CA2142026A1 - Method for continuous manufacture of diagnostic test strip - Google Patents

Method for continuous manufacture of diagnostic test strip

Info

Publication number
CA2142026A1
CA2142026A1 CA002142026A CA2142026A CA2142026A1 CA 2142026 A1 CA2142026 A1 CA 2142026A1 CA 002142026 A CA002142026 A CA 002142026A CA 2142026 A CA2142026 A CA 2142026A CA 2142026 A1 CA2142026 A1 CA 2142026A1
Authority
CA
Canada
Prior art keywords
layer
substrate
indicator
permeable material
analyte
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
CA002142026A
Other languages
French (fr)
Inventor
John M. Gleisner
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mercury Diagnostics Inc
Original Assignee
Polymer Technology International Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Polymer Technology International Corp filed Critical Polymer Technology International Corp
Publication of CA2142026A1 publication Critical patent/CA2142026A1/en
Abandoned legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/52Use of compounds or compositions for colorimetric, spectrophotometric or fluorometric investigation, e.g. use of reagent paper and including single- and multilayer analytical elements
    • G01N33/521Single-layer analytical elements

Abstract

Abstract of the Disclosure A method for making a test strip is described. The test strip is generally a substrate, a layer disposed on the substrate and located near the distal end of the substrate. The layer typically contains a chemical reagent detection system capable of detecting the presence of a predetermined analyte in a sample of biological fluid, wherein the reagent detection system produces a detectable change in the layer in the presence of the analyte.
In the method, a length of substrate is provided having a width substantially the dimension of the final length of the test strip being made; on the substrate near one edge thereof is provided a layer of material permeable to biological fluids, the layer having a width sufficient to place thereon a drop of biological fluid for treating; to the layer of permeable material is continuously applied an aqueous solution containing reagent detection chemicals capable of providing a detectable change in the presence of a predetermined analyte, the solution being applied in an amount to substantially saturate the permeable material; the layer of permeable material is dried to contain the reagent detection chemicals within the layer; and the web is cut into predetermined shorter lengths containing a preset number of test strips for further processing.

Description

21~2026 Docket No. 44,594 METHOD FOR CONTINUOUS MANUFACTURE
OF DIAGNOSTIC TEST STRIPS
Field of the Invention This invention is related to diagnostic test strips and, particularly, to improved methods for manufacturing such test strips.

Background of the Invention ~ ~
Chemical analysis of liquids including water, foodstuffs such as milk, biological fluids, and the like is often desirable or necessary. Dry elements or test strips have been used to facilitate liquid analysis. Such elements have often included a reagent for a substance under analysis, called an analyte. the reagent, upon contact with a liquid sample containing the analyte, causes formation of a colored material or other detectable change in response to the presence and concentration of the analyte in the sample. Various analytical elements using the essentially dry analysis approach have been proposed.
Such "dry" analysis test strips are particularly useful for use in the home for monitoring blood analytes such as glucose.
Thus, it is desirable to provide methods for the manufacture of high quality test strips that are economical.

SummarY of the Invention The present invention provides an improved method for manufacturing diagnostic test strips and the like. The test strips made by the methods of the present invention typically 2142û2fi comprise a substrate, a layer disposed on the substrate and located near the distal end of the substrate, said layer containing a chemical reagent detection system capable of detecting the presence of a predetermined analyte in a sample of biological fluid, the reagent detection system producing a detectable change in said layer in the presence of said analyte.
The chemical reagent detecti~n system typically comprises enzymes that react with the predetermined analyte to produce a response in proportion to the amount of analyte present and an indicator that provides a detectable change based on said response produced by the enzymes. Preferably, the detectable change is a visibly detectable change. For producing a visibly detectable change, an indicator such as a dye or dye coupler system is used wherein a change in color is produced proportional to the amount of analyte present in the sample.
In accord with the present invention a method for making test strips comprises: providing a web comprising a length of substrate having a width substantially the dimension of the final length of the test strip being made; placing on said substrate near one edge thereof a layer of material permeable to biological fluids, said layer having a width sufficient to place thereon a drop of biological fluid for treating; continuously applying to the layer of permeable material an aqueous solution containing reagent detection chemicals capable of providing a detectable change in the presence of a predetermined analyte, said solution being applied in an amount to substantially saturate the permeable material; drying the layer of permeable material to contain the reagent detection chemicals within said layer; and cutting the web into predetermined shorter lengths containing a preset number of test strips for further processing.
In one embodiment, the method of the present invention comprises: providing a web comprising a length of substrate having a width substantially the~dimension of the final length of the test strip being made; placing on said substrate near one edge thereof a layer of material permeable to biological fluids, said layer having a width sufficient to place thereon a drop of biological fluid for treating; continuously applying to the layer of permeable material a first aqueous solution containing an indicator capable of providing a detectable change in the presence of a predetermined analyte, said first solution being applied in an amount to substantially saturate the permeable material; drying the layer of permeable material to contain the indicator within said layer; continuously applying a second aqueous solution containing enzymes capable of reacting with the predetermined analyte to provide a response that produces a detectable change to the indicator, said second aqueous solution being applied at a rate to provide a predetermined quantity of enzymes in the permeable layer; drying the layer of permeable material to contain the enzymes within said layer; and cutting the web into predetermined shorter lengths containing a preset number of test strips for further processing.

