CA2160017C - Electrosurgical processor and method of use - Google Patents

Electrosurgical processor and method of use

Info

Publication number
CA2160017C
CA2160017C CA002160017A CA2160017A CA2160017C CA 2160017 C CA2160017 C CA 2160017C CA 002160017 A CA002160017 A CA 002160017A CA 2160017 A CA2160017 A CA 2160017A CA 2160017 C CA2160017 C CA 2160017C
Authority
CA
Canada
Prior art keywords
signals
electrosurgical unit
circuit
output
parameters
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
CA002160017A
Other languages
French (fr)
Other versions
CA2160017A1 (en
Inventor
Michael Steve Klicek
William Gary Paterson
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Covidien AG
Original Assignee
Valleylab Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Valleylab Inc filed Critical Valleylab Inc
Publication of CA2160017A1 publication Critical patent/CA2160017A1/en
Application granted granted Critical
Publication of CA2160017C publication Critical patent/CA2160017C/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B18/04Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating
    • A61B18/12Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating by passing a current through the tissue to be heated, e.g. high-frequency current
    • A61B18/1206Generators therefor
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B18/04Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating
    • A61B18/12Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating by passing a current through the tissue to be heated, e.g. high-frequency current
    • A61B18/1206Generators therefor
    • A61B18/1233Generators therefor with circuits for assuring patient safety
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B2018/00636Sensing and controlling the application of energy
    • A61B2018/00666Sensing and controlling the application of energy using a threshold value
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B2018/00636Sensing and controlling the application of energy
    • A61B2018/00666Sensing and controlling the application of energy using a threshold value
    • A61B2018/00678Sensing and controlling the application of energy using a threshold value upper
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B2018/00636Sensing and controlling the application of energy
    • A61B2018/00696Controlled or regulated parameters
    • A61B2018/00702Power or energy
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B2018/00636Sensing and controlling the application of energy
    • A61B2018/00696Controlled or regulated parameters
    • A61B2018/00702Power or energy
    • A61B2018/00708Power or energy switching the power on or off
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B2018/00636Sensing and controlling the application of energy
    • A61B2018/00773Sensed parameters
    • A61B2018/00875Resistance or impedance

Abstract

A circuit, for monitor-ing and controlling parame-ters of an electrosugical unit (10), ESU, relative to load and the RF energy, has a load re-sponsive output sensing cir-cuit (11) that measures the ESU load. A signal modifier (12) attached to tbe sensing circuit (11) enhances the sig-nals measured and transmits them to a buffer (13). An ana-log to digital converter (18), A/D, digitizes the signals and samples wave pulse train at about eight million samples per second. A data memory (21) stores the digitizod sig-nals. An RF drive clock (27) connects to the ESU output; a sample clock (19) uses phase shifting to interrogate the in-put signals to a processor (20), DSP, at a greater sampling rate of frequency than without. The DSP receives the stored signals from the data memory (21) and processes them while monitor-ing and calculating ESU parameters measured, i.e. voltage, current, power, load impedance, leakage current, peak to peak voltage, peak to pealc current, spectial content and/or crest factor of the RF wave pulse train energy to use as controlling feedback to eitber a high voltage power supply in tbe ESU, regulating tbe RF drive pulses or both. A method monitors and controls the ESU relative to load and has the steps of collecting parameters with the ESU output sensing circuit (11) responsive to loads; enhancing signals with the signal modifier (12);
transmitting signals to the buffer (13); converting signals with the A/D converter (18); storing signals in the data memory (21); receiving signals in the DSP, and processing, monitoring and controlling signals by repeatedly measuring ESU output parameters.

