced Cardiovascular Systems, Inc. Stent with reinforced struts and bimodal deployment
US6070589A (en) 1997-08-01 2000-06-06 Teramed, Inc. Methods for deploying bypass graft stents
US5984957A (en) * 1997-08-12 1999-11-16 Schneider (Usa) Inc Radially expanded prostheses with axial diameter control
US7753950B2 (en) 1997-08-13 2010-07-13 Advanced Cardiovascular Systems, Inc. Stent and catheter assembly and method for treating bifurcations
US6059822A (en) * 1997-08-22 2000-05-09 Uni-Cath Inc. Stent with different mesh patterns
FR2767673B1 (en) * 1997-08-27 1999-11-26 Synthelabo URETRAL PROSTHESIS
US6746476B1 (en) 1997-09-22 2004-06-08 Cordis Corporation Bifurcated axially flexible stent
US6132457A (en) * 1997-10-22 2000-10-17 Triad Vascular Systems, Inc. Endovascular graft having longitudinally displaceable sections
NL1007349C2 (en) 1997-10-24 1999-04-27 Suyker Wilhelmus Joseph Leonardus System for the mechanical production of anastomoses between hollow structures; as well as device and applicator for use therewith.
EP1032328A1 (en) * 1997-11-25 2000-09-06 Triad Vascular Systems Inc. Layered endovascular graft
US6168570B1 (en) 1997-12-05 2001-01-02 Micrus Corporation Micro-strand cable with enhanced radiopacity
US6241691B1 (en) 1997-12-05 2001-06-05 Micrus Corporation Coated superelastic stent
US6136015A (en) 1998-08-25 2000-10-24 Micrus Corporation Vasoocclusive coil
US6159165A (en) * 1997-12-05 2000-12-12 Micrus Corporation Three dimensional spherical micro-coils manufactured from radiopaque nickel-titanium microstrand
KR100228188B1 (en) * 1997-12-24 1999-11-01 김성년 A radioactive stent and process for preparation thereof
EP1051128B1 (en) 1998-01-30 2006-03-15 St. Jude Medical ATG, Inc. Medical graft connector or plug structures, and methods of making
US6395019B2 (en) 1998-02-09 2002-05-28 Trivascular, Inc. Endovascular graft
US6280467B1 (en) 1998-02-26 2001-08-28 World Medical Manufacturing Corporation Delivery system for deployment and endovascular assembly of a multi-stage stented graft
US5938697A (en) * 1998-03-04 1999-08-17 Scimed Life Systems, Inc. Stent having variable properties
US6077296A (en) 1998-03-04 2000-06-20 Endologix, Inc. Endoluminal vascular prosthesis
US6129756A (en) 1998-03-16 2000-10-10 Teramed, Inc. Biluminal endovascular graft system
US6290731B1 (en) 1998-03-30 2001-09-18 Cordis Corporation Aortic graft having a precursor gasket for repairing an abdominal aortic aneurysm
US6656215B1 (en) 2000-11-16 2003-12-02 Cordis Corporation Stent graft having an improved means for attaching a stent to a graft
US6887268B2 (en) 1998-03-30 2005-05-03 Cordis Corporation Extension prosthesis for an arterial repair
US6520983B1 (en) * 1998-03-31 2003-02-18 Scimed Life Systems, Inc. Stent delivery system
US6264689B1 (en) 1998-03-31 2001-07-24 Scimed Life Systems, Incorporated Low profile medical stent
IL138128A0 (en) 1998-04-02 2001-10-31 Salviac Ltd Delivery catheter
US6666874B2 (en) 1998-04-10 2003-12-23 Endicor Medical, Inc. Rotational atherectomy system with serrated cutting tip
US6482217B1 (en) 1998-04-10 2002-11-19 Endicor Medical, Inc. Neuro thrombectomy catheter
US6001112A (en) * 1998-04-10 1999-12-14 Endicor Medical, Inc. Rotational atherectomy device
US8029561B1 (en) 2000-05-12 2011-10-04 Cordis Corporation Drug combination useful for prevention of restenosis
US6494907B1 (en) 1998-04-28 2002-12-17 Intratherapeutics, Inc. Braided stent
US6168615B1 (en) 1998-05-04 2001-01-02 Micrus Corporation Method and apparatus for occlusion and reinforcement of aneurysms
DE69935716T2 (en) * 1998-05-05 2007-08-16 Boston Scientific Ltd., St. Michael STENT WITH SMOOTH ENDS
US6293960B1 (en) 1998-05-22 2001-09-25 Micrus Corporation Catheter with shape memory polymer distal tip for deployment of therapeutic devices
US6099559A (en) * 1998-05-28 2000-08-08 Medtronic Ave, Inc. Endoluminal support assembly with capped ends
US6171334B1 (en) 1998-06-17 2001-01-09 Advanced Cardiovascular Systems, Inc. Expandable stent and method of use
CA2335333C (en) 1998-06-19 2009-05-05 Endologix, Inc. Self expanding bifurcated endovascular prosthesis
US6217609B1 (en) 1998-06-30 2001-04-17 Schneider (Usa) Inc Implantable endoprosthesis with patterned terminated ends and methods for making same
US6325824B2 (en) 1998-07-22 2001-12-04 Advanced Cardiovascular Systems, Inc. Crush resistant stent
US6165194A (en) 1998-07-24 2000-12-26 Micrus Corporation Intravascular flow modifier and reinforcement device
US6656218B1 (en) 1998-07-24 2003-12-02 Micrus Corporation Intravascular flow modifier and reinforcement device
US6461380B1 (en) 1998-07-28 2002-10-08 Advanced Cardiovascular Systems, Inc. Stent configuration
US6053942A (en) * 1998-08-18 2000-04-25 Heartstent Corporation Transmyocardial implant with coronary stent
US6117117A (en) 1998-08-24 2000-09-12 Advanced Cardiovascular Systems, Inc. Bifurcated catheter assembly
US6238432B1 (en) 1998-08-25 2001-05-29 Juan Carlos Parodi Stent graft device for treating abdominal aortic aneurysms
US6149664A (en) * 1998-08-27 2000-11-21 Micrus Corporation Shape memory pusher introducer for vasoocclusive devices
US6746489B2 (en) 1998-08-31 2004-06-08 Wilson-Cook Medical Incorporated Prosthesis having a sleeve valve
US6500149B2 (en) 1998-08-31 2002-12-31 Deepak Gandhi Apparatus for deployment of micro-coil using a catheter
US6478773B1 (en) 1998-12-21 2002-11-12 Micrus Corporation Apparatus for deployment of micro-coil using a catheter
US6296622B1 (en) 1998-12-21 2001-10-02 Micrus Corporation Endoluminal device delivery system using axially recovering shape memory material
US7118600B2 (en) 1998-08-31 2006-10-10 Wilson-Cook Medical, Inc. Prosthesis having a sleeve valve
US6117104A (en) * 1998-09-08 2000-09-12 Advanced Cardiovascular Systems, Inc. Stent deployment system and method of use
US6071307A (en) * 1998-09-30 2000-06-06 Baxter International Inc. Endoluminal grafts having continuously curvilinear wireforms
US6368345B1 (en) 1998-09-30 2002-04-09 Edwards Lifesciences Corporation Methods and apparatus for intraluminal placement of a bifurcated intraluminal garafat
US6849088B2 (en) * 1998-09-30 2005-02-01 Edwards Lifesciences Corporation Aorto uni-iliac graft
US7018387B2 (en) 1998-10-22 2006-03-28 Innovative Interventional Technologies B.V. Mechanical anastomosis system for hollow structures
US7044134B2 (en) 1999-11-08 2006-05-16 Ev3 Sunnyvale, Inc Method of implanting a device in the left atrial appendage
US6152144A (en) * 1998-11-06 2000-11-28 Appriva Medical, Inc. Method and device for left atrial appendage occlusion
US7128073B1 (en) 1998-11-06 2006-10-31 Ev3 Endovascular, Inc. Method and device for left atrial appendage occlusion
US7713282B2 (en) 1998-11-06 2010-05-11 Atritech, Inc. Detachable atrial appendage occlusion balloon
US6190403B1 (en) 1998-11-13 2001-02-20 Cordis Corporation Low profile radiopaque stent with increased longitudinal flexibility and radial rigidity
US6113608A (en) * 1998-11-20 2000-09-05 Scimed Life Systems, Inc. Stent delivery device
US6733523B2 (en) 1998-12-11 2004-05-11 Endologix, Inc. Implantable vascular graft
JP4189127B2 (en) 1998-12-11 2008-12-03 エンドロジックス、インク Intraluminal artificial blood vessels
US6660030B2 (en) 1998-12-11 2003-12-09 Endologix, Inc. Bifurcation graft deployment catheter
US6187036B1 (en) 1998-12-11 2001-02-13 Endologix, Inc. Endoluminal vascular prosthesis
US6383204B1 (en) 1998-12-15 2002-05-07 Micrus Corporation Variable stiffness coil for vasoocclusive devices
US6102932A (en) * 1998-12-15 2000-08-15 Micrus Corporation Intravascular device push wire delivery system
US6835185B2 (en) 1998-12-21 2004-12-28 Micrus Corporation Intravascular device deployment mechanism incorporating mechanical detachment
US6165140A (en) 1998-12-28 2000-12-26 Micrus Corporation Composite guidewire
US7655030B2 (en) 2003-07-18 2010-02-02 Boston Scientific Scimed, Inc. Catheter balloon systems and methods
US6350277B1 (en) 1999-01-15 2002-02-26 Scimed Life Systems, Inc. Stents with temporary retaining bands
US7018401B1 (en) 1999-02-01 2006-03-28 Board Of Regents, The University Of Texas System Woven intravascular devices and methods for making the same and apparatus for delivery of the same
US6398803B1 (en) * 1999-02-02 2002-06-04 Impra, Inc., A Subsidiary Of C.R. Bard, Inc. Partial encapsulation of stents
US5976155A (en) 1999-03-05 1999-11-02 Advanced Cardiovascular Systems, Inc. System for removably securing a stent on a catheter assembly and method of use
US6221066B1 (en) 1999-03-09 2001-04-24 Micrus Corporation Shape memory segmented detachable coil
US6273910B1 (en) 1999-03-11 2001-08-14 Advanced Cardiovascular Systems, Inc. Stent with varying strut geometry
US8034100B2 (en) 1999-03-11 2011-10-11 Endologix, Inc. Graft deployment system
US6261316B1 (en) 1999-03-11 2001-07-17 Endologix, Inc. Single puncture bifurcation graft deployment system
US6632236B2 (en) * 1999-03-12 2003-10-14 Arteria Medical Science, Inc. Catheter having radially expandable main body
US6887235B2 (en) 1999-03-24 2005-05-03 Micrus Corporation Variable stiffness heating catheter
US6352531B1 (en) 1999-03-24 2002-03-05 Micrus Corporation Variable stiffness optical fiber shaft
US6273911B1 (en) 1999-04-22 2001-08-14 Advanced Cardiovascular Systems, Inc. Variable strength stent
US6790215B2 (en) 1999-04-30 2004-09-14 Edwards Lifesciences Corporation Method of use for percutaneous material removal device and tip
US6238405B1 (en) 1999-04-30 2001-05-29 Edwards Lifesciences Corp. Percutaneous material removal device and method
US6375676B1 (en) 1999-05-17 2002-04-23 Advanced Cardiovascular Systems, Inc. Self-expanding stent with enhanced delivery precision and stent delivery system
US6290673B1 (en) 1999-05-20 2001-09-18 Conor Medsystems, Inc. Expandable medical device delivery system and method
US6884258B2 (en) 1999-06-04 2005-04-26 Advanced Stent Technologies, Inc. Bifurcation lesion stent delivery using multiple guidewires
SE514718C2 (en) 1999-06-29 2001-04-09 Jan Otto Solem Apparatus for treating defective closure of the mitral valve apparatus
US7192442B2 (en) * 1999-06-30 2007-03-20 Edwards Lifesciences Ag Method and device for treatment of mitral insufficiency
US6997951B2 (en) * 1999-06-30 2006-02-14 Edwards Lifesciences Ag Method and device for treatment of mitral insufficiency
US7422563B2 (en) 1999-08-05 2008-09-09 Broncus Technologies, Inc. Multifunctional tip catheter for applying energy to tissue and detecting the presence of blood flow
JP2003506132A (en) * 1999-08-05 2003-02-18 ブロンカス テクノロジーズ, インコーポレイテッド Methods and devices for creating collateral channels in the lung
US7175644B2 (en) 2001-02-14 2007-02-13 Broncus Technologies, Inc. Devices and methods for maintaining collateral channels in tissue
US6712812B2 (en) 1999-08-05 2004-03-30 Broncus Technologies, Inc. Devices for creating collateral channels
US6749606B2 (en) 1999-08-05 2004-06-15 Thomas Keast Devices for creating collateral channels
US7462162B2 (en) 2001-09-04 2008-12-09 Broncus Technologies, Inc. Antiproliferative devices for maintaining patency of surgically created channels in a body organ
US7022088B2 (en) 1999-08-05 2006-04-04 Broncus Technologies, Inc. Devices for applying energy to tissue
US8328829B2 (en) 1999-08-19 2012-12-11 Covidien Lp High capacity debulking catheter with razor edge cutting window
US6299622B1 (en) 1999-08-19 2001-10-09 Fox Hollow Technologies, Inc. Atherectomy catheter with aligned imager
US7708749B2 (en) 2000-12-20 2010-05-04 Fox Hollow Technologies, Inc. Debulking catheters and methods
US7713279B2 (en) 2000-12-20 2010-05-11 Fox Hollow Technologies, Inc. Method and devices for cutting tissue
US6540774B1 (en) 1999-08-31 2003-04-01 Advanced Cardiovascular Systems, Inc. Stent design with end rings having enhanced strength and radiopacity
DE29915724U1 (en) * 1999-09-07 1999-12-23 Angiomed Ag Stent delivery system
US6221042B1 (en) 1999-09-17 2001-04-24 Scimed Life Systems, Inc. Balloon with reversed cones