21~2026 Brief DescriPtion of the Drawinqs FIG. 1 is a plan view of a web illustrating a length of substrate having thereon a layer of permeable material in accord with a preferred embodiment of the present invention.
FIG. 2 is an enlarged partial side view, in cross-section, of the web along 2-2 of FIG. 1.
FIG. 3 is a side view illustrating the application of solution to the permeable layer of the web illustrated in FIG. 1 in accord with a preferred embodiment of the invention.

Detailed Description of the Invention Test strips made in accord with the present invention typically comprise a substrate 10 (FIGs. 1 and 2) having a predetermined length "L". The substrate provides support for a layer 11 of material that is permeable to biological fluids and to aqueous solutions. A pad consisting of the layer 11 is disposed at or near the distal end 12 of the substrate 10, when the substrate is cut into individual test strips. The layer of permeable material contains a chemical reagent detection system.
In use, the test strip is typically picked up and handled by its proximal end.
As the layer of permeable material, materials useful in the practice of the present invention can include any material having permeability arising from pores or voids, ability to swell, or any other characteristic. Such layers can include a matrix. The choice of a matrix is variable and dependent on the intended use 21~2026 of the element. Useful matrix materials can include hydrophilic materials both naturally occurring such as substances like gelatin, gelatin derivatives, hydrophilic cellulose derivatives, polysaccharides such as dextrin, gum arabic, agarose, and the like, and also synthetic substances such as water-soluble polyvinyl compounds like polyvinyl alcohol, polyvinyl pyrolidone, acrylamide polymers, etc. Organo~hilic materials such as cellulose esters and the like can also be useful.
The chemical reagent detection system is varied depending on the analyte for which the test strip is designed to test.
Typically, the chemical reagents comprise enzymes that react with the analyte to form byproducts and an indicator that reacts with the byproducts to produce a detectable change. Preferably, the detectable change is a visibly detectable change. To produce a visibly detectable change a dye or dye precursor is used as the indicator, as is well known to those skilled in the art.
For example, if one wishes to test for glucose as the analyte in biological fluids such as blood, serum, urine, or the like, etc., typically, a glucose oxidase and a peroxidase are used as enzymes and dye or dye precursor is used as the visibly detectable indicator.
Typical dyes or dye precursors include compositions that, when oxidized, can couple with itself or with its reduced form to provide a dye. Such autocoupling compounds include a variety of hydroxylated compounds such as orthoaminophenols, 4-alkoxynaphthols, 4-amino-5-pyrazolones, cresols, pyrogallol, guaiacol, orcinol, catechol phloroglucinol, p,p-dihydroxydiphenol, gallic acid, pyrocatechoic acid, salicyclic acid, etc. Compounds of this type are well known and described in the literature, such as in The Theory of the Photographic Process, Mees and James, Ed., (1966), especially in Chapter 17.
Other detectable compounds can be provided by oxidation of a leuco dye to provide the corresponding dyestuff form.
Representative leuco dyes include such compounds as leucomalachite green, and leucophenolphthalein. Other leuco dyes, called oxichromic compounds, are described in U.S. Patent No. 3,880,658.
Detectable species can also be provided by dye-providing compositions that include an oxidizable compound capable of undergoing oxidative condensation with couplers such as those containing phenolic groups or activated methylene groups, together with such a coupler. Representative such oxidizable compounds include benzidene and its homologs, p-phenylene-diamines, p-aminophenols, 4-aminoantipyrine, etc., and the like.
A wide range of such couplers, including a number of autocoupling compounds, is described in the literature, such as Mees and James, supra, and in Kosar, Light-Sensitive Systems, 1965, pages 215-249.

Preferred dye couplers include 4-aminoantipyrine (HCl) together with 1,7-dihydroxynaphthalene and 3-dimethylaminobenzoic acid together with 3-methyl-2-benzothiazolinone hydrazone (HCl).

