CA2127608C - Monitor screen-integrated video camera - Google Patents

Monitor screen-integrated video camera

Info

Publication number
CA2127608C
CA2127608C CA002127608A CA2127608A CA2127608C CA 2127608 C CA2127608 C CA 2127608C CA 002127608 A CA002127608 A CA 002127608A CA 2127608 A CA2127608 A CA 2127608A CA 2127608 C CA2127608 C CA 2127608C
Authority
CA
Canada
Prior art keywords
character
monitor screen
camera
monitor
picture
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CA002127608A
Other languages
French (fr)
Inventor
Kentarou Uekane
Hiroshi Ikeda
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sharp Corp
Original Assignee
Sharp Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Corp filed Critical Sharp Corp
Application granted granted Critical
Publication of CA2127608C publication Critical patent/CA2127608C/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G5/00Control arrangements or circuits for visual indicators common to cathode-ray tube indicators and other visual indicators
    • G09G5/22Control arrangements or circuits for visual indicators common to cathode-ray tube indicators and other visual indicators characterised by the display of characters or indicia using display control signals derived from coded signals representing the characters or indicia, e.g. with a character-code memory
    • G09G5/222Control of the character-code memory
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/50Constructional details
    • H04N23/53Constructional details of electronic viewfinders, e.g. rotatable or detachable
    • H04N23/531Constructional details of electronic viewfinders, e.g. rotatable or detachable being rotatable or detachable
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/50Constructional details
    • H04N23/55Optical parts specially adapted for electronic image sensors; Mounting thereof
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/60Control of cameras or camera modules
    • H04N23/63Control of cameras or camera modules by using electronic viewfinders
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/60Control of cameras or camera modules
    • H04N23/63Control of cameras or camera modules by using electronic viewfinders
    • H04N23/633Control of cameras or camera modules by using electronic viewfinders for displaying additional information relating to control or operation of the camera
    • H04N23/634Warning indications
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N5/00Details of television systems
    • H04N5/44Receiver circuitry for the reception of television signals according to analogue transmission standards
    • H04N5/445Receiver circuitry for the reception of television signals according to analogue transmission standards for displaying additional information
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N5/00Details of television systems
    • H04N5/76Television signal recording
    • H04N5/765Interface circuits between an apparatus for recording and another apparatus
    • H04N5/77Interface circuits between an apparatus for recording and another apparatus between a recording apparatus and a television camera
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2340/00Aspects of display data processing
    • G09G2340/04Changes in size, position or resolution of an image
    • G09G2340/0492Change of orientation of the displayed image, e.g. upside-down, mirrored
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2340/00Aspects of display data processing
    • G09G2340/12Overlay of images, i.e. displayed pixel being the result of switching between the corresponding input pixels
    • G09G2340/125Overlay of images, i.e. displayed pixel being the result of switching between the corresponding input pixels wherein one of the images is motion video

Abstract

An address for a character generator ROM is composed of an upper readout address portion which is a character code loaded from a text memory for storing texts edited by a microcomputer and a lower readout address portion which is a value of a counter. Output data from the character generator ROM accessed by the above addresses are loaded in parallel by left-shift and right-shift registers.
The output data is serialized by the left-shift register to form character pattern data, which in turn is superimposed on a video picture signal to be outputted to a VTRportion. In response to a self-image picture-taking mode signal, a selector selects as an output either the output of the left-shift register or the output of the right-shift register. The thus-selected output is superimposed over the video picture signal for delivery to a monitor screen driver circuit. The monitor screen driver circuit horizontally-inverts the scanning direction in order to display a mirror-image of the picture on the monitor screen when the video camera is operated in the self-image picture-taking state.

Description

7~0 8 A MONITOR SCREEN-INTEGRATED VIDEO CAMERA

The present invention relates to a home video camera equipped with a monitor screen, and in particular to a monitor screen-integrated video camera which has a joint portion allowing a camera portion to rotate relative toa monitor portion so that the camera lens can be oriented in both the same and 5 opposite directions relative to the face of the monitor screen.
Home video cameras are also called camera-integrated video tape-recorders, and this type of product, that is, one that includes a VTR portion for recording pictures on a video cassette tape as well as a camera for taking the pictures, is now becoming popular in the market.
Next, a typical conventional monitor screen-integrated video camera will be explained with reference to accompanying drawings.
Figure 1 is an overall block diagram showing a prior art example of a monitor screen-integrated video camera.
In Figure 1, the conventional video camera has a camera portion 15 1 for picking up a picture of objects, a monitor portion 2 for displaying thepicture of the objects that have been taken, and a joint portion 3 for joining camera portion 1 and monitor portion 2 and allowing relative rotation of the oneto the other.
Camera portion 1 includes a camera lens 4 and a picture pickup 20 circuit 5 which converts optical images of objects formed by camera lens 4 into video picture signals to be outputted to monitor portion 2.
Monitor portion 2 includes: a monitor screen 6 such as, for instance, a liquid crystal panel for displaying the picture of objects taken; a display driver circuit 7 for driving monitor screen 6; a VTR portion 8 for 25 recording video picture signals on an unillustrated video cassette tape and reproducing video picture signals from a video cassette tape; a superimposition-controlling circuit 209 for superimposing a date, operation information, cautionnotice and similar information over the video pictures to be displayed on monitor r 212760 ~

screen 6 and/or to be recorded on the video cassette tape; and a microcomputer 210 for controlling the entire video camera.
Joint portion 3 has a rotational angle-detecting switch 11 that detects a relative rotational angle between camera portion 1 and monitor portion2. The rotational angle-detecting switch 11 outputs to microcomputer 210 a self-image picture-taking mode signal that indicates that the camera is set in aposition for picking up a self-image when both camera lens 4 and monitor screen 6 are oriented toward the same object.
Microcomputer 210 may instruct display driver circuit 7 to display an horizontally-inverted mirror-image of the pickup picture with reference to the self-image picture-taking mode signal.
Next, Figure 2 is an overall block diagram showing a superimposition-controlling circuit 209 as a part of monitor portion 2.
Superimposition-controlling circuit 209 comprises a command register 101, a data register 102, a command decoder 303, a text memory 110, a row-address counter 111, a column-address counter 112, a row-address selector 113, a column-address selector 114, a character code register 120, a character generator ROM 121, a ROM address counter 322, a left-shift register 123, AND-gates 126, 127, video-picture-signal adding circuits 128, 129, a clock oscillator (OSC) 130, a 1/m-divider 131 and a 1/n-divider 132.
Next, each component of the superimposition-controlling circuit will be described in further detail.
Command register 101 and data register 102 are each composed of a series-inpuVparallel-output shift register. They receive a command and display character data associated with the command, respectively, both of which are serially-transmitted from microcomputer 210, and output in parallel the command and data, respectively.
Command decoder 303 decodes the command accepted by command register 101 and generates a control timing signal.
Text memory 110 consists of memory sections arranged in a 12-row x 24-column matrix form for filling one full-frame region of the screen. Each 7~ ~

of the memory sections can store a character code for one character and information associated with the character. Information to be written into text memory 110 is display character data consisting of character codes and associated information for characters held in data register 102; the informationis written into memory sections designated by corresponding commands.
An address in text memory 110 is designated by a two-way selector, that is, one consisting of a row-address selector 113 and a column-address selector 114. Upon writing data into text memory 110, selectors 113 and 114 are designated by a writing address associated with the data to be 10 written into, and stored in, the command register, to thereby form a text memory address. When data in text memory 110 is to be read out, an address in the text memory is generated by selecting row and column addresses with the help of a row-address counter 111 and a column-address counter 112 that count cyclically.
Column-address counter 112 for providing a column-address (or an horizontal-direction address) in text memory 110 is reset by an horizontal synchronizing signal (HSYNC), and counts signals ~, that are formed by dividing an output signal ~s0 from clock oscillator (OSC) 130 by means of 1/n-divider circuit 132. Here, a period of 5~o is a time corresponding to an horizontal length of one pixel in forming character patterns that are read out from the character generator ROM, and 'n' is a number in the horizontal direction of the pixels constituting one character.
Row-address counter 111 for providing a row-address (or a vertical-direction address) in text memory 110 is reset by a vertical-synchronizing signal (VSYNC) and counts signals that are formed by dividingthe horizontal-synchronizing signal (HSYNC) by means of 1/m-divider circuit 131. Here, 'm' is a number in the vertical direction of the pixels constituting one character.
Character code register 120 stores the character codes and 30 associated modifying information therewith which are read out from text memory 110.