US6231561B1 (en) 1999-09-20 2001-05-15 Appriva Medical, Inc. Method and apparatus for closing a body lumen
US6344056B1 (en) 1999-12-29 2002-02-05 Edwards Lifesciences Corp. Vascular grafts for bridging a vessel side branch
US6689156B1 (en) 1999-09-23 2004-02-10 Advanced Stent Technologies, Inc. Stent range transducers and methods of use
US6689150B1 (en) 1999-10-27 2004-02-10 Atritech, Inc. Filter apparatus for ostium of left atrial appendage
US6551303B1 (en) 1999-10-27 2003-04-22 Atritech, Inc. Barrier device for ostium of left atrial appendage
US6652555B1 (en) 1999-10-27 2003-11-25 Atritech, Inc. Barrier device for covering the ostium of left atrial appendage
US6325823B1 (en) * 1999-10-29 2001-12-04 Revasc Corporation Endovascular prosthesis accommodating torsional and longitudinal displacements and methods of use
US6994092B2 (en) 1999-11-08 2006-02-07 Ev3 Sunnyvale, Inc. Device for containing embolic material in the LAA having a plurality of tissue retention structures
US6428569B1 (en) * 1999-11-09 2002-08-06 Scimed Life Systems Inc. Micro structure stent configurations
US7226475B2 (en) * 1999-11-09 2007-06-05 Boston Scientific Scimed, Inc. Stent with variable properties
US6475235B1 (en) 1999-11-16 2002-11-05 Iowa-India Investments Company, Limited Encapsulated stent preform
ATE352268T1 (en) * 1999-11-23 2007-02-15 Sorin Biomedica Cardio Srl METHOD FOR TRANSFER OF RADIOACTIVE SUBSTANCES TO STENTS IN ANGIOPLASTY AND KIT
US6702849B1 (en) 1999-12-13 2004-03-09 Advanced Cardiovascular Systems, Inc. Method of processing open-celled microcellular polymeric foams with controlled porosity for use as vascular grafts and stent covers
US6443979B1 (en) 1999-12-20 2002-09-03 Advanced Cardiovascular Systems, Inc. Expandable stent delivery sheath and method of use
US6790218B2 (en) 1999-12-23 2004-09-14 Swaminathan Jayaraman Occlusive coil manufacture and delivery
US20050187564A1 (en) * 1999-12-23 2005-08-25 Swaminathan Jayaraman Occlusive coil manufacturing and delivery
US6663667B2 (en) 1999-12-29 2003-12-16 Edwards Lifesciences Corporation Towel graft means for enhancing tissue ingrowth in vascular grafts
US6471721B1 (en) 1999-12-30 2002-10-29 Advanced Cardiovascular Systems, Inc. Vascular stent having increased radiopacity and method for making same
US6280465B1 (en) 1999-12-30 2001-08-28 Advanced Cardiovascular Systems, Inc. Apparatus and method for delivering a self-expanding stent on a guide wire
US6537311B1 (en) 1999-12-30 2003-03-25 Advanced Cardiovascular Systems, Inc. Stent designs for use in peripheral vessels
US6355058B1 (en) 1999-12-30 2002-03-12 Advanced Cardiovascular Systems, Inc. Stent with radiopaque coating consisting of particles in a binder
US6402781B1 (en) 2000-01-31 2002-06-11 Mitralife Percutaneous mitral annuloplasty and cardiac reinforcement
US6989028B2 (en) * 2000-01-31 2006-01-24 Edwards Lifesciences Ag Medical system and method for remodeling an extravascular tissue structure
US6652571B1 (en) 2000-01-31 2003-11-25 Scimed Life Systems, Inc. Braided, branched, implantable device and processes for manufacture thereof
US7507252B2 (en) 2000-01-31 2009-03-24 Edwards Lifesciences Ag Adjustable transluminal annuloplasty system
US6622604B1 (en) 2000-01-31 2003-09-23 Scimed Life Systems, Inc. Process for manufacturing a braided bifurcated stent
US6325822B1 (en) 2000-01-31 2001-12-04 Scimed Life Systems, Inc. Braided stent having tapered filaments
US6398807B1 (en) * 2000-01-31 2002-06-04 Scimed Life Systems, Inc. Braided branching stent, method for treating a lumen therewith, and process for manufacture therefor
US6296661B1 (en) 2000-02-01 2001-10-02 Luis A. Davila Self-expanding stent-graft
US6245100B1 (en) 2000-02-01 2001-06-12 Cordis Corporation Method for making a self-expanding stent-graft
US7740637B2 (en) 2000-02-09 2010-06-22 Micrus Endovascular Corporation Apparatus and method for deployment of a therapeutic device using a catheter
US6814752B1 (en) 2000-03-03 2004-11-09 Endovascular Technologies, Inc. Modular grafting system and method
US8092511B2 (en) * 2000-03-03 2012-01-10 Endovascular Technologies, Inc. Modular stent-graft for endovascular repair of aortic arch aneurysms and dissections
JP5108999B2 (en) * 2000-03-14 2012-12-26 クック メディカル テクノロジーズ エルエルシー Stent graft member
IL153753A0 (en) * 2002-12-30 2003-07-06 Neovasc Medical Ltd Varying-diameter vascular implant and balloon
US6953476B1 (en) * 2000-03-27 2005-10-11 Neovasc Medical Ltd. Device and method for treating ischemic heart disease
US6436132B1 (en) 2000-03-30 2002-08-20 Advanced Cardiovascular Systems, Inc. Composite intraluminal prostheses
US6942691B1 (en) 2000-04-27 2005-09-13 Timothy A. M. Chuter Modular bifurcated graft for endovascular aneurysm repair
US7666221B2 (en) * 2000-05-01 2010-02-23 Endovascular Technologies, Inc. Lock modular graft component junctions
US7135037B1 (en) 2000-05-01 2006-11-14 Endovascular Technologies, Inc. System and method for forming a junction between elements of a modular endovascular prosthesis
US7300662B2 (en) 2000-05-12 2007-11-27 Cordis Corporation Drug/drug delivery systems for the prevention and treatment of vascular disease
US8236048B2 (en) 2000-05-12 2012-08-07 Cordis Corporation Drug/drug delivery systems for the prevention and treatment of vascular disease
US6776796B2 (en) 2000-05-12 2004-08-17 Cordis Corportation Antiinflammatory drug and delivery device
AU2001275257A1 (en) 2000-06-05 2001-12-17 Scimed Life Systems, Inc. Et.Al. Methods and devices for the treatment of urinary incontinence
US6652579B1 (en) 2000-06-22 2003-11-25 Advanced Cardiovascular Systems, Inc. Radiopaque stent
US6540775B1 (en) * 2000-06-30 2003-04-01 Cordis Corporation Ultraflexible open cell stent
US6506202B1 (en) 2000-07-10 2003-01-14 Advanced Cardiovascular Systems, Inc. Expandable stent dimensional retention system and method
CN1447669A (en) 2000-08-18 2003-10-08 阿特里泰克公司 Expandable implant devices for filtering blood flow from atrial appendages
IL155015A0 (en) 2000-09-21 2003-10-31 Atritech Inc Apparatus for implanting devices in atrial appendages
US8070792B2 (en) 2000-09-22 2011-12-06 Boston Scientific Scimed, Inc. Stent
US7766956B2 (en) 2000-09-22 2010-08-03 Boston Scientific Scimed, Inc. Intravascular stent and assembly
US20020072792A1 (en) * 2000-09-22 2002-06-13 Robert Burgermeister Stent with optimal strength and radiopacity characteristics
US6953560B1 (en) 2000-09-28 2005-10-11 Advanced Cardiovascular Systems, Inc. Barriers for polymer-coated implantable medical devices and methods for making the same
US6716444B1 (en) 2000-09-28 2004-04-06 Advanced Cardiovascular Systems, Inc. Barriers for polymer-coated implantable medical devices and methods for making the same
US6652574B1 (en) 2000-09-28 2003-11-25 Vascular Concepts Holdings Limited Product and process for manufacturing a wire stent coated with a biocompatible fluoropolymer
US7261735B2 (en) 2001-05-07 2007-08-28 Cordis Corporation Local drug delivery devices and methods for maintaining the drug coatings thereon
ES2275737T3 (en) 2000-09-29 2007-06-16 Cordis Corporation DRESSED MEDICAL DEVICES.
US20020111590A1 (en) 2000-09-29 2002-08-15 Davila Luis A. Medical devices, drug coatings and methods for maintaining the drug coatings thereon
EP1322258A2 (en) 2000-10-05 2003-07-02 Boston Scientific Limited Stent delivery system with membrane
US6783793B1 (en) 2000-10-26 2004-08-31 Advanced Cardiovascular Systems, Inc. Selective coating of medical devices
US6966917B1 (en) 2000-11-09 2005-11-22 Innovation Interventional Technologies B.V. Deformable connector for mechanically connecting hollow structures
US6582394B1 (en) 2000-11-14 2003-06-24 Advanced Cardiovascular Systems, Inc. Stent and catheter assembly and method for treating bifurcated vessels
US7229472B2 (en) 2000-11-16 2007-06-12 Cordis Corporation Thoracic aneurysm repair prosthesis and system
US7314483B2 (en) 2000-11-16 2008-01-01 Cordis Corp. Stent graft with branch leg
US7267685B2 (en) 2000-11-16 2007-09-11 Cordis Corporation Bilateral extension prosthesis and method of delivery
US6843802B1 (en) 2000-11-16 2005-01-18 Cordis Corporation Delivery apparatus for a self expanding retractable stent
US6942692B2 (en) 2000-11-16 2005-09-13 Cordis Corporation Supra-renal prosthesis and renal artery bypass
WO2002039925A2 (en) * 2000-11-17 2002-05-23 Evysio Medical Devices Ulc Endovascular prosthesis
US6582460B1 (en) 2000-11-20 2003-06-24 Advanced Cardiovascular Systems, Inc. System and method for accurately deploying a stent
US20020124851A1 (en) * 2000-11-28 2002-09-12 Richard Knauer Hearing protective device and method of making same
AU2002231074A1 (en) 2000-12-20 2002-07-01 Fox Hollow Technologies, Inc. Debulking catheter
US6663662B2 (en) 2000-12-28 2003-12-16 Advanced Cardiovascular Systems, Inc. Diffusion barrier layer for implantable devices
US6641607B1 (en) * 2000-12-29 2003-11-04 Advanced Cardiovascular Systems, Inc. Double tube stent
US6764504B2 (en) * 2001-01-04 2004-07-20 Scimed Life Systems, Inc. Combined shaped balloon and stent protector
US20010044650A1 (en) * 2001-01-12 2001-11-22 Simso Eric J. Stent for in-stent restenosis
US7510576B2 (en) 2001-01-30 2009-03-31 Edwards Lifesciences Ag Transluminal mitral annuloplasty
US6679911B2 (en) 2001-03-01 2004-01-20 Cordis Corporation Flexible stent
US6740114B2 (en) 2001-03-01 2004-05-25 Cordis Corporation Flexible stent
US6790227B2 (en) 2001-03-01 2004-09-14 Cordis Corporation Flexible stent
AU784552B2 (en) 2001-03-02 2006-05-04 Cardinal Health 529, Llc Flexible stent
US8915927B2 (en) 2001-03-09 2014-12-23 Boston Scientific Scimed, Inc. Systems, methods and devices relating to delivery of medical implants
US7364541B2 (en) 2001-03-09 2008-04-29 Boston Scientific Scimed, Inc. Systems, methods and devices relating to delivery of medical implants
US9149261B2 (en) 2001-03-09 2015-10-06 Boston Scientific Scimed, Inc. Systems, methods and devices relating to delivery of medical implants
US6620191B1 (en) 2001-03-27 2003-09-16 Advanced Cardiovascular Systems, Inc. System for releasably securing a stent on a catheter assembly and method of use
EP1258230A3 (en) 2001-03-29 2003-12-10 CardioSafe Ltd Balloon catheter device
KR100455359B1 (en) * 2001-04-04 2004-11-08 (주) 태웅메디칼 Self-expaniding stent
KR100448329B1 (en) * 2001-04-10 2004-09-10 주식회사 스텐텍 Esophageal stent
US7105017B2 (en) * 2001-04-11 2006-09-12 Andrew Kerr Axially-connected stent/graft assembly
US20040215322A1 (en) * 2001-07-06 2004-10-28 Andrew Kerr Stent/graft assembly
US7175651B2 (en) * 2001-07-06 2007-02-13 Andrew Kerr Stent/graft assembly
US9937066B2 (en) 2001-04-11 2018-04-10 Andre Kerr Stent/graft assembly
US20040073288A1 (en) * 2001-07-06 2004-04-15 Andrew Kerr Stent/graft assembly
US20170224469A1 (en) 2001-04-11 2017-08-10 Andrew Kerr Stent/graft assembly
US6764505B1 (en) 2001-04-12 2004-07-20 Advanced Cardiovascular Systems, Inc. Variable surface area stent
WO2002082898A1 (en) * 2001-04-16 2002-10-24 Agraquest Inc Novel endophytic fungi and methods of use
DE10118944B4 (en) 2001-04-18 2013-01-31 Merit Medical Systems, Inc. Removable, essentially cylindrical implants
US6620122B2 (en) * 2001-04-26 2003-09-16 Scimed Life Systems, Inc. Gastric pseudocyst drainage and stent delivery system for use therein
US8182527B2 (en) 2001-05-07 2012-05-22 Cordis Corporation Heparin barrier coating for controlled drug release
US6682558B2 (en) 2001-05-10 2004-01-27 3F Therapeutics, Inc. Delivery system for a stentless valve bioprosthesis
US8617231B2 (en) 2001-05-18 2013-12-31 Boston Scientific Scimed, Inc. Dual guidewire exchange catheter system
US7862495B2 (en) 2001-05-31 2011-01-04 Advanced Cardiovascular Systems, Inc. Radiation or drug delivery source with activity gradient to minimize edge effects
US7338514B2 (en) 2001-06-01 2008-03-04 St. Jude Medical, Cardiology Division, Inc. Closure devices, related delivery methods and tools, and related methods of use
US6941169B2 (en) * 2001-06-04 2005-09-06 Albert Einstein Healthcare Network Cardiac stimulating apparatus having a blood clot filter and atrial pacer
