CA2142042C - Surgical forceps - Google Patents

Surgical forceps Download PDF

Info

Publication number
CA2142042C
CA2142042C CA002142042A CA2142042A CA2142042C CA 2142042 C CA2142042 C CA 2142042C CA 002142042 A CA002142042 A CA 002142042A CA 2142042 A CA2142042 A CA 2142042A CA 2142042 C CA2142042 C CA 2142042C
Authority
CA
Canada
Prior art keywords
handgrips
support rod
operating
working
working end
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CA002142042A
Other languages
French (fr)
Other versions
CA2142042A1 (en
Inventor
Johannes F. Schlapfer
Martin Hess
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Synthes USA LLC
Original Assignee
Synthes USA LLC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Synthes USA LLC filed Critical Synthes USA LLC
Publication of CA2142042A1 publication Critical patent/CA2142042A1/en
Application granted granted Critical
Publication of CA2142042C publication Critical patent/CA2142042C/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/56Surgical instruments or methods for treatment of bones or joints; Devices specially adapted therefor
    • A61B17/58Surgical instruments or methods for treatment of bones or joints; Devices specially adapted therefor for osteosynthesis, e.g. bone plates, screws, setting implements or the like
    • A61B17/68Internal fixation devices, including fasteners and spinal fixators, even if a part thereof projects from the skin
    • A61B17/70Spinal positioners or stabilisers ; Bone stabilisers comprising fluid filler in an implant
    • A61B17/7001Screws or hooks combined with longitudinal elements which do not contact vertebrae
    • A61B17/7032Screws or hooks with U-shaped head or back through which longitudinal rods pass
    • A61B17/7034Screws or hooks with U-shaped head or back through which longitudinal rods pass characterised by a lateral opening
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/56Surgical instruments or methods for treatment of bones or joints; Devices specially adapted therefor
    • A61B17/58Surgical instruments or methods for treatment of bones or joints; Devices specially adapted therefor for osteosynthesis, e.g. bone plates, screws, setting implements or the like
    • A61B17/68Internal fixation devices, including fasteners and spinal fixators, even if a part thereof projects from the skin
    • A61B17/70Spinal positioners or stabilisers ; Bone stabilisers comprising fluid filler in an implant
    • A61B17/7001Screws or hooks combined with longitudinal elements which do not contact vertebrae
    • A61B17/7032Screws or hooks with U-shaped head or back through which longitudinal rods pass
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/56Surgical instruments or methods for treatment of bones or joints; Devices specially adapted therefor
    • A61B17/58Surgical instruments or methods for treatment of bones or joints; Devices specially adapted therefor for osteosynthesis, e.g. bone plates, screws, setting implements or the like
    • A61B17/68Internal fixation devices, including fasteners and spinal fixators, even if a part thereof projects from the skin
    • A61B17/70Spinal positioners or stabilisers ; Bone stabilisers comprising fluid filler in an implant
    • A61B17/7074Tools specially adapted for spinal fixation operations other than for bone removal or filler handling
    • A61B17/7076Tools specially adapted for spinal fixation operations other than for bone removal or filler handling for driving, positioning or assembling spinal clamps or bone anchors specially adapted for spinal fixation
    • A61B17/7077Tools specially adapted for spinal fixation operations other than for bone removal or filler handling for driving, positioning or assembling spinal clamps or bone anchors specially adapted for spinal fixation for moving bone anchors attached to vertebrae, thereby displacing the vertebrae
    • A61B17/7079Tools requiring anchors to be already mounted on an implanted longitudinal or transverse element, e.g. where said element guides the anchor motion

Abstract

Surgical forceps have connecting members onto which working ends are attached in offset fashion, so that they can work together outside the plane of the forceps. One of the working ends is tubular and the other has an angled, U-shaped cross section which receives a portion of the tubular working end.
With the tubular working end slipped over a pedicle screw attached to a vertebrae and the other end attached to a support rod, the vertebra can be brought to the support simply and expeditiously.