~2~76~ ~

Character generator ROM 121 converts a character code into a display pattern of m dots x n dots. A readout address in character generator ROM 121 consists of an upper bit portion indicating a character code in character code register 120 and a lower bit portion which is provided from ROM
5 address counter 322.
ROM address counter 322 counts horizontal-synchronizing signals to provide a lower bit portion for the readout address in character generator ROM 121, and the thus-formed addresses are successively used for reading out one character pattern in the vertical direction.
10Left-shift register 123 is a readout register for character generator ROM 121. After read-out data sets have been set in parallel in the left-shift register 123, the data sets are shifted based on clock signal ~0 so as to be converted into serial data.
Character pattern data delivered serially from left-shift register 123 15is supplied to one input side of both of AND-gates 126 and 127. Output-indicating bits 120-2, 120-3 for the modifying information in character code register 120 are connected to the respective other input terminals of AND-gates 126 and 127. In accordance with an ON/OFF state in output-indicating bits 120-2 and 120-3, the output from AND-gate 126 and/or 127 is allowed or 20 inhibited so as to control character pattern data to be added or not in the video-picture-signal adding circuits in the next stage.
Video-picture-signal adding circuits 128 and 129 add character pattern data delivered from respective AND-gates 126 and 127 to the video picture signal supplied from picture pickup circuit 5 so as to superimpose 25 character patterns on the video picture signal. The video picture signals overlaid with character patterns in video-picture-signal adding circuits 128 and129 are sent out to VTR portion 8 and monitor screen driver circuit 7, respectively.
Next, the operation of the thus-constructed superimposition-30 controlling circuit will be described.

6 ~ 8 Microcomputer 210 for controlling the entire video camera performs edit-control of the text to be superimposed on both the video picture signal displayed on monitor screen 6 and the video picture signal recorded on the video tape (not shown).
5Composition of the text is effected in text memory 1 10 of a 1 2-row x 24-column matrix. That is, microcomputer 210 designates positions of memory sections of text memory 110 so as to write characters one-by-one onto - the text memory.
An instruction for writing into text memory 110 is effected by a 10control command containing a four-bit row address and a five-bit column address, as well as the data associated with the control command. The control command and the associated data therewith are serially transmitted from microcomputer 210 to superimposition-controlling circuit 209 and accepted therein by a pair of combined shift-registers, namely, command register 101 and 15data register 102.
Command decoder 303 decodes the command accepted by command register 101, and if the command indicates that the data is to be written-in, the row and column designated by the command is selected by row-address selector 113 and column-address selector 114 so that a writing pulse 20is generated for text memory 110.
When the writing pulse is launched from command decoder 303, the data held in data register 102 is written into text memory 110.
The data to be written into text memory 110 comprises a character code and modifying information associated therewith. The character code may 25be constructed of a one-byte or two-byte character code system, selected in dependence upon the text content to be displayed. Examples of one-byte character code for representing alphanumerics include ISO code and ANSI
code, etc. On the other hand, inclusion of Japanese characters such as 'kana' and 'kanji' (Japanese phonogram and Chinese characters, respectively) requires 30a two-byte character code containing the JIS first-level kanji and the JIS one-byte code.
A

1~ 2 ~ 2 7 ~ ~ ~

Associated information with the character code is composed of one bit allotted for designating the monitor screen as an output means, another bit allotted for designating the VTR portion as another output means, a field for designating a color to be displayed. The two bits for designating output means enable the monitor screen and/or the VTR portion to be designated independently of one another.
Character information to be outputted to the VTR portion is typically a date indication, while character information to be outputted on the monitor screen includes: in addition to the date indication, an operation indication which is displayed for a period of time in accordance with the operation of a video camera switch as the switch is operated; and cautions relating to the operation state of the video camera, such as cautions for a remaining amount of tape and a remaining amount of battery power, etc.
Next, Figure 3 is a diagram showing an example of texts to be stored in the aforementioned text memory 110.
Text memory 110 is a readable and writable memory for storing display data for one full-frame of the screen consisting of, as shown in Figure 3, in total, 288 (12 rows x 24 columns) character sections for display character data.
Each display character data consists of, as described above, a character code and associated information with the character. The associated information with the character includes a field for designating a display color,which consists of three bits indicating red by [100], green by [010], blue by [001]
and white by [111]. This color information is outputted commonly to the two output means.
Detail of controlling the character display color is not the subject matter of the present invention and is considered to be unnecessary so that no further description will be made.

In accordance with the character display example shown in Figure 3, display character data stored at an address (row '0', column '0') in text A

~ ~ 7 ~ 7 ~ ~ ~

In accordance with the character display example shown in Figure 3, display character data stored at an address (row '0', column '0') in text memory 110 indicates that the character is "1", the output means is "monitor screen and VTR portion", and the display color is "white". Display character 5 data held at another address (row '8', column '1') designates that the character is "B", the output means is "monitor screen", and the display color is "red".
Display character data held at still another address (row '10', column '18') designates that the character is "F", the output means is "monitor screen", and the display color is "green".
Here, addresses with no display character data held are stored with blank data.
The procedure of address counting in text memory 110 is performed such that the column address is successively increased one-by-one from column '0' to column '23' in synchronization with the scanning of the videopicture signal in the horizontal direction. Then, every time the horizontal synchronization signals are counted 'm' times, the row address is successively increased one-by-one, counting up from row '0' to row '11' within a span of one field.
Next, Figures 4 to 6 show the relationship between positions of a prior art video camera and display states of its monitor screen in the normal picture-taking use and in the self-image-taking use.
Figure 4 shows a manner in which a video image of an object A
is displayed on monitor screen 6 when the normal picture-taking operation is effected.
The video camera shown in Figure 4 is composed of a camera portion 1 accommodating a camera lens 4 and a picture-pickup circuit 5; a monitor portion 2 accommodating a liquid-crystal-display monitor screen 6, a VTR portion 8 and operation switches 18; and a joint portion 3 which allows camera portion 1 to rotate relative to monitor portion 2.
Here, it will be assumed that displayed simultaneously on monitor screen 6 shown in Figure 4 are a date indication (e.g., 1993.4.1) 19 to be 7 ~ 8 recorded on a video tape, a caution indication (e.g., BATTERY) 20 which indicates when the battery power of the video camera is running short, and an operation indication (e.g., FOCUS) 21 which indicates an operation mode set on operation switches 18.
At the time of the normal picture-taking operation, monitor screen 6 is scanned from the upper left to the lower right, or in the same direction asis done on a typical TV screen.
Figure 5 is a self-image picture-taking state of the video camera in which both camera lens 4 and monitor screen 6 are oriented toward an identical object B. For effecting the self-image-taking, with camera portion 1 fixed, monitor portion 2 is rotated upside down or 180 degrees on joint portion 3 so that monitor screen 6 may be oriented in the same direction with the picture-taking direction of camera lens 4 (hereinafter, this state is called self-image picture-taking state 1).
In the self-image picture-taking state 1, monitor screen 6 is scanned with the scanning direction turned right-side left, in opposition to thecase of the normal picture-taking, i.e. in state I the scanning is from the upper right to the lower left. As a result, the picture of an object B is displayed onmonitor screen 6 as right-side left or as an horizontally-inverted mirror-image.Figure 6 shows another self-image picture-taking state. For effecting the self-image taking, with monitor portion 2 fixed, camera portion 1 is rotated upside down or 180 degrees on joint portion 3 so that monitor screen 6 may be oriented in the same direction with the picture-taking direction of camera lens 4 (hereinafter, this state is called self-image-taking state ll).
In the self-image picture-taking state ll, monitor screen 6 is scanned with the scanning direction turned up-side down in opposition to the case of the normal picture-taking, i.e. in state ll the scanning is from the lower left to the upper right. As a result, the picture of an object C is displayed onmonitor screen 6 as right-side left or as an horizontally-inverted mirror-image.However, in the above prior art self-image picture-taking states, since the scanning direction of the monitor screen is turned right-side left or up-~ ~ ~ 7~