In a preferred embodiment, the substrate for the test strip contains a circular opening 20 located approximately in the center of the area covered by the pad containing the reagent chemistry. Also, a notch 21 may be located in the distal end of substrate, centered with the circular opening.
To make test strips in accord with the present invention a web or length of substrate is pr~vided having a width pre- ~~
determined by the final length "L" of the test strip to be made.
The substrate can be provided in precut lengths of a size that is easily handled or in a large coil.
A strip 11 of a material permeable to biological fluids is disposed on one side of the substrate 10. (FIG. 1) If openings 20 are desired in the substrate, such openings are cut or punched into the substrate prior to adhering the strip 11 thereto. Any suitable adhesive can be used. Conveniently, a two sided adhesive tape 15 can be used to adhere the strip layer 11 to the substrate 10. Preferably, no adhesive is contacted with the portion of the pad that covers the opening 20 in the substrate 10 .
The substrate 10 having a strip 11 of permeable material is continuously fed by a suitable conveyor past a coating station for applying the chemical reagents. If the substrate is in precut lengths, the pieces of substrate are placed on the conveyor and butted together for continuous feeding.
Alternatively, the substrate can be fed from a large roll of the substrate. At the coating station, a solution of the reagent chemistry is metered onto the permeable material strip to provide a predetermined quantity of chemical reagents in the permeable layer.
The coated layer is then dried at a temperature that is not deleterious to the enzymes. After drying, the substrate is cut into predetermined lengths, each length having a pre-selected number of individual test strips.~ Appropriate inspections are ~
performed, either before or after cutting. The lengths of substrate are then cut into individual test strips and packaged.
In a preferred embodiment, the reagent chemicals are coated onto the permeable material in two steps. First, the substrate is continuously coated with a solution containing the dye precursor. Preferably, the permeable material is substantially saturated with the solution containing dye precursor by metering the solution onto the permeable material. After drying, the substrate is continuously coated with a metered amount of a second solution containing the enzymes. A second drying step is performed after coating with the enzyme solution.
In one embodiment of the present invention, a glucose test strip is made. First a web of polystyrene, about 0.22 to 0.28 mm thick is provided having a width about 50 - 65 mm. Near one edge of the web a series of circular openings are provided, the center of the opening being located about 1 cm from the edge, the openings being located about 15 mm apart (center to center), and each opening being about 5 mm in diameter. "V" shaped notches can also be provided at the edge of the substrate, each notch aligned with the center of the corresponding opening. A porous nylon membrane, 8 to 9 nm wide and about 0.10 to 0.20 mm thick is adhered to the polystyrene substrate covering the openings so that the openings are centered on the nylon membrane.
Preferably, the nylon membrane is a microporous filter material such as materials sold by Pall, East Hills, New York. The adhesive layer is preferably coat~d on the polystyrene substrate prior to making the openings so that the nylon, membrane will be free of adhesive in the opening of the substrate.
The substrate having the nylon stripe is fed continuously from a roll or is cut into easily handled strips approximately four feet long.
The substrate is fed continuously on a suitable conveyor to a first coating station. In the first coating station, the porous nylon membrane is coated with a solution of dye precursor which is metered to the membrane in an amount that will substantially saturate the membrane. The amount of dye precursor in solution is calculated to provide the amount of dye desired in the test strip in accord with the methods well known to those skilled in the art. The substrate with coated nylon membrane is then fed continuously into a dryer where the solvent is evaporated. Conveniently, the substrate is fed into the coating station at about 25 ft/min and dried under a flow of warm air at about 130F for about 15 minutes, or until dry.
After exiting the first dryer, the substrate is continuously fed into a second coating station at about 25 ft/min. At the 21~2026 second station, a solution containing the enzymes, glucose oxidase and horseradish peroxidase, is metered onto the porous nylon membrane so that the membrane will contain a desired quantity of the enzymes to conduct the desired test. Calculation of the enzyme concentrations and metering rate is performed by methods well known to those skilled in the art. After coating, the substrate is again continuous~y fed into a dryer under a flow of warm air for about 15 minutes.
In one embodiment, each coating station is as illustrated in FIG. 3. The coating station consists of a coating device that consists of a piece of flexible spring steel 30, on which a piece of felt 31 is attached. The spring with attached felt is held in position over the substrate 10 and strip 11 of permeable material by adjustable mounting means (not shown). The spring and attached felt are mounted on a block 35. Attached to the block 35 is another piece of spring steel 32, which is used to apply pressure to spring 30 to keep the felt 31 in contact with the strip layer 11. Coating solution R is fed from a metering pump (not shown) through a tube 36 to the felt 31. The tube end is preferably in the form of a slit 37. A clamp 38 is used to hold the tube in fixed relation to the block 35. The coating solution then travels through the felt to the strip of permeable material in accord with the rate of flow set by the metering pump. An example of a suitable felt for the practice of the present invention is that felt available from the Keystone Franklin Division of National Felt Company.