Description

ELECTROSURGICAL PROCESSOR AND METHOD OF USE
1. Field of the Invention This invention relates to a circuit sensitive to the output energy of an electrosurgical unit which output energy must varies as a function of load, and more particularly, to the parameters which measure generator output and their regulation by converting signals thereof from analog form to digital form for evaluation by a processor with enhancement therein and thereafter controlled by a feedback loop to the generator.
2. Background of the Disclosure An electrosurgical unit includes a radio frequency generator and its controls, which can be used for cutting or coagulating with high frequency electrical energy such as pulses shaped to enhance cutting or coagulation. Using an electrosurgical generator in a surgical procedure, it is possible for the surgeon to cut, to blend or cut with hemostasis, or to purely coagulate. The surgeon can easily select and change the different modes of operation as the surgical procedure progresses. In each mode of operation, it is important to regulate the electrical power delivered to the patient to achieve the desired surgical effect.
Applying more power than necessary results in tissue destruction and prolongs healing. Applying less than the desired amount of electrical power inhibits the surgical procedure. It is desirable to control the output energy from the electrosurgical generator for the type of tissue being treated. Different types of tissues will be encountered as the surgical procedure progresses and each unique tissue requires more or less power as a function of frequently changing tissue impedance. Even the same tissue will present a different load as the tissue is desiccated and the position and size of the electrosurgical tool will effect the load.
That is, the deeper the tool is moved into the tissue or the further the tool is pulled from the tissue will change the impedance or load. Accordingly, all successful types of electrosurgical generators use some form of automatic power regulation to control the electrosurgical effects desired by the surgeon.
Two conventional types of power regulation are in commercial electrosurgical generators. The most common type controls the DC power supply of the generator by limiting the amount of power provided from the AC mains to which the generator is connected. A feedback control loop compares the output voltage supplied by the WO 94/23659 ~ ~ PCT/IB94/00057 power supply to a desired setting to achieve regulation. Another type of power regulation in commercial electrosurgical generators controls the gain of the high-frequency or radio frequency amplifier. An analogue feedback control loop compares the output power supplied from the RF amplifier for adjustment to a desired power ' level. The output is adjusted accordingly but generators commonly and currently in use do not digitally measure RF output power delivered to the load and thereafter regulate accordingly. Usually, the generators are run open loop, ~ i.e.
without feedback but if controlled, then only to a constant radio frequency output voltage.
Specifically, U.S. Patents 3,964,487; 3,980,085; 4,188,927 and 4,092,986 have circuitry to reduce the output current in accordance with increasing load impedance. In those patents constant voltage output is maintained and the current is decreased with increasing load impedance. Similarly, U.S. Patent 4,126,137 controls the power amplifier of the electrosurgical unit in accord with a non linear compensation circuit applied to a feedback signal derived from a comparison of the power level reference signal and the mathematical product of two signals including sensed current and voltage in the unit.
Known types of radio frequency power regulation have achieved moderate success but certain undesirable characteristics are associated with each. One undesirable characteristic involves the response time for regulation. The impedance of the different tissues encountered during the surgical procedure can fluctuate substantially. In moving from a high impedance tissue to a low impedance tissue, the low impedance tissue may be needless destroyed or damaged before the electrosurgical generator can reduce its output power to a level compatible with the lower impedance of the tissue. Similarly, when a high impedance tissue is encountered, the output power from the generator may be momentarily inadequate to create or continue the precise surgical effect desired by the surgeon.
Wherefore, execution of the surgical procedure becomes difficult or impossible.
Recognizing this problem is U.S. Patent 4,658,819 wherein the power delivered to the load is a ' function of the voltage from a ~C supply and the load as measured by sensors of load voltage and current. A microprocessor controller digitizes the sensing signals and computes the load impedance and actual power being delivered to the load.
The microprocessor controller accordingly repeats the measurement, calculation and correction process approximately every 20 milliseconds as long as the generator is ' operating.
Another problem of radio frequency output power regulation in previous electrosurgical generators results because they have been designed to attain maximum power transfer at intermediate impedance ranges. As with amplifiers, an electrosurgical generator will achieve maximum power transfer when its internal impedance equals the output load impedance to which it is connected. At high impedances, the power delivered typically rolls off because of the difference between load impedance compared and the internal impedance. To compensate, surgeons increase the initial power setting to a level higher than necessary. Once the incision passes through the high impedance tissue, the output power setting remains too great and tissue destruction or undesirable surgical effects result. For example, the initial incision passes through skin with a relatively large percentage of dead cells, which contain considerably less moisture than other cells in tissues beneath the skin;
that is, the epidermis has increased impedance compared to the impedance of the tissues therebelow. A higher power setting is required for the initial incision and thereafter a reduced amount of power will work. With commercially available electrosurgical generators, the initial incision is often deeper than desired because the active electrode, i.e., the electrosurgical instrument, cuts deeper than the surgeon desires due to the excessive energy delivery. The surgeon desires to control the depth of the incision and conduct the surgical procedure in controlled depth levels.
If the power regulation is greater than needed, a deeper incision in certain areas results in undesired bleeding. For that reason most surgeons prefer to make the initial incision using a conventional scalpel, instead of using the active electrode blade of an electrosurgical generator.
Another radio frequency output power regulation related problem of available electrosurgical generators is open circuit flashing just prior to the start of the surgery.
Prior to the electrosurgical procedure commencement, no output power is supplied due to the open circuit condition. The regulation circuit attempts to compensate with maximum power delivery. When the active electrode is positioned an operative distance from the tissue, an arc of relatively high voltage ensues due to the maximum power delivery capability initiated by the power regulation circuit.
Continual arcing is desired in the coagulation (fulguration) mode of operation but is WO 94/?3659 ~ ~ ~ ~ ~ PCT/IB94/0005'7 otherwise undesirable. The power regulation circuit eventually reduces the excessive power but the initial arcing or flash may already have caused excessive tissue destruction. The flash and excessive tissue destruction can occur anytime the surgeon moves the active electrode toward the tissue.
Open circuit or excessively high output impedance."conditions increase the risks of alternate path burns to the patient. Alternate path burns occur when current flowing from the patient to some surrounding grounded conductive object, such as the surgical table, rather than returning to the electrosurgical generator through the patient return electrode. Reducing the output voltage under open circuit or high impedance conditions reduces the magnitude of and potential for radio frequency leakage currents.
Another radio frequency output power regulation related problem of commercial electrosurgical generators relates to shorting the output terminals of the generator. A frequent though not recommended, technique of quickly determining whether an electrosurgical generator is operating is to simply short the two output electrodes and observe an electrical spark. A possible result of shorting is the destruction of the power supply in the generator. The generator quickly attempts to regulate from a high power open circuit condition to a short circuit low impedance condition. Due to the limitations on regulating speed, the electrical power components of the power supply are overdriven and quickly destroyed before adequate compensation can occur.
U.S Patent 4,727,874 discloses an electrosurgical generator with a high frequency pulse width modulated feedback power control wherein each cycle of the generator is regulated in power content by modulating the width of the driving energy pulses. Instantaneous analysis of parts of the high frequency signals of the effects of impedance loads on the electrosurgical unit in real time is not possible.
It is desirable to be able to examine a series of RF pulses and control the output with respect to the real time effect on tissue. Instantaneous corrections to the output are not possible; only changes over the average of the output pulses are feasible, see for example U.S. Patent 4,372,315. That patent discloses a circuit which measures impedances after delivering a set number of radio frequency pulses on a pulse burst by pulse burst basis. U.S. Patent 4,321,926 has a feedback system to control dosage but the impedance sensing is not on a real time basis.