side down to display the mirror-image picture, if one tries to display characters on the monitor screen as in the normal picture-taking state, those characters are displayed as turned right-side left or up-side down on the monitor screen.
Therefore, the text superimposition on the monitor screen in the self-image 5 picture-taking states was inhibited. Accordingly, the prior art apparatus suffered from a problem that the date and/or time to be recorded on the video tape could not be confirmed on the monitor screen.
In addition, in the self-image picture-taking state 1, since monitor portion 2 is turned down-side up as compared to the normal taking state, the 10 operation switches are positioned on the top of the monitor screen. If one tries to display the operation indication on the monitor screen as is performed in thenormal picture-taking state, the indication on the monitor screen is displayed away from the position of the operation switches and the display character is turned right-side left on the monitor screen. Therefore, the operation indication 15 on the monitor screen in the self-image picture-taking state was inhibited.
Accordingly, the prior art apparatus suffered from the inconvenience that the operation of the video camera could not be confirmed on the monitor screen.
In addressing the above problems with the prior art video camera, the present invention allows proper character display on the monitor screen 20 without characters being horizontally- or vertically-inverted.
It is therefore an object of the present invention to provide a monitor screen-integrated video camera (referred to as a video camera hereinafter) which includes a camera portion having a camera lens for picking up a picture of objects, a monitor portion having a monitor screen such as of 25 LCD (liquid crystal display), etc., for displaying a video picture taken by the camera portion or a video picture reproduced from a video tape, and a joint structure for rotatably joining the camera portion with the monitor portion, andwhich can be used both for normal picture-taking in which the lens face of the camera lens is in an opposite direction to that of the face of the monitor screen, 30 and for self-image picture-taking in which the lens face of the camera lens and the face of the monitor screen are oriented in the same direction.

B ~ ~

Further, it is another object of the present invention to provide a video camera having the above configuration, which has a function for allowing the scanning direction on the monitor screen to be inverted in order to horizontally-invert the video picture that is taken by the camera portion in the5 self-image picture-taking state to thereby display a mirror-image of the takenpicture on the monitor screen. (Here, this function will be referred to as a mirror-image display function.) In order to achieve the above object, the present invention provides a superimposition-controlling circuit which generally allows character 10 display such as a date, operation indication and caution indication relating to the operation state of the video camera to be displayed on the monitor screen of thevideo camera, and which generally allows character display such as a date, time and the like to be recorded on a video tape, and which, when the monitor screen is scanned in an opposite direction because of the aforementioned - 15 mirror-image display function, makes it possible to display properly-readable character patterns on the monitor screen by horizontally- or vertically-inverting the text display signals of the characters to be superimposed on the monitor screen.
Moreover, the present invention is to superimpose inverted 20 character pattern signals on the monitor signals of a video picture to be displayed on the monitor screen, and at the same time, to superimpose non-inverted character pattern signals onto the recording signals of the video picture to be recorded on video tape.
To achieve the above objects the present invention is constructed 25 as follows.
In accordance with a first aspect of the present invention, a monitor screen-integrated video camera comprises: a camera portion having a camera lens for picking up a picture of objects; a monitor portion having a monitor screen that displays the picture taken by the camera portion; a joint 30 portion for joining the camera portion with the monitor portion for relative rotation; a monitor driver circuit which, when both the camera lens and the ll monitor screen are oriented toward an identical object, allows the monitor screen to display an horizontally-inverted mirror-image of the picture taken by the camera portion; a character code generating means for generating character codes for texts to be superimposed over the monitor screen; a character 5 generator for generating character patterns in association with character codes supplied from the character code generating means; an inverting circuit for horizontally-inverting a character pattern output generated from the character generator; and an editing means for horizontally-replacing the order of arrayed characters constituting each row to be displayed on the monitor screen.
In accordance with a second aspect of the present invention, a monitor screen-integrated video camera comprises: a camera portion having a camera lens for picking up a picture of objects; a monitor portion having a monitor screen that displays the picture taken by the camera portion; a joint portion for joining the camera portion with the monitor portion for relative 15 rotation; a monitor driver circuit which, when both the camera lens and the monitor screen are oriented toward an identical object, allows the monitor screen to display an horizontally-inverted mirror-image of the picture taken by the camera portion; a character code generating means for generating character codes for texts to be superimposed over the monitor screen; and a character 20 generator for generating character patterns in association with character codes supplied from the character code generating means; wherein the character generator provides a first character generator output which can be horizontally-inverted and can be superimposed over the video picture signal to be outputted to the monitor screen and a second character generator output which can be 25 superimposed over the video picture signal to be recorded on a video tape.
In accordance with a third aspect of the present invention, a monitor screen-integrated video camera comprises: a camera portion having a camera lens for picking up a picture of objects; a monitor portion having a monitor screen that displays the picture taken by the camera portion; a joint 30 portion for joining the camera portion with the monitor portion for relative rotation; a monitor driver circuit which, when both the camera lens and the - ~ 2 1~

monitor screen are oriented toward an identical object, allows the monitor screen to display an horizontally-inverted mirror-image of the picture taken by the camera portion; and a superimposition-controlling circuit which is able to - switch the mode of characters to be outputted to the monitor screen between 5 an horizontally-inverted character output mode and a non-inverted character output mode and which, as the modes are changed over, allows the display positions of characters to be modified.
In accordance with a fourth aspect of the present invention, a monitor screen-integrated video camera comprises: a camera portion having a 10 camera lens for picking up a picture of objects; a monitor portion having a monitor screen that displays the picture taken by the camera portion; a joint portion for joining the camera portion with the monitor portion for relative rotation; a monitor driver circuit which, when both the camera lens and the monitor screen are oriented toward an identical object, allows the monitor 15 screen to display an horizontally-inverted mirror-image of the picture taken by the camera portion; a character code generating means for generating character codes for texts to be superimposed over the monitor screen; a character generator for generating character patterns in association with character codes supplied from the character code generating means; and an inverting circuit for 20 vertically-inverting a character pattern output generated from the character generator.
In accordance with a fifth aspect of the present invention, a monitor screen-integrated video camera comprises: a camera portion having a camera lens for picking up a picture of objects; a monitor portion having a 25 monitor screen that displays the picture taken by the camera portion; a jointportion for joining the camera portion with the monitor portion for relative rotation; a monitor driver circuit which, when both the camera lens and the monitor screen are oriented toward an identical object, allows the monitor screen to display an horizontally-inverted mirror-image of the picture taken by 30 the camera portion; a character code generating means for generating character codes for texts to be superimposed over the monitor screen; and a character A

7 ~ ~ ~

generator for generating character patterns in association with character codes supplied from the character code generating means; wherein the character generator provides a first character generator output which can be vertically-inverted and can be superimposed over the video picture signal to be outputted to the monitor screen and a second character generator output which can be superimposed over the video picture signal to be recorded on video tape.
In accordance with a sixth aspect of the present invention, a monitor screen-integrated video camera comprises: a camera portion having a camera lens for picking up a picture of objects; a monitor portion having a monitor screen that displays the picture taken by the camera portion; a joint portion for joining the camera portion with the monitor portion for relative rotation; a monitor driver circuit which, when both the camera lens and the monitor screen are oriented toward an identical object, allows the monitor screen to display an horizontally-inverted mirror-image of the picture taken by the camera portion; and a superimposition-controlling circuit which is able to switch the mode of characters to be outputted to the monitor screen between ~ a vertically-inverted character output mode and a non-inverted character output mode and which, as the modes are changed over, allows the display positions of characters to be modified.
With the above configurations, the present invention allows, when the video camera is used for self-image picture-taking mode in which a picture of objects is displayed on the monitor screen as a mirror-image by inverting thescanning direction on the monitor screen, display characters that are to be superimposed onto the picture on the monitor screen to be properly displayed on the monitor screen by horizontally- or vertically-inverting the characters to be superimposed. And at the same time, display characters such as a date, time, etc., to be superimposed onto the video picture signal that is recorded on a video tape are, without being inverted, outputted separately for recording.
Figure 1 is an overall block diagram of a prior art example of a monitor screen-integrated video camera;

