CA2100970A1 - Lubricous polyer network - Google Patents

Lubricous polyer network

Info

Publication number
CA2100970A1
CA2100970A1 CA002100970A CA2100970A CA2100970A1 CA 2100970 A1 CA2100970 A1 CA 2100970A1 CA 002100970 A CA002100970 A CA 002100970A CA 2100970 A CA2100970 A CA 2100970A CA 2100970 A1 CA2100970 A1 CA 2100970A1
Authority
CA
Canada
Prior art keywords
composition
hydrogel
prepolymer
vinyl
uncrosslinked
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
CA002100970A
Other languages
French (fr)
Inventor
Paul J. Buscemi
Paul C. Slaikeu
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Boston Scientific Scimed Inc
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Publication of CA2100970A1 publication Critical patent/CA2100970A1/en
Abandoned legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L33/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides or nitriles thereof; Compositions of derivatives of such polymers
    • C08L33/04Homopolymers or copolymers of esters
    • C08L33/06Homopolymers or copolymers of esters of esters containing only carbon, hydrogen and oxygen, which oxygen atoms are present only as part of the carboxyl radical
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L29/00Materials for catheters, medical tubing, cannulae, or endoscopes or for coating catheters
    • A61L29/08Materials for coatings
    • A61L29/085Macromolecular materials
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D133/00Coating compositions based on homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Coating compositions based on derivatives of such polymers
    • C09D133/04Homopolymers or copolymers of esters
    • C09D133/06Homopolymers or copolymers of esters of esters containing only carbon, hydrogen and oxygen, the oxygen atom being present only as part of the carboxyl radical
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2205/00Polymer mixtures characterised by other features
    • C08L2205/04Polymer mixtures characterised by other features containing interpenetrating networks

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • Polymers & Plastics (AREA)
  • Epidemiology (AREA)
  • Medicinal Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Wood Science & Technology (AREA)
  • Materials For Medical Uses (AREA)

Abstract

A polymer network useful as a lubricous coating, the polymer network comprising a reaction product of a vinyl prepolymer and an un uncrosslinked hydrogel retained within the reaction product such that the network exhibits a greater lubricity when wet.

Description

WO93/11751 21 O ~ 9 7 0 PCTtUS92/11021 LUBR1COUS POLY~ER NEn~ORK
BACKGROUND OF THE INVENTION
The present invention relates to a compositicn for forming a polymer network, and in particular t it relates to a pol~er network useful as a lubricous coating.
Lubricity of ~edical devices, such as catheters that are insertable i~to the body is ian important feature. One method of ~ncreasing lubricity is to 2pply a lubri~ous ooating to .he surface of ~he cztheter.
S licone has been used as a coating for man~f cle~in.znd ~.et~llic ~,edical aevices. Howe~Jer, sil~cene is hydr~phobic, and a~hough imparting so~.e lu~rici~y against cer~ain surfaces, siliconels coefficient of f.-ic~ion increases dramatically in the pr~sence of : watar, plasma, or blood.
Hydro~el poIymers have also been used in cc,~tln~ ydroaels are c~aracte~ized by an init'al 2~ tac~y quali~y rcllowed by lubricity upor, hydration.
: Many hydrogel compositions hydrate virtually instantaneously, while others require considera~'y more t~me. ~ ~ ~
The Lambert U.S.-Patent 4,45g,3l~ desorib2s a process for coating a polymer sur~ace w~th ~ hydrophilic coatlng ~with iow friction in a weti~condition.;' The process includes applying to; the polymer:surface 2 solution containing be~weén 0.05 to 40 percent`:of the compound, which comprises :at least two~:unreacted isocyanate groups per:molecule, evapo`rat~ns the.solven~, :~appl~ring`i a solut1on:contai~ing between 0.:05-'to ~50 ~percent~of~ olyethy}ene~oxide A to ~the~treated~polymer .

WO93/11751 ~ 1 0 U 9 7 0 PCT/US92/11021 .
surface and then evaporating the solvent. The coating is then cured at an elevated temperature.
The Johannson et al U.S. Patent 4,906,237 describes a hydrophilic coating that is made by applying a solution of an osmolality increasing compound to a non-reactive hydrophilic polymer surface layer and then evaporating the solvent of the solution.
The Bae et al U.S. Patent 4,931,287 describes a heterogeneous interpenetrating polymer network for use in the controlled release of drugs. The network is a heterogeneous matrix in one instance using polyethylene oxide crosslinked with for example a triisocyanate, as a hydrophilic component with styrene, an alkyl methacryla~e, or a polytetramethylene ether glycol as the hydrophobic componen~.
SUM~RY OF THE I~VENTION
The present invention includes a polymer network comprising a vinyl polymer and an uncrosslinked hydrogel retained within the vinyl polymer. The present invention also includes a method of makins such a pol~mer network including a vinyl polymer and an uncrosslinked hydrogel.
The present invention also includes a lubricous coating secured to the surface of a device insertable within the living body and to a process of ,applying such ~ coating to ~the device. ~ The process includ~s applying to~the sur~ace a solution contalning ~an uncrosslinked hydrogel and a vinyl prepolymer along with~a polymerization initiator, and then polymerizing the vinyl prepolymer such~that the hydrogel ls retained 'within the polymerized,vinyl~polymer. ~Preferabl~, the -~surface o~ the devlce is treated prior to application of the coatlng solution. ~
~ ,.
.

' ' "
: ' WV93/11751 PCT/US92~11021 The present invention also includes a drug delivery system comprising a coating secured to a device insertable into a living body wherein the coating comprises an uncrosslinked hydrogel secured to the device by a vinyl polymer. The drug can be permanently entrapped in the coating or can be leachable from the coating into the living body upon hydration.
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS
The present invention includes a polymer network comprising a vinyl polymer and an uncrosslinked hydrogel retained within the vinyl polymer that is useful as a high lubricity coating. The high lubricity coating is useful on devices that are insertable within living tissue.
By "polymer ne~work" is meant two polymers synthesized such that the polymer chains are intertwined within each other. There is no apparent carbon-to-carbon chemical bonding between the polymers except perhaps only accidental covalent bonding. The -`in~ertwining of the polymers,is of a permanent nature rendering the polymers physically inseparable from each - other. - ~
The polymer network of the present invention - is formed as a lubricous coating by application of a mixture of -an; uncrosslinked ,hydrogel,~ a vinyl;
prepolymer, and a free radical initia~or in à solven~ to an active, activated or, "primed" substrate. By prepolymer i~'meant monomers-or oligomers or both used , ;~as 'reactants to form a polymer.,, The three primary 30 constituents~of the-mixture are applled pr2ferablyjas a '~
'~' single component~and cure*;as a single system to,form -i thé''~polymer 'netwo'rk of~ the present,invention. , The ~ reaction o~ the vinyl prepolymer on the substratc in the . ~ ~
:
. .