Electrosurgical medical procedures require controllable and close regulation ' of the cutting and/or coagulating high frequency energy. The energy application must be limited to a desired surgical area in order that no damage be sustained by important structures or organs in the immediate vicinity of the cutting or coagulation.
5 Whether cutting or coagulating, the tissue is supplied with monopolar electrosurgical energy. The tissue acts as a load which in electrical terms is considered as a variable impedance that is a function of the nature of the tissue being surgically treated. The load impedance has resistive, capacitive and inductive components and the energy pathways from the electrosurgical unit to the tissue similarly add resistive, capacitive and inductive components.
It would be preferred to instantaneously measure the variations of resistance, inductance and capacitance and correct the output of the electrosurgical unit accordingly. This, however, is impossible to do but output parameters such as voltage, current and power of the electrosurgical unit may be measured and/or calculated. Similarly, selected operational parameters such as constant current, constant voltage, and constant power can be regulated but not on an instantaneous level since the frequency of the pulses is typically 500 kilohertz. Circuits commonly in use for controlling the output of an electrosurgical unit are incapable of the response times necessary.
Analog measurement of output signals from instruments such as the electrosurgical unit are well known and in use because the physical world is primarily analog and the processing of analog signals in electronic circuits is well known and accomplished easily. For example, amplification, filtering, frequency modulation, and the like are common electronic functions of circuit designed to handle analog signals.
Such signals tend to be continuous and therefore detectors of analog signals have difficulty in recognizing discontinuities in the signal brought about by change.
Digital or discreet signals are those that change from one condition to another distinct condition. For example, an "on" or an "off" condition is easily measured since there is no continuity in the change from "on" to "off". The advantage in having to deal with only two conditions, i.e. the existence of either one or the other, limits measurement and has a definite benefit since no subjective interpretation need be applied. Numerous gains are available with digitized signal including less sensitivity to change, pre-determined level of accuracy, better dynamic range, WO 94/23659 PC'T/IB94/OOOS7 .. 6 applicability to non-linear control, predictability and repeatability, insensitivity to environmental variations, replicatability, flexibility, multiplex ability and economy.
Electrosurgical units put out analog signals as their output. Processors or computers are arranged to consider digital signals and although analog to digital signals conversion is necessary, the manner in which the conversion is made bears strongly on the accuracy and ability, i.e. response time, of the circuit used.
Described herein are an electrosurgical unit control responsive to load and its method of use neither found in the literature nor practiced in the field. The literature is of interest for its teachings of the knowledge of skilled artisans at the time of this invention.
SUMMARY OF THE INVENTION
Disclosed and claimed are the electrosurgical unit control responsive to load.
A circuit for monitoring operating parameters of an electrosurgical unit and for controlling those parameters relative to a load placed upon the radio frequency energy supplied by the electrosurgical unit preferably has a sensing circuit connected to the output of the electrosurgical unit and responsive to loads applied thereacross for collecting parameters indicative of the operation of the electrosurgical unit under load.
A signal modifier connected to the sensing circuit most preferably enhances parameters of the signals collected and thereafter transmits the signals to a buffer that may be located therein. An analog to digital converter, for receiving signals from the buffer, converts the analogue form of the signals into digital form.
A data memory stores the signals in digitized form, and a processor connected thereto receives the stored signals. The processor is most preferably capable of processing the signals while continually monitoring and controlling the electrosurgical unit by measurement of the voltage, current, and/or power for the instantaneous calculation of energy output, load impedance, leakage current, spectral content and/or crest factor of the wave pulse train of the radio frequency energy. Other parameters may also be measured and/or calculated as desired.
J
The analog to digital converter is preferably of the flash type. A RF drive clock may be connected to a digital drive for the radio frequency stage of the electrosurgical unit. A feedback loop is in the preferred embodiment connected to WO 94/23659 PCf/IB94/00057 the electrosurgical unit so a high voltage power supply therein may be manipulated.
' The feedback loop may alternatively be connected to the electrosurgical unit so the radio frequency drive pulses of a main control circuit of the electrosurgical unit may d be regulated. The feedback loop may in an alternate arrangement be connected to the electrosurgical unit so a high voltage power supply therein may be manipulated and so the radio frequency drive pulses of a main control circuit of the electrosurgical unit may be regulated.
The output performance parameters including the constant current, constant voltage or power may be calculated as a root mean square value, monitored and/or regulated through an input of the processor. The output parameters of the electrosurgical unit may be calculated for controlling performance parameters including root mean square or peak to peak voltage, root mean square or peak to peak current, and root mean square leakage current for consideration of each as the control signal for the feedback loop of the electrosurgical unit.
In the preferred embodiment of a feedback control for an electrosurgical unit, the signals therefrom are enhanced by the processor. Sixteen MHz sampling can be accomplished with or without phase shifting the location on each pulse whereat the data is measured. Phase shifting simply permits sufficient simulation of 16 MHz sampling with less costly components. The signals obtained are split into two sets of 256 each by recording at 8 megahertz. A sample clock produces a square wave pulse train for timing data acquisition first at the rising edge and then at the falling edge of each square wave pulse of the sample clock in adjacent cycles of a particular wave pulse train of interest. For each 16 pulses of the electrosurgical unit radio frequency drive, the processor samples the output of the electrosurgical unit times thereby generating 256 data points for the rising edge and an additional data points for the falling edge of each square wave timing pulse of the sample clock.
Thus the signal resolution may be enhanced by the processor and the phase shifting sample clock that permit data acquisition at a frequency greater than the processor could without the phase shifting sample clock. The output of the electrosurgical unit can thereby be monitored and controlled over a broad spectral input to the electrosurgical unit rapidly enough to correct output in accordance with measured load.