US7201940B1 (en) 2001-06-12 2007-04-10 Advanced Cardiovascular Systems, Inc. Method and apparatus for thermal spray processing of medical devices
US6666880B1 (en) 2001-06-19 2003-12-23 Advised Cardiovascular Systems, Inc. Method and system for securing a coated stent to a balloon catheter
US6565659B1 (en) 2001-06-28 2003-05-20 Advanced Cardiovascular Systems, Inc. Stent mounting assembly and a method of using the same to coat a stent
US6605110B2 (en) 2001-06-29 2003-08-12 Advanced Cardiovascular Systems, Inc. Stent with enhanced bendability and flexibility
US6656216B1 (en) 2001-06-29 2003-12-02 Advanced Cardiovascular Systems, Inc. Composite stent with regioselective material
US7011671B2 (en) 2001-07-18 2006-03-14 Atritech, Inc. Cardiac implant device tether system and method
US7547321B2 (en) 2001-07-26 2009-06-16 Alveolus Inc. Removable stent and method of using the same
US6979346B1 (en) 2001-08-08 2005-12-27 Advanced Cardiovascular Systems, Inc. System and method for improved stent retention
AUPR748801A0 (en) * 2001-09-04 2001-09-27 Stentco Llc A stent
US7708712B2 (en) * 2001-09-04 2010-05-04 Broncus Technologies, Inc. Methods and devices for maintaining patency of surgically created channels in a body organ
US20050060041A1 (en) * 2001-09-04 2005-03-17 Broncus Technologies, Inc. Methods and devices for maintaining surgically created channels in a body organ
GB0121980D0 (en) 2001-09-11 2001-10-31 Cathnet Science Holding As Expandable stent
US7252679B2 (en) * 2001-09-13 2007-08-07 Cordis Corporation Stent with angulated struts
US20030055486A1 (en) * 2001-09-19 2003-03-20 Adams John M. Vascular reinforcement device and method
US7195640B2 (en) 2001-09-25 2007-03-27 Cordis Corporation Coated medical devices for the treatment of vulnerable plaque
US6753071B1 (en) 2001-09-27 2004-06-22 Advanced Cardiovascular Systems, Inc. Rate-reducing membrane for release of an agent
US7108701B2 (en) 2001-09-28 2006-09-19 Ethicon, Inc. Drug releasing anastomosis devices and methods for treating anastomotic sites
DE60236755D1 (en) 2001-10-04 2010-07-29 Neovasc Medical Ltd RIVER REDUCING IMPLANT
US7144363B2 (en) * 2001-10-16 2006-12-05 Extensia Medical, Inc. Systems for heart treatment
US20030074055A1 (en) * 2001-10-17 2003-04-17 Haverkost Patrick A. Method and system for fixation of endoluminal devices
US6814561B2 (en) * 2001-10-30 2004-11-09 Scimed Life Systems, Inc. Apparatus and method for extrusion of thin-walled tubes
US7597775B2 (en) * 2001-10-30 2009-10-06 Boston Scientific Scimed, Inc. Green fluoropolymer tube and endovascular prosthesis formed using same
US20110087320A1 (en) * 2001-11-28 2011-04-14 Aptus Endosystems, Inc. Devices, Systems, and Methods for Prosthesis Delivery and Implantation, Including a Prosthesis Assembly
US20030135266A1 (en) 2001-12-03 2003-07-17 Xtent, Inc. Apparatus and methods for delivery of multiple distributed stents
US20040186551A1 (en) 2003-01-17 2004-09-23 Xtent, Inc. Multiple independent nested stent structures and methods for their preparation and deployment
EP1917931A3 (en) 2001-12-03 2013-02-27 Intek Technology LLC Multi-segment modular stent and methods for manufacturing stents
US7137993B2 (en) 2001-12-03 2006-11-21 Xtent, Inc. Apparatus and methods for delivery of multiple distributed stents
US7309350B2 (en) 2001-12-03 2007-12-18 Xtent, Inc. Apparatus and methods for deployment of vascular prostheses
US7294146B2 (en) 2001-12-03 2007-11-13 Xtent, Inc. Apparatus and methods for delivery of variable length stents
US7892273B2 (en) 2001-12-03 2011-02-22 Xtent, Inc. Custom length stent apparatus
US7351255B2 (en) 2001-12-03 2008-04-01 Xtent, Inc. Stent delivery apparatus and method
US8080048B2 (en) 2001-12-03 2011-12-20 Xtent, Inc. Stent delivery for bifurcated vessels
US7182779B2 (en) 2001-12-03 2007-02-27 Xtent, Inc. Apparatus and methods for positioning prostheses for deployment from a catheter
US7147656B2 (en) 2001-12-03 2006-12-12 Xtent, Inc. Apparatus and methods for delivery of braided prostheses
US20030176914A1 (en) * 2003-01-21 2003-09-18 Rabkin Dmitry J. Multi-segment modular stent and methods for manufacturing stents
EP2277474A3 (en) 2001-12-20 2013-11-27 TriVascular, Inc. Advanced endovascular graft
US7147661B2 (en) 2001-12-20 2006-12-12 Boston Scientific Santa Rosa Corp. Radially expandable stent
DE60235834D1 (en) 2001-12-28 2010-05-12 Edwards Lifesciences Ag Storage device with delay
SE524709C2 (en) * 2002-01-11 2004-09-21 Edwards Lifesciences Ag Device for delayed reshaping of a heart vessel and a heart valve
US20030135265A1 (en) * 2002-01-04 2003-07-17 Stinson Jonathan S. Prostheses implantable in enteral vessels
US7326237B2 (en) 2002-01-08 2008-02-05 Cordis Corporation Supra-renal anchoring prosthesis
JP4328209B2 (en) 2002-01-25 2009-09-09 アトリテック, インコーポレイテッド Atrial appendage blood filtration system
US7029493B2 (en) * 2002-01-25 2006-04-18 Cordis Corporation Stent with enhanced crossability
US7445629B2 (en) * 2002-01-31 2008-11-04 Boston Scientific Scimed, Inc. Medical device for delivering biologically active material
US7326245B2 (en) * 2002-01-31 2008-02-05 Boston Scientific Scimed, Inc. Medical device for delivering biologically active material
US7291165B2 (en) 2002-01-31 2007-11-06 Boston Scientific Scimed, Inc. Medical device for delivering biologically active material
US7029494B2 (en) * 2002-02-08 2006-04-18 Scimed Life Systems, Inc. Braided modular stent with hourglass-shaped interfaces
WO2003070127A1 (en) * 2002-02-20 2003-08-28 Nemcomed, Ltd. Knee arthroplasty prosthesis and method
US8211166B2 (en) * 2002-02-26 2012-07-03 Endovascular Technologies, Inc. Endovascular grafting device
US6638257B2 (en) * 2002-03-01 2003-10-28 Aga Medical Corporation Intravascular flow restrictor
IL163711A0 (en) 2002-03-08 2005-12-18 Eisai Co Ltd Macrocyclic compounds useful as pharmaceuticals
EP2374454B1 (en) 2002-03-22 2016-05-11 Eisai R&D Management Co., Ltd. Hemiasterlin derivatives and uses thereof in the treatment of cancer
US9375203B2 (en) 2002-03-25 2016-06-28 Kieran Murphy Llc Biopsy needle
US20030204248A1 (en) * 2002-03-25 2003-10-30 Murphy Kieran P. Device viewable under an imaging beam
US7927368B2 (en) 2002-03-25 2011-04-19 Kieran Murphy Llc Device viewable under an imaging beam
US20030181810A1 (en) * 2002-03-25 2003-09-25 Murphy Kieran P. Kit for image guided surgical procedures
US7083822B2 (en) * 2002-04-26 2006-08-01 Medtronic Vascular, Inc. Overlapping coated stents
US7976564B2 (en) * 2002-05-06 2011-07-12 St. Jude Medical, Cardiology Division, Inc. PFO closure devices and related methods of use
US20030216804A1 (en) * 2002-05-14 2003-11-20 Debeer Nicholas C. Shape memory polymer stent
US6656220B1 (en) 2002-06-17 2003-12-02 Advanced Cardiovascular Systems, Inc. Intravascular stent
US7122051B1 (en) 2002-07-12 2006-10-17 Endovascular Technologies, Inc. Universal length sizing and dock for modular bifurcated endovascular graft
US6802859B1 (en) 2002-07-12 2004-10-12 Endovascular Technologies, Inc. Endovascular stent-graft with flexible bifurcation
DE10233085B4 (en) 2002-07-19 2014-02-20 Dendron Gmbh Stent with guide wire
US11890181B2 (en) * 2002-07-22 2024-02-06 Tmt Systems, Inc. Percutaneous endovascular apparatus for repair of aneurysms and arterial blockages
EP1534182B8 (en) * 2002-07-22 2017-08-09 TMT Systems, Inc Expandable attachment device for an endovascular apparatus
US20060106449A1 (en) * 2002-08-08 2006-05-18 Neovasc Medical Ltd. Flow reducing implant
AU2003219503A1 (en) * 2002-08-08 2004-02-25 Neovasc Medical Ltd. Geometric flow regulator
US7637384B2 (en) * 2002-08-09 2009-12-29 Crown Packaging Technology, Inc. Tamper evident closure with locking band and container therefor
AU2003269964B2 (en) 2002-08-14 2009-10-01 Boston Scientific Limited Systems, methods and devices relating to delivery of medical implants
WO2004016199A1 (en) 2002-08-15 2004-02-26 Gmp Cardiac Care, Inc. Stent-graft with rails
US20050033405A1 (en) * 2002-08-15 2005-02-10 Gmp/Cardiac Care, Inc. Rail stent-graft for repairing abdominal aortic aneurysm
US20060100695A1 (en) * 2002-09-27 2006-05-11 Peacock James C Iii Implantable stent with modified ends
US7976936B2 (en) 2002-10-11 2011-07-12 University Of Connecticut Endoprostheses
US7794494B2 (en) 2002-10-11 2010-09-14 Boston Scientific Scimed, Inc. Implantable medical devices
WO2004032799A2 (en) * 2002-10-11 2004-04-22 Boston Scientific Limited Implantable medical devices
US7875068B2 (en) 2002-11-05 2011-01-25 Merit Medical Systems, Inc. Removable biliary stent
US7959671B2 (en) 2002-11-05 2011-06-14 Merit Medical Systems, Inc. Differential covering and coating methods
US7637942B2 (en) 2002-11-05 2009-12-29 Merit Medical Systems, Inc. Coated stent with geometry determinated functionality and method of making the same
US7527644B2 (en) 2002-11-05 2009-05-05 Alveolus Inc. Stent with geometry determinated functionality and method of making the same
US9296011B2 (en) * 2002-11-07 2016-03-29 Abbott Laboratories Prosthesis having varied concentration of beneficial agent
ATE427079T1 (en) 2002-11-08 2009-04-15 Jacques Seguin ENDOPROSTHESIS FOR VASCULAR BILCH
US7169178B1 (en) 2002-11-12 2007-01-30 Advanced Cardiovascular Systems, Inc. Stent with drug coating
US7435255B1 (en) 2002-11-13 2008-10-14 Advnaced Cardiovascular Systems, Inc. Drug-eluting stent and methods of making
US8282678B2 (en) 2002-11-13 2012-10-09 Allium Medical Solutions Ltd. Endoluminal lining
US7144422B1 (en) 2002-11-13 2006-12-05 Advanced Cardiovascular Systems, Inc. Drug-eluting stent and methods of making the same
US6899729B1 (en) 2002-12-18 2005-05-31 Advanced Cardiovascular Systems, Inc. Stent for treating vulnerable plaque
US6896697B1 (en) 2002-12-30 2005-05-24 Advanced Cardiovascular Systems, Inc. Intravascular stent
US7381222B2 (en) 2002-12-30 2008-06-03 Quiescence Medical, Inc. Stent for maintaining patency of a body region
US7105018B1 (en) * 2002-12-30 2006-09-12 Advanced Cardiovascular Systems, Inc. Drug-eluting stent cover and method of use
US7647931B2 (en) * 2002-12-30 2010-01-19 Quiescence Medical, Inc. Stent for maintaining patency of a body region
US7992566B2 (en) 2002-12-30 2011-08-09 Quiescence Medical, Inc. Apparatus and methods for treating sleep apnea
US7316710B1 (en) 2002-12-30 2008-01-08 Advanced Cardiovascular Systems, Inc. Flexible stent
US6849084B2 (en) * 2002-12-31 2005-02-01 Intek Technology L.L.C. Stent delivery system
US8535370B1 (en) 2003-01-23 2013-09-17 Endovascular Technologies, Inc. Radiopaque markers for endovascular graft alignment
US20040254600A1 (en) * 2003-02-26 2004-12-16 David Zarbatany Methods and devices for endovascular mitral valve correction from the left coronary sinus
US7025779B2 (en) * 2003-02-26 2006-04-11 Scimed Life Systems, Inc. Endoluminal device having enhanced affixation characteristics
US8016869B2 (en) 2003-03-26 2011-09-13 Biosensors International Group, Ltd. Guidewire-less stent delivery methods
US7771463B2 (en) 2003-03-26 2010-08-10 Ton Dai T Twist-down implant delivery technologies
US6929663B2 (en) 2003-03-26 2005-08-16 Boston Scientific Scimed, Inc. Longitudinally expanding medical device
ATE467402T1 (en) 2003-03-26 2010-05-15 Cardiomind Inc IMPLANT DEPOSIT CATHETER WITH ELECTROLYTICALLY DEGRADABLE COMPOUNDS
US20040254627A1 (en) * 2003-04-04 2004-12-16 Thompson Paul J. Stent with end adapted for flaring
US8372112B2 (en) 2003-04-11 2013-02-12 St. Jude Medical, Cardiology Division, Inc. Closure devices, related delivery methods, and related methods of use
US20040267306A1 (en) 2003-04-11 2004-12-30 Velocimed, L.L.C. Closure devices, related delivery methods, and related methods of use
US8246640B2 (en) 2003-04-22 2012-08-21 Tyco Healthcare Group Lp Methods and devices for cutting tissue at a vascular location
US7597704B2 (en) 2003-04-28 2009-10-06 Atritech, Inc. Left atrial appendage occlusion device with active expansion
US6846323B2 (en) 2003-05-15 2005-01-25 Advanced Cardiovascular Systems, Inc. Intravascular stent