7 ~

Figure 2 is a block diagram showing a prior art example of a superimposition-controlling circuit in a monitor screen-integrated video camera;Figure 3 is a chart of an address arrangement showing a prior art example of a storage state of data in a text memory;
5Figure 4 is an illustration of an example of a prior art display on a monitor screen in the normal picture-taking state;
Figure 5 is an illustration of an example of a prior art display on a monitor screen in the self-image picture-taking state l;
Figure 6 is an illustration of an example of a prior art display on 10a monitor screen in the self-image picture-taking state ll;
Figure 7 is an overall block diagram of an embodiment of a monitor screen-integrated video camera in accordance with the present invention;
Figure 8 is a block diagram showing a superimposition-controlling 15circuit in an embodiment of a monitor screen-integrated video camera in accordance with the present invention;
Figure 9 is a chart of an address arrangement showing an example of a storage state of data in a text memory in the normal picture-taking state in accordance with an embodiment of the present invention;
20Figure 10 is a chart of an address arrangement showing an example of a storage state of data in a text memory in the self-image picture-taking state I in accordance with an embodiment of the present invention;
Figure 11 is a chart of an address arrangement showing an example of a storage state of data in a text memory in the self-image picture-25taking state ll in accordance with an embodiment of the present invention;
Figure 12 is an illustration of an example of a display on a monitor screen in the normal picture-taking state in accordance with an embodiment of the present invention;
Figure 13 is an illustration of an example of a display on a monitor 30screen in the self-image picture-taking state I in accordance with an embodiment of the present invention;

Figure 14 is an illustration of an example of a display on a monitor screen in the self-image picture-taking state ll in accordance with an embodiment of the present invention;
Figure 15A is an illustration showing an example of a character 5 pattern horizontally-inverted; and Figure 15B is an illustration showing an example of a character pattern vertically-inverted.
One embodiment of the present invention will hereinafter be described with reference to the accompanying drawings.
Figure 7 is an overall block diagram showing an embodiment of a monitor screen-integrated video camera in accordance with the present invention. In the figure, components corresponding to those in the prior art example shown in Figure 1 are allotted the same reference numerals.
In Figure 7, the video camera of the present invention has a 15 camera portion 1 for picking up a picture of objects, a monitor portion 2 fordisplaying the picture of the objects that have been taken, and a joint portion 3 for joining camera portion 1 and monitor portion 2 and allowing relative rotation of the one to the other.
Camera portion 1 includes a camera lens 4, a picture pickup circuit 20 5 which converts optical images of objects formed by camera lens 4 into videopicture signals to be outputted to monitor portion 2, and an unillustrated camera lens control system.
Monitor portion 2 includes: a monitor screen 6, for instance, a liquid crystal panel for displaying a picture of objects taken; a display driver25 circuit 7 for driving monitor screen 6; a VTR portion 8 for recording video picture signals on an unillustrated video cassette tape and for reproducing video picture signals from a video cassette tape; a superimposition-controlling circuit 9 for superimposing a date over the video picture to be outputted to VTR portion 8 and for superimposing various kinds of displays which can be horizontally- or 30 vertically-inverted over the video picture on monitor screen 6; a microcomputer 10 for controlling the entire video camera; and a gravitational-direction detecting ~3 ~

means 12 for detection of a position (normal, self-image states l, ll, etc.) of the video camera.
Joint portion 3 has a rotational-angle detecting switch 11 that detects a relative rotational angle of camera portion 1 to monitor portion 2. The 5 rotational-angle detecting switch 11 outputs to microcomputer 10 a self-image picture-taking mode signal that indicates that the camera is set in a position for picking up self-image when both camera lens 4 and monitor screen 6 are oriented to the same object.
Microcomputer 10 distinguishes with reference to the self-image 10 picture-taking mode signal whether the camera is set in the normal pickup position or in one of self-image taking positions. If it is decided that the camera is set in a self-image taking position, microcomputer 10 effects a further judgment of which position the camera is set in: self-image picture-taking stateI or self-image picture-taking state ll (to be described in detail hereinafter),15 based on a camera-position signal delivered from gravitational-direction detecting means 12. Microcomputer 10, having recognized that the camera is set in self-image picture-taking state I or ll, may send out an instruction to display driver circuit 7 that the video picture being taken is to be inverted horizontally as a mirror-image to be displayed on monitor screen 6.
Next, Figure 8 is a block diagram showing a superimposition-controlling circuit 9 as a part of monitor portion 2.
Superimposition-controlling circuit 9 comprises a command register 101, a data register 102, a command decoder 103, a text memory 110, a row-counter 111, a column-counter 112, a row-address selector 113, a column-25 address selector 114, a character code register 120, a character generator ROM
121, a ROM address counter 122, a left-shift register 123, a right-shift register 124, a right-side-left inversion switching selector 125, AND-gates 126, 127, video-picture-signal adding circuits 128, 129, a clock oscillator (OSC) 130, a 1/m-divider 131 and a 1/n-divider 132.
Next, each component of the superimposition-controlling circuit will be described in detail.

A

7~ ~

Command register 101 and data register 102 are each composed of a series-inpuVparallel-output shift register, and respectively receive command and display character data associated with the command, both of which are serially-transmitted from microcomputer 10, and respectively output parallel command and data.
Command decoder 103 decodes the command accepted by command register 101, and generates a control mode signal and a control timing signal.
Text memory 110 consists of memory sections arranged in a 12-row x 24-column matrix form for filling one full-frame region of the screen. Each of the memory sections can store a character code for one character and information associated with the character. Information to be written into text memory 110 is display character data consisting of character codes and associated information with characters held in data register 102; the information is written in memory sections designated by corresponding commands.
An address in text memory 110 is designated by a two-way selector, that is, consisting of a row-address selector 113 and a column-addressselector 114. Upon writing data into text memory 110, selectors 113 and 114 are designated by a writing address associated with the data to be written into,and stored in, the command register, to thereby form a text memory address.
When data in text memory 110 is to be read out, an address in the text memory is generated by selecting row and column addresses with the help of a row-counter 111 and a column-counter 112 that count cyclically.
Column-counter 112 for providing a column-address (or an horizontal-direction address) in text memory 110 is a 24-base number counter composed of an updown counter, and is initialized by an horizontal-synchronizing signal (HSYNC); it counts signals ~p" cyclically in ascending order, which are formed by dividing an output signal ~0 from clock oscillator (OSC) 130 by means of 1/n-divider circuit 132. Here, a period of ~pO is a time corresponding to an horizontal length of one pixel in forming character patterns A

~ ~1 Z ~

that are read out from the character generator ROM, and 'n' is a number in the horizontal direction of the pixels constituting one character.
Row-counter 111 for providing a row-address (or a vertical-direction address) in text memory 110 is a 12-base number counter composed 5 of an updown counter and is initialized by a vertical-synchronizing signal (VSYNC); it counts signals, cyclically in ascending order, that are formed by dividing the horizontal-synchronizing signal (HSYNC) by means of 1/m-divider circuit 131. Here, 'm' is a number in the vertical direction of the pixels constituting one character.
Character code register 120 stores the character codes and associated modifying information therewith, which are read out from text memory 110.
Character generator ROM 121 converts a character code into a display pattern of m dots (in vertical direction) x n dots (in horizontal direction).
15 In the present embodiment, m = 18 and n = 12, as will be shown later in Figures 15A and 15B.
A readout address in character generator ROM 121 consists of an upper bit portion indicating a character code in character code register 120 anda lower bit portion which is provided from ROM address counter 122 so as to 20 read out in parallel n-bit pattern data corresponding to n dots in the horizontal direction.
ROM address counter 122 is composed of an updown counter in which an initial value can be preset as 0 or m-1, and in which horizontal-synchronizing signals are counted in ascending or descending order. A
25 counting value by ROM address counter 122 provides a lower bit portion for the readout address in character generator ROM 121, and the thus-formed addresses are used to successively read-out n-dot row data 'm' times in the vertical direction to form one character pattern.
When character patterns stored in character generator ROM 121 30 are to be read out as inverted, the initial value of ROM address counter 122 is set as m-1, and the counter effects a counting in a down-counting mode or ~, r~ ~276~ ~

decreases its counting value one-by-one every time the horizontal-synchronization signal is detected.
Left-shift register 123 and right-shift register 124 are readout registers for character generator ROM 121. After n-bit read-out data sets have 5 been set in parallel in the register, the data sets are shifted based on clock signal ~0 so as to be converted into serial data.
Left-shift register 123 reads out from character generator ROM 121 character patterns corresponding to one line in parallel with one another, and successively converts the data from the left end into serial data to supply normal 10 character patterns without horizontal inversion.
Right-shift register 124 reads out from character generator ROM
121 character patterns corresponding to one line in parallel with one another, and successively converts the data from the right end into serial data to supplyhorizontally-inverted character patterns that are superimposed over the mirror-15 image picture in the self-image picture-taking state.
Inversion switching selector 125 is a two-way selector which may change its mode with reference to the indication from command decoder 103 so as to select between one pattern mode from the normal character pattern mode in which data is delivered from left-register 123 and the horizontally-20 inverted character pattern mode in which data is delivered from right-register 124.
The character pattern data delivered serially from left-shift register 123 is supplied to one terminal of an AND-gate 126. On the other hand, the character pattern data delivered serially from inversion switching selector 125 25 is supplied to one terminal of another AND-gate 127. Output-indicating bits 120-2, 120-3 for the modifying information in character code register 120 are connected to respective other input terminals of AND-gates 126 and 127. In accordance with the ON/OFF state in output-indicating bits 120-2 and 120-3, the output from AND-gate 126 and/or 127 is allowed or inhibited so as to control 30 character pattern data to be added or not in the video-picture-signal adding circuits in the next stage.