According to one aspect the present invention provides a circuit for monitoring operating parameters of an electrosurgical unit generating drive pulses and for controlling the operating parameters relative to a load placed upon the energy supplied by the electrosurgical unit, the circuit comprising: a load responsive sensing circuit connected to the output of the electrosurgical unit for collecting operating parameters indicative of the operation of the electrosurgical unit under load, the sensing signal generating parameter analog signals= a feedback loop electrically connected to the sensing circuit for regulating the output of the electrosurgical unit by regulating drive pulses and/or the output voltage of the electrosurgical unit;
a signal modifier electrically connected to the sensing circuit for enhancing the amplitude of the parameter signals received from the sensing circuit; a converter electrically connected to the signal modifier for converting the parameter analog signals to digital signals; and a microprocessor in electrical connection with the feedback loop for processing the digital signals generated by the converter while continually monitoring the output performance parameters of the electrosurgical unit and continually controlling the output performance parameters of the electrosurgical unit.
According to another aspect the present invention provides a circuit for monitoring operating parameters of an electrosurgical unit with an output transformer having primary and secondary windings and for controlling in real time those parameters relative to a load placed upon the radio frequency 8a energy supplied by the electrosurgical unit, comprising a sensing circuit connected to receive radio frequency energy supplied by the output of the electrosurgical unit and responsive to loads applied across the radio frequency energy supplied, the sensing circuit connected for providing instantaneous values of current and voltage from the secondary windings so the sensing circuit collects parameters indicative of the operation of the electrosurgical unit under load; a signal modifier connected to the sensing circuit so the signal modifier with enhancement means to adjust or attenuate the amplitude of the parameters from the sensing circuit in response to signal processing and feedback; a buffer connected to the signal modifier for receiving the enhanced parameters collected to set the level thereof; a flash type analog to digital converter connected to the buffer for receiving signals therefrom and converting the analog form of the signals into digital form multiple times during a cycle; a data memory connected to the analog to digital converter for storing the converted signals in digitized form; a processor connected to the ~~ata memory so as to receive the stored signals from the data memory, the processor capable of processing the stored signals while continually monitoring the electrosurgical unit by measurement of the voltage, current, power, load, impedance, leakage current, spectral content and/or crest factor of the wave pulse train of the radio frequency energy, the processor for controlling the electrosurgical unit in accord with the measurements, and a sample clock connected to the processor for setting the timing 8b for receiving the digitized signals from the processor and for the signal resolution enhancement with phase shifting for handling measurements at a frequency greater than the processor could handle without the phase shifting) the sample clock timing the monitoring of output of the electrosurgical unit rapidly enough to correct output in real time and in accord with measured load.
According to another aspect the present invention provides a method for monitoring operating parameters of an electrosurgical unit and for controlling those parameters relative to a load placed upon the radio frequency energy supplied by the elect rosurgical unit, having the steps comprising: collecting parameters indlcative of the operation of the electrosurgical unit under load with a sensing circuit connected to receive radio frequency energy supplied by the output of the electrosurgical unit and responsive to loads applied thereacross; enhancing parameters of the signals collected with a signal modifier connected to the sensing circuit; converting the analog form of the signals into digital form with an analog to digital converter connected for receiving signals from the signal modifier; storing the signals in digitized form in a data memory for transmission therefrom to a processor; receiving the stored signals from the data memory in the processor, and processing the signals while continually monitoring and controlling the electrosurgical unit by measurement of the voltage, current) power, load impedance, leakage current, spectral content and/or crest factor of the wave pulse train of the radio frequency energy with the processor.
BRIEF DESCRIPTION OF THE DRAWINGS
Figure 1 is a schematic block diagram of the circuit for monitoring operating parameters of an electrosurgical unit and for controlling those parameters relative to a load placed upon the radio frequency energy supplied by the electrosurgical units Figure 2 is a schematic block diagram of the circuit for the processor bus and radio frequency drive of an electrosurgical unit.
Figure 3 is a plot of the power (y axis) verses load impedance (x axis).
DETAILED DESCRIPTION OF THE INVENTION
A circuit for monitoring operating parameters of an electrosurgical unit 10 and for controlling those parameters relative to a load placed upon the radio frequency energy supplied by the electrosurgical unit 10 and method of use thereof are disclosed and claimed. The claims are not limited to the structure for article described and illustrated by way of example and the methods its use specifically explained.
The claims are to be considered in view of the existing knowledge of skilled artisans in the Field prior to the inventions defined by the language of the claims herein as amended or considered in view of knowledge of skilled artisans prior to these inventions.
In Figure 1, a schematic drawing in block form, has the circuit for monitoring operating parameters of the electrosurgical unit 10. Digital signal processing for instantaneously controlling those parameters relative to a load placed upon the radio frequency energy supplied by the electrosurgical unit 10 is in the schematic block diagram, Figure 2.
A sensing circuit 11 is capable of collecting parameters indicative of the operation of the electrosurgical unit 10 when under load. The load being the impedance to energy applied to cut or coagulate tissue; that impedance varies and is composed of inductive, capacitive and resistive components which constitute the varying impedance load carried by the electrosurgical unit 10. The cables or wires from the electrosurgical unit 10 output to any instrument used for cutting or coagulating tissue or a blend mode thereof add an impedance component to the system and is therefore a part of the load as is the particular instrument.
In Figure 1, a signal modifier 12 connects to the sensing circuit 1 1 for enhancing parameters of the signals collected and for transmitting those signals to a buffer 13 therein. The signal modifier 12 includes therein a gain scaling element 14 that adjusts or attenuates the amplitude of the signal from the sensing circuit 1 1.
A gain scaling element control 15 sets the gain scaling element 14 and is responsive to signal processing in a feedback loop 16 as will be explained in connection with the circuit for monitoring and controlling parameters disclosed in Figure 1.
A MUX 17 or multiplexing unit that is capable of selecting one of several signals to be measured; specifically, the more important signals are selected and transmitted to the buffer 13. The relative priority of the signals parameter selected, i.e. monopolar or bipolar voltage, current, or leakage current, is a function of the specific mode chosen by the operator. As an example, the preferred embodiment measures the voltage and current thirty two times before the leakage current is checked. The ratio of the measurement is easily set as an input to the multiplexing unit 17.
The buffer 13 receives the selected and multiplexed signals from the multiplexing unit 17 to condition those signal for use as input to the analog to digital converter 18. A sample clock 19 establishes the frequency of sampling and is connected to the analogue to digital converter 18. The buffer 13 is an amplifier in parallel with a resistance such that the signal level is compatible with the particular analog to digital converter 18.
As an example, the high frequency output is in the range of 500 kilohertz and ' 5 voltage samples taken by the sensing circuit 1 1. The sensing circuit 1 1 provides instantaneous values of current and voltage instantaneously from the secondary side of the ESU 10 output transformer. The average values, in digitized form, are.
supplied to a processor 20 which calculates the root mean square (RMS) of the wave pulse train of the high frequency output. Under different mode settings, the gain 10 scaling element 14 is consistent with the mode selected and adjusts the consideration of the high frequency output signal to the area on the wave pulse train of greatest interest.
The assignee of this application owns United States Patent 4,658,819 on RMS electrosurgical unit 10 control. The sensing circuit 1 1 considers a wave pulse train with a frequency of eight million data points per second and 256 samples are taken which in view of the speed represents sixteen complete sine waves. This concerns how the measurements of such high frequency wave pulse train are accomplished accurately. The RMS value of y,~,,$ _ (1/N E (y")Z)'~ wherein voltage samples are taken 256 times during the sixteen complete sine wave pulse train.
The peak to peak voltage change or difference is approximately twice the RMS
voltage times a predefined crest factor. If the power output is assumed to be constant and the power desired has been selected by the operator, then the RMS values for voltage and current can be instantaneously calculated. Consequently, the RMS
power as measured from the sampling of the wave pulse train is: P,~,,g = V,~"s x IRMS.
The load impedance as measured at the secondary side of the transformer by the sensing circuit 11 is: Z = V"~s h~,,s and that can be used to establish a control voltage for use in adjusting the output of the electrosurgical unit 10. The processor 20 is programmed to receive the instantaneous wave pulse train samplings and by calculation convert them into an equivalent control voltage (E~o") that adjusts the electrosurgical unit 10, that is to say that, the E~~ is a signal to operate the high voltage direct current HVDC of the electrosurgical unit 10.
For example, when the P,~,,s s Po~,~, then E~" = E~" - 1. Conversely, E~"
= E~" + 7 when P,u,$ t Poi. If E~" > E~" ""~ then the programmed processor WO 94/23659 _ PCTIIB94/00057 20 makes E~, = E~" "",~ and conversely when E~" < E~" ",;,, the E~" = E~"
",;,.
' Similarly, when I,~o~",,,s s I,~o~, then E~" = E~" - 1. Should the sample signals saturate the analog to digital converter 18, then E~" = E~" - 1. If load impedance Z s open circuit, the E~" = E~" ~", ~.
In Figure 3 a plot of the power (y axis) verses load impedance Ix axis) is shown. The control of the output power to be substantially constant is performed in segments labelled A, B, C, D which are related to the situations discussed in the preceding paragraph. That is to say that in Figure 3 the A segment of the power curve is up to about 200 ohms of impedance and is essentially flat at about 50 watts; the power set by the operator. The B segment is also constant at the prescribed power level until leakage control is initiated because the difference in output and return current is more than 150 milliamperes. Under that condition the curve shown for segment C has the power reduced with increasing impedance.
Finally segment D illustrates open circuit conditions wherein the impedance is greater and the reduction in power faster.
Another way to relate the segments to the processor 20 control is segment A when the P,w,s s Ppa"~, then E~" = E~" -1 and conversely, E~" = E~" + 1 when P",~,s < Po~",~- Segment B when the P,w,s s Po~,~, then E~" = E~" - 1 and conversely, E~" = E~" + 1 when P"~,$ < P~"~ is E~" s E~" "",~ so that the programmed processor 20 makes E~" = E~" "",~ and conversely when E~" < E~"
",;", the E~" = E~" ",;,. Segment C is I,~~,,,s s I~~, so that E~" = E~" - 1. Should the sample signals saturate the analog to digital converter 18, then E~" = E~" -1.
When the load impedance Z s Z~", ~, the E~" = E~" W", ~ for segment D.
The signal modifier 12 connects to an analog to digital converter 18 so that signals from the buffer 13 in the signal modifier 12 may be converted from analog form into digital form. The digitized signals are such that their existence or nonexistence are provided to a data memory 21 for storing the signals defining the parameters of operation in digitized form until they are used by a processor connected thereto.
The processor 20 is capable of processing the signals while continually monitoring and controlling the electrosurgical unit 10. Associated with the processor 20 which is preferably an integrated circuit, e.g. Analog Devices ADSP 2105, there is an address decoder 22 which receives the signals from the processor 20. The WO 94/23659 PCTI)(894/00057 ~~6p~1'~