Description

2142042 ,/~
, 11316 .A76 Field of thÇ Invention The present invention relates to surgical forceps for use in spinal column surgery.

Backcrro~n~q Qf the Invention For the correction of lateral and rotational spinal column deformations, two healthy spinal column fixation points at the ends of the affected area are chosen, into which spinal column implants such as pedicle screws are inserted. The implants are bridged by a support rod. At least one of the dislocated vertebrae between the two basic implants is also equipped with an implant such as a pedicle screw. To accomplish the desired correction, the dislocated vertebrae with implant in place must be brought to the support rod and f ixed to the rod in the correct position. It often happens that the correction process causes not only a lateral displacement of the implants but also a pulling up of the implant.
The surgical forceps of the invention is designed to bring the dislocated, instrument-treated vertebrae to the support rod, and fasten the implants in the dislocated vertebrae to the support rod. The object of the present invention, then, is to provide a tool to position the implants attached to the dislocated vertebrae simply, safely and ~uickly on the support rod .

. s 2l4,2n~?
~ .
S ry of the InYention In accordance with the invention, there is provided a surgical forceps for positioning spinal column implants relative to a support rod comprising two operational elements, each comprising a handgrip and an operating end, pivot means connecting said operational elements to close said operating ends most remote from said handgrips when said handgrips are closed, one of said operating ends comprising means for attachment to a support rod and the other comprising means for connection to an implant whereby when said handgrips are closed an implant can be moved to a position on a support rod.
The operational elements in the forceps according to the invention have working ends joined at an angle with connecting members, so that they work together outside the forceps plane.
To do this they are conf igured in such a way that in the closed position they grip in interlocking fashion. One of the working ends has a part with a U-shaped cross section, shaped concavely on the inner side, i.e. the side toward the other working end, and on the outside has three flat surfaces. The other working end is shaped as a continuous tube, so that when the forceps are closed, the tube portion rests in the concave part. In this way a screw shank Iinked to the implant seated in a vertebra, can be slid up onto the tu~e section of one working end while the U-shaped part of the other working end can be engaged with the support rod. By this means, outstanding manipulating capability can be achieved.

~ 21~204~
Brief Descri r~tioll of ~he J~rawi nqs The invention will be further described with reference to the accompanying drawings in which:
Fig. 1 is a side elevational view of a surgical forceps according to the invention in the open position;
Fig. 2 is a fragmentary view in side elevation of the surgical forceps o~ Fig. 1 in a closed position;
Fig. 3 is a plan view of the forceps of Figs. 1 and 2; and Fig. 4 is a perspective view showing the use of a forceps according to the invention during a spinal column operation.
Detailed D~scr~Ption of the Invention Referring to Fig. 1, forceps according to the invention comprise two operational elements indicated generally and 1 and 2. Each operational element includes a handgrip (3, 4) and an operating end (5, 6). The handgrips 3 and 4 are pivotally connected at their ends adj acent the operating ends by a hinge 7 .
The handgrips are forced apart by two leaf springs 8 and 9 attached to the inner sides of the handgrips by screws 10 and 11.
The leaf springs are themselves attached at 12 by simple mechanical forked engagement or may be more firmly connected, for example by welding, as desired.
The handgrips 3 and 4 are themselves attached to two connecting members 13 and 14 (parts of operating ends 5 and 6) via hinges 15 and 16. The connecting members are themselves pivotally connected by a hinge 17. The linkage is such that, as shown in Fig. 1, when the forceps are in their ~at rest~ position . ~ 2l,42n~2 with the handgrlps forced apart by springs 8, 9, the connecting members 13 and 14 lie parallel to one another.
Each of the connecting members 13 and 14 has attached to it a working end (18, 19). Each connecting member is partly offset (as shown in Fig. 3) so that the working ends 18, 19 are in different plane from the plane (Fig. 3) of the rest of the forceps. Connecting member 14 comprises a section 14a shaped as a parallelopiped into which the working end 19 in the form of a tube over which a positioning socket can be slid, is fitted.
Working end 18 is angled outwardly as shown in Fig. 1. It has a U-shaped cross section with a concave interior facing the working end 19. As shown in Fig. 2, when the handgrips are brought together against the action of the springs 8 and 9, connecting members 13 and 14 rock on hinge 17 causing the working ends 18 and 19 to meet with the U-shaped channel of end 18 f itting over the cylinder or tube of end 19.
At its tip, the working end 18 has an arcuate cut out 20 on its two sides. This a.;~ tes a support rod as will be explained below.
As explained above, when the handgrips 3 and 4 are closed, connecting members 13 and 14 move away from each other and working ends 18 and 19 come together. In an alternative construction (not shown) connecting member 13 may be rigidly connected to handgrip 3, with the elimination of hinge 15. In such a structure only connecting member 14 moves away from connecting member 13 and thus only working end 19 moves toward working end 18.

