CA2107400C - Method of grinding pharmaceutical substances - Google Patents

Method of grinding pharmaceutical substances Download PDF

Info

Publication number
CA2107400C
CA2107400C CA002107400A CA2107400A CA2107400C CA 2107400 C CA2107400 C CA 2107400C CA 002107400 A CA002107400 A CA 002107400A CA 2107400 A CA2107400 A CA 2107400A CA 2107400 C CA2107400 C CA 2107400C
Authority
CA
Canada
Prior art keywords
grinding
polymeric resin
particles
drug substance
imaging agent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
CA002107400A
Other languages
French (fr)
Other versions
CA2107400A1 (en
Inventor
Joseph A. Bruno
Brian D. Doty
Evan E. Gustow
Kathleen J. Illig
Natarajan Rajagopalan
Pramod P. Sarpotdar
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Elan Pharma International Ltd
Original Assignee
Elan Pharma International Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Elan Pharma International Ltd filed Critical Elan Pharma International Ltd
Publication of CA2107400A1 publication Critical patent/CA2107400A1/en
Application granted granted Critical
Publication of CA2107400C publication Critical patent/CA2107400C/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61JCONTAINERS SPECIALLY ADAPTED FOR MEDICAL OR PHARMACEUTICAL PURPOSES; DEVICES OR METHODS SPECIALLY ADAPTED FOR BRINGING PHARMACEUTICAL PRODUCTS INTO PARTICULAR PHYSICAL OR ADMINISTERING FORMS; DEVICES FOR ADMINISTERING FOOD OR MEDICINES ORALLY; BABY COMFORTERS; DEVICES FOR RECEIVING SPITTLE
    • A61J3/00Devices or methods specially adapted for bringing pharmaceutical products into particular physical or administering forms
    • A61J3/02Devices or methods specially adapted for bringing pharmaceutical products into particular physical or administering forms into the form of powders
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/14Particulate form, e.g. powders, Processes for size reducing of pure drugs or the resulting products, Pure drug nanoparticles
    • A61K9/141Intimate drug-carrier mixtures characterised by the carrier, e.g. ordered mixtures, adsorbates, solid solutions, eutectica, co-dried, co-solubilised, co-kneaded, co-milled, co-ground products, co-precipitates, co-evaporates, co-extrudates, co-melts; Drug nanoparticles with adsorbed surface modifiers
    • A61K9/146Intimate drug-carrier mixtures characterised by the carrier, e.g. ordered mixtures, adsorbates, solid solutions, eutectica, co-dried, co-solubilised, co-kneaded, co-milled, co-ground products, co-precipitates, co-evaporates, co-extrudates, co-melts; Drug nanoparticles with adsorbed surface modifiers with organic macromolecular compounds
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/14Particulate form, e.g. powders, Processes for size reducing of pure drugs or the resulting products, Pure drug nanoparticles
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/14Particulate form, e.g. powders, Processes for size reducing of pure drugs or the resulting products, Pure drug nanoparticles
    • A61K9/16Agglomerates; Granulates; Microbeadlets ; Microspheres; Pellets; Solid products obtained by spray drying, spray freeze drying, spray congealing,(multiple) emulsion solvent evaporation or extraction
    • A61K9/1682Processes
    • A61K9/1688Processes resulting in pure drug agglomerate optionally containing up to 5% of excipient
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03CPHOTOSENSITIVE MATERIALS FOR PHOTOGRAPHIC PURPOSES; PHOTOGRAPHIC PROCESSES, e.g. CINE, X-RAY, COLOUR, STEREO-PHOTOGRAPHIC PROCESSES; AUXILIARY PROCESSES IN PHOTOGRAPHY
    • G03C1/00Photosensitive materials
    • G03C1/005Silver halide emulsions; Preparation thereof; Physical treatment thereof; Incorporation of additives therein
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S977/00Nanotechnology
    • Y10S977/70Nanostructure
    • Y10S977/773Nanoparticle, i.e. structure having three dimensions of 100 nm or less
    • Y10S977/775Nanosized powder or flake, e.g. nanosized catalyst
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S977/00Nanotechnology
    • Y10S977/70Nanostructure
    • Y10S977/788Of specified organic or carbon-based composition
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S977/00Nanotechnology
    • Y10S977/84Manufacture, treatment, or detection of nanostructure
    • Y10S977/90Manufacture, treatment, or detection of nanostructure having step or means utilizing mechanical or thermal property, e.g. pressure, heat
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S977/00Nanotechnology
    • Y10S977/902Specified use of nanostructure
    • Y10S977/904Specified use of nanostructure for medical, immunological, body treatment, or diagnosis
    • Y10S977/927Diagnostic contrast agent
    • Y10S977/928X-ray agent

Abstract

A method of preparing particles of a drug substance or diagnostic imaging agent which comprises grinding the drug substance or imaging agent in the presence of grinding media comprising a polymeric resin. The method provides particles exhibiting reduced contamination.

Description

-., ~~07400 ' METHOD OF GRINDING PHARMACEUTICAL SUBSTANCES
BACKGROUND OF THE INVENTION
Inasmuch as the rate of dissolution of a particle can increase with increasing surface area, i.e., decreasing particle size, efforts have been made to control the size and size range of drug particles in pharmaceutical compositions by a variety of methods, including various milling techniques, such as airjet milling and wet milling. However, there tends to be a bias in the pharmaceutical arts against milling techniques, particularly, wet milling, due to concerns associated with contamination. For example, in the preparation of pharmaceuticals for oral and parenteral applications, it is desirable to have total contamination, e.g., of heavy metals, below about 10 parts per million. The need to control and minimize contamination is particularly critical in the milling of parenteral products due to potential safety issues associated with injection of contaminants.
Various grinding media, such as stainless steel, zirconium silicate, zirconium oxide, glass, and the like, typically in the form of spherical beads, are commonly used in various mills, including media mills, for grinding materials. However, the use of stainless steel media can result in the introduction of iron, chromium and/or nickel contamination to the milled product accompanied by product discoloration. Media fabricated of conventional materials, such as zirconium silicates and zirconium oxides often contain zirconium, silicon, barium, lead, hafnium, yttrium, thorium and uranium, all of which can enter the product during grinding, leading to potential safety issues. Glass media can contain various alkali oxides, which are an unacceptable source of contamination. Additionally, most commercially available glass media for fine _ 2 _ 210400 grinding are of the soda lime type, which is not well suited for milling pH sensitive products due to high alkalinity Which can result during milling.
Liversidge et al, U.S. Patent No. 5,145,684, and EPO 498,492, describe dispersible particles consisting of a drug substance or an x-ray contrast agent having a surface modifier adsorbed on the surface thereof in an amount sufficient to maintain an effective average particle size of less than about 400 nm. The particles are prepared by dispersing a drug substance or contrast agent in a liquid dispersion medium and wet grinding in the presence of rigid grinding media. Particles free of unacceptable contamination have been prepared in accordance with this method.
Nevertheless, further reduced levels of contamination are desired. This is particularly so when 1) the drug substance or imaging agent is to be ground in a high energy mill where contamination tends to be particularly problematic, and/or 2) the drug substance or imaging agent is intended for parenteral use, in which case the risks associated with contaminated product can be particularly severe.
SUMMARY OF THE INVENTION
We have discovered that fine particles of diagnostic imaging agents and drug substances can be prepared With reduced contamination by milling in the presence of grinding media comprising a polymeric resin.
More specifically, in accordance With this invention, there is provided a method of preparing particles of an organic diagnostic imaging agent or drug substance which comprises grinding the imaging agent or drug substance in the presence of grinding media comprising a polymeric resin. The media can ~~. mo7~o~

comprise particles consisting essentially of the polymeric resin. Alternatively, the media can comprise particles comprising a core, which preferably is a conventional media material, having adhered thereon a coating of the polymeric resin.
It is a particularly advantageous feature of this invention that there is provided a method of preparing fine particles of a diagnostic imaging agent or a drug substance having reduced contamination and/or discoloration.
Still another advantageous feature of this invention is that there is provided a method of fine grinding drugs and imaging agents, which method generates less heat and reduces potential heat-related problems such as chemical instability and contamination.
It is another advantageous feature of this invention that a method of fine grinding drugs and imaging agents is provided enabling improved pH
control.
Other advantageous features will become apparent upon reference to the following Description of Preferred Embodiments.
DESCRIPTION OF PREFERRED EMBODIMENTS
This invention is based partly on the unexpected discovery that imaging agents and drug substances can be prepared~in extremely fine particles with reduced contamination levels by grinding in the presence of grinding media comprising a polymeric resin. While this invention is described herein in connection with its preferred utilities, i.e., with respect to drug substances for use in pharmaceutical compositions and imaging agents for use in x-ray contrast compositions, it is also believed to be useful in other applications, such as the grinding of _4_ 210400 particles for cosmetic and photographic compositions, where contamination can be a concern.
In the method of this invention, a drug substance is prepared in the form of particles by grinding the agent or drug substance in the presence of a grinding media comprising a polymeric resin.
The grinding media can comprise particles, preferably substantially spherical in shape, e.g., beads, consisting essentially of the polymeric resin.
Alternatively, the grinding media can comprise particles comprising a core having a coating of the polymeric resin adhered thereon.
In general, polymeric resins suitable for use herein are chemically and physically inert, substantially free of metals, solvent and monomers, and of sufficient hardness and friability to enable them to avoid being chipped or crushed during grinding.
Suitable polymeric resins include crosslinked polystyrenes, such as polystyrene crosslinked with divinylbenzene, styrene copolymers, polycarbonates, polyacetals, such as DelrinTM, vinyl chloride polymers and copolymers, polyurethanes, polyamides, poly (tetrafluoroethylenes ) , a . g . , TeflonT'~, and other fluoropolymers, high density polyethylenes, polypropylenes, cellulose ethers and esters such as cellulose acetate, polyhydroxymethacrylate, polyhydroxyethyl acrylate, silicone containing polymers such as polysiloxanes and the like. The polymer can be biodegradable. Exemplary biodegradable polymers include poly(lactides), poly(glycolide) copolymers of lactides and glycolide, polyanhydrides, poly(hydroxyethyl methacylate), poly(imino carbonates), poly(N-acylhydroxyproline)esters, poly(N-palmitoyl hydroxyproline) esters, ethylene-vinyl acetate copolymers, poly(orthoesters), poly(caprolactones), and poly(phosphazenes). In the case of biodegradable polymers, contamination from the media itself 21~~4~~