~, Video-picture-signal adding circuits 128 and 129 add character pattern data delivered from AND-gate 126 or inversion switching selector 125 to the video picture signal supplied from picture pickup circuit 5 so as to superimpose character patterns on the video picture signal. The video picture 5 signals overlaid with character patterns in video-picture-signal adding circuits 128 and 129 are sent out to VTR portion 8 and monitor screen driver circuit 7, respectively.
Next, the common operation of all the picture-taking states of the thus-constructed superimposition-controlling circuit will be described.
Microcomputer 10 for controlling the entire video camera performs edit-control of the text to be superimposed on both the video picture signal displayed on monitor screen 6 and the video picture signal recorded on the video tape (not shown).
Composition of the text is effected on text memory 110 of a 12-row x 24-column matrix corresponding to one full-frame of the screen. That is, microcomputer 10 designates positions of memory sections on text memory 110 so as to write characters one-by-one onto the text memory, whereby display texts for one full-frame of the screen are formed.
An instruction for writing into text memory 110 is effected by a control command containing a four-bit row address and a five-bit column address and by the data associated with the control command. The control command and the associated data therewith are serially-transmitted from microcomputer 10 to superimposition-controlling circuit 9, and accepted therein by a pair of combined shift-registers, namely, command register 101 and data register 102.
Command decoder 103 decodes the command accepted by command register 101 in response to an unillustrated instruction signal from microcomputer 10, and if the command indicates the data to be written in, the row and column designated by the command is selected by row-address selector 113 and column-address selector 114 so that a writing pulse is generated for text memory 110.

~, - ~ 2~7~ 8 When the writing pulse is launched from command decoder 103, the data held in data register 102 is written into text memory 110.
The data to be written into text memory 110 comprises a character code and modifying information associated therewith. The character code may 5 be selected from appropriate character code systems, depending upon the text content to be displayed. Alternatively, if the kinds of characters to be used are limited, it is possible to define and use a unique code system. In the embodiment of the present invention, JIS code is used as the character code.
Associated information with character code is composed of one bit 10 allotted for designating the monitor screen as an output means, another bit allotted for designating the VTR portion as another output means, and a field for designating a color to be displayed. The two bits for designating output means enable the monitor screen and/or the VTR portion to be designated independently of one another. The field for designating a display color consistsof three bits, indicating red by [100], green by [010], blue by [001] and white by [111]. This color information is outputted commonly to both the output means, VTR portion 8 and monitor screen driver circuit 7.
Character information to be outputted to the VTR portion is typically a date indication to be displayed in white, while character information to be outputted on the monitor screen includes: in addition to the date indication, an operation indication (in green) which is displayed when a video camera switch is activated; and cautions (in red) relating to the operation state of the video camera, such as an indicator of the remaining amount of tape and an indicator of the remaining amount of battery power, etc.
Figures 9 to 11 are diagrams for illustrating text examples to be stored in the aforementioned text memory 110 in different picture-taking states,and for explaining the count sequence of rows and columns in the text memory.
Figure 9 illustrates an example of storage in text memory 110 when the normal picture-taking is effected. Figure 10 illustrates an example of storage in text memory 110 when the camera is set up in the self-image picture-A

7$~ ~
-taking state 1. Figure 11 illustrates an example of storage in text memory 110 when the camera is set up in the self-image picture-taking state ll.
As has been stated previously, text memory 110 is a readable and writable memory for storing display data for one full-frame of the screen, consisting of, in total, 288 (12 rows x 24 columns) character sections for display character data. Display character data for each character is composed of, as stated above, a character code and the associated information therewith.
In accordance with the character display example shown in Figure 9, display character data stored at an address (row '0', column '0') in text memory 110 indicates that the character is "1", the output means is "monitor screen and VTR portion", and the display color is "white". Display character data held at another address (row '8', column '1') designates that the characteris "B", the output means is "monitor screen", and the display color is "red".
Display character data held at still another address (row '10', column '18') designates that the character is "F", the output means is "monitor screen", and the display color is "green".
Here, addresses with no display character data held are stored with blank data.
During normal picture-taking, the procedure of address counting for superimposing the content in text memory 110 over the video picture signals is performed such that the column address is successively increased one-by-one from column '0' to column '23' in synchronization with the scanning of the video picture signal in the horizontal direction. Then, every time the horizontal-synchronization signals are counted 'm' times, the row address is successively increased one-by-one, counting up from row '0' to row '11' within a span of one field.
The concept of this address count sequence comprises the steps of: dividing the full-frame of the monitor screen into 12-row x 24-column matrixcells; reading out character codes from respective memory sections in text memory 110, each of the memory sections corresponding to a cell of the matrix on the screen in which the position of the signals scanning the monitor screen ~ 2 ~

is contained; and converting the readout character codes into character pattern data by means of character generator ROM 121.
During the normal picture-taking operation, inversion switching selector 125 outputs the serial character pattern data, without horizontal 5 inversion, from left-shift register 123 into monitor screen driver circuit 7 through AND-gate 127 and video-picture-signal adding circuit 129.
Figure 12 shows the manner in which a video image of an object A is displayed on monitor screen 6 when the normal picture-taking operation is effected. Here, it will be assumed that displayed simultaneously on monitor - 10screen 6 are a date indication (e.g., 1993.4.1) 19 to be recorded on a video tape, a caution indication (e.g., BATTERY) 20 which indicates when the battery power of the video camera is running short, and an operation indication (e.g., FOCUS) 21 which indicates an operation mode set on operation switches 18 arranged under monitor screen 6.
15At the time of the normal picture-taking operation, monitor screen 6 is scanned from the upper left to the lower right, or in the same direction asis done on a typical TV screen.
Figure 13 shows a self-image picture-taking state I in which, with camera portion 1 upright, monitor portion 2 is rotated upside down or 180 20 degrees on joint portion 3 so that monitor screen 6 may be oriented in the same direction as the picture-taking direction of camera lens 4.
In the self-image picture taking state 1, the video camera allows an horizontally-inverted or right-side-left mirror-image picture of a pickup object B
to be displayed on monitor screen 6 by scanning in an horizontally-opposite 25 direction over the screen to that in the case of Figure 12 (in other words, from the upper right to the lower left).
Here, in the self-image picture-taking state 1, since monitor portion 2 is placed upside-down as shown in Figure 13, operation switches 18 are located on the top of the monitor screen. Therefore, it is convenient to position 30 the operation indication 21 close to operation switches 18, or to arrange theoperation indication 21 in the upper part of monitor screen 6. For this purpose, A