EP2286771B1 (en) * 2003-05-23 2016-05-11 Boston Scientific Limited Stents with attached looped ends
US7241308B2 (en) 2003-06-09 2007-07-10 Xtent, Inc. Stent deployment systems and methods
US7247986B2 (en) * 2003-06-10 2007-07-24 Samsung Sdi. Co., Ltd. Organic electro luminescent display and method for fabricating the same
EP1646332B1 (en) 2003-07-18 2015-06-17 Edwards Lifesciences AG Remotely activated mitral annuloplasty system
US8308682B2 (en) 2003-07-18 2012-11-13 Broncus Medical Inc. Devices for maintaining patency of surgically created channels in tissue
DE10334868B4 (en) * 2003-07-29 2013-10-17 Pfm Medical Ag Implantable device as a replacement organ valve, its manufacturing process and basic body and membrane element for it
US20060155368A1 (en) * 2003-07-29 2006-07-13 Kyoung-Min Shin Self-expandable stent
US7361138B2 (en) * 2003-07-31 2008-04-22 Scimed Life Systems, Inc. Bioabsorbable casing for surgical sling assembly
WO2005016184A1 (en) * 2003-08-14 2005-02-24 Scimed Life System, Inc. Surgical slings
US8545386B2 (en) 2003-08-14 2013-10-01 Boston Scientific Scimed, Inc. Surgical slings
US7735493B2 (en) 2003-08-15 2010-06-15 Atritech, Inc. System and method for delivering a left atrial appendage containment device
US7628806B2 (en) * 2003-08-20 2009-12-08 Boston Scientific Scimed, Inc. Stent with improved resistance to migration
US8298280B2 (en) 2003-08-21 2012-10-30 Boston Scientific Scimed, Inc. Stent with protruding branch portion for bifurcated vessels
US7235083B1 (en) * 2003-09-10 2007-06-26 Endovascular Technologies, Inc. Methods and devices for aiding in situ assembly of repair devices
US7198675B2 (en) 2003-09-30 2007-04-03 Advanced Cardiovascular Systems Stent mandrel fixture and method for selectively coating surfaces of a stent
WO2005034765A2 (en) 2003-10-03 2005-04-21 Scimed Life Systems, Inc. Systems for a delivering a medical implant to an anatomical location in a patient
US7762977B2 (en) * 2003-10-08 2010-07-27 Hemosphere, Inc. Device and method for vascular access
US7553324B2 (en) 2003-10-14 2009-06-30 Xtent, Inc. Fixed stent delivery devices and methods
US7004176B2 (en) * 2003-10-17 2006-02-28 Edwards Lifesciences Ag Heart valve leaflet locator
US20050096725A1 (en) * 2003-10-29 2005-05-05 Pomeranz Mark L. Expandable stent having removable slat members
US7208172B2 (en) * 2003-11-03 2007-04-24 Medlogics Device Corporation Metallic composite coating for delivery of therapeutic agents from the surface of implantable devices
US7344557B2 (en) 2003-11-12 2008-03-18 Advanced Stent Technologies, Inc. Catheter balloon systems and methods
WO2005048850A2 (en) 2003-11-17 2005-06-02 Scimed Life Systems, Inc. Systems and methods relating to associating a medical implant with a delivery device
US20050119723A1 (en) * 2003-11-28 2005-06-02 Medlogics Device Corporation Medical device with porous surface containing bioerodable bioactive composites and related methods
US20060085062A1 (en) * 2003-11-28 2006-04-20 Medlogics Device Corporation Implantable stent with endothelialization factor
US20060241682A1 (en) * 2003-12-08 2006-10-26 Kurz Daniel R Intravascular device push wire delivery system
US7258697B1 (en) 2003-12-22 2007-08-21 Advanced Cardiovascular Systems, Inc. Stent with anchors to prevent vulnerable plaque rupture during deployment
US20050137687A1 (en) 2003-12-23 2005-06-23 Sadra Medical Heart valve anchor and method
US20050137694A1 (en) 2003-12-23 2005-06-23 Haug Ulrich R. Methods and apparatus for endovascularly replacing a patient's heart valve
US11278398B2 (en) 2003-12-23 2022-03-22 Boston Scientific Scimed, Inc. Methods and apparatus for endovascular heart valve replacement comprising tissue grasping elements
US8840663B2 (en) 2003-12-23 2014-09-23 Sadra Medical, Inc. Repositionable heart valve method
US8579962B2 (en) 2003-12-23 2013-11-12 Sadra Medical, Inc. Methods and apparatus for performing valvuloplasty
US7988724B2 (en) 2003-12-23 2011-08-02 Sadra Medical, Inc. Systems and methods for delivering a medical implant
US8182528B2 (en) 2003-12-23 2012-05-22 Sadra Medical, Inc. Locking heart valve anchor
US8052749B2 (en) 2003-12-23 2011-11-08 Sadra Medical, Inc. Methods and apparatus for endovascular heart valve replacement comprising tissue grasping elements
US7824443B2 (en) 2003-12-23 2010-11-02 Sadra Medical, Inc. Medical implant delivery and deployment tool
EP2529697B1 (en) 2003-12-23 2014-01-29 Sadra Medical, Inc. Repositionable heart valve
US8343213B2 (en) 2003-12-23 2013-01-01 Sadra Medical, Inc. Leaflet engagement elements and methods for use thereof
US8603160B2 (en) 2003-12-23 2013-12-10 Sadra Medical, Inc. Method of using a retrievable heart valve anchor with a sheath
US7445631B2 (en) 2003-12-23 2008-11-04 Sadra Medical, Inc. Methods and apparatus for endovascularly replacing a patient's heart valve
US8287584B2 (en) 2005-11-14 2012-10-16 Sadra Medical, Inc. Medical implant deployment tool
US9005273B2 (en) 2003-12-23 2015-04-14 Sadra Medical, Inc. Assessing the location and performance of replacement heart valves
US7824442B2 (en) 2003-12-23 2010-11-02 Sadra Medical, Inc. Methods and apparatus for endovascularly replacing a heart valve
US7329279B2 (en) 2003-12-23 2008-02-12 Sadra Medical, Inc. Methods and apparatus for endovascularly replacing a patient's heart valve
US7381219B2 (en) 2003-12-23 2008-06-03 Sadra Medical, Inc. Low profile heart valve and delivery system
US7959666B2 (en) 2003-12-23 2011-06-14 Sadra Medical, Inc. Methods and apparatus for endovascularly replacing a heart valve
US7326236B2 (en) 2003-12-23 2008-02-05 Xtent, Inc. Devices and methods for controlling and indicating the length of an interventional element
US9526609B2 (en) 2003-12-23 2016-12-27 Boston Scientific Scimed, Inc. Methods and apparatus for endovascularly replacing a patient's heart valve
US20120041550A1 (en) 2003-12-23 2012-02-16 Sadra Medical, Inc. Methods and Apparatus for Endovascular Heart Valve Replacement Comprising Tissue Grasping Elements
US7748389B2 (en) 2003-12-23 2010-07-06 Sadra Medical, Inc. Leaflet engagement elements and methods for use thereof
US7780725B2 (en) 2004-06-16 2010-08-24 Sadra Medical, Inc. Everting heart valve
US7563324B1 (en) 2003-12-29 2009-07-21 Advanced Cardiovascular Systems Inc. System and method for coating an implantable medical device
US7294145B2 (en) * 2004-02-26 2007-11-13 Boston Scientific Scimed, Inc. Stent with differently coated inside and outside surfaces
US7651521B2 (en) 2004-03-02 2010-01-26 Cardiomind, Inc. Corewire actuated delivery system with fixed distal stent-carrying extension
US8313505B2 (en) 2004-03-19 2012-11-20 Aga Medical Corporation Device for occluding vascular defects
US8398670B2 (en) 2004-03-19 2013-03-19 Aga Medical Corporation Multi-layer braided structures for occluding vascular defects and for occluding fluid flow through portions of the vasculature of the body
US8777974B2 (en) 2004-03-19 2014-07-15 Aga Medical Corporation Multi-layer braided structures for occluding vascular defects
US20050228434A1 (en) 2004-03-19 2005-10-13 Aga Medical Corporation Multi-layer braided structures for occluding vascular defects
US9039724B2 (en) 2004-03-19 2015-05-26 Aga Medical Corporation Device for occluding vascular defects
US8747453B2 (en) 2008-02-18 2014-06-10 Aga Medical Corporation Stent/stent graft for reinforcement of vascular abnormalities and associated method
US20050215950A1 (en) * 2004-03-26 2005-09-29 Scimed Life Systems, Inc. Balloon catheter with radiopaque portion
US7323006B2 (en) 2004-03-30 2008-01-29 Xtent, Inc. Rapid exchange interventional devices and methods
WO2005096994A1 (en) 2004-03-31 2005-10-20 Wilson-Cook Medical Inc. Stent introducer system
US8216299B2 (en) 2004-04-01 2012-07-10 Cook Medical Technologies Llc Method to retract a body vessel wall with remodelable material
US7993397B2 (en) 2004-04-05 2011-08-09 Edwards Lifesciences Ag Remotely adjustable coronary sinus implant
EP1737390A1 (en) 2004-04-08 2007-01-03 Cook Incorporated Implantable medical device with optimized shape
US8425539B2 (en) 2004-04-12 2013-04-23 Xlumena, Inc. Luminal structure anchoring devices and methods
US7553377B1 (en) 2004-04-27 2009-06-30 Advanced Cardiovascular Systems, Inc. Apparatus and method for electrostatic coating of an abluminal stent surface
US8801746B1 (en) 2004-05-04 2014-08-12 Covidien Lp System and method for delivering a left atrial appendage containment device
US8267985B2 (en) 2005-05-25 2012-09-18 Tyco Healthcare Group Lp System and method for delivering and deploying an occluding device within a vessel
US20050278017A1 (en) * 2004-06-09 2005-12-15 Scimed Life Systems, Inc. Overlapped stents for scaffolding, flexibility and MRI compatibility
JP4971149B2 (en) 2004-06-17 2012-07-11 スラソス セラピューティックス インコーポレーテッド TDF related compounds and analogs thereof
US7955373B2 (en) * 2004-06-28 2011-06-07 Boston Scientific Scimed, Inc. Two-stage stent-graft and method of delivering same
US20050288766A1 (en) 2004-06-28 2005-12-29 Xtent, Inc. Devices and methods for controlling expandable prostheses during deployment
US8317859B2 (en) 2004-06-28 2012-11-27 J.W. Medical Systems Ltd. Devices and methods for controlling expandable prostheses during deployment
US8409167B2 (en) 2004-07-19 2013-04-02 Broncus Medical Inc Devices for delivering substances through an extra-anatomic opening created in an airway
US7515970B2 (en) 2004-08-18 2009-04-07 Cardiac Pacemakers, Inc. Transeptal lead
US7648727B2 (en) 2004-08-26 2010-01-19 Advanced Cardiovascular Systems, Inc. Methods for manufacturing a coated stent-balloon assembly
JP5207737B2 (en) * 2004-09-15 2013-06-12 イノヴェイショナル・ホールディングズ・エルエルシー Bifurcated stent with collapsible end
US8357180B2 (en) * 2004-09-17 2013-01-22 Codman & Shurtleff, Inc. Thin film metallic device for plugging aneurysms or vessels
US7887579B2 (en) 2004-09-29 2011-02-15 Merit Medical Systems, Inc. Active stent
DE102004048458B4 (en) * 2004-10-05 2020-08-13 Admedes Schuessler Gmbh Aneurysm stent for implantation in a living body and use of the same as a balloon-expanded aneurysm stent
US8535345B2 (en) 2004-10-07 2013-09-17 DePuy Synthes Products, LLC Vasoocclusive coil with biplex windings to improve mechanical properties
US20060085065A1 (en) * 2004-10-15 2006-04-20 Krause Arthur A Stent with auxiliary treatment structure
US7147659B2 (en) * 2004-10-28 2006-12-12 Cordis Neurovascular, Inc. Expandable stent having a dissolvable portion
US7156871B2 (en) * 2004-10-28 2007-01-02 Cordis Neurovascular, Inc. Expandable stent having a stabilized portion
US8337543B2 (en) 2004-11-05 2012-12-25 Boston Scientific Scimed, Inc. Prosthesis anchoring and deploying device
JP5111112B2 (en) 2004-12-08 2012-12-26 エックスルミナ, インコーポレイテッド Device for performing needle-guided therapy
JP4888914B2 (en) * 2004-12-08 2012-02-29 イノベーショナル・ホールディングス・エルエルシー Expandable medical device with different hinge performance
US7211110B2 (en) 2004-12-09 2007-05-01 Edwards Lifesciences Corporation Diagnostic kit to assist with heart valve annulus adjustment
US8043361B2 (en) * 2004-12-10 2011-10-25 Boston Scientific Scimed, Inc. Implantable medical devices, and methods of delivering the same
US7632307B2 (en) 2004-12-16 2009-12-15 Advanced Cardiovascular Systems, Inc. Abluminal, multilayer coating constructs for drug-delivery stents
US9545300B2 (en) 2004-12-22 2017-01-17 W. L. Gore & Associates, Inc. Filament-wound implantable devices
DE102005003632A1 (en) 2005-01-20 2006-08-17 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Catheter for the transvascular implantation of heart valve prostheses
US7766959B2 (en) * 2005-03-25 2010-08-03 Scimed Life Systems, Inc. Variable length endovascular graft prosthesis adapted to prevent endoleaks
US7763198B2 (en) * 2005-04-12 2010-07-27 Abbott Cardiovascular Systems Inc. Method for retaining a vascular stent on a catheter
US7947207B2 (en) 2005-04-12 2011-05-24 Abbott Cardiovascular Systems Inc. Method for retaining a vascular stent on a catheter