WO93/1~7~1 2 1 O '~ O P~cr/usg2/l 1~21 presence of the uncrosslinked hydrogel produces the polymer network.
By hydrogel is meant a substance that when exposed to water and used as a coating is c~aracterized by a decrease in its coefficient o~ friction or an increase in its lubricity. Suitable hydrogels for use in the present invention are uncrosslinked hydrogels, and include polyethylene oxide, polyacrylic acid, polyacrylamide',polyf~sodium4-styrenesulfonate~,poly(3-hydroxybutyric acid), pcflyvinylpyrrolidone, and 2~hydroxyethyl methacrylate.
The hydrogel of the present invention is preferably a high-molecular weight hydrogel. The high molecular weight of the hydrogel provides at least two advantages. First, it ensures sufficient entanglement with the vinyl polymer such that the hydrogel does not leach out of the polymer network. Second, although the high molecular weight ensures that the hydrogel is unextractable ~rom the polymer network, smaller molecules'such as drugs ensnared within the hydrogel can leach out. A crosslinked hydrogel would, on the other hand, entrap a drug and prevent leaching. The extent of : ~ entrapment of the hydrogel is also dependent on the crosslink density of the vinyl polymer. In the case o~
25 ~~polyethylene::~fcffxide, molecular weights in the range of ~! ;;50,000 to'lO0,000 and abova are most.suitable.
' By vinyl::polymer .is.meant those polymers produced by ''chain reaction :polymerization~ Suitable vinyl polymers for use ~n the present invention.include methyl methacrylate and other:mono-functional acrylates, diàcrylates, glyceryl propoxy triacrylate and other~tri~
~ unctional;àcrylàte~, styrene and other vinyl.monomers, including divinyl benzenel~and other divinyl polymers.

:
:

WO93/11751 ~ 210 0 9 7 0 PCT/US92/11021 One example of a diacrylate suitable i~ the present invention is neopentyl glycol diacrylate (NPG). Other diacrylates suitable in the present in~ention include ethylene glycol di(meth)-acrylate, 1,3-propylene glycol di(meth)acrylate, l,4-butanediol di(meth~acrylate, l,6-hexanediol di(meth)acrylate, diethylene glycol di(meth)acrylate, triethylene glycol di(meth)acrylate, tetraethylene glycol di(meth)acrylate, polyethylene glycol di(meth)acrylate, and neopentyl glycol di(meth)-acrylate.
In preparing the solution mixture of thepresent invention, the hydrogel is mixed with the vinyl prepolymer in a sol~ent. In one preferred embodiment, isopropyl alcohol in combination with water acts as a suita~le solvent. Water alone has also been used as a solvent. In one embodiment, a preferred ratio of polyethylena oxide to a diacrylatë prepolymer is l0:l.
Lower ratios ~f polyethylene oxide to prepolymer have also been found to be suitable.
~ Crosslin]cing is~Cacilitated by a small amount of a free radical initiator added to the mixture. When a diacrylate is used, the mole ratio of free radical initiator to the diacryIate is 10-4:l. To further `
faciIitate crosslinking,~oxygen should be degassed from thei solution since~ oxygen -inhibits frëe - radical ~reactions. One preferred method of degassing the oxygen :~is through the use of nitrogen bubbling. :---~ Next, the mixture is applied to a substrate.
A variety o~ sur~aces act as suitable substrates. For example/ the mixture may be ~applied to wood, metal, polymers or~theilike.~ If thè mixture is applied to a t~polyethylene sur~ace such~las^on a cath`eter/- preferably th- surface` o~ the^~catheter `is glow discharge~plasma :
- '. :

- . . . : . .,: . . . . . . .

W093/~17~1 2 ~ ~ 0 9 7 ~ PCT/US92/11021 ., , `

treated. Other polymeric substrates, such a~ polyimides containing diaromatic ketones and polyethylene terephthalate, have also been found to be suitable .-substrates even when not plasma treated. Polyurethanes and nylons are primed with a vinyl functional isocyanate. Metals~ such as stainless steel and gold, require a primer such as a vinyl or acrylate functional silane for best adhesion.
The coated surface is then cured. The coated film is exposed to heat or W light for a short period of time. The heat or W light triggers the polymerization and crosslinking of the prepolymer.
Pre~erably, the mixture is cured using a high intensity ~;.
ultraviolet lamp. The precise amount of time needed to cure the sur~ace is dependent on the source of energy, the relative amounts of constituents in the composition, the thickness of the coating desired, and other ~actors.
Generally, the amount of time required ~or t~ermal cure is from about l to 30 minutes. W curing requires less :time and is generally in .the range of less than one minute. . .
. A great advantaga of the vinyl polymer of the present .invention is its. ability to adhere to a substrate ~hat can sup~ort free radicais, or can support 25~.~. other species--which can form free radicals, ~uch as . peroxides. The strong adherence of the vinyl polymer to the substrate!-aids .~in .the prevention of unwanted material breaking.off fro~ the coating and being left in .. ~he body. . . : .............................. . .
30 j.. ....., ~.:.:The present coating.has a:variety of uses in ithe .~edical~aevice market.-~. Onej.apparent use is the -~applicati~n !``, of :~the.,coating~. on ;various devices.used .within the human body.:~In the.preferred embodiment, the .

- ~ ~, , . . , , . ~:
, , , ~ ~ . - i . . . ..
, , . . , ~., . . , , .. , . . . - . .
: . . :
' : , ~ . ', :' ' ,, . ,., :
~ ., . - , . .. - :

~- ` 2~9~
.

coating is applied to catheters such as angioplasty catheters.
Applying the polymer network of the present invention as a coating to catheters or other medical devices has a number of advantages. First, the coating of the present invention is highly lubricous when wet.
In the dry state t the coating is virtually indistinguishable from the substrate. In contrast, silicone, which is widely used in devices such as catheters, and when acting as the coating is very noticeable in the dry state and often is more tacky when wet Second, as mentioned previously, the coating of the present invention can be applied to a variety of different substrates with strong adherence. Thust the polymer network of the present invention provides a lubricous, as well as an adherent and durable coating.
Visorcus rubbing and long-term hydration do not reduce the coating's lubricity, demonstrating the strong adhesion of the coating..
Third, the polymer network of the present invention is useful:as a drug.delivery system. By varying such parameters as hydrogel molecular weight and crosslink density of the.vinyl polymer,.an additional 25 .constituent,..such as:.a drug,l.can be incorporated into :.the present polymer: networ~. . In one;:;.preferred .embodiment, heparin :is~usedias;tha drug. .:The drug is entrapped...in the:polymer.network:and leaches out o~ the .coating.when ~he coating.is..~et delivering the heparin .to ..immediately.~adjacent:.areas:-of..:.the body. The ;advantages.of:::incorporating~a..drug~which is~released from....the ::coating~ on:~medical.~ devices..is apparent.
Effects of thro~bu~ formation, restenosis, infections, : ':