address decoder 22 enables various output registers by presenting the address thereof since the address of any component in the system is known to the address decoder 22. A program memory 23 in the processor 20 provides instruction in accordance with the need to measure the voltage, current, power, load impedance, '' leakage current, spectral content and/or crest factor of the wave pulse train of the radio frequency energy as desired. A digital signal processing data ram buffer 13 in the digital processor 20 first receives the stored signals from the data memory 21 for use in the digital signal processing.
Shown also in Figure 1 are system controls identified as a host controller interface 24 which conveys information from a front panel 25, i.e. power, mode, etc.
to the processor 20. These enumerated blocks operate together enabling the user and providing the following functions: i1 ) selection of desired power, I2) selection of mode, (3) selection of control scheme.
It will be noted in Figure 1 that the resulting output from the circuit for monitoring and controlling parameters is sent therefrom to a digital signal processing bus 26 which is disclosed in Figure 2 wherein the digital signal processing bus 26 includes an RF drive clock 27, a blend control 28 and a pulse width control 29 to receive the signals from the circuit for monitoring, operating parameters and controlling those parameters of Figure 1. The RF drive clock 27, the bend control 28, and the pulse width control 29 each modify time and construct the signals received by the digital signal processor bus 26 so that those may be fed into a radio frequency drive 30 for the electrosurgical unit 10 generator. The RF drive clock 27 determines the basic RF output frequency. The blend control 28 alternately passes and blocks groups of pulses for blend and coagulation operating modes. The pulse width control 29 limits the width of individual RF drive pulses for controlling the radio frequency output signal, by means other than by controlling the high voltage power supply or the gain of the radio frequency amplifier.
The digital signal processing bus 26 also receives a signal from the electrosurgical unit 10 which indicates the radio frequency output stage of the electrosurgical unit 10 RF current limit 31 is nearing its safe operating limit. The current limit 31 as set by the manufacturer of the unit, i.e. for the Valleylab Force the current limit 31 varies by mode power etc. If that condition occurs, the drive of the electrosurgical unit 10 (econ or pulse width) is reduced until the hardware limit WO 94/23659 _ ~ PCT/IB94/00057 ceases. This is done either by reducing the control voltage (econ) to the HVDC
or by pulse width change to the RF drive clock 27.

The signal from the digital signal processor bus 26 is also supplied to a DC
supply control 32 which uses that signal to regulate the high voltage direct current (HVDC) power supply in the electrosurgical unit 10. Econ is an analog control voltage applied to an input of the electrosurgical unit 10 power supply. The output voltage of the power supply is proportional to econ; for example, if econ is approximately 5 volts then output voltage is approximately 200 volts and when econ is approximately 1 volt then output voltage is approximately 40 volts. In addition, the processor 20 signal as modified by the RF current limit 31 sensor is used as a radio frequency current limit 31 control input which is capable of providing a current control for the electrosurgical unit 10 as already explained.
The analog to digital converter 18 is of the flash type and thus capable of sampling wave pulse train at about eight million samples per second. An analog to digital converter of this type may be obtained from Motorola part number MC
10319.
Consequently, the wave pulse train is sampled periodically and several times during, for example, a cycle or some cycles. Phase shifting can be used as explained to enable the application of less costly components with the same high frequency response. That is to say that, the high frequency resolution is doubled without the expense of more costly components.
The electrosurgical unit 10 has a high voltage power supply therein which is manipulated by the feedback loop 16. The feedback loop 16 is connected to the electrosurgical unit 10 so that radio frequency drive 30 pulses of a main control circuit of the electrosurgical unit 10 can be regulated. The feedback loop 16 is accordingly capable of regulating the electrosurgical unit 10 by either adjusting the RF output by control of the electrosurgical unit 10 high voltage power supply, by control of the RF drive pulses, or by a combination of both. The output performance parameters of the electrosurgical unit 10 include constant current, constant voltage, or power and those may be calculated as a root mean square value, may be monitored and/or may be regulated through input of those signals into the processor 20. The output parameters of the electrosurgical unit 10 may, after calculation, be used for controlling the performance parameters of the electrosurgical unit 10.
Those performance parameters include for example, peak-to-peak voltage, peak-to-WO 94/23659 ~ PCT/IB94/00057 peak current, and leakage current. Each of those performance parameters are useful independently or in combination as a control signal in the feedback loop 16 to the ' electrosurgical unit 10.
The signals applied to the analog to digital signal conversion can be sampled at 8 megahertz. Consequently, for each pulse of the elecfrosurgical unit 10 radio frequency drive 30, the processor 20 is capable of sampling the output of the electrosurgical unit 10 sixteen times. The signal resolution is the same as if sampled at 16 MHz since the acquisition of data at the rising edge and falling edge of each square wave pulse of the sample clock is consequently permitted at that greater frequency. The analog to digital conversion allows the output of the electrosurgical unit 10 to be monitored and controlled over a broad spectral input to the electrosurgical unit 10 at a speed rapid enough to correct the input in accordance with the measured load and without undue delay.

Claims (21)