US8628565B2 (en) * 2005-04-13 2014-01-14 Abbott Cardiovascular Systems Inc. Intravascular stent
US7962208B2 (en) 2005-04-25 2011-06-14 Cardiac Pacemakers, Inc. Method and apparatus for pacing during revascularization
US7731654B2 (en) 2005-05-13 2010-06-08 Merit Medical Systems, Inc. Delivery device with viewing window and associated method
US8273101B2 (en) 2005-05-25 2012-09-25 Tyco Healthcare Group Lp System and method for delivering and deploying an occluding device within a vessel
CA2604081C (en) 2005-05-25 2013-11-26 Chestnut Medical Technologies, Inc. System and method for delivering and deploying a self-expanding device within a vessel
US7500989B2 (en) * 2005-06-03 2009-03-10 Edwards Lifesciences Corp. Devices and methods for percutaneous repair of the mitral valve via the coronary sinus
US7320702B2 (en) 2005-06-08 2008-01-22 Xtent, Inc. Apparatus and methods for deployment of multiple custom-length prostheses (III)
US8777967B2 (en) 2005-06-09 2014-07-15 Xlumena, Inc. Methods and devices for anchoring to tissue
US8784437B2 (en) 2005-06-09 2014-07-22 Xlumena, Inc. Methods and devices for endosonography-guided fundoplexy
US7442210B2 (en) * 2005-06-15 2008-10-28 Jerome Segal Mechanical apparatus and method for artificial disc replacement
US20060287668A1 (en) * 2005-06-16 2006-12-21 Fawzi Natalie V Apparatus and methods for intravascular embolic protection
US20070038297A1 (en) * 2005-08-12 2007-02-15 Bobo Donald E Jr Medical implant with reinforcement mechanism
US20080221673A1 (en) * 2005-08-12 2008-09-11 Donald Bobo Medical implant with reinforcement mechanism
US8043366B2 (en) 2005-09-08 2011-10-25 Boston Scientific Scimed, Inc. Overlapping stent
US7712606B2 (en) 2005-09-13 2010-05-11 Sadra Medical, Inc. Two-part package for medical implant
US20080188928A1 (en) * 2005-09-16 2008-08-07 Amr Salahieh Medical device delivery sheath
US7972359B2 (en) 2005-09-16 2011-07-05 Atritech, Inc. Intracardiac cage and method of delivering same
US20070088343A1 (en) * 2005-09-19 2007-04-19 Mcintyre John Flexible surgical shaft having grasping sections
DK2497780T3 (en) 2005-09-20 2015-06-01 Thrasos Innovation Inc TDF-related compounds and analogs thereof
US20070073391A1 (en) * 2005-09-28 2007-03-29 Henry Bourang System and method for delivering a mitral valve repair device
US7670369B2 (en) * 2005-10-13 2010-03-02 Cook Incorporated Endoluminal prosthesis
US20070100414A1 (en) 2005-11-02 2007-05-03 Cardiomind, Inc. Indirect-release electrolytic implant delivery systems
ES2425948T3 (en) * 2005-11-14 2013-10-18 Covidien Lp Cannula delivery system for ostial sites within a duct
US20070167901A1 (en) * 2005-11-17 2007-07-19 Herrig Judson A Self-sealing residual compressive stress graft for dialysis
US20070123970A1 (en) * 2005-11-29 2007-05-31 Boston Scientific Scimed, Inc. Bifurcation stent with overlapping crimped struts
US20070135826A1 (en) 2005-12-01 2007-06-14 Steve Zaver Method and apparatus for delivering an implant without bias to a left atrial appendage
WO2007067820A2 (en) * 2005-12-09 2007-06-14 Edwards Lifesciences Corporation Improved anchoring system for medical implant
EP1797843A1 (en) * 2005-12-14 2007-06-20 Thomas Ischinger Lesion specific stents, also for ostial lesions, and methods of application
US7867547B2 (en) 2005-12-19 2011-01-11 Advanced Cardiovascular Systems, Inc. Selectively coating luminal surfaces of stents
US20070213813A1 (en) 2005-12-22 2007-09-13 Symetis Sa Stent-valves for valve replacement and associated methods and systems for surgery
US8900287B2 (en) * 2006-01-13 2014-12-02 Aga Medical Corporation Intravascular deliverable stent for reinforcement of abdominal aortic aneurysm
US8778008B2 (en) * 2006-01-13 2014-07-15 Aga Medical Corporation Intravascular deliverable stent for reinforcement of vascular abnormalities
US7637946B2 (en) 2006-02-09 2009-12-29 Edwards Lifesciences Corporation Coiled implant for mitral valve repair
US8821561B2 (en) 2006-02-22 2014-09-02 Boston Scientific Scimed, Inc. Marker arrangement for bifurcation catheter
US8801777B2 (en) * 2007-04-18 2014-08-12 David Elmaleh Intravascular device with netting system
US8652198B2 (en) 2006-03-20 2014-02-18 J.W. Medical Systems Ltd. Apparatus and methods for deployment of linked prosthetic segments
US7699884B2 (en) 2006-03-22 2010-04-20 Cardiomind, Inc. Method of stenting with minimal diameter guided delivery systems
US20070276342A1 (en) * 2006-03-28 2007-11-29 Bryant Lin Devices and related methods for treating incontinence
US8069814B2 (en) 2006-05-04 2011-12-06 Advanced Cardiovascular Systems, Inc. Stent support devices
US7594928B2 (en) * 2006-05-17 2009-09-29 Boston Scientific Scimed, Inc. Bioabsorbable stents with reinforced filaments
DE102006023637A1 (en) * 2006-05-18 2007-11-22 Breathe Technologies, Inc., Freemont Tracheostoma placeholder for use in trachea opening e.g. tracheostoma, has tubular support structure that is expandable from initial condition into support condition, where diameter of support structure is increased in support condition
AU2007267695A1 (en) * 2006-05-23 2007-12-06 Entrigue Surgical, Inc. Sinus tube
US20070276419A1 (en) 2006-05-26 2007-11-29 Fox Hollow Technologies, Inc. Methods and devices for rotating an active element and an energy emitter on a catheter
CA2653190C (en) 2006-06-06 2015-07-14 Cook Incorporated Stent with a crush-resistant zone
US8603530B2 (en) 2006-06-14 2013-12-10 Abbott Cardiovascular Systems Inc. Nanoshell therapy
US8048448B2 (en) 2006-06-15 2011-11-01 Abbott Cardiovascular Systems Inc. Nanoshells for drug delivery
US8017237B2 (en) 2006-06-23 2011-09-13 Abbott Cardiovascular Systems, Inc. Nanoshells on polymers
EP2037850A2 (en) 2006-07-06 2009-03-25 Quiescence Medical Inc Apparatus and methods for treating sleep apnea
WO2008006097A2 (en) * 2006-07-07 2008-01-10 Intezyne Technologies Llc Covalent modification of metal surfaces
JP2010500915A (en) * 2006-08-17 2010-01-14 エヌフォーカス ニューロメディカル, インコーポレイテッド Aneurysm isolation device
US20080065205A1 (en) * 2006-09-11 2008-03-13 Duy Nguyen Retrievable implant and method for treatment of mitral regurgitation
US7988720B2 (en) 2006-09-12 2011-08-02 Boston Scientific Scimed, Inc. Longitudinally flexible expandable stent
CN102525700B (en) 2006-10-22 2015-05-13 Idev科技公司 Support pushing device
WO2008051941A2 (en) 2006-10-22 2008-05-02 Idev Technologies, Inc. Devices and methods for stent advancement
US8523931B2 (en) 2007-01-12 2013-09-03 Endologix, Inc. Dual concentric guidewire and methods of bifurcated graft deployment
US20080199510A1 (en) 2007-02-20 2008-08-21 Xtent, Inc. Thermo-mechanically controlled implants and methods of use
US8221505B2 (en) 2007-02-22 2012-07-17 Cook Medical Technologies Llc Prosthesis having a sleeve valve
CN101715329B (en) 2007-03-05 2012-11-14 恩多斯潘有限公司 Multi-component expandable supportive bifurcated endoluminal grafts and methods for using same
US8486132B2 (en) 2007-03-22 2013-07-16 J.W. Medical Systems Ltd. Devices and methods for controlling expandable prostheses during deployment
US7896915B2 (en) 2007-04-13 2011-03-01 Jenavalve Technology, Inc. Medical device for treating a heart valve insufficiency
US20080255447A1 (en) * 2007-04-16 2008-10-16 Henry Bourang Diagnostic catheter
US8087923B1 (en) 2007-05-18 2012-01-03 C. R. Bard, Inc. Extremely thin-walled ePTFE
US9144509B2 (en) 2007-05-31 2015-09-29 Abbott Cardiovascular Systems Inc. Method and apparatus for delivering an agent to a kidney
US8216209B2 (en) 2007-05-31 2012-07-10 Abbott Cardiovascular Systems Inc. Method and apparatus for delivering an agent to a kidney
US9364586B2 (en) 2007-05-31 2016-06-14 Abbott Cardiovascular Systems Inc. Method and apparatus for improving delivery of an agent to a kidney
US9149610B2 (en) 2007-05-31 2015-10-06 Abbott Cardiovascular Systems Inc. Method and apparatus for improving delivery of an agent to a kidney
JP5190836B2 (en) * 2007-06-06 2013-04-24 国立大学法人山口大学 Endoprosthesis
US8048441B2 (en) 2007-06-25 2011-11-01 Abbott Cardiovascular Systems, Inc. Nanobead releasing medical devices
US8034061B2 (en) 2007-07-12 2011-10-11 Aga Medical Corporation Percutaneous catheter directed intravascular occlusion devices
US8361138B2 (en) * 2007-07-25 2013-01-29 Aga Medical Corporation Braided occlusion device having repeating expanded volume segments separated by articulation segments
US20090112251A1 (en) * 2007-07-25 2009-04-30 Aga Medical Corporation Braided occlusion device having repeating expanded volume segments separated by articulation segments
US8486134B2 (en) 2007-08-01 2013-07-16 Boston Scientific Scimed, Inc. Bifurcation treatment system and methods
EP2182854B1 (en) * 2007-08-17 2019-12-11 Micrus Endovascular Corporation A twisted primary coil for vascular therapy
US8100820B2 (en) 2007-08-22 2012-01-24 Edwards Lifesciences Corporation Implantable device for treatment of ventricular dilation
DE102007043830A1 (en) 2007-09-13 2009-04-02 Lozonschi, Lucian, Madison Heart valve stent
US8663309B2 (en) 2007-09-26 2014-03-04 Trivascular, Inc. Asymmetric stent apparatus and method
US8226701B2 (en) 2007-09-26 2012-07-24 Trivascular, Inc. Stent and delivery system for deployment thereof
US20090082803A1 (en) * 2007-09-26 2009-03-26 Aga Medical Corporation Braided vascular devices having no end clamps
US8066755B2 (en) 2007-09-26 2011-11-29 Trivascular, Inc. System and method of pivoted stent deployment
AU2008308474B2 (en) 2007-10-04 2014-07-24 Trivascular, Inc. Modular vascular graft for low profile percutaneous delivery
US8936567B2 (en) 2007-11-14 2015-01-20 Boston Scientific Scimed, Inc. Balloon bifurcated lumen treatment
US8083789B2 (en) 2007-11-16 2011-12-27 Trivascular, Inc. Securement assembly and method for expandable endovascular device
US8328861B2 (en) 2007-11-16 2012-12-11 Trivascular, Inc. Delivery system and method for bifurcated graft
US7846199B2 (en) 2007-11-19 2010-12-07 Cook Incorporated Remodelable prosthetic valve
US20090138065A1 (en) * 2007-11-28 2009-05-28 Wilson-Cook Medical Inc. Double loaded stent delivery system
CA2709278A1 (en) 2007-12-15 2009-06-25 Endospan Ltd. Extra-vascular wrapping for treating aneurysmatic aorta in conjunction with endovascular stent-graft and methods thereof
US20090171386A1 (en) 2007-12-28 2009-07-02 Aga Medical Corporation Percutaneous catheter directed intravascular occlusion devices
WO2009088953A2 (en) 2007-12-31 2009-07-16 Boston Scientific Scimed Inc. Bifurcation stent delivery system and methods
EP2291142B1 (en) * 2008-02-11 2019-09-25 Cook Medical Technologies LLC Prosthesis coupling device and method
US8163004B2 (en) * 2008-02-18 2012-04-24 Aga Medical Corporation Stent graft for reinforcement of vascular abnormalities and associated method
WO2009104041A1 (en) * 2008-02-21 2009-08-27 Valerian Voinov Implantable prosthetic valve stent
US8221494B2 (en) 2008-02-22 2012-07-17 Endologix, Inc. Apparatus and method of placement of a graft or graft system
US8784440B2 (en) 2008-02-25 2014-07-22 Covidien Lp Methods and devices for cutting tissue
ES2903231T3 (en) 2008-02-26 2022-03-31 Jenavalve Tech Inc Stent for positioning and anchoring a valve prosthesis at an implantation site in a patient's heart
US9044318B2 (en) 2008-02-26 2015-06-02 Jenavalve Technology Gmbh Stent for the positioning and anchoring of a valvular prosthesis
US8196279B2 (en) 2008-02-27 2012-06-12 C. R. Bard, Inc. Stent-graft covering process
US20110295181A1 (en) * 2008-03-05 2011-12-01 Hemosphere, Inc. Implantable and removable customizable body conduit
CA2716995C (en) 2008-03-05 2014-11-04 Hemosphere, Inc. Vascular access system
US9101503B2 (en) 2008-03-06 2015-08-11 J.W. Medical Systems Ltd. Apparatus having variable strut length and methods of use
JP5537540B2 (en) * 2008-04-01 2014-07-02 メドトロニック ヴァスキュラー インコーポレイテッド Double wall stent system
US7806919B2 (en) * 2008-04-01 2010-10-05 Medtronic Vascular, Inc. Double-walled stent system
US8236040B2 (en) 2008-04-11 2012-08-07 Endologix, Inc. Bifurcated graft deployment systems and methods