~ ~ 7 ~
-the arrangement of each line of the operation indication 21 as well as the date indication 19 and the caution indication 20 is vertically inverted.
Figure 10 shows display characters and the associated information therewith to be stored in text memory 110 in order to effect the monitor display5 in the self-image picture-taking state I shown in Figure 13 mentioned above.
Microcomputer 10, based on the self-image picture-taking mode signal from rotational-angle detecting switch 11 as well as the video camera-position signalfrom the gravitational-direction detecting means, recognizes the self-image picture-taking state 1, and rewrites the content in text memory 110 in accordance 10 with the picture-taking state so as to change the character arrangement. The order of counting addresses for text memory 11 in order to read out the display characters is the same as that effected in the normal picture-taking state.
In accordance with the character display example shown in Figure 10, display character data stored at an address (row '0', column '0') in text 15 memory 110 indicates that the character is "1", the output means is "VTR
portion", and the display color is "white". Display character data held at another address (row '1', column '5') designates that the character is "F", the output means is "monitor screen" and the display color is "green". Display character data held at another address (row '3', column '22') designates that the character 20 is "B", the output means is "monitor screen", and the display color is "red".Display character data held at still another address (row '11', column '23') designates that the character is "1", the output means is "monitor screen", and the display color is "white". In Figure 10, the text for the date is stored twice on rows '0' and '11'. The first one on the row '0' is outputted to VTR 8 without the 25 characters being horizontally inverted while the second one on the row '11' is outputted to monitor screen driver circuit 7 with the characters being horizontally inverted. These are required because the two outputs differ in their order of characters.
Next, the operation of superimposition-controlling circuit 9 in the 30 self-image picture-taking state I will be described. Microcomputer 10, havingrecognized the self-image picture-taking state 1, sends out horizontally-inverting ~ Z 7 ~

commands to superimposition-controlling circuit 9 in order to horizontally-invert the character patterns to be outputted to monitor screen driver circuit 7. The horizontally-inverting command accepted by command register 101 is decoded by decoder 103 so that a switching signal is sent out for inversion-switching selector 125. With this switching signal, inversion-switching selector 125 selects one mode in which right-shift register 124 may output horizontally-inverted character patterns.
Character patterns of the characters designated to be outputted on the monitor screen by the output means designating bits associated with the characters loaded by character code register 120 are processed through character generator ROM 121, horizontally-inverted and serialized in right-shiftregister 124. The thus-serialized data carrying the horizontally-inverted character patterns is processed through inversion-switching selector 125 and AND-gate 127, and added to the video picture signal in video-picture-signal adding circuit 129. The video picture signal with the horizontally-inverted character patterns superimposed is inputted to monitor screen driver circuit 7, which horizontally changes the scanning direction so that the display picture may be mirror-displayed. As a result, the character patterns once horizontally-inverted are re-inverted so as to display correct characters on monitor screen 6 without horizontal inversion.
It should be noted that, even in the self-image picture-taking state 1, the characters designated to be displayed on the VTR as the output means will not be inverted, and are read out in the same manner as those in the normal picture-taking state.
Figure 14 shows a self-image picture-taking state ll in which, with monitor portion 2 upright, camera portion 1 is rotated upside down or 180 degrees on joint portion 3 so that the monitor screen 6 is oriented in the same direction as the picture-taking direction of camera lens 4.
In the self-image picture-taking state ll, the video camera allows a vertically-inverted or upside-down mirror-image picture of a pickup object C
to be displayed on monitor screen 6 by scanning oppositely from the bottom to A

the top (specifically from the lower left to upper right) over the screen in contrast to the case of Figure 12.
Figure 11 shows display characters and the associated information therewith to be stored in text memory 110 in order to effect the monitor display5 in the self-image picture-taking state ll shown in Figure 14 mentioned above.
Here, in the self-image picture-taking state ll, the arrangements of date indication 19, caution indication 20 and operation indication 21 on their respective lines are, as shown in Figure 11, the same as those in the normal picture-taking state as long as the monitor screen is observed. Nevertheless, 10 since the scanning over the monitor screen is carried out inversely from the bottom side to the top side, the lines or rows for the display on the monitor screen are arranged and stored in a vertically-inverted manner as compared to those for the normal picture-taking state. On the other hand, the date indication for the output to the VTR portion will not be inverted vertically so that it is stored - 15 on the row '0' in text memory 11.
Microcomputer 10, based on the self-image picture-taking mode signal from rotational-angle detecting switch 11 as well as the video camera-position signal from the gravitational-direction detecting means, recognizes theself-image picture-taking state ll, and rewrites the content into text memory 110 20 in accordance with the picture-taking state so as to change the character arrangement. The order of counting addresses for text memory 11 in order to read out the display characters is the same as that effected in the normal picture-taking state.
In accordance with the character display example shown in Figure 25 11, display character data stored at an address (row '0', column '0') in textmemory 110 indicates that the character is "1", the output means is "VTR
portion", and the display color is "white". Display character data held at another address (row '1', column '18') designates that the character is "F", the output means is "monitor screen" and the display color is "green". Display character 30 data held at another address (row '3', column '1') designates that the character is "B", the output means is "monitor screen", and the display color is "red".

7 ~ ~ ~

Display character data held at still another address (row '11', column '1') designates that the character is "1", the output means is "monitor screen", and the display color is "white".
Next, the operation of superimposition-controlling circuit 9 in the 5 self-image picture-taking state ll will be described. Microcomputer 10, havingrecognized the self-image picture-taking state ll, sends out vertically-inverting commands to superimposition-controlling circuit 9 in order to vertically-invert the character patterns to be outputted to monitor screen driver circuit 7. The vertically-inverting command accepted by command register 101 is decoded by 10 decoder 103 so that a vertical-inversion-controlling signal is generated.
If the vertical-inversion-controlling signal is true and if the associated information with the character loaded in character code register 120 designates monitor screen 6 as the output means, counter 122 providing the lower bit portion of an address in character generator ROM 121 loads m-1 as 15 an initial value and functions in the down-counting mode so as to decrease its count value one-by-one every time the horizontal-synchronizing signal is detected. By this procedure, the character patterns arranged in the m x n matrix in character generator ROM 121 are read out from the bottom to the top by every n-bit into left-shift register 123. The data carrying the vertically-20 inverted character patterns serialized by left-shift register 123 is processed through inversion-switching selector 125 and AND-gate 127, and added to the video picture signal in video-picture-signal adding circuit 129. The video picture signal with the vertically-inverted character patterns superimposed is inputted to monitor screen driver circuit 7 which inverts the scanning direction so that the 25 display picture may be mirror-displayed. As a result, the character patterns once vertically-inverted are re-inverted to display correct characters on monitor screen 6 without vertical inversion.
In this connection, in the case where the vertical-inversion-controlling signal is true and if the character information with character loaded 30 into character code register 120 designates VTR portion 8 as the output means, counter 122 counts up from an initial value '0' every time the horizontal-A

7 ~ ~ ~

synchronizing signal is detected. Accordingly, normal character patterns withoutvertical inversion are read out from character generator ROM 121, and are superimposed as they are on the VTR recording signal.
Figures 15A and 15B are illustrative views showing horizontally-5 inverted and vertically-inverted character patterns, respectively. In the embodiment, a unit of character pattern data is 18 dots in length (m) and 12 dots in width (n). As an example, inverted characters of "R" are shown. Figure 15A is an example of the character turned right-side left, and Figure 15B is an example of the character turned upside-down.
As has been described above, according to the present invention, even when the pickup picture is mirror-displayed on the monitor screen in the self-image picture-taking mode, it is possible to effect correct character display on the monitor screen without characters being horizontally-inverted.
In addition, in accordance with the present invention, even when the pickup picture is mirror-displayed on the monitor screen in the self-image picture-taking mode, it is possible to superimpose character display such as date, time, etc., over the video picture signal to be recorded on a video tape and at the same time it is possible to display the characters correctly on the monitor screen without the characters being horizontally-inverted.
Further, according to the present invention, even when the pickup picture is mirror-displayed on the monitor screen in the self-image picture-taking mode, it is possible to display an operation indication on the monitor screen ina position close to the operation switches.