In a preferred embodiment, the coating station comprises a tube having a slit opening through which the coating solution is metered by a positive displacement pump. After exiting from the slit, the solution is absorbed by an applicator felt, about 8 mm wide, which trails on the porous nylon membrane. The felt applicator is mounted on a stainless steel spring, about .005 inch thick. A second stainless steel spring, about 0.032 inch thick, is used to adjust pressure on the felt applicator to provide adequate contact with the porous nylon membrane being coated. Care should be taken to permit the coating solution to flow continuously through the applicator onto the membrane being coated.
After the coating is dried, the coated web is inspected as necessary. After inspection, the web is cut into shorter lengths, each length containing a predetermined number of individual test strips, e.g., twenty-five test strips or fifty test strips. Each shorter length is then cut into the predetermined number of test strips and packaged in suitable containers that are sealed.
The invention has been described in detail including the preferred embodiments thereof. However, it will be appreciated that those skilled in the art, upon consideration of the specification and drawings herein, may make modifications and improvements within the spirit and scope of the present invention.

Claims (11)

1. A method for making a test strip comprising a substrate, a layer disposed on the substrate and located near the distal end of the substrate, said layer containing a chemical reagent detection system capable of detecting the presence of a predetermined analyte in a sample of biological fluid, the reagent detection system producing a detectable change in said layer in the presence of said analyte, said method comprising:
providing a web comprising a length of substrate having a width substantially the dimension of the final length of the test strip being made;
providing on said substrate near one edge thereof a layer of material permeable to biological fluids, said layer having a width sufficient to place thereon a drop of biological fluid for treating;
continuously applying to the layer of permeable material an aqueous solution containing reagent detection chemicals capable of providing a detectable change in the presence of a predetermined analyte, said solution being applied in an amount to substantially saturate the permeable material;
drying the layer of permeable material to contain the reagent detection chemicals within said layer; and cutting the web into predetermined shorter lengths containing a preset number of test strips for further processing.
2. The method of claim 1 wherein the reagent detection chemicals comprise glucose oxidase, peroxidase and an indicator.
3. The method of claim 2 wherein the indicator is a dye couple consisting of 3-dimethylaminobenzoic acid and 3-methyl-2-benzothiazolinone hydrazone.
4. The method of claim 1, further comprising cutting each shorter length into individual test strips and packaging the preset number of test strips in a sealed container.
5. A method for making a test strip comprising a substrate, a layer disposed on the substrate and located near the distal end of the substrate, said layer containing a chemical reagent detection system capable of detecting the presence of a predetermined analyte in a sample of biological fluid, the reagent detection system producing a detectable change in said layer in the presence of said analyte, said method comprising:
providing a web comprising a length of substrate having a width substantially the dimension of the final length of the test strip being made;
providing on said substrate near one edge thereof a layer of material permeable to biological fluids, said layer having a width sufficient to place thereon a drop of biological fluid for treating;

continuously applying to the layer of permeable material a first aqueous solution containing an indicator capable of providing a detectable change in the presence of a predetermined analyte, said first solution being applied in an amount to substantially saturate the permeable material;
drying the layer of permeable material to contain the indicator within said layer;
continuously applying a second aqueous solution containing enzymes capable of reacting with the predetermined analyte to provide a response that produces a detectable change to the indicator, said second aqueous solution being applied at a rate to provide a predetermined quantity of enzymes in the permeable layer;
drying the layer of permeable material to contain the enzymes within said layer; and cutting the web into predetermined shorter lengths containing a preset number of test strips for further processing.
6. The method of claim 5 wherein the first aqueous solution comprises an indicator dissolved in a mixture of water and a water miscible organic solvent.
7. The method of claim 6 wherein the indicator is a dye couple consisting of 3-dimethylaminobenzoic acid and 3-methyl-2-benzothiazolinone hydrazone.
8. The method of claim 5 wherein the second aqueous solution comprises a solution of glucose oxidase and peroxidase.
9. The method of claim 5 wherein the first aqueous solution comprises an indicator dissolved in a mixture of water and a water miscible organic solvent and the second aqueous solution comprises a solution of glucose oxidase and peroxidase.
10. The method of claim 9 wherein the indicator is a dye couple consisting of 3-dimethylaminobenzoic acid and 3-methyl-2-benzothiazolinone hydrazone.
11. The method of claim 5, further comprising cutting each shorter length into individual test strips and packaging the preset number of test strips in a sealed container.
CA002142026A 1994-07-08 1995-02-07 Method for continuous manufacture of diagnostic test strip Abandoned CA2142026A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US08/272,192 US5547702A (en) 1994-07-08 1994-07-08 Method for continuous manufacture of diagnostic test strips
US08/272,192 1994-07-08