advantageously can metabolize in vivo into biologically acceptable products which can be eliminated from the body.
The polymeric resin can have a density from 0.8 to 3.0 g/cm3. Higher density resins are preferred inasmuch as it is believed that these provide more efficient particle size reduction.
The media can range in size from about 0.1 to 3 mm: For fine grinding, the particles preferably are from 0.2 to 2 mm, more preferably, 0.25 to 1 mm in size.
The core material preferably can be selected from materials known to be useful as grinding media when fabricated as spheres or particles. Suitable core materials include zirconium oxides (such as 95~
zirconium oxide stabilized with magnesia or yttrium), zirconium silicate, glass, stainless steel, titania, alumina, ferrite and the like. Preferred core materials have a density greater than about 2.5 g/cm3.
The selection of high density core materials is believed to facilitate efficient particle size reduction.
Useful thicknesses of the polymer coating on the core are believed to range from about 1 to about 500 microns, although other thicknesses outside this range may be useful in some applications. The thickness of the polymer coating preferably is less than the diameter of the core.
The cores can be~coated with the polymeric resin by techniques known in the art. Suitable techniques include spray coating, fluidized bed coating, and melt coating. Adhesion promoting or tie layers can optionally be provided to improve the adhesion between the core material and the resin coating. The adhesion of the polymer coating to the core material can be enhanced by treating the core material to adhesion promoting procedures, such as ,~. 210'400 roughening of the core surface, corona discharge treatment, and the like.
The milling process can be a dry process, e.g., a dry roller milling process, or a wet process, i.e., wet-grinding. In preferred embodiments, this invention is practiced in accordance with the wet-grinding process described in U.S. Patent No. 5,145,684 and EPO 498,482. Thus, the wet grinding process can be practiced in conjunction with a liquid dispersion medium and surface modifier such as described in these publications. Useful liquid dispersion media include water, aqueous salt solutions, ethanol, butanol, hexane, glycol and the like. The surface modifier can be selected from known organic and inorganic pharmaceutical excipients such as described in U.S.
Patent No. 5,145,684 and can be present in an amount of 0.1-90%, preferably 1-80% by weight based on the total weight of the dry particle.
In preferred embodiments, the drug substance or imaging agent can be prepared in submicron or nanoparticulate particle size, e.g., less than about 500 nm. Applicants have demonstrated that particles can be prepared having an average particle size of less than about 400 nm. In certain embodiments, particles having an average particle size of less than 300 nm have been prepared in accordance with the present invention. It was particularly surprising and unexpected that such fine particles could be prepared at such low levels of contamination.
Grinding can take place in any suitable grinding mill. Suitable mills include an air~et mill, a roller mill, a ball mill, an attritor mill, a vibratory mill, a planetary mill, a sand mill and a bead mill. A high energy media mill is preferred when the grinding media consists essentially of the polymeric resin. The mill can contain a rotating shaft.

210'~~04 The preferred proportions of the grinding media, the drug substance and/or imaging agent, the optional liquid dispersion medium, and surface modifier present in the grinding vessel can vary within wide limits and depends, for example, upon the particular drug substance or imaging agent selected, the size and density of the grinding media, the type of mill selected, etc. The process can be carried out in a continuous, batch or semi-batch mode. In high energy media mills, it can be desirable to fill 70-90% of the volume of the grinding chamber with grinding media. On the other hand, in roller mills, it frequently is desirable to leave the grinding vessel up to half filled with air, the remaining volume comprising the grinding media and the liquid dispersion media, if present. This permits a cascading effect within the vessel on the rollers which permits efficient grinding.
However, when foaming is a problem during wet grinding, the vessel can be completely filled with the liquid dispersion medium.
The attrition time can vary widely and depends primarily upon the particular drug substance or imaging agent, mechanical means and residence conditions selected, the initial and desired final particle size and so forth. For roller mills, processing times from several days to weeks may be required. On the other hand, residence times of less than about 8 hours are generally required using high energy media mills.
After attrition is completed, the grinding media is separated from the milled particulate product (in either a dry or liquid dispersion form) using conventional separation techniques, such as by filtration, sieving through a mesh screen, and the like.
The invention can be practiced with a wide variety of drug substances and diagnostic imaging z851s-3s agents. In the case of dry milling, the drug substances and imaging agents must be capable of being formed into solid particles. In the case of wet milling, the drug substances and imaging agents.must be poorly soluble and dispersible in at least one liquid medium. By "poorly soluble", it is meant that the drug substance or imaging agent has a solubility in the liquid dispersion medium, e.g., water,' of less than about 10 mg/ml, and preferably of.iess than about 1.
mg/ml.v The preferred liquid dispersion medium is water. Additionally, the invention can be practiced with other liquid media.
Suitable drug substances and classes of drug substances are described in U.S. Patient No.~5,145,684 and include Danazol, 5a, l7cc,-1'-(methylsulfonyl)-1'8-pregn-20-ynoj3,2-c~-pyraaol-17-0l, camptnthecin, piposulfam, piposulfan and naproxen. Other suitable drug substances include the NSAIDs described in U.S.
Patent Nos. 5,145,684 and 5,552,160 and the anticancer ~ ' agents described-in U.S. Patent No. 5,399,363.
Suitable diagnostic imaging agents include ethyl-3,5-bisacetoamida-2,9,6-triiodobenzoate TWIN
8880 , ethyl (3, 5-bis (acetylamino) -2, 4, 6--triiodobenzoyloxy) acetate (WIN 12901), ethyl -2-(bis(acetylamino)-2,4,6-triiodobenxoyloxy)butyrate (WIN
1fi318), 6-ethoxy-6-oxohexyl-3,5-bis(acetylamino)-2,4,6-triiodobenzoate (WIN 67722). Other suitable imaging agents are. described in EPO 998,482.
The following examples further illustrate the invention'.
)~xamgle 2 ~ ~Rara~t""~,on o,~ 'W~ 81,$3 Pa Sops tJsinQ
golycaxbo,~~~,g~~~ds as the ~rinr~~ng' Media A dispersion (500 ml) was prepared by combining 30% w/v WIN 8883 (150 g), 7% Tetronic''"~-908 (35 g), which is a tetrafunctional block copolymer derived from sequential addition of propylene oxide and ethylene oxide to ethylenediamine, available from BASF, and water. Polycarbonate beads (250 ml, average particle size 0.3 mm) were added to the grinding chamber (300 ml, grade 316 stainless steel) of a DYNO°-MILL (Model KDL, manufactured by Willy A. Bachoffen AG
Maschinfabrik). The dispersion was recirculated through the mill using a positive displacement pump at a flow rate of 150 ml/min. The residence time of the dispersion in the milling chamber was 60 min. The shaft in the grinding chamber jacket was rotated at 4200 RPM (tip speed 14 m/sec). The temperature of the chamber jacket was controlled to below about 30°C with a recirculating ice water bath. The dynamic gap separator was adjusted to a gap thickness of about 0.1 mm, such that the grinding media was retained Within the chamber while the dispersion was recirculated. The resulting particles (average particle size, 200 nm) had no noticeable discoloration, indicating minimal attrition of stainless steel into the product. When a similar procedure was carried out using grinding media fabricated of zirconium silicate on glass beads, the resulting product exhibited noticeable discoloration.
A dispersion (500 ml) was prepared by.
combining 30% w/v WIN 8883 (150 g), 7% TetronicT"'-908 (35 g), and water. Polystyrene beads (250 ml, average particle size 0.5 mm, range 0.3-0.6 mm) were added to the grinding chamber (300 ml) of a DYNO~-MILL. The polystyrene contained divinylbenzene as the crosslinker. The dispersion was recirculated through -~ X107400 the mill at a flow rate of 150 ml/min for a calculated residence time of 70 min. The shaft in the grinding chamber was rotated at 4200 RPM, and the temperature of the chamber packet was controlled to below about 30°C.
The resulting product (average particle size 180 am) exhibited no noticeable discoloration, indicating minimal presence of stainless steel contamination in the product.
In Example 3, a dispersion (500 ml) was prepared by combining 30% (w/v) WIN 8883 (150 g), 7%
TetronicT'~'-908 (35 g) , and water. Polystyrene beads (250 ml, average particle size 0.355 mm) were added to the grinding chamber (300 ml) of a DYNO~-MILL. The dispersion was recirculated through the mill at a flow rate of 150 ml/min for a residence time of 70 minutes.
The shaft of the grinding chamber was rotated at 3200 RPM, and the temperature of the chamber packet was controlled to below about 30°C. The resulting product (average particle size 190 nm) exhibited no noticeable discoloration, indicating minimal presence of stainless steel contamination in the product.
In Example 4, the procedure described for Examples 2 and 3 was substantially repeated except that the shaft was rotated at 2500 RPM and the calculated residence time of the dispersion in the chamber was 140 min. The resulting particle size was 200 nm with no noticeable discoloration.
Exaynle 5 Measurement of Reduced Cnntam;nat;nn tx ICp-MS andICP-AES
A dispersion (500 ml) was prepared by combining 30% (w/v) WIN 8883 (150 g), 7% TetronicT'''-908 (35 g), and water. Polycarbonate beads (250 ml, size 0.3 mm - 0.5 mm) were added to the grinding chamber (300 ml) of a DYNO~-MILL. The dispersion was recirculated through the mill at a flow rate of 150 - il -ml/min for a residence time of 70 minutes. The shaft of the grinding chamber was rotated at 3200 RPM (tip speed 10.5 m/sec) and the temperature of the chamber packet was controlled to below about 30°C. The resulting product (average particle size 225 nm) exhibited low levels of contamination (as set forth in the table below) when examined by inductively coupled plasma - mass spectroscopy (ICP-MS) and inductively coupled plasma - atomic emission spectroscopy (ICP-AES ) .
Zr Si Fe Ba Cr Ni Exam le 4 0.7 3 1 - 1 -Com Ex. A 0.5 210 12 93 2 2 Com Ex. B 250 220 17 - 9 3 -- Indicates contamination below detection levels.
In Comparative Example A, a similar dispersion was milled to 194 nm using 0.5 mm glass beads. The shaft of the grinding chamber was rotated at 3200 RPM (tip speed 10.5 m/sec). The product exhibited substantially higher levels of silicon, iron, chromium and nickel.
In Comparative Example B, a similar dispersion was milled to 195 nm using 0.75 mm ZrSi02 beads. The shaft of the grinding chamber was rotated at 3200 RPM (tip speed 10.5 m/sec). The product exhibited substantially higher levels of zirconium, silicon, iron, chromium and nickel.
Example 6 prP ~~rati~n of Nanoaarticu~ate Na~roxen Usina Po~ycarbonate Beads in a Planetary Mil - ~2 - 2107400 Polycarbonate beads (6 ml, average particle size 0.3 mm) were added to a 12 ml agate bowl of a planetary mill (Model PLC-107 Fritsch P-7 Planetary micro mill available from Gilson Inc.). To the bowl was added naproxen (150 mg), Pluronic'~'uF-68 (90 mg), a block copolymer of ethylene oxide and propylene oxide available from BASF, and 2.7 ml water for injection to give a final concentration (w/v) of 5% naproxen and 3%
surface modifier. The second agate bowl contained 6 ml media as a counterweight. The dispersion was milled at medium speed (2.5 dial setting on the speed control for 2.5 days. The naproxen particle size was measured at various time intervals as follows:
,~,~, Particle Size (nm) 3 .hours 24 200 18 hours 316 36 hours 288 60 hours 348 The resulting milky white product had no noticeable discoloration or particulate contaminants.
The invention has been described in detail with particular reference to certain preferred embodiments thereof, but it will be understood that variations and modifications can be effected within the spirit and scope of the invention.