W093/~1751 - PCT/US92/~1021 ~lOOg70 ~

and even disease transmission could be minimized or eliminated through the use of the coating of this invention.
Fourth, as mentioned previously, the present invention includes a polymer network in which the hydrogel, such as potyethylene oxide, is virtually entrapped within the system. Entrapment prevents unwanted material from leaving the coating and entering the body. Coatings which remain intact and do not deposit undesired materials are generally preferred to erodible coatings, such as silicone coetings, which might have the capacity to induce a response from the body. The coating of the present invention leaves no unwanted foreign material within the body.
The following examples are illustrative only and are not intended to limit the present invention.
The examples are submitted in order to demonskrate more explicitly the process and composition of the present invention.
EXAMPLE 1 i 20 grams of a 5 percent solution of an uncrosslinked polyethylene oxide (PE0) from Aldrich ~hemical Co., (a hydrogel) having an average molecular weight of 900,000 was mixed with 0.10 grams of neopentyl glycol _ diacrylate i!;(NPG) from ;i Sartomer Co., of : Pennsylvania in a solution containing l8 grams of water and;71 grams of isopropyl alcohol (IPA). 0.8~grams o~
,a 0.001 percent solution o~ azobisisobutronitrile (AI~) in~lisopropyl alcohol Was added ~to the solu~ion. The 3 mole ratio o~ azobisisobutronitrile to neopentyl glycol diacrylate was-10~4~ Oxygen was-~removed-from~the ~solution by bubbling nitrogen through the~solution. l .. , ... .~ ~

' ~ .
.

.

WO93/11751 2 ~ ~ ~0 9 7 0 PCT/US92/11021 _g_ The solution was then applied to a film of plasma treated polyethylene (PE). The wet coated film was then exposed to a 1500 watt ultraviolet tw) source for ~0 seconds at a distance of nine inches. The film was rinsed with running water. The resulting surface was highly lubricous and dramatically different than'the uncoated surface. Vigorous rubbing did not reduce the coating lubricity, nor was th~re noticeable residue on the fingers. Dry or wet storage did not reduce the wet lubricity.
EX~MPLE 2 A solution of PEO and NPG in IPA and water was prepared as in Example l. l0 mg of heparin was dissolved in l ml water~ 1 ml of IPA was added to the heparin water mixture, with resulting cloudiness indicating heparin precipitation. Severa71 drops of l~
lecithin (a surfactant) in chlorofo~-m was added to the heparin mixture until the solution was clarified. The heparin mixture was then added to the PEO/NPGIAIBN
solution such that the ratio of PE0:NPG:heparin was 50:5:1. The solution was applied to a plasma treated PE
film and cured as in Example l. The result ng coating had similar characteristics as the coating,o~ Example l.
-A detectable ~quantity of heparin was found using :infrared spectroscopy, in residue resulting after 15 ''~' minutes of;rinsing of,the coating.
EXAMP~E_3 , , A solution of PEO;and NPG in IPA and water containing heparin was ! prepared as in Example 2. The solution was applied,to approxi~ately,nine inches of the ~;distal end o~ a SKI~NY angioplasty catheter manu~ac~ured ; by.SciMed ~ife Sys~ems,~3nc.^,~or~,Maple,-Grove,~MinnesOta.
The catheter, prior to application of,the solution,~was .' ' , ~: .

: ~' W093/11751 ~ l ~ 0 ~ 7 0 PCT/U~92/11021 ~:
plasma treated. The catheiter was cured using the procedure of Example 2 but with manual turning of the catheter to insure direct exposure to W of all sur~aces of the coating. The resulting catheter had similar characteristics as the coating of Example 2.

The procedure of Example 1 was followed except that tripropylene glycol diacrylate from Sartomer Co., of Pennsylvania was used in place of the neopentyl glycol diacrylate. A similar highly lubricous coatir.g was produced. The coating withstood vigorous rubbing and did not leave a noticeable residue on the fingers.
EXA~PLE 5 The procedure of Example 1 was followed except that tri~unctional triacrylate ester from Sartomer Co., of Pennsylvania was substituted for neopentyl glycol diacrylate. A similar highly lubricous coating was produced. T~le coating withstood vigorous rubbing ~nd did not leave a noticeable residue on the fingers.
~ EXAMPLE 5 The procedure of Example 1 was followed except that-polyethylene~lycol 200 ~iacrylate *rom Sartomer Co., of Pennsylvania was substituted for neopentyl glycol diacrylate. -~ similar highly lubricous coating ~was produced.- The coating withs~ood vigorousirubbing and did not leave any noticeable residue on the ~.ingers.
~EX~MPLE'7 ;i: , The procedure o~ Example 1 was ~ollowed except that divinyl:benzene from Dow Chemical o~ Michigan was :substituted for neopentyl-glycol diacrylate.iA similar highly lubricous~coating~was produced;; Vigorous rubbing did ~ not reduce thé:~coating~lubricity, a~d~the coating did not leave;any noticeable residue'on the ~ingers.~
. .

;:
I

: ~ ~ , . . .

~` 2laos70 The procedure of Example 1 was followed except that methylmethacrylate from Fisher Scientific of New Jersey was substituted for neopentyl glycol diacrylate.
A similar highly lubricous coating was produced.
Vigorous rubbing did not reduce the coating lubricity, and no noticeable residue was left on the fingers.

The procedure of Example 1 was followed except that 8 parts of methylmethacrylate (Fisher Scientific of New Jersey) to 2 parts of divinyl benzine (Dow Che~ical of Michigan) was substituted for the neopentyl glycol diacrylate. A similarly highly lubricous coating was produced. Vigorous ru~bing did not reduce the coating lubricity and no noticeable residue was left on the fingers.

The procedure of Example 1 was followed except that 1 gram of polyacrylic acid from Aldrich Chemical Co., of Wiscons.in having an average molecular weight of 250,000 was used as the hydrogel. 2 grAms of 5 percent neopentyl glycol ~iacrylate solution in isopropyl alcohol was mixed with`the hydrogel. 0.80 grams of 0.001 percent azobisisobutronitrile solution was then added.
~ he resulting!surface was highly lubricous.
Vigorous rubbing did not reduce the coating lubricity ~`
nor was there noticeable residue on the fingers.