Publications (1)

Publication Number Publication Date
CA2142026A1 true CA2142026A1 (en) 1996-01-09

Family

ID=23038795

Family Applications (1)

Application Number Title Priority Date Filing Date
CA002142026A Abandoned CA2142026A1 (en) 1994-07-08 1995-02-07 Method for continuous manufacture of diagnostic test strip

Country Status (2)

Country Link
US (1) US5547702A (en)
CA (1) CA2142026A1 (en)

Families Citing this family (84)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020010406A1 (en) 1996-05-17 2002-01-24 Douglas Joel S. Methods and apparatus for expressing body fluid from an incision
EP1579814A3 (en) 1996-05-17 2006-06-14 Roche Diagnostics Operations, Inc. Methods and apparatus for sampling and analyzing body fluid
GB2322444B (en) 1996-10-30 2000-01-19 Mercury Diagnostics Inc Synchronized analyte testing system
EP0977986A1 (en) * 1997-01-09 2000-02-09 Mercury Diagnostics, Inc. Methods for applying a reagent to an analytical test device
US5948695A (en) 1997-06-17 1999-09-07 Mercury Diagnostics, Inc. Device for determination of an analyte in a body fluid
US6036924A (en) 1997-12-04 2000-03-14 Hewlett-Packard Company Cassette of lancet cartridges for sampling blood
US5997817A (en) * 1997-12-05 1999-12-07 Roche Diagnostics Corporation Electrochemical biosensor test strip
US6391005B1 (en) 1998-03-30 2002-05-21 Agilent Technologies, Inc. Apparatus and method for penetration with shaft having a sensor for sensing penetration depth
JP3562968B2 (en) * 1998-08-14 2004-09-08 富士写真フイルム株式会社 Test piece, its manufacturing method and device, and its reading method and device
US20050103624A1 (en) 1999-10-04 2005-05-19 Bhullar Raghbir S. Biosensor and method of making
CZ20024006A3 (en) * 2000-06-09 2003-11-12 Diabetes Diagnostics, Inc. Cap for incision device and incision device per se
US8641644B2 (en) 2000-11-21 2014-02-04 Sanofi-Aventis Deutschland Gmbh Blood testing apparatus having a rotatable cartridge with multiple lancing elements and testing means
US6800488B2 (en) * 2000-12-13 2004-10-05 Lifescan, Inc. Methods of manufacturing reagent test strips
US9226699B2 (en) 2002-04-19 2016-01-05 Sanofi-Aventis Deutschland Gmbh Body fluid sampling module with a continuous compression tissue interface surface
US8337419B2 (en) 2002-04-19 2012-12-25 Sanofi-Aventis Deutschland Gmbh Tissue penetration device
US7699791B2 (en) 2001-06-12 2010-04-20 Pelikan Technologies, Inc. Method and apparatus for improving success rate of blood yield from a fingerstick
US7981056B2 (en) 2002-04-19 2011-07-19 Pelikan Technologies, Inc. Methods and apparatus for lancet actuation
EP1404232B1 (en) 2001-06-12 2009-12-02 Pelikan Technologies Inc. Blood sampling apparatus and method
DE60238119D1 (en) 2001-06-12 2010-12-09 Pelikan Technologies Inc ELECTRIC ACTUATOR ELEMENT FOR A LANZETTE
US9427532B2 (en) 2001-06-12 2016-08-30 Sanofi-Aventis Deutschland Gmbh Tissue penetration device
US7025774B2 (en) 2001-06-12 2006-04-11 Pelikan Technologies, Inc. Tissue penetration device
US7316700B2 (en) 2001-06-12 2008-01-08 Pelikan Technologies, Inc. Self optimizing lancing device with adaptation means to temporal variations in cutaneous properties
US7749174B2 (en) 2001-06-12 2010-07-06 Pelikan Technologies, Inc. Method and apparatus for lancet launching device intergrated onto a blood-sampling cartridge
US9795747B2 (en) 2010-06-02 2017-10-24 Sanofi-Aventis Deutschland Gmbh Methods and apparatus for lancet actuation
US20040098010A1 (en) * 2001-10-22 2004-05-20 Glenn Davison Confuser crown skin pricker
US7674232B2 (en) 2002-04-19 2010-03-09 Pelikan Technologies, Inc. Method and apparatus for penetrating tissue
US7648468B2 (en) 2002-04-19 2010-01-19 Pelikon Technologies, Inc. Method and apparatus for penetrating tissue
US8579831B2 (en) 2002-04-19 2013-11-12 Sanofi-Aventis Deutschland Gmbh Method and apparatus for penetrating tissue
US8784335B2 (en) 2002-04-19 2014-07-22 Sanofi-Aventis Deutschland Gmbh Body fluid sampling device with a capacitive sensor
US7291117B2 (en) 2002-04-19 2007-11-06 Pelikan Technologies, Inc. Method and apparatus for penetrating tissue
US8360992B2 (en) 2002-04-19 2013-01-29 Sanofi-Aventis Deutschland Gmbh Method and apparatus for penetrating tissue
US8372016B2 (en) 2002-04-19 2013-02-12 Sanofi-Aventis Deutschland Gmbh Method and apparatus for body fluid sampling and analyte sensing
US9795334B2 (en) 2002-04-19 2017-10-24 Sanofi-Aventis Deutschland Gmbh Method and apparatus for penetrating tissue
US8702624B2 (en) 2006-09-29 2014-04-22 Sanofi-Aventis Deutschland Gmbh Analyte measurement device with a single shot actuator
US8267870B2 (en) 2002-04-19 2012-09-18 Sanofi-Aventis Deutschland Gmbh Method and apparatus for body fluid sampling with hybrid actuation
US9248267B2 (en) 2002-04-19 2016-02-02 Sanofi-Aventis Deustchland Gmbh Tissue penetration device
US7909778B2 (en) 2002-04-19 2011-03-22 Pelikan Technologies, Inc. Method and apparatus for penetrating tissue
US7371247B2 (en) 2002-04-19 2008-05-13 Pelikan Technologies, Inc Method and apparatus for penetrating tissue
US7232451B2 (en) 2002-04-19 2007-06-19 Pelikan Technologies, Inc. Method and apparatus for penetrating tissue
US7976476B2 (en) 2002-04-19 2011-07-12 Pelikan Technologies, Inc. Device and method for variable speed lancet