A

Claims (6)

1. A monitor screen-integrated video camera comprising:
a camera portion having a camera lens for picking up a picture of objects;
a monitor portion having a monitor screen that displays the picture taken by said camera portion;
a joint portion for joining said camera portion with said monitor portion for relative rotation;
a monitor driver circuit which, when both said camera lens and said monitor screen are oriented toward the same object, allows said monitor screen to display an horizontally-inverted mirror-image of the picture taken by said camera portion;
a character code generating means for generating character codes for texts to be superimposed over said monitor screen;
a character generator for generating character patterns in association with character codes supplied from said character code generating means;
an inverting circuit for horizontally-inverting a character pattern output generated from said character generator; and, an editing means for horizontally-replacing the order of arrayed characters constituting each row to be displayed on said monitor screen.
2. A monitor screen-integrated video camera comprising:
a camera portion having a camera lens for picking up a picture of objects;
a monitor portion having a monitor screen that displays the picture taken by said camera portion;
a joint portion for joining said camera portion with said monitor portion for relative rotation;

a monitor driver circuit which, when both said camera lens and said monitor screen are oriented toward the same object, allows said monitor screen to display an horizontally-inverted mirror-image of the picture taken by said camera portion;
a character code generating means for generating character codes for texts to be superimposed over said monitor screen; and, a character generator for generating character patterns in association with character codes supplied from said character code generating means, said character generator providing a first character generator output which can be horizontally-inverted and can be superimposed over the video picture signal to be outputted to said monitor screen and a second character generator output which can be superimposed over the video picture signal to be recorded on a video tape.
3. A monitor screen-integrated video camera comprising:
a camera portion having a camera lens for picking up a picture of objects;
a monitor portion having a monitor screen that displays the picture taken by said camera portion;
a joint portion for joining said camera portion with said monitor portion for relative rotation;
a monitor driver circuit which, when both said camera lens and said monitor screen are oriented toward the same object, allows said monitor screen to display an horizontally-inverted mirror-image of the picture taken by said camera portion; and, a superimposition-controlling circuit which is able to switch the mode of characters to be outputted to said monitor screen between an horizontally-inverted character output mode and a non-inverted character output mode and which, as the modes are changed over, allows the display positions of characters to be modified.
4. A monitor screen-integrated video camera comprising:
a camera portion having a camera lens for picking up a picture of objects;
a monitor portion having a monitor screen that displays the picture taken by said camera portion;
a joint portion for joining said camera portion with said monitor portion for relative rotation;
a monitor driver circuit which, when both said camera lens and said monitor screen are oriented toward the same object, allows said monitor screen to display an horizontally-inverted mirror-image of the picture taken by said camera portion;
a character code generating means for generating character codes for texts to be superimposed over said monitor screen;
a character generator for generating character patterns in association with character codes supplied from said character code generating means; and, an inverting circuit for vertically-inverting a character pattern output generated from said character generator.
5. A monitor screen-integrated video camera comprising:
a camera portion having a camera lens for picking up a picture of objects;
a monitor portion having a monitor screen that displays the picture taken by said camera portion;
a joint portion for joining said camera portion with said monitor portion for relative rotation;
a monitor driver circuit which, when both said camera lens and said monitor screen are oriented toward the same object, allows said monitor screen to display an horizontally-inverted mirror-image of the picture taken by said camera portion;

a character code generating means for generating character codes for texts to be superimposed over said monitor screen; and, a character generator for generating character patterns in association with character codes supplied from said character code generating means, said character generator providing a first character generator output which can be vertically-inverted and can be superimposed over the video picture signal to be outputted to said monitor screen and a second character generator output which can be superimposed over the video picture signal to be recorded on a video tape.
6. A monitor screen-integrated video camera comprising:
a camera portion having a camera lens for picking up a picture of objects;
a monitor portion having a monitor screen that displays the picture taken by said camera portion;
a joint portion for joining said camera portion with said monitor portion for relative rotation;
a monitor driver circuit which, when both said camera lens and said monitor screen are oriented toward an identical object, allows said monitorscreen to display an horizontally-inverted mirror-image of the picture taken by said camera portion; and, a superimposition-controlling circuit which is able to switch the mode of characters to be outputted to said monitor screen between a vertically-inverted character output mode and a non-inverted character output mode and which, as the modes are changed over, allows the display positions of characters to be modified.
CA002127608A 1993-12-01 1994-07-07 Monitor screen-integrated video camera Expired - Fee Related CA2127608C (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP5302017A JP3050474B2 (en) 1993-12-01 1993-12-01 Monitor screen integrated video camera
JPHEI5-302017 1993-12-01

Publications (1)

Publication Number Publication Date
CA2127608C true CA2127608C (en) 1997-10-07

Family

ID=17903898

Family Applications (1)

Application Number Title Priority Date Filing Date
CA002127608A Expired - Fee Related CA2127608C (en) 1993-12-01 1994-07-07 Monitor screen-integrated video camera

Country Status (10)

Country Link
US (1) US5559554A (en)
EP (1) EP0656726B1 (en)
JP (1) JP3050474B2 (en)
KR (1) KR0144088B1 (en)
AU (1) AU673442B2 (en)
CA (1) CA2127608C (en)
DE (1) DE69416575T2 (en)
ES (1) ES2127899T3 (en)
MY (1) MY111416A (en)
SG (1) SG46562A1 (en)