2l~2a~2 Operation of a forceps according to the invention will now be described in connection with Fig. 4 which shows a somewhat modified form of the device. Again, the forceps according to the invention comprises two handgrips 21 and 22, pivotally attached to each other at 23. Spring means (not shown), similar to the leaf springs 8, 9 of Figs. 1, keeps the handgrips apart. The handgrips are pivotally attached to connecting members / only one of which, 24, appears in Fig. 4. Connecting member 24 has an offset portion 24a in the shape of a parallelopiped in which is seated a tubular working end 25. In Fig. 4, working end 26 of the other connecting member appears below working end 25. The connecting members are pivotally attached to the handgrips as at 27 and to each other as at 28.
In use, as shown in Fig. 4, two pedicle screws 29, 30 are anchored in two healthy vertebrae 31, 32. These screws are of the type having a side channel or socket in its ~ead and a threaded stud at the top of the head A support rod 33 is ~itted into the side sockets 43 of screws 29, 30 and clamped by the use of positioning sleeves 34, 35 and nuts 36, 37 which are turned down on the threaded studs.
The spinal segment illustrated schematically in Fig. 4 has displaced or defective vertebrae such as 38. A pedicle screw 39 of the same type as screws 29 and 30 is driven into vertebra 38 using a screw extension 40. Nhen screw 39 has been anchored, the tubular of ~set working end 25 attached to the connecting member 24 is slid over the screw extension 40 which is still connected to the screw 39. The interior of the tubular end 2S is 2142~42 dimen~ioned for this purpose. The other warking end 26 of the forcep~ i8 then applied to the support rod 33, with it~ arcuate cut out 41 ~n~a~i n~ the rod. When the forceps are manipulated by closing the handgrips 21, 22, tubular member 25 moves into the concave recess 42 of working end 26. With this, defective vertebra 38 i8 brought towards the support rod 33.
To bring up screw 3 9 with its side socket 43 to support rod 33, a convi~n~; t n~- forceps 44 i8 used to lift screw extension 40 allowing it to go securely into tube 25.
Prior to ~n~in~ the forceps according to the invention, a positioning sleeve 45 had been slid onto tube 25 r being retained there by a leaf spring 46 mounted on the inside of offset part 24a of connecting member 24 With the pedicle screw 39 secured on support rod 33, positioning sleeve 45 is loosened and gravity causes it to drop onto the support rod and the pedicle screw. If the recess o the socket is not immediately fitted to the support rod, the surgeon will move it to the proper position.
Thereafter, the forceps of the invention is no longer needed and the screw 39 is secured by a nut such as 36 or ~.
If more than one defective vertebra must be corrected, they are brought up to the support rod between the two healthy vertebrae in the manner just described, and secured in place With the aid of the surgical forceps according to the invention, a dislocated vertebra can be moved smoothly and exactly to a correcting pasition, lifted easily and quickly, positioned on the support rod and f ixed, using a positioning sleeve 26 such as 2142~42 .` ~ .
those described, which converts the open implant into a closed implant. Time spent doing the surgery is ~hortened significantly.