THE EMBODIMENTS OF THE INVENTION IN WHICH AN EXCLUSIVE
PROPERTY OR PRIVILEGE IS CLAIMED ARE DEFINED AS FOLLOWS:
1. A circuit for monitoring operating parameters of an electrosurgical unit generating drive pulses and for controlling the operating parameters relative to a load placed upon the energy supplied by the electrosurgical unit, the circuit comprising:
a load responsive sensing circuit connected to the output of the electrosurgical unit for collecting operating parameters indicative of the operation of the electrosurgical unit under load, the sensing signal generating parameter analog signals;
a feedback loop electrically connected to the sensing circuit for regulating the output of the electrosurgical unit by regulating drive pulses and/or the output voltage of the electrosurgical unit;
a signal modifier electrically connected to the sensing circuit for enhancing the amplitude of the parameter signals received from the sensing circuit;
a converter electrically connected to the signal modifier for converting the parameter analog signals to digital signals; and a microprocessor in electrical connection with the feedback loop for processing the digital signals generated by the converter while continually monitoring the output performance parameters of the electrosurgical unit and continually controlling the output performance parameters of the electrosurgical unit.
2. The circuit of claim 1, wherein the drive pulses are generated by a radio frequency drive clock.
3. The circuit of claim 2, further comprising a buffer electrically connected to the signal modifier for receiving the parameter signals from the signal modifier and adjusting the signals for input to the analog to digital converter.
4. The circuit of claim 3, wherein the signal modifier includes a gain scaling element for adjusting the amplitude of the signal from the sensing circuit in accordance with a mode setting and a multiplexing unit connected to the gain scaling element, the multiplexing unit selecting one of several signals to be measured and transmitting the selected signals to the buffer.
5. The circuit of claim 1, further comprising a sample clock electrically connected to the converter, the sample clock establishing the frequency of the sampling of the parameters.
6. The circuit of claim 5, further comprising a data memory electrically connected to the analog to digital converter for storing the converted signals in their digitized form, the microprocessor receiving the converted signals from the data memory.
7. The circuit of claim 6, wherein the stored signals from the data memory received by the microprocessor are split into two sets of 256 each with the sample clock by phase shifting for receiving the converted signals in the form of square wave pulse train from the converter and the microprocessor reads the square wave pulse train at 8 megahertz at first a rising edge and then a falling edge of each square wave pulse of the sample clock in adjacent cycles.
8. The circuit of claim 6, further comprising a radio frequency drive which sets sixteen pulses so the microprocessor samples output of the electrosurgical unit sixteen times, and wherein the sample clock defines a square wave pulse with a rising edge and a falling edge thereby generating 256 data points in substantially adjacent cycles at the rising edge anal another 256 data points at the falling edge of each square pulse.
9. The circuit of claim 5, wherein the microprocessor enhances the resolution of the converted signals and the sample clock phase shifts to permit signal handling by the microprocessor at a greater frequency so that the instantaneous values of current and voltage of the electrosurgical unit can be monitored and controlled over a broad spectral input to the electrosurgical unit to correct output in real time in accord with measured load.
10. The circuit of claim 1, wherein the sample clock phase shifts the input signals transmitted to the microprocessor to enable an increased rate of frequency of sampling of the parameters.
11. The circuit of claim 7, wherein the analog to digital converter samples wave pulse train at about eight million samples per second.
12. The circuit of claim 1, wherein the microprocessor controls the electrosurgical unit to achieve predefined parameters in accordance with a mode setting and an algorithm in the processor.
13. The circuit of claim 1, wherein the sensing circuit provides instantaneous values of current and voltage from secondary winding of a transformer of the electrosurgical unit and average values of current and voltage are supplied to the microprocessor in digitized form.
14. The circuit of claim 1, wherein the analog to digital converter is of the flash type and converts the parameter signals multiple times during a cycle.
15. The circuit of claim 1, wherein the drive pulses are generated by a radio frequency drive clock, and further comprising a pulse width control for limiting the width of the radio frequency drive pulses.
16. The circuit of claim 1, wherein the output performance parameters include current, voltage and power calculated as a root mean square value.
17. The circuit of claim 1, wherein the output of the electrosurgical unit is controlled by measurement of the voltage, current, power and/or load impedance.
18. The circuit of claim 1, further comprising a blend control for alternately blocking or passing groups of various operating modes.
19. A method for monitoring operating parameters of an electrosurgical unit and for controlling those parameters relative to a load placed upon the radio frequency energy supplied by the electrosurgical unit, having the steps comprising:
collecting parameters indicative of the operation of the electrosurgical unit under load with a sensing circuit connected to receive radio frequency energy supplied by the output of the electrosurgical unit and responsive to loads applied thereacross;
enhancing parameters of the signals collected with a signal modifier connected to the sensing circuit;

converting the analog form of the signals into digital form with an analog to digital converter connected for receiving signals from the signal modifier;
storing the signals in digitized form in a data memory for transmission therefrom to a processor;
receiving the stored signals from the data memory in the processor, and processing the signals while continually monitoring and controlling the electrosurgical unit by measurement of the voltage, current, power, load impedance, leakage current, spectral content and/or crest factor of the wave pulse train of the radio frequency energy with the processor.
20. The method for monitoring operating parameters of claim 19 wherein the step of processing the signals while continually monitoring and controlling the electrosurgical unit includes shifting the timing for obtaining signals for adjacent cycles.
21. A circuit for monitoring operating parameters of an electrosurgical unit with an output transformer having primary and secondary windings and for controlling in real time those parameters relative to a load placed upon the radio frequency energy supplied by the electrosurgical unit, comprising:
a sensing circuit connected to receive radio frequency energy supplied by the output of the electrosurgical unit and responsive to loads applied across the radio frequency energy supplied, the sensing circuit connected for providing instantaneous values of current and voltage from the secondary winding; so the sensing circuit collects parameters indicative of the operation of the electrosurgical unit under load;
a signal modifier connected to the sensing circuit so the signal modifier with enhancement means to adjust or attenuate the amplitude of the parameters from the sensing circuit in response to signal processing and feedback;
a buffer connected to the signal modifier for receiving the enhanced parameters collected to set the level thereof;
a flash type analog to digital converter connected to the buffer for receiving signals therefrom and converting the analog form of the signals into digital form multiple times during a cycle;
a data memory connected to the analog to digital converter for storing the converted signals in digitized form;
a processor connected to the data memory so as to receive the stored signals from the data memory, the processor capable of processing the stored signals while continually monitoring the electrosurgical unit by measurement of the voltage, current, power, load, impedance, leakage current, spectral content and/or crest factor of the wave pulse train of the radio frequency energy, the processor for controlling the electrosurgical unit in accord with the measurements, and a sample clock connected to the processor for setting the timing for receiving the digitized signals from the processor and for the signal resolution enhancement with phase shifting for handling measurements at a frequency greater than the processor could handle without the phase shifting, the sample clock timing the monitoring of output of the electrosurgical unit rapidly enough to correct output in real time and in accord with measured load.
CA002160017A 1993-04-19 1994-04-06 Electrosurgical processor and method of use Expired - Lifetime CA2160017C (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US08/047,907 US5370645A (en) 1993-04-19 1993-04-19 Electrosurgical processor and method of use
US08/047,907 1993-04-19
PCT/IB1994/000057 WO1994023659A1 (en) 1993-04-19 1994-04-06 Electrosurgical processor and method of use

Publications (2)

Publication Number Publication Date
CA2160017A1 CA2160017A1 (en) 1994-10-27
CA2160017C true CA2160017C (en) 1999-08-24

Family

ID=21951683

Family Applications (1)

Application Number Title Priority Date Filing Date
CA002160017A Expired - Lifetime CA2160017C (en) 1993-04-19 1994-04-06 Electrosurgical processor and method of use

Country Status (9)

Country Link
US (1) US5370645A (en)
EP (1) EP0695144B1 (en)
JP (1) JP2671966B2 (en)
AU (1) AU684756B2 (en)
CA (1) CA2160017C (en)
DE (1) DE69415157T2 (en)
FI (1) FI941787A (en)
NO (1) NO954153L (en)
WO (1) WO1994023659A1 (en)