US7717863B2 (en) 2002-04-19 2010-05-18 Pelikan Technologies, Inc. Method and apparatus for penetrating tissue
US7491178B2 (en) 2002-04-19 2009-02-17 Pelikan Technologies, Inc. Method and apparatus for penetrating tissue
US9314194B2 (en) 2002-04-19 2016-04-19 Sanofi-Aventis Deutschland Gmbh Tissue penetration device
US7297122B2 (en) 2002-04-19 2007-11-20 Pelikan Technologies, Inc. Method and apparatus for penetrating tissue
US7175642B2 (en) 2002-04-19 2007-02-13 Pelikan Technologies, Inc. Methods and apparatus for lancet actuation
US7331931B2 (en) 2002-04-19 2008-02-19 Pelikan Technologies, Inc. Method and apparatus for penetrating tissue
US8221334B2 (en) 2002-04-19 2012-07-17 Sanofi-Aventis Deutschland Gmbh Method and apparatus for penetrating tissue
US7892183B2 (en) 2002-04-19 2011-02-22 Pelikan Technologies, Inc. Method and apparatus for body fluid sampling and analyte sensing
US7547287B2 (en) 2002-04-19 2009-06-16 Pelikan Technologies, Inc. Method and apparatus for penetrating tissue
US7901362B2 (en) 2002-04-19 2011-03-08 Pelikan Technologies, Inc. Method and apparatus for penetrating tissue
US7229458B2 (en) 2002-04-19 2007-06-12 Pelikan Technologies, Inc. Method and apparatus for penetrating tissue
US7713214B2 (en) 2002-04-19 2010-05-11 Pelikan Technologies, Inc. Method and apparatus for a multi-use body fluid sampling device with optical analyte sensing
US7244264B2 (en) * 2002-12-03 2007-07-17 Roche Diagnostics Operations, Inc. Dual blade lancing test strip
US8574895B2 (en) 2002-12-30 2013-11-05 Sanofi-Aventis Deutschland Gmbh Method and apparatus using optical techniques to measure analyte levels
US6983177B2 (en) * 2003-01-06 2006-01-03 Optiscan Biomedical Corporation Layered spectroscopic sample element with microporous membrane
US20040131088A1 (en) * 2003-01-08 2004-07-08 Adtran, Inc. Shared T1/E1 signaling bit processor
AU2004200523A1 (en) * 2003-02-19 2004-09-09 Bayer Healthcare, Llc Endcap for Lancing Device and Method of Use
US8262614B2 (en) 2003-05-30 2012-09-11 Pelikan Technologies, Inc. Method and apparatus for fluid injection
US7850621B2 (en) 2003-06-06 2010-12-14 Pelikan Technologies, Inc. Method and apparatus for body fluid sampling and analyte sensing
WO2006001797A1 (en) 2004-06-14 2006-01-05 Pelikan Technologies, Inc. Low pain penetrating
US8071030B2 (en) 2003-06-20 2011-12-06 Roche Diagnostics Operations, Inc. Test strip with flared sample receiving chamber
US8148164B2 (en) 2003-06-20 2012-04-03 Roche Diagnostics Operations, Inc. System and method for determining the concentration of an analyte in a sample fluid
US8679853B2 (en) 2003-06-20 2014-03-25 Roche Diagnostics Operations, Inc. Biosensor with laser-sealed capillary space and method of making
KR100785670B1 (en) 2003-06-20 2007-12-14 에프. 호프만-라 로슈 아게 Method and reagent for producing narrow, homogenous reagent strips
WO2005033659A2 (en) 2003-09-29 2005-04-14 Pelikan Technologies, Inc. Method and apparatus for an improved sample capture device
EP1680014A4 (en) 2003-10-14 2009-01-21 Pelikan Technologies Inc Method and apparatus for a variable user interface
US7822454B1 (en) 2005-01-03 2010-10-26 Pelikan Technologies, Inc. Fluid sampling device with improved analyte detecting member configuration
US8668656B2 (en) 2003-12-31 2014-03-11 Sanofi-Aventis Deutschland Gmbh Method and apparatus for improving fluidic flow and sample capture
US20070208309A1 (en) * 2004-04-01 2007-09-06 Flora Bruce A Endcap for a Vacuum Lancing Fixture
GB0409354D0 (en) * 2004-04-27 2004-06-02 Owen Mumford Ltd Removal of needles
WO2006011062A2 (en) 2004-05-20 2006-02-02 Albatros Technologies Gmbh & Co. Kg Printable hydrogel for biosensors
US9775553B2 (en) 2004-06-03 2017-10-03 Sanofi-Aventis Deutschland Gmbh Method and apparatus for a fluid sampling device
EP1765194A4 (en) 2004-06-03 2010-09-29 Pelikan Technologies Inc Method and apparatus for a fluid sampling device
DE102004029909A1 (en) * 2004-06-21 2006-01-19 Roche Diagnostics Gmbh Method and device for the preparation of bindable reagent carriers
US8652831B2 (en) 2004-12-30 2014-02-18 Sanofi-Aventis Deutschland Gmbh Method and apparatus for analyte measurement test time
GB0524604D0 (en) * 2005-12-02 2006-01-11 Owen Mumford Ltd Injection method and apparatus
GB2434103B (en) * 2006-01-12 2009-11-25 Owen Mumford Ltd Lancet firing device
EP2265324B1 (en) 2008-04-11 2015-01-28 Sanofi-Aventis Deutschland GmbH Integrated analyte measurement system
US8465977B2 (en) * 2008-07-22 2013-06-18 Roche Diagnostics Operations, Inc. Method and apparatus for lighted test strip
GB2465390A (en) 2008-11-17 2010-05-19 Owen Mumford Ltd Syringe needle cover remover
US9375169B2 (en) 2009-01-30 2016-06-28 Sanofi-Aventis Deutschland Gmbh Cam drive for managing disposable penetrating member actions with a single motor and motor and control system
US8357276B2 (en) * 2009-08-31 2013-01-22 Abbott Diabetes Care Inc. Small volume test strips with large sample fill ports, supported test strips, and methods of making and using same
US8965476B2 (en) 2010-04-16 2015-02-24 Sanofi-Aventis Deutschland Gmbh Tissue penetration device
US10036709B2 (en) 2014-05-20 2018-07-31 Roche Diabetes Care, Inc. BG meter illuminated test strip