Claims (41)

1. A method of preparing particles of an organic diagnostic imaging agent, or an organic drug substance, which comprises grinding the agent or the drug substance in the presence of a rigid grinding media to reduce the particles to a submicron size, wherein the grinding media has a substantially spherical shape, an average particle size of 0.1 mm to 3 mm, and comprises a polymeric resin.
2. A method of preparing particles of an organic diagnostic imaging agent, which comprises grinding the agent in the presence of a rigid grinding media to reduce the particles to a submicron size, wherein the grinding media has a substantially spherical shape, an average particle size of 0.1 mm to 3 mm, and comprises a polymeric resin.
3. The method of claim 2, wherein the diagnostic imaging agent is selected from the group consisting of ethyl-3,5-bisacetoamido-2,4,6-triiodobenzoate(WIN 8883), ethyl(3,5-bis(acetylamino)-2,4,6-triiodobenzoyloxy)acetate (WIN 12901), ethyl-2-(bis(acetylamino)-2,4,6-triiodobenzoyloxy)butyrate(WIN 16318), and 6-ethoxy-6-oxohexyl-3,5-bis(acetylamino)-2,4,6-triiodobenzoate (WIN 67722).
4. A method of preparing particles of an organic drug substance, which comprises grinding the substance in the presence of a rigid grinding media to reduce the particles to a submicron size, wherein the grinding media has a substantially spherical shape, an average particle size of 0.1 mm to 3 mm, and comprises a polymeric resin.
5. The method of claim 4, wherein the drug substance is selected from the group consisting of Danazol, 5.alpha., 17.alpha.,-1'-(methylsulfonyl)-1'H-pregn-20-yno[3,2-c]-pyrazol-17-ol, camptothecin, piposulfam, piposulfan, and naproxen.
6. The method of any one of claims 1 to 5, wherein the grinding media has an average particle size of 0.2 mm to 2 mm.
7. The method of any one of claims 1 to 6, wherein the grinding media has an average particle size of 0.25 mm to 1 mm.
8. The method of any one of claims 1 to 7, wherein the grinding media comprises particles consisting essentially of the polymeric resin.
9. The method of any one of claims 1 to 7, wherein the grinding media comprises particles comprising a core having adhered thereon a coating of the polymeric resin.
10. The method of claim 9, wherein the core is made from a material selected from the group consisting of zirconium oxides, zirconium silicate, glass, stainless steel, titania, alumina, and ferrite.
11. The method of claim 10, wherein the core is 95%
zirconium oxide stabilized with magnesia or yttrium.
12. The method of any one of claims 9 to 11, wherein the core has a density greater than about 2.5 g/cm3.
13. The method of any one of claims 9 to 12, wherein the core has a diameter and the polymeric coating on the core has a thickness of less than the diameter of the core.
14. The method of any one of claims 9 to 12, wherein the polymeric coating on the core has a thickness of from about 1 to about 500 microns.
15. The method of any one of claims 1 to 14, wherein the polymeric resin is selected from the group consisting of crosslinked polystyrene, styrene copolymers, polycarbonates, polyacetals, vinyl chloride polymers, vinyl chloride copolymers, polyurethanes, polyamides, poly(tetrafluoroethylenes), fluoropolymers, high density polyethylenes, polypropylenes, cellulose ethers, cellulose esters, polyhydroxymethacrylate, polyhydroxyethyl acrylate, and silicone containing polymers.
16. The method of claim 15, wherein the polymeric resin is selected from the group consisting of polystyrene crosslinked with divinylbenzene, cellulose acetate, and polysiloxanes.
17. The method of claim 15, wherein the polymeric resin is polystyrene crosslinked with divinylbenzene.
18. The method of claim 15, wherein the polymeric resin is polycarbonate.
19. The method of any one of claims 1 to 14, wherein the polymeric resin is biodegradable.
20. The method of claim 19, wherein the biodegradable polymeric resin is selected from the group consisting of poly(lactides), poly(glycolide) copolymers of lactides and glycolide, polyanhydrides, poly(hydroxyethyl methacylate), poly(imino carbonates), poly(N-acylhydroxyproline)esters, poly(N-palmitoyl hydroxyproline)esters, ethylene-vinyl acetate copolymers, poly(orthoesters), poly(caprolactones), and poly (phosphazenes).
21. The method of any one of claims 1 to 20, wherein the polymeric resin has a density from 0.8 to 3.0 g/cm3.
22. The method of any one of claims 1 to 21, wherein the grinding takes place in a mill selected from an airjet mill, a roller mill, a ball mill, an attritor mill, a vibratory mill, a planetary mill, a sand mill, and a bead mill.
23. The method of claim 22, wherein the mill contains a rotating shaft.
24. The method of any one of claims 1 to 23, wherein the particles of the imaging agent or the drug substance are reduced to an average particle size of less than about 500 nm.
25. The method of any one of claims 1 to 23, wherein the particles of the imaging agent or the drug substance are reduced to an average particle size of less than about 400 nm.
26. The method of any one of claims 3 to 23, wherein the particles of the imaging agent or the drug substance are reduced to an average particle size of less than about 300 nm.
27. The method of any one of claims 1 to 26, wherein the method is a dry grinding process.
28. The method of any one of claims 1 to 26, wherein the method is a wet grinding process.
29. The method of claim 28, wherein the wet grinding process utilizes:
(a) a liquid dispersion medium in which the diagnostic imaging agent or drug substance is poorly soluble and dispersible; and (b) a surface modifier.
30. The method of claim 29, wherein the liquid dispersion medium is selected from the group consisting of water, aqueous salt solutions, ethanol, butanol, hexane, and glycol.
31. The method of claim 29 or 30, wherein the surface modifier is selected from known organic and inorganic pharmaceutical excipients.
32. The method of any one of claims 29 to 31, wherein the surface modifier is present in an amount of 0.1-90%, by weight, based on the total dry weight of the particles.
33. The method of any one of claim: 29 to 31, wherein the surface modifier is present in an amount of 0.1-80%, by weight, based on the total dry weight of the particles.
34. The method of any one of claims 29 to 33, wherein the drug substance or imaging agent has a solubility in the liquid dispersion medium of less than about 10 mg/ml.
35. The method of any one of claims 29 to 33, wherein the drug substance or imaging agent has a solubility in the liquid dispersion medium of less than about 1 mg/ml.
36. The method of any one of claims 1 to 35, wherein grinding is carried out in a continuous mode.
37. The method of any one of claims 1 to 35, wherein grinding is carried out in a batch mode.
38. The method of any one of claims 1 to 35, wherein grinding is carried out in a semi-batch mode.
39. The method of any one of claims 1 to 38, wherein the length of time of grinding is less than about 8 hours.
40. A method of preparing particles of an organic diagnostic imaging agent or an organic drug substance having a particle size of less than about 500 nm, which method comprises:
(A) grinding the imaging agent or drug substance in the presence of a rigid grinding media to reduce the particles to less than about 500 nm, and (B) separating the grinding media from the resulting particles of the imaging agent or drug substance, wherein:
the grinding media has a substantially spherical shape and an average particle size of 0.1 mm to 3 mm;
the grinding media consists essentially of a polymeric resin or comprises a core having adhered thereon a coating of a polymeric resin;
the polymeric resin is chemically and physically inert, free of metals, solvents and monomers and of sufficient hardness and friability to enable the polymeric resin to avoid being chipped or crushed during the grinding;
the polymeric resin has a density of from 0.8 to 3.0 g/cm3; and when the grinding media comprises the core having adhered thereon the coating of the polymeric resin, the core is made of zirconium oxide, zirconium silicate, glass, stainless steel, titania, alumina or ferrite and the coating has a thickness of 1 to 500 microns.
41. The method of claim 40, wherein the grinding step is conducted by a wet grinding process which employs:

(a) a liquid dispersion medium in which the diagnostic imaging agent or drug substance is poorly soluble and dispersible; and (b) a surface modifier.
CA002107400A 1992-11-25 1993-09-30 Method of grinding pharmaceutical substances Expired - Lifetime CA2107400C (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US98163992A 1992-11-25 1992-11-25
US981,639 1992-11-25

Publications (2)