Claims (5)

1. Surgical forceps for positioning spinal column implants relative to a support rod comprising two operational elements, each comprising a handgrip and an operating end, pivot means connecting said operational elements to close said operating ends when said handgrips are closed, one of said operating ends comprising means for attachment to a support rod and the other operating end comprises means for connection to an implant whereby when said handgrips are closed, an implant can be moved to a position on a support rod.
2. The forceps claimed in claim 1 and comprising a first hinge means joining said handgrips at a point adjacent said operating ends, and spring means tending to force said handgrips apart, said operating ends each comprising a connecting member and a working end, second hinge means connecting each connecting member with its adjacent handgrip so that when said handgrips are forced apart by said spring, said connecting members will be parallel to each other, third hinge means joining said connecting members to one another adjacent said working ends, each of said working ends being offset from its associated connecting member, in the same direction.
3. Surgical forceps for positioning spinal column implants relative to a support rod comprising two operational elements each comprising a handgrip and an operating end, spring means tending to force said handgrips apart, said operating ends each comprising a connecting member and a working end, pivot means connecting said operational elements to close said operating ends when said handgrips are closed, said pivot means comprising first hinge means joining said handgrips at a point adjacent said operating ends, second hinge means connecting each connecting member with its adjacent handgrip so that when said handgrips are forced apart by said spring, said connecting members will be parallel to each other, third hinge means joining said connecting members to one another adjacent said working ends, each of said working ends being offset from its associated connecting member in the same direction, the working end of one of said operating ends having a U-shaped cross section forming a concavity in the direction of the other working end and means for attachment to a support rod, the working end of the other operating end being tubular and dimensioned to fit over an extension on a spinal column implant and to seat in said concavity, whereby when said handgrips are closed, an implant can be moved to a position on a support rod.
4. The surgical forceps of claim 3, wherein said other working end comprises an element of parallelopiped shape offset from its associated connecting means and containing a tubular member, said parallelopiped shaped element having a leaf spring for holding a positioning socket on said tubular member.
5. The forceps of claim 3, wherein the working end having a U-shaped cross section has a round cut out on its tip to receive a round support rod.
CA002142042A 1995-02-06 1995-02-08 Surgical forceps Expired - Fee Related CA2142042C (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US383,877 1995-02-06
US08/383,877 US5616143A (en) 1995-02-06 1995-02-06 Surgical forceps

Publications (2)

Publication Number Publication Date
CA2142042A1 CA2142042A1 (en) 1996-08-07
CA2142042C true CA2142042C (en) 2001-04-17

Family

ID=23515108

Family Applications (1)

Application Number Title Priority Date Filing Date
CA002142042A Expired - Fee Related CA2142042C (en) 1995-02-06 1995-02-08 Surgical forceps

Country Status (2)

Country Link
US (1) US5616143A (en)
CA (1) CA2142042C (en)