Family Cites Families (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3127281A (en) * 1964-03-31 Means and method of making multi-test indicator
SE173761C1 (en) * 1956-11-07 1960-12-20
DE1910272U (en) * 1964-11-12 1965-02-18 Boehringer & Soehne Gmbh TEST STRIP.
US3607093A (en) * 1968-02-15 1971-09-21 Schering Corp Devices for testing biological liquids
BE754658A (en) * 1969-08-12 1971-02-10 Merck Patent Gmbh INDICATOR SHEET, CONSISTING OF AN IMPREGNATED, ABSORBENT, SHEATHED HAIR MATERIAL
US3992158A (en) * 1973-08-16 1976-11-16 Eastman Kodak Company Integral analytical element
DE2410033C2 (en) * 1974-03-02 1975-09-11 Merck Patent Gmbh, 6100 Darmstadt Isolation of substances in aqueous solutions that are soluble in lipophilic solvents
FR2295419A1 (en) * 1974-12-21 1976-07-16 Kyoto Daiichi Kagaku Kk REFLECTANCE MEASURING DEVICE AND COMPOSITE TEST PAPER STRUCTURE SUBJECT TO SUCH MEASUREMENT
US4042335A (en) * 1975-07-23 1977-08-16 Eastman Kodak Company Integral element for analysis of liquids
US4166093A (en) * 1977-08-08 1979-08-28 Eastman Kodak Company Reduction of detectable species migration in elements for the analysis of liquids
DD143379A3 (en) * 1978-07-25 1980-08-20 Kallies Karl Heinz INDICATOR TUBES FOR GLUCOSE DETERMINATION
US4216245A (en) * 1978-07-25 1980-08-05 Miles Laboratories, Inc. Method of making printed reagent test devices
US4303753A (en) * 1980-03-20 1981-12-01 Miles Laboratories, Inc. Method and device for the semiquantitative determination of glucose in aqueous fluids
US4562148A (en) * 1981-11-06 1985-12-31 Miles Laboratories, Inc. Analytical element and method for preventing reagent migration
DE3332144A1 (en) * 1982-09-06 1984-03-08 Konishiroku Photo Industry Co., Ltd., Tokyo Analytical element
DE3247608A1 (en) * 1982-12-23 1984-07-05 Boehringer Mannheim Gmbh, 6800 Mannheim TEST STRIP
US4482583A (en) * 1983-05-20 1984-11-13 Miles Laboratories, Inc. Process for sealing reagent ribbons
US4883688A (en) * 1984-03-16 1989-11-28 Syntex (U.S.A) Inc. Method for producing chromatographic devices having modified edges
DE3631195A1 (en) * 1986-05-16 1987-11-19 Miles Lab METHOD FOR PRODUCING TEST STRIPS BY IMPREGNATING SUCTIONABLE SUBSTRATES
US4935346A (en) * 1986-08-13 1990-06-19 Lifescan, Inc. Minimum procedure system for the determination of analytes
US5047206A (en) * 1987-03-11 1991-09-10 Wayne State University Reagent test strip
US5128171A (en) * 1987-05-22 1992-07-07 Polymer Technology International Method of making a test strip having a dialyzed polymer layer
US4874692A (en) * 1987-07-20 1989-10-17 Eastman Kodak Company Binder composition and analytical element having stabilized peroxidase in layer containing the composition
US5204061A (en) * 1987-10-08 1993-04-20 Becton, Dickinson And Company Depositing a binder on a solid support
US5238737A (en) * 1990-03-22 1993-08-24 Miles Inc. Use of polymer blend films as supports for diagnostic test strips
EP0475045B1 (en) * 1990-08-06 1996-12-11 Bayer Corporation Method and device for the assay of ions