Publication Number Publication Date
CA2107400A1 CA2107400A1 (en) 1994-05-26
CA2107400C true CA2107400C (en) 2007-01-23

Family

ID=25528539

Family Applications (1)

Application Number Title Priority Date Filing Date
CA002107400A Expired - Lifetime CA2107400C (en) 1992-11-25 1993-09-30 Method of grinding pharmaceutical substances

Country Status (24)

Country Link
US (1) US5518187A (en)
EP (1) EP0600528B1 (en)
JP (2) JPH06209982A (en)
KR (1) KR100312798B1 (en)
AT (1) ATE193646T1 (en)
AU (1) AU660852B2 (en)
CA (1) CA2107400C (en)
CZ (1) CZ284802B6 (en)
DE (1) DE69328815T2 (en)
DK (1) DK0600528T3 (en)
ES (1) ES2148198T3 (en)
FI (1) FI108399B (en)
GR (1) GR3034227T3 (en)
HU (1) HU210928B (en)
IL (1) IL107191A0 (en)
MX (1) MX9306443A (en)
MY (1) MY109419A (en)
NO (1) NO933719L (en)
NZ (1) NZ248813A (en)
PH (1) PH31118A (en)
PT (1) PT600528E (en)
RU (1) RU2122405C1 (en)
SK (1) SK281078B6 (en)
TW (1) TW239075B (en)