CA2722037C (en) 2008-04-21 2016-03-22 Nfocus Neuromedical, Inc. Braid-ball embolic devices and delivery systems
US8454632B2 (en) 2008-05-12 2013-06-04 Xlumena, Inc. Tissue anchor for securing tissue layers
US9675482B2 (en) 2008-05-13 2017-06-13 Covidien Lp Braid implant delivery systems
US8377108B2 (en) 2008-06-02 2013-02-19 Boston Scientific Scimed, Inc. Staggered two balloon bifurcation catheter assembly and methods
US8827954B2 (en) 2008-06-05 2014-09-09 Boston Scientific Scimed, Inc. Deflatable bifurcated device
JP5134729B2 (en) 2008-07-01 2013-01-30 エンドロジックス、インク Catheter system
AU2009274126A1 (en) 2008-07-22 2010-01-28 Covidien Lp Vascular remodeling device
US20100069948A1 (en) * 2008-09-12 2010-03-18 Micrus Endovascular Corporation Self-expandable aneurysm filling device, system and method of placement
US11298252B2 (en) 2008-09-25 2022-04-12 Advanced Bifurcation Systems Inc. Stent alignment during treatment of a bifurcation
US8821562B2 (en) 2008-09-25 2014-09-02 Advanced Bifurcation Systems, Inc. Partially crimped stent
US8769796B2 (en) 2008-09-25 2014-07-08 Advanced Bifurcation Systems, Inc. Selective stent crimping
US8795347B2 (en) 2008-09-25 2014-08-05 Advanced Bifurcation Systems, Inc. Methods and systems for treating a bifurcation with provisional side branch stenting
WO2010036982A1 (en) 2008-09-25 2010-04-01 Henry Bourang Partially crimped stent
CN102245256B (en) 2008-10-10 2014-07-23 萨德拉医学公司 Medical devices and delivery systems for delivering medical devices
CN102223847B (en) 2008-10-13 2013-10-30 泰科保健集团有限合伙公司 Devices and methods for manipulating catheter shaft
KR20100042478A (en) * 2008-10-16 2010-04-26 (주) 태웅메디칼 A making method for the stent and the stent thereof
GB2464978B (en) * 2008-10-31 2010-10-20 Cook William Europ Introducer for deploying a stent graft in a curved lumen
US8449573B2 (en) * 2008-12-05 2013-05-28 Boston Scientific Scimed, Inc. Insertion device and method for delivery of a mesh carrier
US8968334B2 (en) 2009-04-17 2015-03-03 Boston Scientific Scimed, Inc. Apparatus for delivering and anchoring implantable medical devices
US9364259B2 (en) 2009-04-21 2016-06-14 Xlumena, Inc. System and method for delivering expanding trocar through a sheath
US20110054586A1 (en) 2009-04-28 2011-03-03 Endologix, Inc. Apparatus and method of placement of a graft or graft system
RU2509537C2 (en) 2009-04-29 2014-03-20 ТАЙКО ХЕЛСКЕА ГРУП эЛПи Methods and devices for tissue cutting and cleansing
US10772717B2 (en) 2009-05-01 2020-09-15 Endologix, Inc. Percutaneous method and device to treat dissections
JP2012525239A (en) 2009-05-01 2012-10-22 エンドロジックス、インク Transcutaneous methods and devices for treating dissociation (priority information and incorporation by reference)
KR101581091B1 (en) 2009-05-14 2015-12-30 코비디엔 엘피 Easily cleaned atherectomy catheters and methods of use
JP5535313B2 (en) 2009-05-29 2014-07-02 エックスルミナ, インコーポレイテッド Device and method for deploying a stent across adjacent tissue layers
CA3009244C (en) 2009-06-23 2020-04-28 Endospan Ltd. Vascular prostheses for treating aneurysms
US8657870B2 (en) 2009-06-26 2014-02-25 Biosensors International Group, Ltd. Implant delivery apparatus and methods with electrolytic release
WO2011004374A1 (en) * 2009-07-09 2011-01-13 Endospan Ltd. Apparatus for closure of a lumen and methods of using the same
WO2011008989A2 (en) 2009-07-15 2011-01-20 Endologix, Inc. Stent graft
WO2011007444A1 (en) * 2009-07-17 2011-01-20 株式会社メドバン・アイ・ピー Coaxial multi-layered stent
US8118856B2 (en) 2009-07-27 2012-02-21 Endologix, Inc. Stent graft
US20110093002A1 (en) * 2009-10-20 2011-04-21 Wilson-Cook Medical Inc. Stent-within-stent arrangements
US9301750B2 (en) * 2009-11-03 2016-04-05 Boston Scientific Scimed, Inc. Device and method for delivery of mesh-based devices
WO2011057277A2 (en) 2009-11-09 2011-05-12 Nfocus Neuromedical, Inc. Braid ball embolic device features
CN102740807B (en) 2009-11-30 2015-11-25 恩多斯潘有限公司 For implantation into the multi-part overlay film frame system had in the blood vessel of multiple branch
CA2781046C (en) 2009-12-02 2014-09-16 Tyco Healthcare Group Lp Methods and devices for cutting tissue
EP2509535B1 (en) 2009-12-08 2016-12-07 Endospan Ltd Endovascular stent-graft system with fenestrated and crossing stent-grafts
US20110319988A1 (en) 2009-12-08 2011-12-29 Avalon Medical, Ltd. Device and System for Transcatheter Mitral Valve Replacement
AU2010328078B2 (en) 2009-12-11 2013-07-04 Covidien Lp Material removal device having improved material capture efficiency and methods of use
CA2785953C (en) 2009-12-31 2016-02-16 Endospan Ltd. Endovascular flow direction indicator
US9468442B2 (en) 2010-01-28 2016-10-18 Covidien Lp Vascular remodeling device
CN102770091B (en) 2010-01-28 2015-07-08 泰科保健集团有限合伙公司 Vascular remodeling device
US9468517B2 (en) 2010-02-08 2016-10-18 Endospan Ltd. Thermal energy application for prevention and management of endoleaks in stent-grafts
EP2549951B1 (en) 2010-03-24 2017-05-10 Advanced Bifurcation Systems, Inc. Stent alignment during treatment of a bifurcation
EP2549952A4 (en) 2010-03-24 2017-01-04 Advanced Bifurcation Systems, Inc. System and methods for treating a bifurcation
CN103002833B (en) 2010-05-25 2016-05-11 耶拿阀门科技公司 Artificial heart valve and comprise artificial heart valve and support through conduit carry interior prosthese
US9023095B2 (en) 2010-05-27 2015-05-05 Idev Technologies, Inc. Stent delivery system with pusher assembly
EP2742881B1 (en) 2010-06-14 2015-10-07 Covidien LP Material removal device
WO2012025246A1 (en) 2010-08-26 2012-03-01 Acandis Gmbh & Co. Kg Electrode for medical applications, system having an electrode, and method for producing an electrode
DE102010035543A1 (en) * 2010-08-26 2012-03-01 Acandis Gmbh & Co. Kg Medical device and system with such a device
DE102010044746A1 (en) * 2010-09-08 2012-03-08 Phenox Gmbh Implant for influencing the blood flow in arteriovenous malformations
EP2613737B2 (en) 2010-09-10 2023-03-15 Symetis SA Valve replacement devices, delivery device for a valve replacement device and method of production of a valve replacement device
JP5636114B2 (en) 2010-10-28 2014-12-03 コヴィディエン リミテッド パートナーシップ Substance removal device and method of use
US20120109279A1 (en) 2010-11-02 2012-05-03 Endologix, Inc. Apparatus and method of placement of a graft or graft system
JP5688160B2 (en) 2010-11-11 2015-03-25 コヴィディエン リミテッド パートナーシップ Flexible weight loss catheter with imaging and methods of use and manufacture thereof
WO2012068298A1 (en) 2010-11-17 2012-05-24 Endologix, Inc. Devices and methods to treat vascular dissections
WO2012082791A2 (en) 2010-12-13 2012-06-21 Quiescence Medical, Inc. Apparatus and methods for treating sleep apnea
US9867725B2 (en) 2010-12-13 2018-01-16 Microvention, Inc. Stent
WO2012091769A1 (en) 2010-12-30 2012-07-05 Boston Scientific Scimed, Inc. Multi stage opening stent designs
US9839540B2 (en) 2011-01-14 2017-12-12 W. L. Gore & Associates, Inc. Stent
US9486348B2 (en) 2011-02-01 2016-11-08 S. Jude Medical, Cardiology Division, Inc. Vascular delivery system and method
US9526638B2 (en) 2011-02-03 2016-12-27 Endospan Ltd. Implantable medical devices constructed of shape memory material
CA2826760A1 (en) 2011-02-08 2012-08-16 Advanced Bifurcation Systems, Inc. Multi-stent and multi-balloon apparatus for treating bifurcations and methods of use
EP3777780B1 (en) 2011-02-08 2024-04-24 Advanced Bifurcation Systems Inc. System for treating a bifurcation with a fully crimped stent
EP2672900B1 (en) 2011-02-11 2017-11-01 Covidien LP Two-stage deployment aneurysm embolization devices
WO2012111006A1 (en) 2011-02-17 2012-08-23 Endospan Ltd. Vascular bands and delivery systems therefor
US8808350B2 (en) 2011-03-01 2014-08-19 Endologix, Inc. Catheter system and methods of using same
WO2012117395A1 (en) 2011-03-02 2012-09-07 Endospan Ltd. Reduced-strain extra- vascular ring for treating aortic aneurysm
US8790388B2 (en) 2011-03-03 2014-07-29 Boston Scientific Scimed, Inc. Stent with reduced profile
CA2823535A1 (en) 2011-03-03 2012-09-07 Boston Scientific Scimed, Inc. Low strain high strength stent
EP4119095A1 (en) 2011-03-21 2023-01-18 Cephea Valve Technologies, Inc. Disk-based valve apparatus
US20120245674A1 (en) 2011-03-25 2012-09-27 Tyco Healthcare Group Lp Vascular remodeling device
EP2520251A1 (en) 2011-05-05 2012-11-07 Symetis SA Method and Apparatus for Compressing Stent-Valves
US20120290072A1 (en) 2011-05-12 2012-11-15 Theobald Elizabeth A Emergency vascular repair prosthesis
WO2012158530A1 (en) 2011-05-13 2012-11-22 Broncus Technologies, Inc. Methods and devices for ablation of tissue
US8709034B2 (en) 2011-05-13 2014-04-29 Broncus Medical Inc. Methods and devices for diagnosing, monitoring, or treating medical conditions through an opening through an airway wall
US8574287B2 (en) 2011-06-14 2013-11-05 Endospan Ltd. Stents incorporating a plurality of strain-distribution locations
US8951298B2 (en) 2011-06-21 2015-02-10 Endospan Ltd. Endovascular system with circumferentially-overlapping stent-grafts
US9254209B2 (en) 2011-07-07 2016-02-09 Endospan Ltd. Stent fixation with reduced plastic deformation
EP2731550B1 (en) 2011-07-12 2016-02-24 Boston Scientific Scimed, Inc. Coupling system for a replacement valve
AU2012299311B2 (en) 2011-08-11 2016-03-03 Tendyne Holdings, Inc. Improvements for prosthetic valves and related inventions
US10213329B2 (en) 2011-08-12 2019-02-26 W. L. Gore & Associates, Inc. Evertable sheath devices, systems, and methods
WO2013030818A2 (en) 2011-08-28 2013-03-07 Endospan Ltd. Stent-grafts with post-deployment variable axial and radial displacement
JP5806407B2 (en) 2011-09-01 2015-11-10 コヴィディエン リミテッド パートナーシップ Catheter with helical drive shaft and manufacturing method
BR112014005094A2 (en) 2011-09-06 2017-03-28 Hemosphere Inc vascular access system with connector
US9039752B2 (en) 2011-09-20 2015-05-26 Aga Medical Corporation Device and method for delivering a vascular device
US8621975B2 (en) 2011-09-20 2014-01-07 Aga Medical Corporation Device and method for treating vascular abnormalities
US9060886B2 (en) 2011-09-29 2015-06-23 Covidien Lp Vascular remodeling device
WO2013065040A1 (en) 2011-10-30 2013-05-10 Endospan Ltd. Triple-collar stent-graft
CN103987325B (en) 2011-11-08 2017-03-29 波士顿科学国际有限公司 For the Handleset of left atrial appendage occlusion device
US9131926B2 (en) 2011-11-10 2015-09-15 Boston Scientific Scimed, Inc. Direct connect flush system
US8940014B2 (en) 2011-11-15 2015-01-27 Boston Scientific Scimed, Inc. Bond between components of a medical device
WO2013078235A1 (en) 2011-11-23 2013-05-30 Broncus Medical Inc Methods and devices for diagnosing, monitoring, or treating medical conditions through an opening through an airway wall
US20140350660A1 (en) * 2011-12-01 2014-11-27 Graeme Cocks Endoluminal Prosthesis
US8951243B2 (en) 2011-12-03 2015-02-10 Boston Scientific Scimed, Inc. Medical device handle
EP2785277B1 (en) 2011-12-04 2017-04-05 Endospan Ltd. Branched stent-graft system
US9827092B2 (en) 2011-12-16 2017-11-28 Tendyne Holdings, Inc. Tethers for prosthetic mitral valve
US9510945B2 (en) 2011-12-20 2016-12-06 Boston Scientific Scimed Inc. Medical device handle
US9277993B2 (en) 2011-12-20 2016-03-08 Boston Scientific Scimed, Inc. Medical device delivery systems
WO2013112547A1 (en) 2012-01-25 2013-08-01 Boston Scientific Scimed, Inc. Valve assembly with a bioabsorbable gasket and a replaceable valve implant
US8992595B2 (en) 2012-04-04 2015-03-31 Trivascular, Inc. Durable stent graft with tapered struts and stable delivery methods and devices
US9498363B2 (en) 2012-04-06 2016-11-22 Trivascular, Inc. Delivery catheter for endovascular device
US9770350B2 (en) 2012-05-15 2017-09-26 Endospan Ltd. Stent-graft with fixation elements that are radially confined for delivery
JP6360042B2 (en) 2012-05-17 2018-07-18 ボストン サイエンティフィック サイムド,インコーポレイテッドBoston Scientific Scimed,Inc. Method and device for access across adjacent tissue layers
JP2012196499A (en) * 2012-06-15 2012-10-18 Yamaguchi Univ Endoprosthesis