Families Citing this family (75)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5910141A (en) 1997-02-12 1999-06-08 Sdgi Holdings, Inc. Rod introduction apparatus
FR2761876B1 (en) * 1997-04-09 1999-08-06 Materiel Orthopedique En Abreg INSTRUMENTATION OF LUMBAR OSTEOSYNTHESIS FOR CORRECTION OF SPONDYLOLISTHESIS BY POSTERIOR PATHWAY
US6530929B1 (en) 1999-10-20 2003-03-11 Sdgi Holdings, Inc. Instruments for stabilization of bony structures
US6440133B1 (en) * 2001-07-03 2002-08-27 Sdgi Holdings, Inc. Rod reducer instruments and methods
DE20111479U1 (en) * 2001-07-04 2001-10-04 Aesculap Ag & Co Kg Vertebral distractor
US6660006B2 (en) * 2002-04-17 2003-12-09 Stryker Spine Rod persuader
EP1319372B1 (en) * 2002-05-06 2003-06-25 Karl Storz GmbH & Co. KG Device for holding a trocar sleeve
US7004947B2 (en) * 2002-06-24 2006-02-28 Endius Incorporated Surgical instrument for moving vertebrae
US7887539B2 (en) * 2003-01-24 2011-02-15 Depuy Spine, Inc. Spinal rod approximators
US7988698B2 (en) * 2003-01-28 2011-08-02 Depuy Spine, Inc. Spinal rod approximator
US7842044B2 (en) * 2003-12-17 2010-11-30 Depuy Spine, Inc. Instruments and methods for bone anchor engagement and spinal rod reduction
US7824411B2 (en) * 2003-12-17 2010-11-02 Depuy Spine, Inc. Instruments and methods for bone anchor engagement and spinal rod reduction
US7806914B2 (en) * 2003-12-31 2010-10-05 Spine Wave, Inc. Dynamic spinal stabilization system
US20050143737A1 (en) * 2003-12-31 2005-06-30 John Pafford Dynamic spinal stabilization system
US7611517B2 (en) * 2004-02-27 2009-11-03 Warsaw Orthopedic, Inc. Rod reducer
US7462182B2 (en) * 2004-08-10 2008-12-09 Warsaw Orthopedic, Inc. Reducing instrument for spinal surgery
US20060089651A1 (en) * 2004-10-26 2006-04-27 Trudeau Jeffrey L Apparatus and method for anchoring a surgical rod
US20080154277A1 (en) * 2004-10-26 2008-06-26 Scott Machalk Tool apparatus for locking a spinal rod in an anchoring device therefor
US8075591B2 (en) * 2004-11-09 2011-12-13 Depuy Spine, Inc. Minimally invasive spinal fixation guide systems and methods
US7625376B2 (en) * 2005-01-26 2009-12-01 Warsaw Orthopedic, Inc. Reducing instrument for spinal surgery
US7799031B2 (en) * 2005-02-09 2010-09-21 Warsaw Orthopedic, Inc. Reducing instrument for spinal surgery
US7951172B2 (en) 2005-03-04 2011-05-31 Depuy Spine Sarl Constrained motion bone screw assembly
US7951175B2 (en) 2005-03-04 2011-05-31 Depuy Spine, Inc. Instruments and methods for manipulating a vertebra
CA2614898C (en) * 2005-04-27 2014-04-22 Trinity Orthopedics, Llc Mono-planar pedilcle screw method, system, and kit
US20060293692A1 (en) * 2005-06-02 2006-12-28 Whipple Dale E Instruments and methods for manipulating a spinal fixation element
US7776074B2 (en) * 2005-06-08 2010-08-17 Robert S. Bray, Jr. Procedure for aligning and stabilizing bone elements
US7927334B2 (en) * 2006-04-11 2011-04-19 Warsaw Orthopedic, Inc. Multi-directional rod reducer instrument and method
US7722617B2 (en) * 2006-04-25 2010-05-25 Warsaw Orthopedic, Inc. Surgical instrumentation for rod reduction
US20070255284A1 (en) * 2006-04-28 2007-11-01 Sdgi Holdings, Inc. Orthopedic implant apparatus
US7731735B2 (en) 2006-04-28 2010-06-08 Warsaw Orthopedic, Inc. Open axle surgical implant
US20080009863A1 (en) * 2006-06-23 2008-01-10 Zimmer Spine, Inc. Pedicle screw distractor and associated method of use
US7686809B2 (en) 2006-09-25 2010-03-30 Stryker Spine Rod inserter and rod with reduced diameter end
US20080228233A1 (en) * 2007-02-12 2008-09-18 Jeffrey Hoffman Instrument for manipulating spinal implant system
US20080195155A1 (en) * 2007-02-12 2008-08-14 Jeffrey Hoffman Locking instrument for implantable fixation device
US8308774B2 (en) * 2007-02-14 2012-11-13 Pioneer Surgical Technology, Inc. Spinal rod reducer and cap insertion apparatus
US8172847B2 (en) * 2007-03-29 2012-05-08 Depuy Spine, Inc. In-line rod reduction device and methods
US7887541B2 (en) * 2007-07-26 2011-02-15 Depuy Spine, Inc. Spinal rod reduction instruments and methods for use