Families Citing this family (285)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6417138B1 (en) * 1994-07-26 2002-07-09 Sony Corporation Method for transcribing an image and a support for transcription and ink ribbon employed therefor
US5500331A (en) * 1994-05-25 1996-03-19 Eastman Kodak Company Comminution with small particle milling media
US5478705A (en) * 1994-05-25 1995-12-26 Eastman Kodak Company Milling a compound useful in imaging elements using polymeric milling media
US5718388A (en) * 1994-05-25 1998-02-17 Eastman Kodak Continuous method of grinding pharmaceutical substances
US5513803A (en) * 1994-05-25 1996-05-07 Eastman Kodak Company Continuous media recirculation milling process
DE4440337A1 (en) * 1994-11-11 1996-05-15 Dds Drug Delivery Services Ges Pharmaceutical nanosuspensions for drug application as systems with increased saturation solubility and dissolution rate
EP0810853B1 (en) * 1995-02-24 2004-08-25 Elan Pharma International Limited Aerosols containing nanoparticle dispersions
US5474237A (en) * 1995-02-28 1995-12-12 Eastman Kodak Company Method and apparatus for eliminating screen plugging in wet grinding mills
US5834025A (en) * 1995-09-29 1998-11-10 Nanosystems L.L.C. Reduction of intravenously administered nanoparticulate-formulation-induced adverse physiological reactions
US5662279A (en) * 1995-12-05 1997-09-02 Eastman Kodak Company Process for milling and media separation
US20050267302A1 (en) * 1995-12-11 2005-12-01 G.D. Searle & Co. Eplerenone crystalline form exhibiting enhanced dissolution rate
EP0971698A4 (en) 1996-12-31 2006-07-26 Nektar Therapeutics Aerosolized hydrophobic drug
US20030203036A1 (en) * 2000-03-17 2003-10-30 Gordon Marc S. Systems and processes for spray drying hydrophobic drugs with hydrophilic excipients
US6045829A (en) * 1997-02-13 2000-04-04 Elan Pharma International Limited Nanocrystalline formulations of human immunodeficiency virus (HIV) protease inhibitors using cellulosic surface stabilizers
WO1998035666A1 (en) * 1997-02-13 1998-08-20 Nanosystems Llc Formulations of nanoparticle naproxen tablets
GB9703673D0 (en) * 1997-02-21 1997-04-09 Bradford Particle Design Ltd Method and apparatus for the formation of particles
US20050004049A1 (en) * 1997-03-11 2005-01-06 Elan Pharma International Limited Novel griseofulvin compositions
UA72189C2 (en) 1997-11-17 2005-02-15 Янссен Фармацевтика Н.В. Aqueous suspensions of 9-hydroxy-risperidone fatty acid esters provided in submicron form
GB9726543D0 (en) * 1997-12-16 1998-02-11 Smithkline Beecham Plc Novel compositions
US6086242A (en) * 1998-02-27 2000-07-11 University Of Utah Dual drive planetary mill
US20040013613A1 (en) * 2001-05-18 2004-01-22 Jain Rajeev A Rapidly disintegrating solid oral dosage form
US8236352B2 (en) * 1998-10-01 2012-08-07 Alkermes Pharma Ireland Limited Glipizide compositions
US20080213378A1 (en) * 1998-10-01 2008-09-04 Elan Pharma International, Ltd. Nanoparticulate statin formulations and novel statin combinations
US8293277B2 (en) * 1998-10-01 2012-10-23 Alkermes Pharma Ireland Limited Controlled-release nanoparticulate compositions
US20070160675A1 (en) * 1998-11-02 2007-07-12 Elan Corporation, Plc Nanoparticulate and controlled release compositions comprising a cephalosporin
JP4613275B2 (en) * 1998-11-02 2011-01-12 エラン ファーマ インターナショナル,リミティド Multiparticulate modified release composition
US20090297602A1 (en) * 1998-11-02 2009-12-03 Devane John G Modified Release Loxoprofen Compositions
US6969529B2 (en) 2000-09-21 2005-11-29 Elan Pharma International Ltd. Nanoparticulate compositions comprising copolymers of vinyl pyrrolidone and vinyl acetate as surface stabilizers
US6428814B1 (en) 1999-10-08 2002-08-06 Elan Pharma International Ltd. Bioadhesive nanoparticulate compositions having cationic surface stabilizers
US20040141925A1 (en) * 1998-11-12 2004-07-22 Elan Pharma International Ltd. Novel triamcinolone compositions
US7919119B2 (en) * 1999-05-27 2011-04-05 Acusphere, Inc. Porous drug matrices and methods of manufacture thereof
US6610317B2 (en) 1999-05-27 2003-08-26 Acusphere, Inc. Porous paclitaxel matrices and methods of manufacture thereof
US6395300B1 (en) 1999-05-27 2002-05-28 Acusphere, Inc. Porous drug matrices and methods of manufacture thereof
US6444223B1 (en) * 1999-05-28 2002-09-03 Alkermes Controlled Therapeutics, Inc. Method of producing submicron particles of a labile agent and use thereof
EP1185371B2 (en) * 1999-06-01 2008-11-12 Elan Pharma International Limited Small-scale mill and method thereof
US20040115134A1 (en) * 1999-06-22 2004-06-17 Elan Pharma International Ltd. Novel nifedipine compositions
US6656504B1 (en) 1999-09-09 2003-12-02 Elan Pharma International Ltd. Nanoparticulate compositions comprising amorphous cyclosporine and methods of making and using such compositions
HUP0201457A3 (en) * 1999-12-08 2003-07-28 Pharmacia Corp Chicago Eplerenone crystalline form, pharmaceutical compositions containing them and their preparations
US20030083493A1 (en) * 1999-12-08 2003-05-01 Barton Kathleen P. Eplerenone drug substance having high phase purity
ES2236007T3 (en) * 1999-12-08 2005-07-16 Pharmacia Corporation CYCLLOXYGENASA-2 EU INHIBITOR COMPOSITIONS HAS A FAST THERAPEUTIC EFFECT.
AU2001259671B2 (en) 2000-05-10 2004-06-24 Rtp Pharma Inc. Media milling
US6316029B1 (en) 2000-05-18 2001-11-13 Flak Pharma International, Ltd. Rapidly disintegrating solid oral dosage form
AR035642A1 (en) 2000-05-26 2004-06-23 Pharmacia Corp USE OF A CELECOXIB COMPOSITION FOR QUICK PAIN RELIEF
US20040089753A1 (en) * 2000-06-28 2004-05-13 Holland Simon Joseph Wet milling process
PE20020146A1 (en) * 2000-07-13 2002-03-31 Upjohn Co OPHTHALMIC FORMULATION INCLUDING A CYCLOOXYGENASE-2 (COX-2) INHIBITOR
CA2420597C (en) 2000-08-31 2011-05-17 Rtp Pharma Inc. Milled particles
US7998507B2 (en) 2000-09-21 2011-08-16 Elan Pharma International Ltd. Nanoparticulate compositions of mitogen-activated protein (MAP) kinase inhibitors
US7276249B2 (en) * 2002-05-24 2007-10-02 Elan Pharma International, Ltd. Nanoparticulate fibrate formulations
US20080241070A1 (en) * 2000-09-21 2008-10-02 Elan Pharma International Ltd. Fenofibrate dosage forms
US20030224058A1 (en) * 2002-05-24 2003-12-04 Elan Pharma International, Ltd. Nanoparticulate fibrate formulations
US7198795B2 (en) 2000-09-21 2007-04-03 Elan Pharma International Ltd. In vitro methods for evaluating the in vivo effectiveness of dosage forms of microparticulate of nanoparticulate active agent compositions
GB0027357D0 (en) 2000-11-09 2000-12-27 Bradford Particle Design Plc Particle formation methods and their products
WO2002043700A2 (en) * 2000-11-30 2002-06-06 Vectura Limited Particles for use in a pharmaceutical composition
US9700866B2 (en) * 2000-12-22 2017-07-11 Baxter International Inc. Surfactant systems for delivery of organic compounds
US20040022862A1 (en) * 2000-12-22 2004-02-05 Kipp James E. Method for preparing small particles
US7193084B2 (en) 2000-12-22 2007-03-20 Baxter International Inc. Polymorphic form of itraconazole
US20040256749A1 (en) * 2000-12-22 2004-12-23 Mahesh Chaubal Process for production of essentially solvent-free small particles
US6623761B2 (en) 2000-12-22 2003-09-23 Hassan Emadeldin M. Method of making nanoparticles of substantially water insoluble materials
US6977085B2 (en) * 2000-12-22 2005-12-20 Baxter International Inc. Method for preparing submicron suspensions with polymorph control
US20050048126A1 (en) * 2000-12-22 2005-03-03 Barrett Rabinow Formulation to render an antimicrobial drug potent against organisms normally considered to be resistant to the drug
US20030072807A1 (en) * 2000-12-22 2003-04-17 Wong Joseph Chung-Tak Solid particulate antifungal compositions for pharmaceutical use
US6869617B2 (en) * 2000-12-22 2005-03-22 Baxter International Inc. Microprecipitation method for preparing submicron suspensions
US8067032B2 (en) * 2000-12-22 2011-11-29 Baxter International Inc. Method for preparing submicron particles of antineoplastic agents
US6951656B2 (en) * 2000-12-22 2005-10-04 Baxter International Inc. Microprecipitation method for preparing submicron suspensions
US6884436B2 (en) * 2000-12-22 2005-04-26 Baxter International Inc. Method for preparing submicron particle suspensions
FI20010115A0 (en) * 2001-01-18 2001-01-18 Orion Corp A process for preparing nanoparticles
RS51449B (en) * 2001-01-26 2011-04-30 Schering Corporation Combinations of peroxisome proliferator-activated receptor (ppar) activator(s) and sterol absorption inhibitor(s) and treatments for vascular indications
US6976647B2 (en) * 2001-06-05 2005-12-20 Elan Pharma International, Limited System and method for milling materials
JP4223390B2 (en) 2001-06-05 2009-02-12 エラン・ファルマ・インターナショナル・リミテッド System and method for milling material
ATE291899T1 (en) * 2001-06-22 2005-04-15 Marie Lindner HIGH THROUGHPUT SCREENING PROCEDURE (HTS) USING LABORATORY MILLS OR MICROFLUIDICS
US7758890B2 (en) 2001-06-23 2010-07-20 Lyotropic Therapeutics, Inc. Treatment using dantrolene
US20030054042A1 (en) * 2001-09-14 2003-03-20 Elaine Liversidge Stabilization of chemical compounds using nanoparticulate formulations
DK1429731T3 (en) * 2001-09-19 2007-05-14 Elan Pharma Int Ltd Nanoparticle formulations containing insulin
CA2461080A1 (en) * 2001-09-25 2003-04-03 Pharmacia Corporation Solid-state forms of n-(2-hydroxyacetyl)-5-(4-piperidyl)-4-(4-pyrimidinyl)-3-(4-chlorophenyl)pyrazole
BR0212833A (en) * 2001-09-26 2004-10-13 Baxter Int Preparation of submicron sized nanoparticles by dispersion and solvent or liquid phase removal
US20060003012A9 (en) * 2001-09-26 2006-01-05 Sean Brynjelsen Preparation of submicron solid particle suspensions by sonication of multiphase systems
JP2005508939A (en) 2001-10-12 2005-04-07 エラン ファーマ インターナショナル,リミティド Composition having combined immediate release and sustained release characteristics
US7112340B2 (en) 2001-10-19 2006-09-26 Baxter International Inc. Compositions of and method for preparing stable particles in a frozen aqueous matrix
EP1450863A4 (en) * 2001-11-07 2009-01-07 Imcor Pharmaceutical Company Methods for vascular imaging using nanoparticulate contrast agents
US20030129242A1 (en) * 2002-01-04 2003-07-10 Bosch H. William Sterile filtered nanoparticulate formulations of budesonide and beclomethasone having tyloxapol as a surface stabilizer
US20040101566A1 (en) * 2002-02-04 2004-05-27 Elan Pharma International Limited Novel benzoyl peroxide compositions
ATE464880T1 (en) * 2002-02-04 2010-05-15 Elan Pharma Int Ltd MEDICINAL NANOPARTICLES WITH LYSOZYME SURFACE STABILIZER
CA2479735C (en) * 2002-03-20 2011-05-17 Elan Pharma International Ltd. Fast dissolving dosage forms having reduced friability
US20080220075A1 (en) * 2002-03-20 2008-09-11 Elan Pharma International Ltd. Nanoparticulate compositions of angiogenesis inhibitors
US20050191357A1 (en) * 2002-03-20 2005-09-01 Yoshiaki Kawashima Method of manufacturing chemical-containing composite particles
CA2479665C (en) * 2002-03-20 2011-08-30 Elan Pharma International Ltd. Nanoparticulate compositions of angiogenesis inhibitors
WO2003082213A2 (en) * 2002-03-28 2003-10-09 Imcor Pharmaceutical Company Compositions and methods for delivering pharmaceutically active agents using nanoparticulates
US7101576B2 (en) * 2002-04-12 2006-09-05 Elan Pharma International Limited Nanoparticulate megestrol formulations
EP2263650A3 (en) 2002-04-12 2013-12-25 Alkermes Pharma Ireland Limited Nanoparticulate megestrol formulations
US20100226989A1 (en) * 2002-04-12 2010-09-09 Elan Pharma International, Limited Nanoparticulate megestrol formulations
US9101540B2 (en) 2002-04-12 2015-08-11 Alkermes Pharma Ireland Limited Nanoparticulate megestrol formulations
US20040105889A1 (en) * 2002-12-03 2004-06-03 Elan Pharma International Limited Low viscosity liquid dosage forms
DE10218109A1 (en) * 2002-04-23 2003-11-20 Jenapharm Gmbh Process for the production of crystals, then available crystals and their use in pharmaceutical formulations
DE10218107A1 (en) * 2002-04-23 2003-11-20 Jenapharm Gmbh Process for the production of crystals of steroids, crystals available thereafter and their use in pharmaceutical formulations
GB0216562D0 (en) * 2002-04-25 2002-08-28 Bradford Particle Design Ltd Particulate materials
US9339459B2 (en) 2003-04-24 2016-05-17 Nektar Therapeutics Particulate materials
ATE419835T1 (en) * 2002-05-06 2009-01-15 Elan Pharma Int Ltd NYSTATIN NANOPARTICLE COMPOSITIONS
US20070264348A1 (en) * 2002-05-24 2007-11-15 Elan Pharma International, Ltd. Nanoparticulate fibrate formulations
WO2003103632A1 (en) * 2002-06-10 2003-12-18 Elan Pharma International, Ltd. Nanoparticulate polycosanol formulations and novel polycosanol combinations
US20040258757A1 (en) * 2002-07-16 2004-12-23 Elan Pharma International, Ltd. Liquid dosage compositions of stable nanoparticulate active agents
US7713551B2 (en) 2002-09-11 2010-05-11 Elan Pharma International Ltd. Gel stabilized nanoparticulate active agent compositions
EP1556091A1 (en) * 2002-10-04 2005-07-27 Elan Pharma International Limited Gamma irradiation of solid nanoparticulate active agents
WO2004043440A1 (en) * 2002-11-12 2004-05-27 Elan Pharma International Ltd. Fast-disintegrating solid dosage forms being not friable and comprising pullulan
US20050095267A1 (en) * 2002-12-04 2005-05-05 Todd Campbell Nanoparticle-based controlled release polymer coatings for medical implants
WO2004058216A2 (en) * 2002-12-17 2004-07-15 Elan Pharma International Ltd. Milling microgram quantities of nanoparticulate candidate compounds
EP1587499A1 (en) * 2003-01-31 2005-10-26 Elan Pharma International Limited Nanoparticulate topiramate formulations
US20040208833A1 (en) * 2003-02-04 2004-10-21 Elan Pharma International Ltd. Novel fluticasone formulations
US20100297252A1 (en) 2003-03-03 2010-11-25 Elan Pharma International Ltd. Nanoparticulate meloxicam formulations
US8512727B2 (en) 2003-03-03 2013-08-20 Alkermes Pharma Ireland Limited Nanoparticulate meloxicam formulations
ATE418551T1 (en) * 2003-03-07 2009-01-15 Schering Corp SUBSTITUTED AZETIDINONE DERIVATIVES, THEIR PHARMACEUTICAL FORMULATIONS AND THEIR USE IN THE TREATMENT OF HYPERCHOLESTEROLEMIA
US7235543B2 (en) 2003-03-07 2007-06-26 Schering Corporation Substituted azetidinone compounds, processes for preparing the same, formulations and uses thereof
US7578457B2 (en) * 2003-03-11 2009-08-25 Primet Precision Materials, Inc. Method for producing fine dehydrided metal particles using grinding media
US7140567B1 (en) * 2003-03-11 2006-11-28 Primet Precision Materials, Inc. Multi-carbide material manufacture and use as grinding media
CA2523035C (en) * 2003-05-22 2011-04-26 Elan Pharma International Ltd. Sterilization of dispersions of nanoparticulate active agents with gamma radiation
CA2534924A1 (en) * 2003-08-08 2005-02-24 Elan Pharma International Ltd. Novel metaxalone compositions
AR046811A1 (en) * 2003-09-02 2005-12-28 Imran Ahmed ORAL DOSAGE FORMS OF ZIPRASIDONE OF SUSTAINED LIBERATION
US7879360B2 (en) * 2003-11-05 2011-02-01 Elan Pharma International, Ltd. Nanoparticulate compositions having a peptide as a surface stabilizer
WO2005053851A1 (en) * 2003-11-26 2005-06-16 E.I. Dupont De Nemours And Company High pressure media milling system and process of milling particles
US7722842B2 (en) * 2003-12-31 2010-05-25 The Ohio State University Carbon dioxide sequestration using alkaline earth metal-bearing minerals
EP1559419A1 (en) * 2004-01-23 2005-08-03 Fournier Laboratories Ireland Limited Pharmaceutical formulations comprising metformin and a fibrate, and processes for their obtention
CA2572549A1 (en) * 2004-07-01 2006-01-12 Warner-Lambert Company Llc Preparation of pharmaceutical compositions containing nanoparticles
EP1621200A1 (en) * 2004-07-26 2006-02-01 Fournier Laboratories Ireland Limited Pharmaceutical combinations containing an inhibitor of platelet aggregation and a fibrate
DE102004040368B3 (en) * 2004-08-20 2006-02-23 Juhnke, Michael, Dipl.-Ing. Grinding body for producing very finely ground product has surface consisting of material which is rigid at grinding temperature but not at room temperature
US20210299056A9 (en) 2004-10-25 2021-09-30 Varian Medical Systems, Inc. Color-Coded Polymeric Particles of Predetermined Size for Therapeutic and/or Diagnostic Applications and Related Methods
US20090155331A1 (en) * 2005-11-16 2009-06-18 Elan Pharma International Limited Injectable nanoparticulate olanzapine formulations
EP2623095A1 (en) 2004-11-16 2013-08-07 Elan Pharma International Limited Injectable nanoparticulate olanzapine formulations
UA89513C2 (en) * 2004-12-03 2010-02-10 Элан Фарма Интернешнл Лтд. Nanoparticulate raloxifene hydrochloride composition
CA2590675A1 (en) * 2004-12-15 2006-06-22 Elan Pharma International Ltd. Nanoparticulate tacrolimus formulations
WO2006069098A1 (en) * 2004-12-22 2006-06-29 Elan Pharma International Ltd. Nanoparticulate bicalutamide formulations
CN101107021A (en) * 2004-12-30 2008-01-16 金文申有限公司 Combination comprising an agent providing a signal, an implant material and a drug
WO2006074218A2 (en) * 2005-01-06 2006-07-13 Elan Pharma International Ltd. Nanoparticulate candesartan formulations
JP2008527119A (en) * 2005-01-13 2008-07-24 シンベンション アーゲー Composite materials containing carbon nanoparticles
BRPI0606486A2 (en) * 2005-01-24 2009-06-30 Cinv Ag metal-containing composite materials
US20060198896A1 (en) 2005-02-15 2006-09-07 Elan Pharma International Limited Aerosol and injectable formulations of nanoparticulate benzodiazepine
EP1855651A4 (en) * 2005-03-03 2011-06-15 Elan Pharma Int Ltd Nanoparticulate compositions of heterocyclic amide derivatives
US20060204588A1 (en) * 2005-03-10 2006-09-14 Elan Pharma International Limited Formulations of a nanoparticulate finasteride, dutasteride or tamsulosin hydrochloride, and mixtures thereof
JP2008533174A (en) * 2005-03-16 2008-08-21 エラン ファーマ インターナショナル リミテッド Nanoparticulate leukotriene receptor antagonist / corticosteroid preparation
NZ561666A (en) * 2005-03-17 2010-05-28 Elan Pharma Int Ltd Nanoparticulate biphosphonate compositions
CN101142149A (en) * 2005-03-18 2008-03-12 金文申有限公司 Process for the preparation of porous sintered metal materials
BRPI0609700A2 (en) * 2005-03-23 2010-04-20 Elan Pharma Int Ltd nanoparticulate corticosteroid and antihistamine formulations
US20060246141A1 (en) * 2005-04-12 2006-11-02 Elan Pharma International, Limited Nanoparticulate lipase inhibitor formulations
MX2007012778A (en) * 2005-04-12 2008-01-11 Elan Pharma Int Ltd Nanoparticulate quinazoline derivative formulations.
US7825087B2 (en) * 2005-04-12 2010-11-02 Elan Pharma International Limited Nanoparticulate and controlled release compositions comprising cyclosporine
US20080305161A1 (en) * 2005-04-13 2008-12-11 Pfizer Inc Injectable depot formulations and methods for providing sustained release of nanoparticle compositions