Families Citing this family (70)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0879626A (en) * 1994-09-05 1996-03-22 Sony Corp Video device
US6008846A (en) * 1994-10-07 1999-12-28 Canon Kabushiki Kaisha Document sensing apparatus
KR0113218Y1 (en) * 1994-11-25 1998-04-13 이헌조 Handgrip unified l.c.d. for camcordr
US7623754B1 (en) * 1995-02-23 2009-11-24 Avid Technology, Inc. Motion picture recording device using digital, computer-readable non-linear media
US6339447B1 (en) * 1995-03-03 2002-01-15 Canon Kabushiki Kaisha Image sensing apparatus
JP3446374B2 (en) * 1995-03-07 2003-09-16 ソニー株式会社 Video printer that can be equipped with a video camera
JPH099218A (en) * 1995-06-20 1997-01-10 Sony Corp Television multiplex data extraction device
JPH0946659A (en) * 1995-07-26 1997-02-14 Mitsubishi Electric Corp Graphic display device
JP3351667B2 (en) * 1995-10-02 2002-12-03 ペンタックス株式会社 Monitor display device and color filter
US6522361B2 (en) * 1996-03-08 2003-02-18 Sony Corporation Electronic apparatus having the function of displaying the battery residual quantity and method for displaying the battery residual quantity
JP3530679B2 (en) * 1996-06-14 2004-05-24 キヤノン株式会社 Imaging device with eyepiece detection function
JP4001958B2 (en) 1996-08-19 2007-10-31 ソニー株式会社 Imaging device
JPH10200842A (en) * 1997-01-07 1998-07-31 Minolta Co Ltd Digital camera
US6411332B1 (en) 1997-01-07 2002-06-25 Eastman Kodak Company Digital camera with an articulating capture module
JPH10200799A (en) * 1997-01-14 1998-07-31 Matsushita Electric Ind Co Ltd Electronic image pickup device
EP0862079B1 (en) * 1997-02-28 2002-12-18 Ricoh Company, Ltd. Digital camera having synchronized movement of lens and flash
US6483540B1 (en) * 1997-06-16 2002-11-19 Casio Computer Co., Ltd. Image data processing apparatus method and program storage medium for processing image data
US5973734A (en) 1997-07-09 1999-10-26 Flashpoint Technology, Inc. Method and apparatus for correcting aspect ratio in a camera graphical user interface
US6262769B1 (en) * 1997-07-31 2001-07-17 Flashpoint Technology, Inc. Method and system for auto rotating a graphical user interface for managing portrait and landscape images in an image capture unit
US6473123B1 (en) 1997-08-21 2002-10-29 Flash Point Technology, Inc. Method and system for organizing DMA transfers to support image rotation
JP3599973B2 (en) 1997-10-02 2004-12-08 三洋電機株式会社 Digital camera
US7046286B1 (en) * 1997-12-24 2006-05-16 Canon Kabushiki Kaisha Video camera
JP4154025B2 (en) * 1998-03-11 2008-09-24 キヤノン株式会社 Imaging device
JP3663049B2 (en) 1998-05-14 2005-06-22 三洋電機株式会社 Display drive circuit
DE19839638C2 (en) * 1998-08-31 2000-06-21 Siemens Ag System for enabling self-control of the body movement sequences to be carried out by the moving person
JP3307350B2 (en) * 1998-12-16 2002-07-24 ソニー株式会社 Image processing device
US6317141B1 (en) 1998-12-31 2001-11-13 Flashpoint Technology, Inc. Method and apparatus for editing heterogeneous media objects in a digital imaging device
US20020109664A1 (en) * 1999-02-19 2002-08-15 Masaki Shimada Display apparatus and an image processing apparatus
US6792293B1 (en) 2000-09-13 2004-09-14 Motorola, Inc. Apparatus and method for orienting an image on a display of a wireless communication device
JP3636057B2 (en) * 2000-10-13 2005-04-06 ソニー株式会社 Portable information processing apparatus, information processing method in portable information processing apparatus, and program storage medium in portable information processing apparatus
US20020180752A1 (en) * 2001-04-02 2002-12-05 Pelco Device and method for displaying variable brightness characters
US7107081B1 (en) 2001-10-18 2006-09-12 Iwao Fujisaki Communication device
US7466992B1 (en) 2001-10-18 2008-12-16 Iwao Fujisaki Communication device
US7127271B1 (en) 2001-10-18 2006-10-24 Iwao Fujisaki Communication device
JP3658362B2 (en) 2001-11-08 2005-06-08 キヤノン株式会社 Video display device and control method thereof
KR20040089090A (en) * 2001-12-19 2004-10-20 산요덴키가부시키가이샤 Collapsible communication terminal apparatus
JP4004865B2 (en) * 2002-06-12 2007-11-07 富士通株式会社 Mobile device
JP3781016B2 (en) * 2002-06-18 2006-05-31 カシオ計算機株式会社 Electronic camera, photographing direction acquisition method and program
US8229512B1 (en) 2003-02-08 2012-07-24 Iwao Fujisaki Communication device
JP2004294685A (en) * 2003-03-26 2004-10-21 Canon Inc Television lens
US8241128B1 (en) 2003-04-03 2012-08-14 Iwao Fujisaki Communication device
US8090402B1 (en) 2003-09-26 2012-01-03 Iwao Fujisaki Communication device
JP4174404B2 (en) * 2003-10-01 2008-10-29 キヤノン株式会社 Imaging apparatus, image display method, program, and storage medium
US7917167B1 (en) 2003-11-22 2011-03-29 Iwao Fujisaki Communication device
US8041348B1 (en) 2004-03-23 2011-10-18 Iwao Fujisaki Communication device
KR101044695B1 (en) * 2004-11-30 2011-06-28 삼성전자주식회사 A camcorder being able to photo by both hands and an image embodiment method thereof
US8208954B1 (en) 2005-04-08 2012-06-26 Iwao Fujisaki Communication device
JP4595789B2 (en) * 2005-11-17 2010-12-08 富士ゼロックス株式会社 Image processing apparatus, image processing method, and image processing program
JP5074694B2 (en) * 2006-02-03 2012-11-14 キヤノン株式会社 Imaging apparatus and display control method
US9224145B1 (en) 2006-08-30 2015-12-29 Qurio Holdings, Inc. Venue based digital rights using capture device with digital watermarking capability
US8559983B1 (en) 2007-05-03 2013-10-15 Iwao Fujisaki Communication device
US7890089B1 (en) 2007-05-03 2011-02-15 Iwao Fujisaki Communication device
US8676273B1 (en) 2007-08-24 2014-03-18 Iwao Fujisaki Communication device
US8639214B1 (en) 2007-10-26 2014-01-28 Iwao Fujisaki Communication device
US8472935B1 (en) 2007-10-29 2013-06-25 Iwao Fujisaki Communication device
US8744720B1 (en) 2007-12-27 2014-06-03 Iwao Fujisaki Inter-vehicle middle point maintaining implementer
EP2255524B1 (en) * 2008-03-14 2019-05-08 Apple Inc. Method and system for displaying an image generated by at least one camera
US8543157B1 (en) 2008-05-09 2013-09-24 Iwao Fujisaki Communication device which notifies its pin-point location or geographic area in accordance with user selection
JP2009290252A (en) * 2008-05-27 2009-12-10 Ikegami Tsushinki Co Ltd Television camera
US8340726B1 (en) 2008-06-30 2012-12-25 Iwao Fujisaki Communication device
US8452307B1 (en) 2008-07-02 2013-05-28 Iwao Fujisaki Communication device
ES2313860B1 (en) * 2008-08-08 2010-03-16 Nilo Garcia Manchado DIGITAL CAMERA AND ASSOCIATED PROCEDURE.
JP2010273021A (en) * 2009-05-20 2010-12-02 Sony Corp Image display, and image display method
KR20110088235A (en) * 2010-01-28 2011-08-03 삼성전자주식회사 Text display method and apparatus
KR20120017670A (en) * 2010-08-19 2012-02-29 삼성전자주식회사 Image communications method and apparatus
JP6150652B2 (en) * 2013-07-29 2017-06-21 キヤノン株式会社 IMAGING DEVICE, IMAGING DEVICE CONTROL METHOD, PROGRAM, AND RECORDING MEDIUM
CN105453544B (en) * 2013-07-30 2018-12-25 佳能株式会社 Display control apparatus and its control method
JP6376743B2 (en) * 2013-10-18 2018-08-22 キヤノン株式会社 IMAGING DEVICE, IMAGING SYSTEM, IMAGING DEVICE CONTROL METHOD, IMAGING SYSTEM CONTROL METHOD, AND PROGRAM
KR102211123B1 (en) 2014-07-23 2021-02-02 삼성전자주식회사 Display driver, display system and operating method of display driver
CN110858874B (en) * 2018-08-24 2021-07-06 青岛海信移动通信技术股份有限公司 Method and system for adding watermark to picture and photographing device

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6019269U (en) * 1983-07-15 1985-02-09 オリンパス光学工業株式会社 Video camera
US4608603A (en) * 1983-07-18 1986-08-26 Harris Corporation Microprocessor driven video generator
JPS6022877A (en) * 1983-07-18 1985-02-05 Matsushita Electric Ind Co Ltd Photographing apparatus
JPS61150474A (en) * 1984-12-24 1986-07-09 Matsushita Electric Ind Co Ltd Video tape recorder unified with camera and monitor television
JPH0660987B2 (en) * 1985-08-09 1994-08-10 キヤノン株式会社 Electronic viewfinder device for camera
US4757388A (en) * 1985-08-09 1988-07-12 Canon Kabushiki Kaisha Camera with electronic view finder viewable from either behind or in front of the camera
JPS6236985A (en) * 1985-08-09 1987-02-17 Canon Inc Electronic finder camera
JPH0761129B2 (en) * 1986-07-21 1995-06-28 株式会社日立製作所 VTR integrated camera with movable mechanism
JPS6361235A (en) * 1986-09-01 1988-03-17 Canon Inc Data insert-photographing device
JPH01106581A (en) * 1987-10-20 1989-04-24 Canon Inc Electronic camera
JP2998156B2 (en) * 1989-05-31 2000-01-11 ソニー株式会社 Television receiver
CA2101040C (en) * 1992-07-30 1998-08-04 Minori Takagi Video tape recorder with a monitor-equipped built-in camera

Also Published As

Publication number Publication date
US5559554A (en) 1996-09-24
DE69416575T2 (en) 1999-08-12
EP0656726B1 (en) 1999-02-17
DE69416575D1 (en) 1999-03-25
JP3050474B2 (en) 2000-06-12
KR950022812A (en) 1995-07-28
EP0656726A1 (en) 1995-06-07
SG46562A1 (en) 1998-02-20
MY111416A (en) 2000-04-29
AU6880194A (en) 1995-06-15
ES2127899T3 (en) 1999-05-01
AU673442B2 (en) 1996-11-07
KR0144088B1 (en) 1998-07-15
JPH07154692A (en) 1995-06-16

Similar Documents

Publication Publication Date Title
CA2127608C (en) Monitor screen-integrated video camera
EP0326327B1 (en) Apparatus for superimposing graphic title image signals onto a video signal
US5900909A (en) Electronic still camera having automatic orientation sensing and image correction
EP0473390B1 (en) Superimposition of still pictures consisting of characters
US5410415A (en) Recorded digital image presentation control files
US5293540A (en) Method and apparatus for merging independently generated internal video with external video
JP3101580B2 (en) Image recording and playback device
CN1116347A (en) A bit-mapped on-screen-display device for a television receiver
JP2776934B2 (en) Video signal processing device
US6646679B2 (en) Still image reproducing apparatus saving time for still image reproduction
US5175624A (en) Video system having image combining function
CA2017600C (en) Apparatus for superimposing character patterns in accordance with dot-matrix on video signals
JPH0983921A (en) Picture display processor and its method, and picture printing processor and its method
JPS61290881A (en) Image deciding device
JPS61290880A (en) Image deciding device
JPS62272668A (en) Television receiver
JP2598778B2 (en) TV display device for endoscope
JP2781924B2 (en) Superimpose device
JPS61290879A (en) Image deciding device
JPH04616Y2 (en)
JPS612472A (en) Picture recorder
JPH0396081A (en) Input device and recording and reproducing system for still picture
JPH04304787A (en) Title picture inserting device
JPH09182823A (en) Video device for batting training machine
JPH0683396B2 (en) Image synthesizer

Legal Events

Date Code Title Description
EEER Examination request
MKLA Lapsed