US8790348B2 (en) 2007-09-28 2014-07-29 Depuy Spine, Inc. Dual pivot instrument for reduction of a fixation element and method of use
US8235997B2 (en) * 2008-01-29 2012-08-07 Pioneer Surgical Technology, Inc. Rod locking instrument
US8709015B2 (en) 2008-03-10 2014-04-29 DePuy Synthes Products, LLC Bilateral vertebral body derotation system
US8608746B2 (en) 2008-03-10 2013-12-17 DePuy Synthes Products, LLC Derotation instrument with reduction functionality
US20090281582A1 (en) * 2008-05-08 2009-11-12 Raul Villa Instrument for the reduction of a rod into position in a pedicle screw
US10973556B2 (en) 2008-06-17 2021-04-13 DePuy Synthes Products, Inc. Adjustable implant assembly
EP2339976B1 (en) 2008-07-09 2016-03-16 Icon Orthopaedic Concepts, LLC Ankle arthrodesis nail and outrigger assembly
US8414584B2 (en) 2008-07-09 2013-04-09 Icon Orthopaedic Concepts, Llc Ankle arthrodesis nail and outrigger assembly
FR2937855B1 (en) * 2008-11-05 2010-12-24 Warsaw Orthopedic Inc PROGRESSIVE INTRODUCTION INSTRUMENT FOR A VERTEBRAL ROD.
BRPI0922953A2 (en) 2008-12-17 2016-01-19 Synthes Gmbh spine reduction spindle reduction apparatus
US8128629B2 (en) * 2009-01-22 2012-03-06 Ebi, Llc Rod coercer
US8137357B2 (en) 2009-01-22 2012-03-20 Ebi, Llc Rod coercer
US9161787B2 (en) * 2009-04-23 2015-10-20 The Johns Hopkins University Vertebral body reduction instrument and methods related thereto
US8206394B2 (en) * 2009-05-13 2012-06-26 Depuy Spine, Inc. Torque limited instrument for manipulating a spinal rod relative to a bone anchor
US8900240B2 (en) * 2010-02-12 2014-12-02 Pioneer Surgical Technology, Inc. Spinal rod and screw securing apparatus and method
WO2011137163A1 (en) 2010-04-27 2011-11-03 Synthes Usa, Llc Bone fixation system including k-wire compression
CN102821709B (en) * 2010-04-27 2016-02-03 斯恩蒂斯有限公司 Bone fixation system
US8523930B2 (en) 2010-05-14 2013-09-03 Neuraxis, Llc Methods and devices for cooling spinal tissue
US8685029B2 (en) 2010-09-27 2014-04-01 DePuy Synthes Products, LLC Rod reduction instrument and methods of rod reduction
US8777953B1 (en) 2010-10-06 2014-07-15 Greatbatch Ltd. Rocker mechanism
US8556904B2 (en) 2011-05-05 2013-10-15 Warsaw Orthopedic, Inc. Anchors extender assemblies and methods for using
US9480505B2 (en) 2012-08-23 2016-11-01 DePuy Synthes Products, Inc. Bi-planar persuader
US8721642B1 (en) * 2013-01-28 2014-05-13 Neuraxis, Llc Tissue cooling clamps and related methods
US9486256B1 (en) 2013-03-15 2016-11-08 Nuvasive, Inc. Rod reduction assemblies and related methods
US10136927B1 (en) 2013-03-15 2018-11-27 Nuvasive, Inc. Rod reduction assemblies and related methods
WO2014143862A1 (en) * 2013-03-15 2014-09-18 Shriners Hospitals For Children Methods and techniques for spinal surgery
US9308123B2 (en) 2013-09-16 2016-04-12 Neuraxis, Llc Methods and devices for applying localized thermal therapy
US8911486B1 (en) 2013-09-16 2014-12-16 Neuraxis, Llc Implantable devices for thermal therapy and related methods
US10966762B2 (en) 2017-12-15 2021-04-06 Medos International Sarl Unilateral implant holders and related methods
US11051861B2 (en) 2018-06-13 2021-07-06 Nuvasive, Inc. Rod reduction assemblies and related methods
US11311321B2 (en) 2018-10-01 2022-04-26 Zimmer Biomet Spine, Inc. Rotating rod reducer
USD906519S1 (en) 2018-10-23 2020-12-29 DePuy Synthes Products, Inc. Craniosynostosis bone manipulation device
USD1004774S1 (en) 2019-03-21 2023-11-14 Medos International Sarl Kerrison rod reducer
US11291482B2 (en) 2019-03-21 2022-04-05 Medos International Sarl Rod reducers and related methods
US11291481B2 (en) 2019-03-21 2022-04-05 Medos International Sarl Rod reducers and related methods
US11291477B1 (en) 2021-05-04 2022-04-05 Warsaw Orthopedic, Inc. Dorsal adjusting implant and methods of use
US11432848B1 (en) 2021-05-12 2022-09-06 Warsaw Orthopedic, Inc. Top loading quick lock construct
US11712270B2 (en) 2021-05-17 2023-08-01 Warsaw Orthopedic, Inc. Quick lock clamp constructs and associated methods