JP2008540546A (en) * 2005-05-10 2008-11-20 エラン ファーマ インターナショナル リミテッド Nanoparticulate clopidogrel formulation
WO2007070082A1 (en) * 2005-05-10 2007-06-21 Elan Pharma International Limited Nanoparticulate and controlled release compositions comprising teprenone
WO2006132752A1 (en) * 2005-05-10 2006-12-14 Elan Pharma International Limited Nanoparticulate and controlled release compositions comprising vitamin k2
JP2008540691A (en) * 2005-05-16 2008-11-20 エラン・ファルマ・インターナショナル・リミテッド Nanoparticles and controlled release compositions comprising cephalosporin
US20100028439A1 (en) * 2005-05-23 2010-02-04 Elan Pharma International Limited Nanoparticulate stabilized anti-hypertensive compositions
US20060275372A1 (en) 2005-06-03 2006-12-07 Elan Pharma International Limited Nanoparticulate imatinib mesylate formulations
WO2007053197A2 (en) * 2005-06-03 2007-05-10 Elan Pharma International, Limited Nanoparticulate acetaminophen formulations
US20070042049A1 (en) * 2005-06-03 2007-02-22 Elan Pharma International, Limited Nanoparticulate benidipine compositions
DE112006001606T5 (en) 2005-06-08 2009-07-09 Elan Pharma International Ltd., Athlone Nanoparticulate and controlled release composition comprising cefditoren
ATE446742T1 (en) * 2005-06-09 2009-11-15 Elan Pharma Int Ltd NANOPARTICULAR EBASTIN FORMULATIONS
AU2006259594A1 (en) * 2005-06-14 2006-12-28 Baxter Healthcare S.A. Pharmaceutical formulations for minimizing drug-drug interactions
US20060280787A1 (en) * 2005-06-14 2006-12-14 Baxter International Inc. Pharmaceutical formulation of the tubulin inhibitor indibulin for oral administration with improved pharmacokinetic properties, and process for the manufacture thereof
CA2612384A1 (en) * 2005-06-15 2006-12-28 Elan Pharma International, Limited Nanoparticulate azelnidipine formulations
CA2613474A1 (en) * 2005-06-20 2007-03-08 Elan Pharma International Limited Nanoparticulate and controlled release compositions comprising aryl-heterocyclic compounds
AU2006265196A1 (en) * 2005-07-01 2007-01-11 Cinvention Ag Medical devices comprising a reticulated composite material
EP1902087A1 (en) * 2005-07-01 2008-03-26 Cinvention Ag Process for the production of porous reticulated composite materials
EP1904041A2 (en) * 2005-07-07 2008-04-02 Elan Pharma International Limited Nanoparticulate clarithromycin formulations
JP2009504615A (en) * 2005-08-10 2009-02-05 ノバルティス アクチエンゲゼルシャフト Formulation for 7- (T-butoxy) iminomethylcamptothecin
GB0516549D0 (en) * 2005-08-12 2005-09-21 Sulaiman Brian Milling system
WO2007033239A2 (en) * 2005-09-13 2007-03-22 Elan Pharma International, Limited Nanoparticulate tadalafil formulations
EP2279727A3 (en) 2005-09-15 2011-10-05 Elan Pharma International Limited Nanoparticulate aripiprazole formulations
KR20080063408A (en) * 2005-10-18 2008-07-03 신벤션 아게 Thermoset particles and methods for production thereof
US20070098803A1 (en) 2005-10-27 2007-05-03 Primet Precision Materials, Inc. Small particle compositions and associated methods
EP1954245A2 (en) * 2005-11-15 2008-08-13 Baxter International Inc. Compositions of lipoxygenase inhibitors
US8022054B2 (en) 2005-11-28 2011-09-20 Marinus Pharmaceuticals Liquid ganaxolone formulations and methods for the making and use thereof
UA96936C2 (en) 2005-12-29 2011-12-26 Лексикон Фармасьютикалз, Инк. Multicyclic amino acid derivatives and methods of their use
US7649098B2 (en) 2006-02-24 2010-01-19 Lexicon Pharmaceuticals, Inc. Imidazole-based compounds, compositions comprising them and methods of their use
US8367112B2 (en) * 2006-02-28 2013-02-05 Alkermes Pharma Ireland Limited Nanoparticulate carverdilol formulations
US11311477B2 (en) 2006-03-07 2022-04-26 Sgn Nanopharma Inc. Ophthalmic preparations
CA2645080A1 (en) * 2006-03-07 2007-09-13 Novavax,Inc. Nanoemulsions of poorly soluble pharmaceutical active ingredients and methods of making the same
US10137083B2 (en) 2006-03-07 2018-11-27 SGN Nanopharma Inc Ophthalmic preparations
WO2007109244A2 (en) 2006-03-21 2007-09-27 Morehouse School Of Medicine Novel nanoparticles for delivery of active agents
BRPI0712130A2 (en) * 2006-05-30 2012-01-17 Elan Pharma Int Ltd nanoparticulate posaconazole formulations
AU2007264418B2 (en) * 2006-06-30 2012-05-03 Iceutica Pty Ltd Methods for the preparation of biologically active compounds in nanoparticulate form
ZA200810741B (en) * 2006-06-30 2010-05-26 Iceutica Ltd Methodes for the preparation of biologically active compounds in nanoparticulate form
TW200820991A (en) * 2006-07-10 2008-05-16 Elan Pharma Int Ltd Nanoparticulate sorafenib formulations
CL2007002689A1 (en) 2006-09-18 2008-04-18 Vitae Pharmaceuticals Inc COMPOUNDS DERIVED FROM PIPERIDIN-1-CARBOXAMIDA, INHIBITORS OF THE RENINE; INTERMEDIARY COMPOUNDS; PHARMACEUTICAL COMPOSITION; AND USE IN THE TREATMENT OF DISEASES SUCH AS HYPERTENSION, CARDIAC INSUFFICIENCY, CARDIAC FIBROSIS, AMONG OTHERS.
EP2101735A2 (en) * 2006-11-28 2009-09-23 Marinus Pharmaceuticals, Inc. Nanoparticulate formulations and methods for the making and use thereof
UA99270C2 (en) 2006-12-12 2012-08-10 Лексикон Фармасьютикалз, Инк. 4-phenyl-6-(2,2,2-trifluoro-1-phenylethoxy)pyrimidine-based compounds and methods of their use
US20090152176A1 (en) * 2006-12-23 2009-06-18 Baxter International Inc. Magnetic separation of fine particles from compositions
CN101646402A (en) * 2007-01-19 2010-02-10 金文申有限公司 Porous, the non-degradable implant made with powdered moulding
ES2522297T3 (en) * 2007-02-09 2014-11-14 Alphapharm Pty Ltd A pharmaceutical form that contains two pharmaceutical active ingredients in different physical forms
WO2008104599A1 (en) * 2007-02-28 2008-09-04 Cinvention Ag High surface cultivation system bag
EP2126040A1 (en) * 2007-02-28 2009-12-02 Cinvention Ag High surface cultivation system
US8426467B2 (en) * 2007-05-22 2013-04-23 Baxter International Inc. Colored esmolol concentrate
US8722736B2 (en) * 2007-05-22 2014-05-13 Baxter International Inc. Multi-dose concentrate esmolol with benzyl alcohol
US20080293814A1 (en) * 2007-05-22 2008-11-27 Deepak Tiwari Concentrate esmolol
US8642062B2 (en) 2007-10-31 2014-02-04 Abbott Cardiovascular Systems Inc. Implantable device having a slow dissolving polymer
US20090238867A1 (en) * 2007-12-13 2009-09-24 Scott Jenkins Nanoparticulate Anidulafungin Compositions and Methods for Making the Same
EP2095816A1 (en) * 2008-02-29 2009-09-02 Schlichthaar, Rainer, Dr. Nanosuspension with antifungal medication to be administered via inhalation with improved impurity profile and safety
JP2011520779A (en) * 2008-03-21 2011-07-21 エラン・ファルマ・インターナショナル・リミテッド Compositions and methods of use for site-specific delivery of imatinib
US20090311335A1 (en) * 2008-06-12 2009-12-17 Scott Jenkins Combination of a triptan and an nsaid
EP2406545B1 (en) 2008-09-26 2019-05-29 The Ohio State University Conversion of carbonaceous fuels into carbon free energy carriers
WO2010085641A1 (en) 2009-01-22 2010-07-29 Noramco, Inc. Process for preparing particles of opioids and compositions produced thereby
WO2010096558A1 (en) 2009-02-18 2010-08-26 Eyeon Particle Sciences Llc Bi-functional co-polymer use for ophthalmic and other topical and local applications
EP3045043B1 (en) 2009-02-26 2020-04-29 Relmada Therapeutics, Inc. Extended release oral pharmaceutical compositions of 3-hydroxy-n-methylmorphinan and method of use
US7828996B1 (en) * 2009-03-27 2010-11-09 Abbott Cardiovascular Systems Inc. Method for the manufacture of stable, nano-sized particles
US20120160944A1 (en) * 2009-04-24 2012-06-28 Aaron Dodd Method for the production of commercial nanoparticle and micro particle powders
UA110322C2 (en) * 2009-04-24 2015-12-25 Iceutica Pty Ltd Methods for producing particles of biologically active material with high volume fraction
CN106420667A (en) 2009-04-24 2017-02-22 伊休蒂卡有限公司 A novel formulation of diclofenac
JP6027890B2 (en) 2009-04-24 2016-11-16 イシューティカ ピーティーワイ リミテッド New formulation of indomethacin
KR20120088546A (en) * 2009-04-24 2012-08-08 아이슈티카 피티와이 리미티드 Production of encapsulated nanoparticles at commercial scale
EP2421516A4 (en) * 2009-04-24 2012-11-07 Iceutica Pty Ltd Method for improving the dissolution profile of a biologically active material
JP6072539B2 (en) 2009-05-27 2017-02-01 アルカーメス ファーマ アイルランド リミテッド Reduction of flaky aggregation in nanoparticulate active agent compositions
FR2945950A1 (en) 2009-05-27 2010-12-03 Elan Pharma Int Ltd ANTICANCER NANOPARTICLE COMPOSITIONS AND METHODS FOR PREPARING THE SAME
CN102480958B (en) 2009-06-12 2015-08-19 Cynapsus疗法有限公司 sublingual apomorphine
AR077692A1 (en) 2009-08-06 2011-09-14 Vitae Pharmaceuticals Inc SALTS OF 2 - ((R) - (3-CHLOROPHENYL) ((R) -1 - ((S) -2- (METHYLAMINE) -3 - ((R) -TETRAHYDRO-2H-PIRAN-3-IL) PROPILCARBAMOIL ) PIPERIDIN -3-IL) METOXI) METHYL ETILCARBAMATE
ES2630217T3 (en) 2009-09-08 2017-08-18 The Ohio State University Research Foundation Integration of water reform and division and electromagnetic systems for power generation with integrated carbon capture
EP2483371B1 (en) 2009-09-08 2017-11-08 The Ohio State University Research Foundation Synthetic fuels and chemicals production with in-situ co2 capture
JP2013510092A (en) 2009-11-05 2013-03-21 レクシコン ファーマシューティカルズ インコーポレイテッド Tryptophan hydroxylase inhibitors for the treatment of cancer
WO2011100285A1 (en) 2010-02-10 2011-08-18 Lexicon Pharmaceuticals, Inc. Tryptophan hydroxylase inhibitors for the treatment of metastatic bone disease
ES2689520T3 (en) 2010-04-23 2018-11-14 Kempharm, Inc. Therapeutic formulation to reduce drug side effects
WO2011146583A2 (en) 2010-05-19 2011-11-24 Elan Pharma International Limited Nanoparticulate cinacalcet formulations
AU2011305566A1 (en) 2010-09-22 2013-05-02 Map Pharmaceuticals, Inc. Aerosol composition for administering drugs
WO2012064712A1 (en) 2010-11-08 2012-05-18 The Ohio State University Circulating fluidized bed with moving bed downcomers and gas sealing between reactors
CA2821756C (en) 2010-12-16 2021-06-29 Cynapsus Therapeutics, Inc. Sublingual films comprising apomorphine and an organic base
MX350838B (en) 2011-02-11 2017-09-18 Grain Proc Corporation * Salt composition.
US9777920B2 (en) 2011-05-11 2017-10-03 Ohio State Innovation Foundation Oxygen carrying materials
US9903584B2 (en) 2011-05-11 2018-02-27 Ohio State Innovation Foundation Systems for converting fuel
BR112014001505A2 (en) 2011-07-22 2017-02-14 Chemocentryx Inc polymorphic forms of the 4-tert-butyl-n- [4-chloro-2- (1-oxo-pyridine-4-carbonyl) -phenyl] -benzenesulfonamide sodium salt
ES2625286T3 (en) 2011-07-22 2017-07-19 Chemocentryx, Inc. A crystalline form of the sodium salt of 4-tert-butyl-n- [4-chloro-2- (1-oxy-pyridin-4-carbonyl) -phenyl] -benzenesulfonamide
CN103906744A (en) 2011-09-01 2014-07-02 葛兰素集团有限公司 Novel crystal form
WO2013059676A1 (en) 2011-10-21 2013-04-25 Subhash Desai Compositions for reduction of side effects
EP2780009A4 (en) 2011-11-17 2015-05-06 Univ Colorado Regents Methods and compositions for enhanced drug delivery to the eye and extended delivery formulations
MX2014011123A (en) 2012-03-22 2014-12-05 Nanotherapeutics Inc Compositions and methods for oral delivery of encapsulated diethylenetriaminepentaacetate particles.
US20130303763A1 (en) 2012-03-30 2013-11-14 Michael D. Gershon Methods and compositions for the treatment of necrotizing enterocolitis
US11596599B2 (en) 2012-05-03 2023-03-07 The Johns Hopkins University Compositions and methods for ophthalmic and/or other applications
CA2871778C (en) 2012-05-03 2022-09-13 Kala Pharmaceuticals, Inc. Pharmaceutical nanoparticles showing improved mucosal transport
US9827191B2 (en) 2012-05-03 2017-11-28 The Johns Hopkins University Compositions and methods for ophthalmic and/or other applications
EP2844227B1 (en) 2012-05-03 2020-11-18 Kala Pharmaceuticals, Inc. Pharmaceutical nanoparticles showing improved mucosal transport
CA2882622C (en) 2012-08-21 2021-11-09 Kratos LLC Group iva functionalized particles and methods of use thereof
US9461309B2 (en) 2012-08-21 2016-10-04 Kratos LLC Group IVA functionalized particles and methods of use thereof
JP6091862B2 (en) * 2012-11-26 2017-03-08 クリニプロ株式会社 Method for producing inhalable powder
JP6033055B2 (en) * 2012-11-26 2016-11-30 クリニプロ株式会社 Method for producing inhalable powder
AU2014214982B2 (en) 2013-02-05 2017-11-16 Ohio State Innovation Foundation Methods for fuel conversion
WO2014127214A1 (en) 2013-02-15 2014-08-21 Kala Pharmaceuticals, Inc. Therapeutic compounds and uses thereof
US9688688B2 (en) 2013-02-20 2017-06-27 Kala Pharmaceuticals, Inc. Crystalline forms of 4-((4-((4-fluoro-2-methyl-1H-indol-5-yl)oxy)-6-methoxyquinazolin-7-yl)oxy)-1-(2-oxa-7-azaspiro[3.5]nonan-7-yl)butan-1-one and uses thereof
JP2016510000A (en) 2013-02-20 2016-04-04 カラ ファーマシューティカルズ インコーポレイテッド Therapeutic compounds and uses thereof
US9616403B2 (en) 2013-03-14 2017-04-11 Ohio State Innovation Foundation Systems and methods for converting carbonaceous fuels
WO2014210543A1 (en) 2013-06-28 2014-12-31 Rexahn Pharmaceuticals, Inc. Nanoparticulate compositions and formulations of piperazine compounds
US9890173B2 (en) 2013-11-01 2018-02-13 Kala Pharmaceuticals, Inc. Crystalline forms of therapeutic compounds and uses thereof
US9458169B2 (en) 2013-11-01 2016-10-04 Kala Pharmaceuticals, Inc. Crystalline forms of therapeutic compounds and uses thereof
WO2015071841A1 (en) 2013-11-12 2015-05-21 Druggability Technologies Holdings Limited Complexes of dabigatran and its derivatives, process for the preparation thereof and pharmaceutical compositions containing them
EP3108525A4 (en) * 2014-02-21 2017-10-18 Kratos LLC Nanosilicon material preparation for functionalized group iva particle frameworks
US20150238915A1 (en) 2014-02-27 2015-08-27 Ohio State Innovation Foundation Systems and methods for partial or complete oxidation of fuels
WO2015134608A1 (en) 2014-03-05 2015-09-11 Nanotherapeutics, Inc. Compositions and methods for oral delivery of encapsulated 3-aminopyridine-2-carboxaldehyde particles
US9526734B2 (en) 2014-06-09 2016-12-27 Iceutica Pty Ltd. Formulation of meloxicam
LT3160958T (en) 2014-06-25 2021-04-12 Glaxosmithkline Intellectual Property Development Limited Crystalline salts of (s)-6-((1-acetylpiperidin-4-yl)amino)-n-(3-(3,4-dihydroisoquinolin-2(1h)-yl)-2-hydroxypropyl)pyrimidine-4-carboxamide
JP2016035913A (en) 2014-07-31 2016-03-17 富士フイルム株式会社 All-solid type secondary battery, inorganic solid electrolyte particle, solid electrolyte composition, battery electrode sheet and all-solid type secondary battery manufacturing method
SI3182958T2 (en) 2014-08-18 2022-07-29 Alkermes Pharma Ireland Limited Aripiprazole prodrug compositions
US10016415B2 (en) 2014-08-18 2018-07-10 Alkermes Pharma Ireland Limited Aripiprazole prodrug compositions
US20170283404A1 (en) 2014-09-08 2017-10-05 Glaxosmithkline Intellectual Property Development Limited Crystalline forms of 2-(4-(4-ethoxy-6-oxo-1,6-dihydropyridin-3-yl)-2-fluorophenyl)-n-(5-(1,1,1-trifluoro-2-methylpropan-2-yl)isoxazol-3-yl)acetamide
US10166197B2 (en) 2015-02-13 2019-01-01 St. John's University Sugar ester nanoparticle stabilizers
CA3127926A1 (en) 2015-04-21 2016-10-27 Sunovion Pharmaceuticals Inc. Methods of treating parkinson's disease by administration of apomorphine to an oral mucosa
EP3288957A4 (en) 2015-05-01 2019-01-23 Cocrystal Pharma, Inc. Nucleoside analogs for treatment of the flaviviridae family of viruses and cancer
EA036155B1 (en) 2015-10-16 2020-10-06 Маринус Фармасьютикалс, Инк. Injectable neurosteroid formulations containing nanoparticles
CA3014788A1 (en) 2016-02-17 2017-08-24 Alkermes Pharma Ireland Limited Compositions of multiple aripiprazole prodrugs
US11111143B2 (en) 2016-04-12 2021-09-07 Ohio State Innovation Foundation Chemical looping syngas production from carbonaceous fuels
BR112019000112A2 (en) 2016-07-05 2019-04-09 Kratos LLC passivated pre-lithiated micron and submicron group particles and methods for their preparation
BR112019002538A2 (en) 2016-08-11 2019-05-21 Ovid Therapeutics Inc. use of a pharmaceutical composition comprising an allosteric modulator, use of a pharmaceutical composition comprising garboxadol or a pharmaceutically acceptable salt thereof, and pharmaceutical composition for parenteral administration
JP6891715B2 (en) * 2016-08-23 2021-06-18 住友金属鉱山株式会社 Sample preparation method and sample analysis method
WO2018048747A1 (en) 2016-09-08 2018-03-15 Kala Pharmaceuticals, Inc. Crystalline forms of therapeutic compounds and uses thereof
AU2017324251A1 (en) 2016-09-08 2019-03-21 Kala Pharmaceuticals, Inc. Crystalline forms of therapeutic compounds and uses thereof
AU2017324716B2 (en) 2016-09-08 2020-08-13 KALA BIO, Inc. Crystalline forms of therapeutic compounds and uses thereof
US10391105B2 (en) 2016-09-09 2019-08-27 Marinus Pharmaceuticals Inc. Methods of treating certain depressive disorders and delirium tremens
PL3513809T3 (en) 2016-09-13 2022-07-04 Kyowa Kirin Co., Ltd. Medicinal composition comprising tivozanib
WO2018129555A1 (en) 2017-01-09 2018-07-12 Temple University - Of The Commonwealth System Of Higher Education Methods and compositions for treatment of non-alcoholic steatohepatitis
WO2018183909A1 (en) 2017-03-31 2018-10-04 Kratos LLC Precharged negative electrode material for secondary battery
CA3071395A1 (en) 2017-07-31 2019-02-07 Ohio State Innovation Foundation Reactor system with unequal reactor assembly operating pressures
US10549236B2 (en) 2018-01-29 2020-02-04 Ohio State Innovation Foundation Systems, methods and materials for NOx decomposition with metal oxide materials
WO2020033500A1 (en) 2018-08-09 2020-02-13 Ohio State Innovation Foundation Systems, methods and materials for hydrogen sulfide conversion
KR20210090606A (en) * 2018-11-29 2021-07-20 베즈미아렘 바키프 유니버시테시 How to obtain clay additive nanoparticles
US11266662B2 (en) 2018-12-07 2022-03-08 Marinus Pharmaceuticals, Inc. Ganaxolone for use in prophylaxis and treatment of postpartum depression
JP7121290B2 (en) * 2019-02-15 2022-08-18 住友金属鉱山株式会社 Sample preparation method and sample analysis method
KR20210130747A (en) 2019-03-01 2021-11-01 시오노기 앤드 컴파니, 리미티드 Nanoparticle composition with reduced foreign matter and manufacturing method thereof
WO2020210396A1 (en) 2019-04-09 2020-10-15 Ohio State Innovation Foundation Alkene generation using metal sulfide particles
KR102072968B1 (en) * 2019-05-28 2020-02-04 주식회사 울트라브이 The fabrication method of fine particle of biodegradable polymer and a biodegradable material for recovering tissues
CA3145923A1 (en) 2019-08-05 2021-02-11 David Czekai Ganaxolone for use in treatment of status epilepticus
EP4015086A4 (en) 2019-08-16 2023-09-13 Hiroshima Metal & Machinery Co., Ltd. Organic nanoparticle production method and organic nanoparticles
MX2022006014A (en) 2019-12-06 2022-06-22 Marinus Pharmaceuticals Inc Ganaxolone for use in treating tuberous sclerosis complex.
EP3928772A1 (en) 2020-06-26 2021-12-29 Algiax Pharmaceuticals GmbH Nanoparticulate composition