~ The procedure of Example l was ~ollowed except that 56.0 grams of ~po}y(sodium 4-styrene~;sulfonate) haYing -~an--avera~e mole`cular :weight~of 70jO00 ~rom Aldrich Chemical Co.,! of Wisconsin~was-mixed with 2 ` . ':

:

W0931~1751 2 l 0 a9 7~ PCT/US92/1102 grams of a 5 percent solution of neopentyl glycol diacrylate made by sartomer Co., of Pennsylvania in isopropyl alcohol. 0.8 grams of a o.oo1 percent solution of azobisisobutronitrile was added to the solutio~.
The resulting coating was highly lubricous and dramatically different than the uncoated surface.
Vigorous rubbing did not reduce the coating lubricity nor was there noticeable residue on the fingers.
EXAMP_,~E 12 The procedure of Example 1 was followed except that 1 gram of polyvinyl pyrolidone made by BASF Corp., of New Jersey was used as the hydrogel. The polyvinyi pyrolidone was mixed with 2 grams of 5 percent neopentyl 15 glyool diacrylate from Sartomer Co., of Pennsylvania in an isopropyi alcohol solution. 0.~0 grams of a 0.001 percent axobisisobutronitrile initiator was added to the solution.
The resulting coating was highly lubricous and drama~ically~;.differ2nt.~.than the uncoated s~r~race.
Vigorous rubbing did not reduce the coating lubricity nor was there noticeable-residue on the fingers.
EXAMP~E_~3 ~
;. . The procedure of Example 12 was followed except that the solvent used was an isopropyl alcohol/
,toluene solvent inskead:,o~ ~he water/i~opropyl alcohol solvent. .~,A .similarly..~ihighly,lubricous,coating,was produced. ,. , , ,, .."r ,~
Although the, present invention has been-described....with.~.referenoe .to preferred~embodiments,~workers~skilled in-the art will recognize,.~hat.ch~nges may,be,.made in form':and detail~;without departing from the ~pirit~and scope~of~,the invention.'i.~

.
:

Claims (40)

WHAT IS CLAIMED IS:
1. A polymer network comprising:
a polymer formed by the reaction product of a vinyl prepolymer; and an uncrosslinked hydrogel retained within the reaction product.
2. The polymer network of claim 1 wherein the vinyl prepolymer is an acrylate.
3. The polymer network of claim 1 wherein the hydrogel is an uncrosslinked polyethylene oxide.
4. The polymer network of claim 2 wherein the diacrylate is neopentyl glycol diacrylate.
5. The polymer network of claim 1 and further including:
a drug retained within the reaction product.
6. The polymer network of claim 5 wherein the drug is heparin.
7. The network of claim 6 wherein a surfactant is added to the heparin.
8. A method of making a polymer network comprising:
combining a vinyl prepolymer with an uncrosslinked hydrogel in a solvent solution containing a polymerization initiator;
applying the solution to a substrate; and permitting the solution to cure on the substrate.
9. The method of claim 8 and further including adding a drug to the solution.
10. The method of claim 8 wherein the prepolymer includes diacrylate monomers and oligomers.
11. The method of claim 10 wherein the diacrylate prepolymer is neopentyl glycol diacrylate.
12. The method of claim 8 wherein the vinyl prepolymer is an acrylate.
13. The method of claim 8 wherein the vinyl prepolymer is divinyl benzene.
14. The method of claim 8 wherein the hydrogel is an uncrosslinked polyethylene oxide.
15. A coating composition for securing to a substrate, the composition comprising:
a vinyl prepolymer;
a polymerization initiator;
an uncrosslinked hydrogel; and a solvent.
16. The coating composition of claim 15 wherein the prepolymer includes diacrylate monomers and oligomers.
17. The coating composition of claim 15 wherein the hydrogel is polyethylene oxide.
18. The coating composition of claim 16 wherein the diacrylate prepolymer is neopentyl glycol diacrylate.
19. The coating composition of claim 15 and further including a drug.
20. The coating composition of claim 19 wherein the drug is heparin.
21. The coating of claim 15 wherein the vinyl prepolymer is an acrylate.
22. The method of making a surface of a device insertable in living tissue more lubricous when wet, the method comprising:
applying a composition to the surface, the composition including a vinyl prepolymer, a polymerization initiator, and uncrosslinked hydrogel; and permitting the composition to cure sufficiently such that the vinyl prepolymer adheres to the surface and retains the uncrosslinked hydrogel.
23. The method of claim 22 wherein the prepolymer includes diacrylate monomers and oligomers.
24. The method of claim 22 wherein the hydrogel is polyethylene oxide.
25. The method of claim 23 wherein the diacrylate is neopentyl glycol diacrylate.
26. The method of claim 22 wherein the composition further includes a drug.
27. The method of claim 26 wherein the drug is heparin.
28. The method of claim 22 wherein the composition is cured using a UV energy source.
29. The method of claim 22 wherein the vinyl prepolymer is an acrylate.
30. The method of claim 22 wherein the surface of the device can support free radicals.
31. The method of claim 22 wherein the surface of the device can support species that form free radicals.
32. The method of claim 22 wherein the surface of the device includes polyethylene.
33. The method of claim 22 wherein the device is an intravascular device.
34. The method of claim 22 wherein the device is an intravascular catheter.
35. A method of making a surface of a device insertable in living tissue more lubricous when wet, the method comprising:
applying a composition to the surface, the composition including a vinyl prepolymer a polymerization initiator, and uncrosslinked hydrogel; and permitting the composition to by exposure to ultraviolet radiation sufficiently such that the vinyl prepolymer adheres to the surface and retains the uncrosslinked hydrogel.
36. A method of making a surface supporting free radicals of a device insertable in living tissue more lubricous when wet, the method comprising:
applying a composition to the surface, the composition including a vinyl prepolymer, a polymerization initiator, and uncrosslinked hydrogel; and permitting the composition to cure sufficiently such that the vinyl prepolymer adheres to the surface and retains the uncrosslinked hydrogel.
37. A method of making a surface that can support species that form free radicals of a device insertable in living tissue more lubricous when wet, the method comprising:
applying a composition to the surface, the composition including a vinyl prepolymer, a polymerization initiator, and uncrosslinked hydrogel; and permitting the composition to cure sufficiently such that the vinyl prepolymer adheres to the surface and retains the uncrosslinked hydrogel.
38. A method of making a surface that includes polyethylene of a device insertable in living tissue more lubricous when wet, the method comprising:

applying a composition to the surface, the composition including a vinyl prepolymer, a polymerization initiator, and uncrosslinked hydrogel; and permitting the composition to cure sufficiently such that the vinyl prepolymer adheres to the surface and retains the uncrosslinked hydrogel.
39. A method of making a surface of an intravascular device more lubricous when wet, the method comprising:
applying a composition to the surface, the composition including a vinyl prepolymer, a polymerization initiator, and uncrosslinked hydrogel; and permitting the composition to cure sufficiently such that the vinyl prepolymer adheres to the surface and retains the uncrosslinked hydrogel.
40. A method of making a surface of an intravascular catheter more lubricous when wet, the method comprising:
applying a composition to the surface, the composition including a vinyl prepolymer, a polymerization initiator, and uncrosslinked hydrogel; and permitting the composition to cure sufficiently such that the vinyl prepolymer adheres to the surface and retains the uncrosslinked hydrogel.
CA002100970A 1991-12-18 1992-12-17 Lubricous polyer network Abandoned CA2100970A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US80988991A 1991-12-18 1991-12-18
US07/809,889 1991-12-18

Publications (1)

Publication Number Publication Date
CA2100970A1 true CA2100970A1 (en) 1993-06-19

Family

ID=25202434

Family Applications (1)

Application Number Title Priority Date Filing Date
CA002100970A Abandoned CA2100970A1 (en) 1991-12-18 1992-12-17 Lubricous polyer network

Country Status (5)

Country Link
US (1) US5693034A (en)
EP (1) EP0572624A4 (en)
JP (1) JPH06506019A (en)
CA (1) CA2100970A1 (en)
WO (1) WO1993011751A1 (en)