Families Citing this family (792)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5633578A (en) * 1991-06-07 1997-05-27 Hemostatic Surgery Corporation Electrosurgical generator adaptors
US6673069B1 (en) * 2000-03-30 2004-01-06 Refractec, Inc. Thermokeratoplasty system with a power supply that can determine a wet or dry cornea
US5658282A (en) 1994-01-18 1997-08-19 Endovascular, Inc. Apparatus for in situ saphenous vein bypass and less-invasive varicose vein treatment
US5599344A (en) * 1995-06-06 1997-02-04 Valleylab Inc. Control apparatus for electrosurgical generator power output
AU5700796A (en) * 1995-06-06 1996-12-24 Valleylab, Inc. Power control for an electrosurgical generator
US5743900A (en) * 1995-06-06 1998-04-28 Sun Star Technology, Inc. Hot tip catheter and method for using the same
US6190379B1 (en) 1995-06-06 2001-02-20 Sun Star Technology, Inc. Hot tip catheter
US6780180B1 (en) 1995-06-23 2004-08-24 Gyrus Medical Limited Electrosurgical instrument
US6015406A (en) 1996-01-09 2000-01-18 Gyrus Medical Limited Electrosurgical instrument
EP0833593B2 (en) 1995-06-23 2004-07-28 Gyrus Medical Limited An electrosurgical instrument
AU710619B2 (en) 1995-06-23 1999-09-23 Gyrus Medical Limited An electrosurgical instrument
US6293942B1 (en) 1995-06-23 2001-09-25 Gyrus Medical Limited Electrosurgical generator method
US6013076A (en) 1996-01-09 2000-01-11 Gyrus Medical Limited Electrosurgical instrument
US6090106A (en) 1996-01-09 2000-07-18 Gyrus Medical Limited Electrosurgical instrument
US6458121B1 (en) * 1996-03-19 2002-10-01 Diapulse Corporation Of America Apparatus for athermapeutic medical treatments
US6565561B1 (en) 1996-06-20 2003-05-20 Cyrus Medical Limited Electrosurgical instrument
GB2314274A (en) 1996-06-20 1997-12-24 Gyrus Medical Ltd Electrode construction for an electrosurgical instrument
GB9612993D0 (en) 1996-06-20 1996-08-21 Gyrus Medical Ltd Electrosurgical instrument
US5931836A (en) * 1996-07-29 1999-08-03 Olympus Optical Co., Ltd. Electrosurgery apparatus and medical apparatus combined with the same
US5836943A (en) * 1996-08-23 1998-11-17 Team Medical, L.L.C. Electrosurgical generator
GB9626512D0 (en) 1996-12-20 1997-02-05 Gyrus Medical Ltd An improved electrosurgical generator and system
US5954717A (en) * 1997-09-25 1999-09-21 Radiotherapeutics Corporation Method and system for heating solid tissue
US6358246B1 (en) 1999-06-25 2002-03-19 Radiotherapeutics Corporation Method and system for heating solid tissue
GB9807303D0 (en) 1998-04-03 1998-06-03 Gyrus Medical Ltd An electrode assembly for an electrosurgical instrument
SE513814C2 (en) * 1998-03-31 2000-11-06 Aditus Medical Ab Device for the treatment of diseases with electric fields
US7137980B2 (en) 1998-10-23 2006-11-21 Sherwood Services Ag Method and system for controlling output of RF medical generator
US7364577B2 (en) 2002-02-11 2008-04-29 Sherwood Services Ag Vessel sealing system
US7901400B2 (en) * 1998-10-23 2011-03-08 Covidien Ag Method and system for controlling output of RF medical generator
US6464696B1 (en) * 1999-02-26 2002-10-15 Olympus Optical Co., Ltd. Electrical surgical operating apparatus
US6162217A (en) * 1999-04-21 2000-12-19 Oratec Interventions, Inc. Method and apparatus for controlling a temperature-controlled probe
US6939346B2 (en) 1999-04-21 2005-09-06 Oratec Interventions, Inc. Method and apparatus for controlling a temperature-controlled probe
US6692489B1 (en) 1999-07-21 2004-02-17 Team Medical, Llc Electrosurgical mode conversion system
US6773432B1 (en) 1999-10-14 2004-08-10 Applied Medical Resources Corporation Electrosurgical snare
US6447719B1 (en) 2000-10-02 2002-09-10 Johnson & Johnson Power system for sterilization systems employing low frequency plasma
US6841124B2 (en) * 2000-10-02 2005-01-11 Ethicon, Inc. Sterilization system with a plasma generator controlled by a digital signal processor
US6852277B2 (en) * 2000-10-02 2005-02-08 Ethicon, Inc. Sterilization system employing a switching module adapted to pulsate the low frequency power applied to a plasma
US20040262146A1 (en) * 2000-10-02 2004-12-30 Platt Robert C. Sterilization system plasma generation control
DE10102254A1 (en) * 2001-01-19 2002-08-08 Celon Ag Medical Instruments Device for the electrothermal treatment of the human or animal body
US6682527B2 (en) 2001-03-13 2004-01-27 Perfect Surgical Techniques, Inc. Method and system for heating tissue with a bipolar instrument
ES2333037T3 (en) 2001-06-01 2010-02-16 Covidien Ag CABLE CONNECTOR OF A RETURN PAD.
US10835307B2 (en) 2001-06-12 2020-11-17 Ethicon Llc Modular battery powered handheld surgical instrument containing elongated multi-layered shaft
US6635056B2 (en) * 2001-10-09 2003-10-21 Cardiac Pacemakers, Inc. RF ablation apparatus and method using amplitude control
US6970738B1 (en) 2002-02-04 2005-11-29 Innovamedica S.A. De C.V. Complex impedance spectrometer using parallel demodulation and digital conversion
JP4490807B2 (en) 2002-05-06 2010-06-30 コヴィディエン アクチェンゲゼルシャフト System for electrically detecting blood and controlling the generator during electrosurgical procedures
US7220260B2 (en) 2002-06-27 2007-05-22 Gyrus Medical Limited Electrosurgical system
US6677740B1 (en) * 2002-09-24 2004-01-13 Tonic Fitness Technology, Inc. Applied control system of the power periphery of a health apparatus having function of power generation
US6860881B2 (en) 2002-09-25 2005-03-01 Sherwood Services Ag Multiple RF return pad contact detection system
US7041096B2 (en) * 2002-10-24 2006-05-09 Synergetics Usa, Inc. Electrosurgical generator apparatus
US6948503B2 (en) * 2002-11-19 2005-09-27 Conmed Corporation Electrosurgical generator and method for cross-checking output power
US6942660B2 (en) * 2002-11-19 2005-09-13 Conmed Corporation Electrosurgical generator and method with multiple semi-autonomously executable functions
US6875210B2 (en) * 2002-11-19 2005-04-05 Conmed Corporation Electrosurgical generator and method for cross-checking mode functionality
US7044948B2 (en) 2002-12-10 2006-05-16 Sherwood Services Ag Circuit for controlling arc energy from an electrosurgical generator
US8012150B2 (en) 2003-05-01 2011-09-06 Covidien Ag Method and system for programming and controlling an electrosurgical generator system
US20070084897A1 (en) 2003-05-20 2007-04-19 Shelton Frederick E Iv Articulating surgical stapling instrument incorporating a two-piece e-beam firing mechanism