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1807383A (en) * 1928-09-29 1931-05-26 Rubber Surfacers Inc Grinding method and apparatus
US3104068A (en) * 1959-03-02 1963-09-17 Montedison Spa Process for preparing ultradispersed pastes and powders of insoluble organic pigments and dyes
US4404346A (en) * 1980-08-05 1983-09-13 Rohm And Haas Company Production of powdered resin and the powdered resin so produced
US4775393A (en) * 1985-04-11 1988-10-04 The Standard Oil Company Autogenous attrition grinding
JPS62281953A (en) * 1986-05-28 1987-12-07 旭光学工業株式会社 Bone filler and its production
US4974368A (en) * 1987-03-19 1990-12-04 Canon Kabushiki Kaisha Polishing apparatus
US5066486A (en) * 1988-10-14 1991-11-19 Revlon, Inc. Method for preparing cosmetic products and the products obtained thereby
IT1227626B (en) * 1988-11-28 1991-04-23 Vectorpharma Int SUPPORTED DRUGS WITH INCREASED DISSOLUTION SPEED AND PROCEDURE FOR THEIR PREPARATION
US5066335A (en) * 1989-05-02 1991-11-19 Ogilvie Mills Ltd. Glass-like polysaccharide abrasive grit
JPH04166246A (en) * 1990-10-31 1992-06-12 Matsushita Electric Ind Co Ltd Medium agitating mill and grinding method
US5145684A (en) * 1991-01-25 1992-09-08 Sterling Drug Inc. Surface modified drug nanoparticles
AU642066B2 (en) * 1991-01-25 1993-10-07 Nanosystems L.L.C. X-ray contrast compositions useful in medical imaging