Also Published As

Publication number Publication date
US5547702A (en) 1996-08-20

Similar Documents

Publication Publication Date Title
US5547702A (en) Method for continuous manufacture of diagnostic test strips
EP0248037B1 (en) Blood serum test strip
JP3479434B2 (en) Volume-independent diagnostic test carrier and its use for determining analytes
US4160008A (en) Multilayered test device for determining the presence of a liquid sample component, and method of use
EP0475692B1 (en) Visual blood glucose concentration test strip
US5087556A (en) Method for quantitative analysis of body fluid constituents
US6395227B1 (en) Test strip for measuring analyte concentration over a broad range of sample volume
US4050898A (en) Integral analytical element
FI92882B (en) Disposable test strip and method of making it
CA2201571C (en) Reagent test strip for blood glucose determination
CZ296121B6 (en) Multilayer reacting testing strip and method for measuring concentration of analyte in sample
US4042335A (en) Integral element for analysis of liquids
JPH09121894A (en) Reagent strip for measuring concentration of blood sugar strip glucose being lowly responsive to hematocrit
RU2178564C2 (en) Method and elongated multilayer indication strip for measuring concentration of substance under analysis
US5332548A (en) Analytical device and method of using same
JP2002510392A (en) Analyte measuring device in body fluid
HU222596B1 (en) Diagnostical test carrier with multylayer testfield and a test method with use of them
US6025203A (en) Diagnostic test carrier and methods in which it is used to determine an analyte
CA2413533A1 (en) Test strips having a plurality of reaction zones and methods for using and manufacturing the same
FI78360C (en) FOERFARANDE FOER FRAMSTAELLNING AV TESTREMSA.
JPS5818628B2 (en) Ittsutai Kei Eki Taibun Sekiyouso
CA2050677C (en) Visual blood glucose concentration test strip
JPH1078431A (en) Carrier for diagnostic test with capillary gap
CA2349098C (en) Assay for aldehyde content
JPH04102059A (en) Test jig

Legal Events

Date Code Title Description
FZDE Discontinued