Families Citing this family (128)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5674192A (en) 1990-12-28 1997-10-07 Boston Scientific Corporation Drug delivery
US5843089A (en) 1990-12-28 1998-12-01 Boston Scientific Corporation Stent lining
US6524274B1 (en) * 1990-12-28 2003-02-25 Scimed Life Systems, Inc. Triggered release hydrogel drug delivery system
US5599298A (en) * 1993-12-30 1997-02-04 Boston Scientific Corporation Bodily sample collection balloon catheter method
US5588962A (en) * 1994-03-29 1996-12-31 Boston Scientific Corporation Drug treatment of diseased sites deep within the body
US5670558A (en) * 1994-07-07 1997-09-23 Terumo Kabushiki Kaisha Medical instruments that exhibit surface lubricity when wetted
US6306144B1 (en) * 1996-11-01 2001-10-23 Scimed Life Systems, Inc. Selective coating of a balloon catheter with lubricious material for stent deployment
EP0879268A1 (en) 1996-02-09 1998-11-25 Surface Solutions Laboratories, Inc. Water-based hydrophilic coating compositions and articles prepared therefrom
US5716364A (en) * 1996-07-10 1998-02-10 Allergan IOL insertion apparatus and method for making and using same
US6283975B1 (en) 1996-07-10 2001-09-04 Allergan Sales, Inc. IOL insertion apparatus and method for making and using same
US6083230A (en) * 1997-07-30 2000-07-04 Allergan Method for making IOL insertion apparatus
US5868719A (en) * 1997-01-15 1999-02-09 Boston Scientific Corporation Drug delivery balloon catheter device
US6494861B1 (en) 1997-01-15 2002-12-17 Boston Scientific Corporation Drug delivery system
US5902631A (en) * 1997-06-03 1999-05-11 Wang; Lixiao Lubricity gradient for medical devices
US6221467B1 (en) 1997-06-03 2001-04-24 Scimed Life Systems, Inc. Coating gradient for lubricious coatings on balloon catheters
US6221425B1 (en) 1998-01-30 2001-04-24 Advanced Cardiovascular Systems, Inc. Lubricious hydrophilic coating for an intracorporeal medical device
US6634364B2 (en) 2000-12-15 2003-10-21 Cardiac Pacemakers, Inc. Method of deploying a ventricular lead containing a hemostasis mechanism
US6240321B1 (en) 1998-08-12 2001-05-29 Cardiac Pacemakers, Inc. Expandable seal for use with medical device and system
US6200257B1 (en) 1999-03-24 2001-03-13 Proxima Therapeutics, Inc. Catheter with permeable hydrogel membrane
US6340465B1 (en) 1999-04-12 2002-01-22 Edwards Lifesciences Corp. Lubricious coatings for medical devices
US6673053B2 (en) 1999-05-07 2004-01-06 Scimed Life Systems, Inc. Hydrophilic lubricity coating for medical devices comprising an antiblock agent
US6176849B1 (en) 1999-05-21 2001-01-23 Scimed Life Systems, Inc. Hydrophilic lubricity coating for medical devices comprising a hydrophobic top coat
US6610035B2 (en) 1999-05-21 2003-08-26 Scimed Life Systems, Inc. Hydrophilic lubricity coating for medical devices comprising a hybrid top coat
US6168617B1 (en) 1999-06-14 2001-01-02 Scimed Life Systems, Inc. Stent delivery system
US6248111B1 (en) 1999-08-06 2001-06-19 Allergan Sales, Inc. IOL insertion apparatus and methods for using same
US6458867B1 (en) 1999-09-28 2002-10-01 Scimed Life Systems, Inc. Hydrophilic lubricant coatings for medical devices
US7682648B1 (en) 2000-05-31 2010-03-23 Advanced Cardiovascular Systems, Inc. Methods for forming polymeric coatings on stents
US6673385B1 (en) 2000-05-31 2004-01-06 Advanced Cardiovascular Systems, Inc. Methods for polymeric coatings stents
US6584362B1 (en) 2000-08-30 2003-06-24 Cardiac Pacemakers, Inc. Leads for pacing and/or sensing the heart from within the coronary veins
US7001953B2 (en) * 2001-04-16 2006-02-21 Wsp Chemicals & Technology, Llc Water-soluble polymer complexes
US6645238B2 (en) 2001-07-09 2003-11-11 Scimed Life Systems, Inc. Skids stent delivery system
US20030100830A1 (en) 2001-11-27 2003-05-29 Sheng-Ping Zhong Implantable or insertable medical devices visible under magnetic resonance imaging
US20040143180A1 (en) * 2001-11-27 2004-07-22 Sheng-Ping Zhong Medical devices visible under magnetic resonance imaging
US6887270B2 (en) * 2002-02-08 2005-05-03 Boston Scientific Scimed, Inc. Implantable or insertable medical device resistant to microbial growth and biofilm formation
US8685427B2 (en) 2002-07-31 2014-04-01 Boston Scientific Scimed, Inc. Controlled drug delivery
US7993390B2 (en) * 2002-02-08 2011-08-09 Boston Scientific Scimed, Inc. Implantable or insertable medical device resistant to microbial growth and biofilm formation
US8133501B2 (en) 2002-02-08 2012-03-13 Boston Scientific Scimed, Inc. Implantable or insertable medical devices for controlled drug delivery
US8323693B2 (en) 2002-03-14 2012-12-04 Medrx Co., Ltd. External preparation for wounds
JP5118288B2 (en) * 2002-05-16 2013-01-16 エフ ホフマン−ラ ロッシュ アクチェン ゲゼルシャフト Method for producing polymer layer
US8920826B2 (en) 2002-07-31 2014-12-30 Boston Scientific Scimed, Inc. Medical imaging reference devices
US7264859B2 (en) * 2002-12-19 2007-09-04 Kimberly-Clark Worldwide, Inc. Lubricious coating for medical devices
US7220491B2 (en) * 2002-12-19 2007-05-22 Kimberly-Clark Worldwide, Inc. Lubricious coating for medical devices
EP1610752B1 (en) * 2003-01-31 2013-01-02 Boston Scientific Limited Localized drug delivery using drug-loaded nanocapsules and implantable device coated with the same
US7273896B2 (en) 2003-04-10 2007-09-25 Angiotech Pharmaceuticals (Us), Inc. Compositions and methods of using a transient colorant
US7364585B2 (en) * 2003-08-11 2008-04-29 Boston Scientific Scimed, Inc. Medical devices comprising drug-loaded capsules for localized drug delivery
US20050054774A1 (en) * 2003-09-09 2005-03-10 Scimed Life Systems, Inc. Lubricious coating
US7544381B2 (en) * 2003-09-09 2009-06-09 Boston Scientific Scimed, Inc. Lubricious coatings for medical device
US20050074406A1 (en) * 2003-10-03 2005-04-07 Scimed Life Systems, Inc. Ultrasound coating for enhancing visualization of medical device in ultrasound images
US7534495B2 (en) * 2004-01-29 2009-05-19 Boston Scientific Scimed, Inc. Lubricious composition
US8067073B2 (en) 2004-03-25 2011-11-29 Boston Scientific Scimed, Inc. Thermoplastic medical device
WO2006002628A1 (en) * 2004-06-30 2006-01-12 Coloplast A/S A hydrophilic, water-swellable, cross-linked matrix having incorporated therein an anti-microbial polymer
US7635510B2 (en) * 2004-07-07 2009-12-22 Boston Scientific Scimed, Inc. High performance balloon catheter/component
US20090088846A1 (en) 2007-04-17 2009-04-02 David Myung Hydrogel arthroplasty device
US9737637B2 (en) 2004-11-29 2017-08-22 Dsm Ip Assets B.V. Method for reducing the amount of migrateables of polymer coatings
US20060182907A1 (en) * 2005-02-11 2006-08-17 Boston Scientific Scimed, Inc. Novel microfibrillar reinforced polymer-polymer composites for use in medical devices
US20070129748A1 (en) * 2005-12-07 2007-06-07 Tracee Eidenschink Selectively coated medical balloons
US8133580B2 (en) 2005-12-09 2012-03-13 Dsm Ip Assets B.V. Coating composition for a urinary catheter
US20070237958A1 (en) * 2006-04-06 2007-10-11 Med-Eez, Inc. Lubricious coatings for medical applications
US7547474B2 (en) * 2006-04-06 2009-06-16 Med-Eez, Inc. Lubricious coatings for pharmaceutical applications
US8858855B2 (en) 2006-04-20 2014-10-14 Boston Scientific Scimed, Inc. High pressure balloon
US7951186B2 (en) * 2006-04-25 2011-05-31 Boston Scientific Scimed, Inc. Embedded electroactive polymer structures for use in medical devices
US9080061B2 (en) 2006-05-03 2015-07-14 Surface Solutions Laboratories Coating resins and coating with multiple crosslink functionalities
US7943221B2 (en) * 2006-05-22 2011-05-17 Boston Scientific Scimed, Inc. Hinged compliance fiber braid balloon
WO2008033199A1 (en) * 2006-09-12 2008-03-20 Boston Scientific Limited Liquid masking for selective coating of a stent
US8414525B2 (en) 2006-11-20 2013-04-09 Lutonix, Inc. Drug releasing coatings for medical devices
US8414526B2 (en) 2006-11-20 2013-04-09 Lutonix, Inc. Medical device rapid drug releasing coatings comprising oils, fatty acids, and/or lipids
US20080175887A1 (en) 2006-11-20 2008-07-24 Lixiao Wang Treatment of Asthma and Chronic Obstructive Pulmonary Disease With Anti-proliferate and Anti-inflammatory Drugs
US8414910B2 (en) 2006-11-20 2013-04-09 Lutonix, Inc. Drug releasing coatings for medical devices
US8998846B2 (en) 2006-11-20 2015-04-07 Lutonix, Inc. Drug releasing coatings for balloon catheters
US8425459B2 (en) 2006-11-20 2013-04-23 Lutonix, Inc. Medical device rapid drug releasing coatings comprising a therapeutic agent and a contrast agent
US20080276935A1 (en) 2006-11-20 2008-11-13 Lixiao Wang Treatment of asthma and chronic obstructive pulmonary disease with anti-proliferate and anti-inflammatory drugs
US9737640B2 (en) 2006-11-20 2017-08-22 Lutonix, Inc. Drug releasing coatings for medical devices
US9700704B2 (en) 2006-11-20 2017-07-11 Lutonix, Inc. Drug releasing coatings for balloon catheters
CA2743022C (en) 2007-01-21 2012-10-09 Hemoteq Ag Methods for coating catheter balloons with a defined quantity of active agent
CN101622019B (en) 2007-02-28 2015-01-07 帝斯曼知识产权资产管理有限公司 Hydrophilic coating
BRPI0808105A2 (en) 2007-02-28 2014-06-17 Dsm Ip Assets Bv HYDROPHILIC COATING
WO2008115543A2 (en) * 2007-03-20 2008-09-25 Boston Scientific Scimed, Inc. Urological medical devices for release of therapeutic agents
EP2136855A2 (en) * 2007-03-20 2009-12-30 Boston Scientific Scimed, Inc. Urological medical devices for release of prostatically beneficial therapeutic agents
US9192697B2 (en) 2007-07-03 2015-11-24 Hemoteq Ag Balloon catheter for treating stenosis of body passages and for preventing threatening restenosis
US20090041923A1 (en) * 2007-08-06 2009-02-12 Abbott Cardiovascular Systems Inc. Medical device having a lubricious coating with a hydrophilic compound in an interlocking network
US20090157047A1 (en) * 2007-12-13 2009-06-18 Boston Scientific Scimed, Inc. Medical device coatings and methods of forming such coatings
US8378011B2 (en) * 2007-12-27 2013-02-19 Boston Scientific Scimed, Inc. Enhanced durability of hydrophilic coatings
US20090318863A1 (en) 2008-06-18 2009-12-24 Boston Scientific Scimed, Inc. Functional Balloon With Built in Lubricity or Drug Delivery System
CA2727777A1 (en) * 2008-07-07 2010-01-14 Biomimedica, Inc. Hydrophilic interpenetrating polymer networks derived from hydrophobic polymers
US20120209396A1 (en) 2008-07-07 2012-08-16 David Myung Orthopedic implants having gradient polymer alloys
KR20110040969A (en) 2008-08-05 2011-04-20 바이오미메디카, 인코포레이티드 Polyurethane-grafted hydrogels
US20100048758A1 (en) * 2008-08-22 2010-02-25 Boston Scientific Scimed, Inc. Lubricious coating composition for devices
US20100048759A1 (en) * 2008-08-22 2010-02-25 Ecolab Inc. Method for lubricating surgical instruments
WO2010024898A2 (en) 2008-08-29 2010-03-04 Lutonix, Inc. Methods and apparatuses for coating balloon catheters
US9265918B2 (en) 2008-09-03 2016-02-23 Boston Scientific Scimed, Inc. Multilayer medical balloon
EP2398522B1 (en) 2009-02-20 2017-01-11 Boston Scientific Scimed, Inc. Hydrophilic coating that reduces particle development on ester-linked poly(ester-block-amide)
EP2421571A2 (en) * 2009-04-24 2012-02-29 Boston Scientific Scimed, Inc. Use of drug polymorphs to achieve controlled drug delivery from a coated medical device
EP2944332B1 (en) 2009-07-10 2016-08-17 Boston Scientific Scimed, Inc. Use of nanocrystals for a drug delivery balloon
US10080821B2 (en) 2009-07-17 2018-09-25 Boston Scientific Scimed, Inc. Nucleation of drug delivery balloons to provide improved crystal size and density
US8287890B2 (en) * 2009-12-15 2012-10-16 C.R. Bard, Inc. Hydrophilic coating
US9943668B2 (en) 2010-07-16 2018-04-17 Sub3 Vascular, Llc Guidewire and catheter system and method for treating a blood clot
KR102139022B1 (en) 2010-07-30 2020-07-29 알콘 인코포레이티드 A silicone hydrogel lens with a crosslinked hydrophilic coating
CA2808528A1 (en) 2010-08-27 2012-03-01 Biomimedica, Inc. Hydrophobic and hydrophilic interpenetrating polymer networks derived from hydrophobic polymers and methods of preparing the same
EP2611476B1 (en) 2010-09-02 2016-08-10 Boston Scientific Scimed, Inc. Coating process for drug delivery balloons using heat-induced rewrap memory
WO2012054129A1 (en) 2010-10-18 2012-04-26 Boston Scientific Scimed, Inc. Drug eluting medical device utilizing bioadhesives
US8669360B2 (en) 2011-08-05 2014-03-11 Boston Scientific Scimed, Inc. Methods of converting amorphous drug substance into crystalline form
WO2013028208A1 (en) 2011-08-25 2013-02-28 Boston Scientific Scimed, Inc. Medical device with crystalline drug coating
CA2885996A1 (en) 2011-10-03 2013-04-11 Biomimedica, Inc. Polymeric adhesive for anchoring compliant materials to another surface
HUE029018T2 (en) 2011-10-12 2017-02-28 Novartis Ag Method for making uv-absorbing ophthalmic lenses by coating
US9114024B2 (en) 2011-11-21 2015-08-25 Biomimedica, Inc. Systems, devices, and methods for anchoring orthopaedic implants to bone
US8545951B2 (en) 2012-02-29 2013-10-01 Kimberly-Clark Worldwide, Inc. Endotracheal tubes and other polymer substrates including an anti-fouling treatment
WO2014042875A1 (en) 2012-09-12 2014-03-20 Boston Scientific Scimed, Inc. Adhesive stent coating for anti-migration
US20140121747A1 (en) 2012-10-25 2014-05-01 Boston Scientific Scimed, Inc. Stent having a tacky silicone coating to prevent stent migration
WO2014095690A1 (en) 2012-12-17 2014-06-26 Novartis Ag Method for making improved uv-absorbing ophthalmic lenses
JP6396466B2 (en) 2013-08-08 2018-09-26 ボストン サイエンティフィック サイムド,インコーポレイテッドBoston Scientific Scimed,Inc. Stents comprising a soluble or degradable adhesive polymer to prevent stent migration
EP3057643A1 (en) 2013-10-15 2016-08-24 Boston Scientific Scimed, Inc. High pressure tear resistant balloon
CN105102677B (en) * 2013-10-18 2018-09-28 住友橡胶工业株式会社 Surface modification of metals and method for being modified to metal surface
US9708087B2 (en) 2013-12-17 2017-07-18 Novartis Ag Silicone hydrogel lens with a crosslinked hydrophilic coating
WO2016032720A1 (en) 2014-08-26 2016-03-03 Boston Scientific Scimed, Inc. Lubricious one-part hydrophilic coatings
CN106715101B (en) 2014-08-26 2019-11-05 诺华股份有限公司 Method for applying stable coating in silicone hydrogel contact lens on piece
JP6154370B2 (en) 2014-12-26 2017-06-28 住友ゴム工業株式会社 Surface-modified metal and method for modifying metal surface
CN107949403A (en) 2015-04-16 2018-04-20 好利司泰公司 Hydrophilic coating and forming method thereof
JP6670325B2 (en) * 2015-05-08 2020-03-18 コーニンクレッカ フィリップス エヌ ヴェKoninklijke Philips N.V. Hydrophilic coating for intra-conduit devices
US11077228B2 (en) 2015-08-10 2021-08-03 Hyalex Orthopaedics, Inc. Interpenetrating polymer networks
JP6753041B2 (en) 2015-08-27 2020-09-09 住友ゴム工業株式会社 Surface modification Metal and metal surface modification method
EP3391101B1 (en) 2015-12-15 2020-07-08 Alcon Inc. Method for applying stable coating on silicone hydrogel contact lenses
EP3442642A1 (en) 2016-04-12 2019-02-20 Boston Scientific Scimed, Inc. Medical balloon
US10849629B2 (en) 2016-12-13 2020-12-01 Boston Scientific Scimed, Inc. Medical balloon
EP3615099B1 (en) 2017-04-25 2023-03-01 Boston Scientific Scimed, Inc. Medical balloon
CN111386478B (en) 2017-12-13 2023-11-14 爱尔康公司 Zhou Pao and month polishing gradient contact lens
US10869950B2 (en) 2018-07-17 2020-12-22 Hyalex Orthopaedics, Inc. Ionic polymer compositions
CN109793941A (en) * 2019-01-08 2019-05-24 科塞尔医疗科技(苏州)有限公司 A kind of hydrophilic coating solution of medical catheter and preparation method thereof and application method
CN110075364A (en) * 2019-03-18 2019-08-02 科塞尔医疗科技(苏州)有限公司 A kind of hydrophilic coating solution of interposing catheter and preparation method thereof and application method