US9883941B2 (en) 2012-06-19 2018-02-06 Boston Scientific Scimed, Inc. Replacement heart valve
US9155647B2 (en) 2012-07-18 2015-10-13 Covidien Lp Methods and apparatus for luminal stenting
US9283072B2 (en) 2012-07-25 2016-03-15 W. L. Gore & Associates, Inc. Everting transcatheter valve and methods
WO2014022124A1 (en) 2012-07-28 2014-02-06 Tendyne Holdings, Inc. Improved multi-component designs for heart valve retrieval device, sealing structures and stent assembly
WO2014021905A1 (en) 2012-07-30 2014-02-06 Tendyne Holdings, Inc. Improved delivery systems and methods for transcatheter prosthetic valves
US8834556B2 (en) 2012-08-13 2014-09-16 Abbott Cardiovascular Systems Inc. Segmented scaffold designs
US9532844B2 (en) 2012-09-13 2017-01-03 Covidien Lp Cleaning device for medical instrument and method of use
US9314248B2 (en) 2012-11-06 2016-04-19 Covidien Lp Multi-pivot thrombectomy device
CN104869923B (en) 2012-11-08 2017-06-27 柯惠有限合伙公司 Tissue including operational control mechanism removes conduit
US9943329B2 (en) 2012-11-08 2018-04-17 Covidien Lp Tissue-removing catheter with rotatable cutter
US9931193B2 (en) 2012-11-13 2018-04-03 W. L. Gore & Associates, Inc. Elastic stent graft
US9968443B2 (en) 2012-12-19 2018-05-15 W. L. Gore & Associates, Inc. Vertical coaptation zone in a planar portion of prosthetic heart valve leaflet
US9144492B2 (en) 2012-12-19 2015-09-29 W. L. Gore & Associates, Inc. Truncated leaflet for prosthetic heart valves, preformed valve
US9101469B2 (en) 2012-12-19 2015-08-11 W. L. Gore & Associates, Inc. Prosthetic heart valve with leaflet shelving
WO2014108895A2 (en) 2013-01-08 2014-07-17 Endospan Ltd. Minimization of stent-graft migration during implantation
US9295571B2 (en) 2013-01-17 2016-03-29 Covidien Lp Methods and apparatus for luminal stenting
EP2958527B1 (en) 2013-02-21 2020-07-22 Boston Scientific Scimed, Inc. Devices for forming an anastomosis
US9763819B1 (en) 2013-03-05 2017-09-19 W. L. Gore & Associates, Inc. Tapered sleeve
WO2014141232A1 (en) 2013-03-11 2014-09-18 Endospan Ltd. Multi-component stent-graft system for aortic dissections
US10561509B2 (en) 2013-03-13 2020-02-18 DePuy Synthes Products, Inc. Braided stent with expansion ring and method of delivery
US9463105B2 (en) 2013-03-14 2016-10-11 Covidien Lp Methods and apparatus for luminal stenting
EP2967571B1 (en) 2013-03-15 2022-08-31 Covidien LP Occlusive device
US9486306B2 (en) 2013-04-02 2016-11-08 Tendyne Holdings, Inc. Inflatable annular sealing device for prosthetic mitral valve
US11224510B2 (en) 2013-04-02 2022-01-18 Tendyne Holdings, Inc. Prosthetic heart valve and systems and methods for delivering the same
US10463489B2 (en) 2013-04-02 2019-11-05 Tendyne Holdings, Inc. Prosthetic heart valve and systems and methods for delivering the same
US10478293B2 (en) 2013-04-04 2019-11-19 Tendyne Holdings, Inc. Retrieval and repositioning system for prosthetic heart valve
US9610159B2 (en) 2013-05-30 2017-04-04 Tendyne Holdings, Inc. Structural members for prosthetic mitral valves
WO2014210124A1 (en) 2013-06-25 2014-12-31 Mark Christianson Thrombus management and structural compliance features for prosthetic heart valves
US8870948B1 (en) 2013-07-17 2014-10-28 Cephea Valve Technologies, Inc. System and method for cardiac valve repair and replacement
CA2919379C (en) 2013-08-01 2021-03-30 Tendyne Holdings, Inc. Epicardial anchor devices and methods
JP6563394B2 (en) 2013-08-30 2019-08-21 イェーナヴァルヴ テクノロジー インコーポレイテッド Radially foldable frame for an artificial valve and method for manufacturing the frame
WO2015058039A1 (en) 2013-10-17 2015-04-23 Robert Vidlund Apparatus and methods for alignment and deployment of intracardiac devices
EP3656353A1 (en) 2013-10-28 2020-05-27 Tendyne Holdings, Inc. Prosthetic heart valve and systems for delivering the same
US9526611B2 (en) 2013-10-29 2016-12-27 Tendyne Holdings, Inc. Apparatus and methods for delivery of transcatheter prosthetic valves
US10603197B2 (en) 2013-11-19 2020-03-31 Endospan Ltd. Stent system with radial-expansion locking
US10842918B2 (en) 2013-12-05 2020-11-24 W.L. Gore & Associates, Inc. Length extensible implantable device and methods for making such devices
WO2015094514A1 (en) 2013-12-20 2015-06-25 Cryolife, Inc. Vascular access system with reinforcement member
US9907641B2 (en) * 2014-01-10 2018-03-06 W. L. Gore & Associates, Inc. Implantable intraluminal device
US9730701B2 (en) 2014-01-16 2017-08-15 Boston Scientific Scimed, Inc. Retrieval wire centering device
US9456843B2 (en) 2014-02-03 2016-10-04 Covidien Lp Tissue-removing catheter including angular displacement sensor
US9526519B2 (en) 2014-02-03 2016-12-27 Covidien Lp Tissue-removing catheter with improved angular tissue-removing positioning within body lumen
WO2016126942A2 (en) 2015-02-05 2016-08-11 Vidlund Robert M Expandable epicardial pads and devices and methods for delivery of same
WO2015120122A2 (en) 2014-02-05 2015-08-13 Robert Vidlund Apparatus and methods for transfemoral delivery of prosthetic mitral valve
US9937067B2 (en) * 2014-02-07 2018-04-10 Cook Medical Technologies Llc Telescoping ureteral stent
US9986993B2 (en) 2014-02-11 2018-06-05 Tendyne Holdings, Inc. Adjustable tether and epicardial pad system for prosthetic heart valve
US10966850B2 (en) 2014-03-06 2021-04-06 W. L. Gore & Associates, Inc. Implantable medical device constraint and deployment apparatus
JP6865037B2 (en) 2014-03-10 2021-04-28 テンダイン ホールディングス,インコーポレイテッド Devices and methods for positioning the artificial mitral valve and monitoring the tether load of the artificial mitral valve
KR101602389B1 (en) * 2014-05-13 2016-03-10 주식회사 엠아이텍 Stent and making method thereof
WO2015200702A1 (en) 2014-06-27 2015-12-30 Covidien Lp Cleaning device for catheter and catheter including the same
WO2016014985A1 (en) 2014-07-25 2016-01-28 Incumedx, Inc. Covered embolic coils
US10206796B2 (en) 2014-08-27 2019-02-19 DePuy Synthes Products, Inc. Multi-strand implant with enhanced radiopacity
US9827094B2 (en) 2014-09-15 2017-11-28 W. L. Gore & Associates, Inc. Prosthetic heart valve with retention elements
US9901445B2 (en) 2014-11-21 2018-02-27 Boston Scientific Scimed, Inc. Valve locking mechanism
AU2015361260B2 (en) 2014-12-09 2020-04-23 Cephea Valve Technologies, Inc. Replacement cardiac valves and methods of use and manufacture
WO2016098113A1 (en) 2014-12-18 2016-06-23 Endospan Ltd. Endovascular stent-graft with fatigue-resistant lateral tube
CA2972966C (en) 2015-01-07 2023-01-10 Tendyne Holdings, Inc. Prosthetic mitral valves and apparatus and methods for delivery of same
US10449043B2 (en) 2015-01-16 2019-10-22 Boston Scientific Scimed, Inc. Displacement based lock and release mechanism
US9861477B2 (en) 2015-01-26 2018-01-09 Boston Scientific Scimed Inc. Prosthetic heart valve square leaflet-leaflet stitch
US9788942B2 (en) 2015-02-03 2017-10-17 Boston Scientific Scimed Inc. Prosthetic heart valve having tubular seal
WO2016126524A1 (en) 2015-02-03 2016-08-11 Boston Scientific Scimed, Inc. Prosthetic heart valve having tubular seal
US10426617B2 (en) 2015-03-06 2019-10-01 Boston Scientific Scimed, Inc. Low profile valve locking mechanism and commissure assembly
US10285809B2 (en) 2015-03-06 2019-05-14 Boston Scientific Scimed Inc. TAVI anchoring assist device
US10080652B2 (en) 2015-03-13 2018-09-25 Boston Scientific Scimed, Inc. Prosthetic heart valve having an improved tubular seal
US10314667B2 (en) 2015-03-25 2019-06-11 Covidien Lp Cleaning device for cleaning medical instrument
CN107750150B (en) 2015-04-16 2021-03-05 坦迪尼控股股份有限公司 Devices and methods for delivering, repositioning and retrieving transcatheter prosthetic valves
WO2016177562A1 (en) 2015-05-01 2016-11-10 Jenavalve Technology, Inc. Device and method with reduced pacemaker rate in heart valve replacement
WO2016183526A1 (en) 2015-05-14 2016-11-17 Cephea Valve Technologies, Inc. Replacement mitral valves
WO2016183523A1 (en) 2015-05-14 2016-11-17 Cephea Valve Technologies, Inc. Cardiac valve delivery devices and systems
CN107624056B (en) 2015-06-30 2020-06-09 恩朵罗杰克斯股份有限公司 Locking assembly and related system and method
US10195392B2 (en) 2015-07-02 2019-02-05 Boston Scientific Scimed, Inc. Clip-on catheter
US10335277B2 (en) 2015-07-02 2019-07-02 Boston Scientific Scimed Inc. Adjustable nosecone
US10292721B2 (en) 2015-07-20 2019-05-21 Covidien Lp Tissue-removing catheter including movable distal tip
US10179041B2 (en) 2015-08-12 2019-01-15 Boston Scientific Scimed Icn. Pinless release mechanism
US10136991B2 (en) 2015-08-12 2018-11-27 Boston Scientific Scimed Inc. Replacement heart valve implant
US10779940B2 (en) 2015-09-03 2020-09-22 Boston Scientific Scimed, Inc. Medical device handle
US10327894B2 (en) 2015-09-18 2019-06-25 Tendyne Holdings, Inc. Methods for delivery of prosthetic mitral valves
US10478194B2 (en) 2015-09-23 2019-11-19 Covidien Lp Occlusive devices
US10314664B2 (en) 2015-10-07 2019-06-11 Covidien Lp Tissue-removing catheter and tissue-removing element with depth stop
EP3373829A1 (en) 2015-11-13 2018-09-19 Cardiac Pacemakers, Inc. Bioabsorbable left atrial appendage closure with endothelialization promoting surface
EP4309628A3 (en) 2015-12-03 2024-04-10 Tendyne Holdings, Inc. Frame features for prosthetic mitral valves
JP6795591B2 (en) 2015-12-28 2020-12-02 テンダイン ホールディングス,インコーポレイテッド Atrial pocket closure for artificial heart valve
US10874422B2 (en) * 2016-01-15 2020-12-29 Tva Medical, Inc. Systems and methods for increasing blood flow
US10342660B2 (en) 2016-02-02 2019-07-09 Boston Scientific Inc. Tensioned sheathing aids
US10130465B2 (en) 2016-02-23 2018-11-20 Abbott Cardiovascular Systems Inc. Bifurcated tubular graft for treating tricuspid regurgitation
CA3021860C (en) 2016-04-21 2021-06-08 W. L. Gore & Associates, Inc. Diametrically adjustable endoprostheses and associated systems and methods
US10470877B2 (en) 2016-05-03 2019-11-12 Tendyne Holdings, Inc. Apparatus and methods for anterior valve leaflet management
US10245136B2 (en) 2016-05-13 2019-04-02 Boston Scientific Scimed Inc. Containment vessel with implant sheathing guide
WO2017195125A1 (en) 2016-05-13 2017-11-16 Jenavalve Technology, Inc. Heart valve prosthesis delivery system and method for delivery of heart valve prosthesis with introducer sheath and loading system
US10583005B2 (en) 2016-05-13 2020-03-10 Boston Scientific Scimed, Inc. Medical device handle
US10201416B2 (en) 2016-05-16 2019-02-12 Boston Scientific Scimed, Inc. Replacement heart valve implant with invertible leaflets
EP3468480B1 (en) 2016-06-13 2023-01-11 Tendyne Holdings, Inc. Sequential delivery of two-part prosthetic mitral valve
WO2017218877A1 (en) 2016-06-17 2017-12-21 Cephea Valve Technologies, Inc. Cardiac valve delivery devices and systems
CN109640887B (en) 2016-06-30 2021-03-16 坦迪尼控股股份有限公司 Prosthetic heart valve and apparatus and method for delivering same
EP3484411A1 (en) 2016-07-12 2019-05-22 Tendyne Holdings, Inc. Apparatus and methods for trans-septal retrieval of prosthetic heart valves
US10076428B2 (en) 2016-08-25 2018-09-18 DePuy Synthes Products, Inc. Expansion ring for a braided stent
US10292851B2 (en) 2016-09-30 2019-05-21 DePuy Synthes Products, Inc. Self-expanding device delivery apparatus with dual function bump
US10182927B2 (en) * 2016-10-21 2019-01-22 DePuy Synthes Products, Inc. Expansion ring for a braided stent
WO2018089557A1 (en) * 2016-11-09 2018-05-17 Boston Scientific Scimed, Inc. Stent including displacement capabilities
US10499920B2 (en) 2016-11-10 2019-12-10 Merit Medical Systems, Inc. Anchor device for vascular anastomosis
US11383072B2 (en) 2017-01-12 2022-07-12 Merit Medical Systems, Inc. Methods and systems for selection and use of connectors between conduits
EP4209196A1 (en) 2017-01-23 2023-07-12 Cephea Valve Technologies, Inc. Replacement mitral valves
JP7046078B2 (en) 2017-01-23 2022-04-01 セフィア・バルブ・テクノロジーズ,インコーポレイテッド Replacement mitral valve