Also Published As

Publication number Publication date
PH31118A (en) 1998-02-23
FI934320A0 (en) 1993-10-01
DE69328815T2 (en) 2001-02-01
PT600528E (en) 2000-11-30
FI108399B (en) 2002-01-31
GR3034227T3 (en) 2000-12-29
AU660852B2 (en) 1995-07-06
EP0600528A1 (en) 1994-06-08
HUT67644A (en) 1995-04-28
NO933719L (en) 1994-05-26
CZ227793A3 (en) 1994-06-15
DK0600528T3 (en) 2000-10-16
IL107191A0 (en) 1994-01-25
CA2107400A1 (en) 1994-05-26
SK130193A3 (en) 1994-09-07
HU9302779D0 (en) 1993-12-28
NO933719D0 (en) 1993-10-15
KR100312798B1 (en) 2001-12-28
AU4867093A (en) 1994-06-09
ES2148198T3 (en) 2000-10-16
SK281078B6 (en) 2000-11-07
DE69328815D1 (en) 2000-07-13
ATE193646T1 (en) 2000-06-15
HU210928B (en) 1995-09-28
NZ248813A (en) 1995-06-27
EP0600528B1 (en) 2000-06-07
KR940010984A (en) 1994-06-20
FI934320A (en) 1994-05-26
MY109419A (en) 1997-01-31
US5518187A (en) 1996-05-21
CZ284802B6 (en) 1999-03-17
JP2003175341A (en) 2003-06-24
MX9306443A (en) 1994-05-31
RU2122405C1 (en) 1998-11-27
TW239075B (en) 1995-01-21
JPH06209982A (en) 1994-08-02

Similar Documents

Publication Publication Date Title
CA2107400C (en) Method of grinding pharmaceutical substances
US5718388A (en) Continuous method of grinding pharmaceutical substances
US5862999A (en) Method of grinding pharmaceutical substances
KR100200061B1 (en) Surface modified drug nanoparticles
US5718919A (en) Nanoparticles containing the R(-)enantiomer of ibuprofen
US5565188A (en) Polyalkylene block copolymers as surface modifiers for nanoparticles
CA2232879C (en) Reduction of intravenously administered nanoparticulate-formulation-induced adverse physiological reactions
US5336507A (en) Use of charged phospholipids to reduce nanoparticle aggregation
EP1398083B1 (en) A method of producing fine solid particles and dispersions thereof

Legal Events

Date Code Title Description
EEER Examination request