Family Cites Families (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3566874A (en) * 1968-08-13 1971-03-02 Nat Patent Dev Corp Catheter
CS154977B1 (en) * 1971-10-08 1974-04-30
US3975350A (en) * 1972-08-02 1976-08-17 Princeton Polymer Laboratories, Incorporated Hydrophilic or hydrogel carrier systems such as coatings, body implants and other articles
DE2364675C2 (en) * 1972-12-29 1983-06-23 Kuraray Co., Ltd., Kurashiki, Okayama Copolymer consisting of a polymer main chain and polymer side chains and its use for the manufacture of articles for biomedical purposes
US3886947A (en) * 1973-04-13 1975-06-03 Meadox Medicals Inc Non-thrombogenic catheter
US4119094A (en) * 1977-08-08 1978-10-10 Biosearch Medical Products Inc. Coated substrate having a low coefficient of friction hydrophilic coating and a method of making the same
JPS588700B2 (en) * 1980-09-12 1983-02-17 工業技術院長 Method for producing antithrombotic high modulus polyurethane compound
US4496535A (en) * 1980-11-12 1985-01-29 Tyndale Plains-Hunter, Ltd. Polyurethane polyene compositions
US4857579A (en) * 1980-11-24 1989-08-15 Union Carbide Corporation Thermosettable fiber reinforced resin compositions
US4373009A (en) * 1981-05-18 1983-02-08 International Silicone Corporation Method of forming a hydrophilic coating on a substrate
US4423184A (en) * 1981-09-08 1983-12-27 Personal Products Company Synthetic superabsorbent fibers
SE430696B (en) * 1982-04-22 1983-12-05 Astra Meditec Ab PROCEDURE FOR THE PREPARATION OF A HYDROPHILIC COATING AND ANY PROCEDURE MANUFACTURED MEDICAL ARTICLE
DE3362627D1 (en) * 1982-11-30 1986-04-24 Lrc Products Method of coating rubber or polymer articles
JPS6076562A (en) * 1983-10-03 1985-05-01 Sumitomo Electric Ind Ltd Antithrombotic resin composition
US4521564A (en) * 1984-02-10 1985-06-04 Warner-Lambert Company Covalent bonded antithrombogenic polyurethane material
JPH0793944B2 (en) * 1984-09-21 1995-10-11 メンロ・ケアー、インコーポレイテッド Body inserts comprising a multi-phase polymer composition
SE444950B (en) * 1984-09-28 1986-05-20 Ytkemiska Inst COVERED ARTICLE, PROCEDURES AND METHODS OF PRODUCING THEREOF AND USING THEREOF
US4616057A (en) * 1985-07-10 1986-10-07 Sun Chemical Corporation Polymer emulsion containing an interpenetrating polymer network
SE8504501D0 (en) * 1985-09-30 1985-09-30 Astra Meditec Ab METHOD OF FORMING AN IMPROVED HYDROPHILIC COATING ON A POLYMER SURFACE
US4729914A (en) * 1985-12-30 1988-03-08 Tyndale Plains-Hunter Ltd. Hydrophilic coating and substrate coated therewith
GB8611838D0 (en) * 1986-05-15 1986-06-25 Yarsley Technical Centre Ltd Hydrophilic copolymers
US4740207A (en) * 1986-09-10 1988-04-26 Kreamer Jeffry W Intralumenal graft
NL8602402A (en) * 1986-09-23 1988-04-18 X Flow Bv METHOD FOR MANUFACTURING HYDROFILE MEMBRANES AND SIMILAR MEMBRANES
US4931287A (en) * 1988-06-14 1990-06-05 University Of Utah Heterogeneous interpenetrating polymer networks for the controlled release of drugs
WO1990001344A1 (en) * 1988-08-09 1990-02-22 Toray Industries, Inc. Slippery medical material and process for its production
US5026607A (en) * 1989-06-23 1991-06-25 C. R. Bard, Inc. Medical apparatus having protective, lubricious coating
US5192617A (en) * 1990-10-24 1993-03-09 Minnesota Mining And Manufacturing Company Transparent liquid absorbent materials