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3707097A1 (en) * 1986-12-05 1988-06-09 S & G Implants Gmbh PLIERS FOR SPREADING SPINE BODIES
US5368596A (en) * 1992-03-18 1994-11-29 Burkhart; Stephen S. Augmented awl for creating channels in human bone tissue
US5364397A (en) * 1993-06-01 1994-11-15 Zimmer, Inc. Spinal coupler seater with dual jaws and an independent plunger

Also Published As

Publication number Publication date
US5616143A (en) 1997-04-01
CA2142042A1 (en) 1996-08-07

Similar Documents

Publication Publication Date Title
CA2142042C (en) Surgical forceps
US6648888B1 (en) Surgical instrument for moving a vertebra
JP5155307B2 (en) Vertebral fixation device
US20240041445A1 (en) Soft Tissue Retractor
CA2279761C (en) Instrument for the positioning of an implant in the human spine
US5415659A (en) Spinal fixation system and pedicle clamp
JP4431295B2 (en) System for joining bones in the spinal column, and in particular a system for stabilizing the spine, and fixation and auxiliary elements for such a system
EP1281362B1 (en) Implant for bone connector
US7927355B2 (en) Crosslink for securing spinal rods
JP3636466B2 (en) Variable angle surgical cable crimp assembly
JP4563677B2 (en) Incremental osteosynthesis device and pre-assembly method
KR100551677B1 (en) Pedicle screw assembly
KR100261988B1 (en) Implement and device for straightening, clamping, compressing and stretching the spine
US5391181A (en) Orthopaedic holding forceps
EP1435861B1 (en) Osteosynthesis device and preassembly method
US5649926A (en) Spinal segmental reduction derotational fixation system
JP3680129B2 (en) Spinal support system
KR100537768B1 (en) Implant for bone connector
US9101401B2 (en) Bone repair device and method
US20200390476A1 (en) Adjustable fixation device
JP2008505740A (en) Spinal rod insertion instrument
EP0832622A2 (en) A spinal cage assembly
US20090259262A1 (en) Surgical tool
JP2008541940A (en) Operating instrument for spinal fixation element and operating method thereof
JP2008501429A (en) Variable implant for laminoplasty

Legal Events

Date Code Title Description
EEER Examination request
MKLA Lapsed

Effective date: 20140210