WO2018140306A1 (en) 2017-01-25 2018-08-02 Merit Medical Systems, Inc. Methods and systems for facilitating laminar flow between conduits
US11197754B2 (en) 2017-01-27 2021-12-14 Jenavalve Technology, Inc. Heart valve mimicry
US11026704B2 (en) 2017-03-06 2021-06-08 Merit Medical Systems, Inc. Vascular access assembly declotting systems and methods
US10925710B2 (en) 2017-03-24 2021-02-23 Merit Medical Systems, Inc. Subcutaneous vascular assemblies for improving blood flow and related devices and methods
EP3614933A1 (en) 2017-04-27 2020-03-04 Boston Scientific Scimed, Inc. Occlusive medical device with fabric retention barb
WO2018226915A1 (en) 2017-06-08 2018-12-13 Boston Scientific Scimed, Inc. Heart valve implant commissure support structure
WO2019014473A1 (en) 2017-07-13 2019-01-17 Tendyne Holdings, Inc. Prosthetic heart valves and apparatus and methods for delivery of same
WO2019014444A2 (en) 2017-07-14 2019-01-17 Merit Medical Systems, Inc. Releasable conduit connectors
EP3655086A4 (en) 2017-07-20 2021-04-07 Merit Medical Systems, Inc. Methods and systems for coupling conduits
WO2019028161A1 (en) 2017-08-01 2019-02-07 Boston Scientific Scimed, Inc. Medical implant locking mechanism
EP3668449A1 (en) 2017-08-16 2020-06-24 Boston Scientific Scimed, Inc. Replacement heart valve commissure assembly
CN109419567A (en) * 2017-08-28 2019-03-05 先健科技(深圳)有限公司 Intraluminal stent
WO2019046099A1 (en) 2017-08-28 2019-03-07 Tendyne Holdings, Inc. Prosthetic heart valves with tether coupling features
US10654230B2 (en) 2017-08-28 2020-05-19 The Boeing Company Methods of forming a cored composite laminate
US11628076B2 (en) 2017-09-08 2023-04-18 Vesper Medical, Inc. Hybrid stent
US10271977B2 (en) * 2017-09-08 2019-04-30 Vesper Medical, Inc. Hybrid stent
EP3687451B1 (en) 2017-09-27 2023-12-13 Edwards Lifesciences Corporation Prosthetic valve with expandable frame
CA3078496C (en) * 2017-10-09 2023-02-28 W. L. Gore & Associates, Inc. Matched stent cover
ES2960532T3 (en) 2017-10-11 2024-03-05 Gore & Ass Implantable medical device restraint and deployment apparatus
EP4238539A3 (en) 2017-10-25 2023-10-18 Boston Scientific Scimed, Inc. Stent with atraumatic spacer
US11331458B2 (en) 2017-10-31 2022-05-17 Merit Medical Systems, Inc. Subcutaneous vascular assemblies for improving blood flow and related devices and methods
CN111295158A (en) 2017-10-31 2020-06-16 W.L.戈尔及同仁股份有限公司 Medical valve and valve leaflet for promoting tissue ingrowth
WO2019089741A1 (en) 2017-11-01 2019-05-09 Boston Scientific Scimed, Inc. Esophageal stent including a valve member
KR102112820B1 (en) * 2017-12-01 2020-05-19 주식회사 비씨엠 A Stent
JP7013591B2 (en) 2017-12-18 2022-01-31 ボストン サイエンティフィック サイムド,インコーポレイテッド Closure device with expandable members
EP3740160A2 (en) 2018-01-19 2020-11-25 Boston Scientific Scimed Inc. Inductance mode deployment sensors for transcatheter valve system
WO2019144071A1 (en) 2018-01-19 2019-07-25 Boston Scientific Scimed, Inc. Medical device delivery system with feedback loop
EP3740139A1 (en) 2018-01-19 2020-11-25 Boston Scientific Scimed Inc. Occlusive medical device with delivery system
US11147668B2 (en) 2018-02-07 2021-10-19 Boston Scientific Scimed, Inc. Medical device delivery system with alignment feature
EP3758651B1 (en) 2018-02-26 2022-12-07 Boston Scientific Scimed, Inc. Embedded radiopaque marker in adaptive seal
CA3095163C (en) * 2018-04-09 2023-10-03 Boston Scientific Scimed, Inc. Stent
US10575973B2 (en) 2018-04-11 2020-03-03 Abbott Cardiovascular Systems Inc. Intravascular stent having high fatigue performance
US11331104B2 (en) 2018-05-02 2022-05-17 Boston Scientific Scimed, Inc. Occlusive sealing sensor system
EP3793450A1 (en) 2018-05-15 2021-03-24 Boston Scientific Scimed, Inc. Occlusive medical device with charged polymer coating
WO2019222367A1 (en) 2018-05-15 2019-11-21 Boston Scientific Scimed, Inc. Replacement heart valve commissure assembly
US11123079B2 (en) 2018-06-08 2021-09-21 Boston Scientific Scimed, Inc. Occlusive device with actuatable fixation members
WO2019237004A1 (en) 2018-06-08 2019-12-12 Boston Scientific Scimed, Inc. Medical device with occlusive member
CA3101217C (en) 2018-06-11 2023-03-28 Boston Scientific Scimed, Inc. Sphincterotomes and methods for using sphincterotomes
WO2019241477A1 (en) 2018-06-13 2019-12-19 Boston Scientific Scimed, Inc. Replacement heart valve delivery device
US11382635B2 (en) 2018-07-06 2022-07-12 Boston Scientific Scimed, Inc. Occlusive medical device
AU2019204522A1 (en) 2018-07-30 2020-02-13 DePuy Synthes Products, Inc. Systems and methods of manufacturing and using an expansion ring
US10456280B1 (en) 2018-08-06 2019-10-29 DePuy Synthes Products, Inc. Systems and methods of using a braided implant
US10278848B1 (en) 2018-08-06 2019-05-07 DePuy Synthes Products, Inc. Stent delivery with expansion assisting delivery wire
CN112714632A (en) 2018-08-21 2021-04-27 波士顿科学医学有限公司 Barbed protruding member for cardiovascular devices
WO2020123486A1 (en) 2018-12-10 2020-06-18 Boston Scientific Scimed, Inc. Medical device delivery system including a resistance member
US11039944B2 (en) 2018-12-27 2021-06-22 DePuy Synthes Products, Inc. Braided stent system with one or more expansion rings
US11559412B2 (en) 2019-01-07 2023-01-24 Boston Scientific Scimed, Inc. Stent with anti-migration feature
JP7403547B2 (en) 2019-01-23 2023-12-22 ニオバスク メディカル リミテッド coated flow modifier
US11497601B2 (en) 2019-03-01 2022-11-15 W. L. Gore & Associates, Inc. Telescoping prosthetic valve with retention element
US11439504B2 (en) 2019-05-10 2022-09-13 Boston Scientific Scimed, Inc. Replacement heart valve with improved cusp washout and reduced loading
EP3998962A1 (en) 2019-07-17 2022-05-25 Boston Scientific Scimed, Inc. Left atrial appendage implant with continuous covering
WO2021041831A1 (en) 2019-08-30 2021-03-04 Boston Scientific Scimed, Inc. Left atrial appendage implant with sealing disk
US11648110B2 (en) 2019-12-05 2023-05-16 Tendyne Holdings, Inc. Braided anchor for mitral valve
US11648114B2 (en) 2019-12-20 2023-05-16 Tendyne Holdings, Inc. Distally loaded sheath and loading funnel
WO2021154422A1 (en) 2020-01-30 2021-08-05 Boston Scientific Scimed, Inc. Radial adjusting self-expanding stent with anti-migration features
EP4125634A1 (en) 2020-03-24 2023-02-08 Boston Scientific Scimed Inc. Medical system for treating a left atrial appendage
US11951002B2 (en) 2020-03-30 2024-04-09 Tendyne Holdings, Inc. Apparatus and methods for valve and tether fixation
EP4199860A1 (en) 2020-08-19 2023-06-28 Tendyne Holdings, Inc. Fully-transseptal apical pad with pulley for tensioning
WO2022047285A1 (en) 2020-08-31 2022-03-03 Boston Scientific Scimed, Inc. Self expanding stent with covering
JP2023551927A (en) 2020-12-02 2023-12-13 ボストン サイエンティフィック サイムド,インコーポレイテッド Stents with improved deployment characteristics

Family Cites Families (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1205743A (en) * 1966-07-15 1970-09-16 Nat Res Dev Surgical dilator
US3623484A (en) * 1969-07-22 1971-11-30 Rudolf R Schulte Telescoping shunt system for physiological fluid
US3868956A (en) * 1972-06-05 1975-03-04 Ralph J Alfidi Vessel implantable appliance and method of implanting it
FR2409747A1 (en) * 1977-11-28 1979-06-22 Rey Pierre NEW TOTAL OR PARTIAL URETERAL PROSTHESES
BR8208063A (en) * 1981-09-16 1984-01-10 Hans Ivar Wallsten DEVICE FOR APPLICATION IN BLOOD VESSELS OR OTHER DIFFICULT ACCESS PLACES AND THEIR USE
SE445884B (en) * 1982-04-30 1986-07-28 Medinvent Sa DEVICE FOR IMPLANTATION OF A RODFORM PROTECTION
US4572186A (en) * 1983-12-07 1986-02-25 Cordis Corporation Vessel dilation
US5104399A (en) * 1986-12-10 1992-04-14 Endovascular Technologies, Inc. Artificial graft and implantation method
US4580568A (en) * 1984-10-01 1986-04-08 Cook, Incorporated Percutaneous endovascular stent and method for insertion thereof
EP0183372A1 (en) * 1984-10-19 1986-06-04 RAYCHEM CORPORATION (a Delaware corporation) Prosthetic stent
IT1186142B (en) * 1984-12-05 1987-11-18 Medinvent Sa TRANSLUMINAL IMPLANTATION DEVICE
US4699611A (en) * 1985-04-19 1987-10-13 C. R. Bard, Inc. Biliary stent introducer
US4733665C2 (en) * 1985-11-07 2002-01-29 Expandable Grafts Partnership Expandable intraluminal graft and method and apparatus for implanting an expandable intraluminal graft
US5102417A (en) * 1985-11-07 1992-04-07 Expandable Grafts Partnership Expandable intraluminal graft, and method and apparatus for implanting an expandable intraluminal graft
US4681110A (en) * 1985-12-02 1987-07-21 Wiktor Dominik M Catheter arrangement having a blood vessel liner, and method of using it
US4649922A (en) * 1986-01-23 1987-03-17 Wiktor Donimik M Catheter arrangement having a variable diameter tip and spring prosthesis
SE453258B (en) * 1986-04-21 1988-01-25 Medinvent Sa ELASTIC, SELF-EXPANDING PROTEST AND PROCEDURE FOR ITS MANUFACTURING
SE455834B (en) * 1986-10-31 1988-08-15 Medinvent Sa DEVICE FOR TRANSLUMINAL IMPLANTATION OF A PRINCIPLE RODFORMALLY RADIALLY EXPANDABLE PROSTHESIS
US4793348A (en) * 1986-11-15 1988-12-27 Palmaz Julio C Balloon expandable vena cava filter to prevent migration of lower extremity venous clots into the pulmonary circulation
US4800882A (en) * 1987-03-13 1989-01-31 Cook Incorporated Endovascular stent and delivery system
US4886062A (en) * 1987-10-19 1989-12-12 Medtronic, Inc. Intravascular radially expandable stent and method of implant
US4830003A (en) * 1988-06-17 1989-05-16 Wolff Rodney G Compressive stent and delivery system
US4856516A (en) * 1989-01-09 1989-08-15 Cordis Corporation Endovascular stent apparatus and method
CA2026604A1 (en) * 1989-10-02 1991-04-03 Rodney G. Wolff Articulated stent

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7780720B2 (en) 1994-02-09 2010-08-24 Scimed Life Systems, Inc. Bifurcated endoluminal prosthesis
US7901449B2 (en) 1994-02-09 2011-03-08 Scimed Life Systems, Inc. Bifurcated endoluminal prosthesis
US7942919B2 (en) 1994-02-09 2011-05-17 Scimed Life Systems, Inc. Bifurcated endoluminal prosthesis
US8192482B2 (en) 1994-02-09 2012-06-05 Scimed Life Systems, Inc. Endoluminal stent

Also Published As

Publication number Publication date
EP0536164B1 (en) 1994-03-09
ES2050054T3 (en) 1994-05-01
JPH0636807B2 (en) 1994-05-18
JPH05507215A (en) 1993-10-21
DE69101385T2 (en) 1994-06-16
ATE102466T1 (en) 1994-03-15
DK0536164T3 (en) 1994-05-09
EP0536164A1 (en) 1993-04-14
DE9190098U1 (en) 1993-04-01
WO1992000043A1 (en) 1992-01-09
DE69101385D1 (en) 1994-04-14
US5064435A (en) 1991-11-12
CA2086333A1 (en) 1991-12-29

Similar Documents

Publication Publication Date Title
CA2086333C (en) Self-expanding prosthesis having stable axial length
EP0874602B1 (en) Composite intraluminal graft
US6849086B2 (en) Intraluminal stent and graft
US5984957A (en) Radially expanded prostheses with axial diameter control
US4922905A (en) Dilatation catheter
US5843168A (en) Double wave stent with strut
EP1513471B1 (en) Endoluminal device having barb assembly
EP1927327B1 (en) Kink resistant stent-graft
US5800521A (en) Prosthetic graft and method for aneurysm repair
US5221261A (en) Radially expandable fixation member
US6371979B1 (en) Stent delivery system
EP2352465B1 (en) Multi-section stent
US20020123790A1 (en) Enhanced engagement member for anchoring prosthetic devices in body lumen
EP1263348B1 (en) Intraluminal prosthesis
SK3362001A3 (en) Method and apparatus for covering a stent
WO1999043379A9 (en) Delivery system and method for deployment and endovascular assembly of multi-stage stent graft
JPH10510200A (en) Implantable endoluminal prosthesis
WO1996025125A1 (en) Endoprosthesis stent/graft deployment system
JP2006522618A (en) Lumen device with enhanced mounting characteristics
JP2001245989A (en) Self expandable stent graft
US20030074051A1 (en) Flexible stent
US7556643B2 (en) Graft inside stent
EP0836449A1 (en) Prosthetic graft and method for aneurysm repair
MXPA99007689A (en) Bifurcated vascular graft and method and apparatus for deploying same

Legal Events

Date Code Title Description
EEER Examination request
MKLA Lapsed