Also Published As

Publication number Publication date
EP0572624A1 (en) 1993-12-08
US5693034A (en) 1997-12-02
EP0572624A4 (en) 1994-07-06
WO1993011751A1 (en) 1993-06-24
JPH06506019A (en) 1994-07-07

Similar Documents

Publication Publication Date Title
CA2100970A1 (en) Lubricous polyer network
EP1615677B1 (en) Coating for biomedical devices
EP0991701B1 (en) A hydrophilic coating and a method for the preparation thereof
JP2741107B2 (en) Biocompatible wear-resistant coated support
US8541498B2 (en) Lubricious coatings for medical devices
RU2698315C2 (en) Coating for substrate
WO2002100559A1 (en) Coatings appropriate for medical devices
EP0591091B1 (en) A method of producing an article with a coating having friction-reducing properties and coating composition
US5863650A (en) Interfacial coatings
US11578286B2 (en) UV cure basecoatings for medical devices
Montoya-Villegas et al. Controlled surface modification of silicone rubber by gamma-irradiation followed by RAFT grafting polymerization
US20180244927A1 (en) Coating composition and uses thereof
CN114845746A (en) UV-cured coatings for medical devices
JP3499475B2 (en) Manufacturing method of synthetic resin medical device
Fan Hydrophilic lubricious coatings for medical applications
WO2023227577A1 (en) Hydrophilic coatings for vascular medical products
IES83703Y1 (en) Coating for biomedical devices
IE20030294U1 (en) Coating for biomedical devices
Chen Hydrogel technology and application

Legal Events

Date Code Title Description
FZDE Discontinued