US9060770B2 (en) 2003-05-20 2015-06-23 Ethicon Endo-Surgery, Inc. Robotically-driven surgical instrument with E-beam driver
US8104956B2 (en) 2003-10-23 2012-01-31 Covidien Ag Thermocouple measurement circuit
ES2372045T3 (en) 2003-10-23 2012-01-13 Covidien Ag REDUNDANT TEMPERATURE MONITORING IN ELECTROCHURGICAL SYSTEMS TO ATTENATE SAFETY.
US7396336B2 (en) 2003-10-30 2008-07-08 Sherwood Services Ag Switched resonant ultrasonic power amplifier system
US7131860B2 (en) 2003-11-20 2006-11-07 Sherwood Services Ag Connector systems for electrosurgical generator
US7317954B2 (en) * 2003-12-12 2008-01-08 Conmed Corporation Virtual control of electrosurgical generator functions
US7317955B2 (en) * 2003-12-12 2008-01-08 Conmed Corporation Virtual operating room integration
US7766905B2 (en) 2004-02-12 2010-08-03 Covidien Ag Method and system for continuity testing of medical electrodes
US8182501B2 (en) 2004-02-27 2012-05-22 Ethicon Endo-Surgery, Inc. Ultrasonic surgical shears and method for sealing a blood vessel using same
US7780662B2 (en) 2004-03-02 2010-08-24 Covidien Ag Vessel sealing system using capacitive RF dielectric heating
US7226447B2 (en) 2004-06-23 2007-06-05 Smith & Nephew, Inc. Electrosurgical generator
US7896875B2 (en) * 2004-07-20 2011-03-01 Microline Surgical, Inc. Battery powered electrosurgical system
US8215531B2 (en) 2004-07-28 2012-07-10 Ethicon Endo-Surgery, Inc. Surgical stapling instrument having a medical substance dispenser
US11896225B2 (en) 2004-07-28 2024-02-13 Cilag Gmbh International Staple cartridge comprising a pan
US8905977B2 (en) 2004-07-28 2014-12-09 Ethicon Endo-Surgery, Inc. Surgical stapling instrument having an electroactive polymer actuated medical substance dispenser
AU2005295010B2 (en) 2004-10-08 2012-05-31 Ethicon Endo-Surgery, Inc. Ultrasonic surgical instrument
US7628786B2 (en) 2004-10-13 2009-12-08 Covidien Ag Universal foot switch contact port
US20060161147A1 (en) * 2005-01-18 2006-07-20 Salvatore Privitera Method and apparatus for controlling a surgical ablation device
CA2541037A1 (en) 2005-03-31 2006-09-30 Sherwood Services Ag Temperature regulating patient return electrode and return electrode monitoring system
US9474564B2 (en) * 2005-03-31 2016-10-25 Covidien Ag Method and system for compensating for external impedance of an energy carrying component when controlling an electrosurgical generator
US7655003B2 (en) 2005-06-22 2010-02-02 Smith & Nephew, Inc. Electrosurgical power control
US20070005056A1 (en) * 2005-06-30 2007-01-04 Surginetics, Llc Electrosurgical Instrument With Blade Profile For Reduced Tissue Damage
US7867225B2 (en) 2005-06-30 2011-01-11 Microline Surgical, Inc Electrosurgical instrument with needle electrode
US8562603B2 (en) 2005-06-30 2013-10-22 Microline Surgical, Inc. Method for conducting electrosurgery with increased crest factor
US20070005057A1 (en) * 2005-06-30 2007-01-04 Surginetics, Llc Electrosurgical Blade With Profile For Minimizing Tissue Damage
US7935113B2 (en) 2005-06-30 2011-05-03 Microline Surgical, Inc. Electrosurgical blade
US7867226B2 (en) * 2005-06-30 2011-01-11 Microline Surgical, Inc. Electrosurgical needle electrode
US7445620B2 (en) 2005-08-11 2008-11-04 The Cleveland Clinic Foundation Apparatus and method for protecting nontarget tissue of a patient during electrocautery surgery
US8800838B2 (en) 2005-08-31 2014-08-12 Ethicon Endo-Surgery, Inc. Robotically-controlled cable-based surgical end effectors
US10159482B2 (en) 2005-08-31 2018-12-25 Ethicon Llc Fastener cartridge assembly comprising a fixed anvil and different staple heights
US7669746B2 (en) 2005-08-31 2010-03-02 Ethicon Endo-Surgery, Inc. Staple cartridges for forming staples having differing formed staple heights
US11246590B2 (en) 2005-08-31 2022-02-15 Cilag Gmbh International Staple cartridge including staple drivers having different unfired heights
US11484312B2 (en) 2005-08-31 2022-11-01 Cilag Gmbh International Staple cartridge comprising a staple driver arrangement
US9237891B2 (en) 2005-08-31 2016-01-19 Ethicon Endo-Surgery, Inc. Robotically-controlled surgical stapling devices that produce formed staples having different lengths
US7934630B2 (en) 2005-08-31 2011-05-03 Ethicon Endo-Surgery, Inc. Staple cartridges for forming staples having differing formed staple heights
US20070194082A1 (en) 2005-08-31 2007-08-23 Morgan Jerome R Surgical stapling device with anvil having staple forming pockets of varying depths
US7678105B2 (en) * 2005-09-16 2010-03-16 Conmed Corporation Method and apparatus for precursively controlling energy during coaptive tissue fusion
US20070191713A1 (en) 2005-10-14 2007-08-16 Eichmann Stephen E Ultrasonic device for cutting and coagulating
US8734438B2 (en) 2005-10-21 2014-05-27 Covidien Ag Circuit and method for reducing stored energy in an electrosurgical generator
US20070106317A1 (en) 2005-11-09 2007-05-10 Shelton Frederick E Iv Hydraulically and electrically actuated articulation joints for surgical instruments
US7947039B2 (en) 2005-12-12 2011-05-24 Covidien Ag Laparoscopic apparatus for performing electrosurgical procedures
US7736359B2 (en) 2006-01-12 2010-06-15 Covidien Ag RF return pad current detection system
WO2007099460A2 (en) * 2006-01-17 2007-09-07 Endymion Medical Ltd. Electrosurgical methods and devices employing phase-controlled radiofrequency energy
US7887534B2 (en) * 2006-01-18 2011-02-15 Stryker Corporation Electrosurgical system
US7621930B2 (en) 2006-01-20 2009-11-24 Ethicon Endo-Surgery, Inc. Ultrasound medical instrument having a medical ultrasonic blade
CA2574934C (en) * 2006-01-24 2015-12-29 Sherwood Services Ag System and method for closed loop monitoring of monopolar electrosurgical apparatus
US8216223B2 (en) 2006-01-24 2012-07-10 Covidien Ag System and method for tissue sealing
CA2574935A1 (en) 2006-01-24 2007-07-24 Sherwood Services Ag A method and system for controlling an output of a radio-frequency medical generator having an impedance based control algorithm
US8685016B2 (en) 2006-01-24 2014-04-01 Covidien Ag System and method for tissue sealing
AU2013202848B2 (en) * 2006-01-24 2015-06-11 Covidien Ag System and method for closed loop monitoring of monopolar electrosurgical apparatus
US8147485B2 (en) 2006-01-24 2012-04-03 Covidien Ag System and method for tissue sealing
AU2007200299B2 (en) 2006-01-24 2012-11-15 Covidien Ag System and method for tissue sealing
US7513896B2 (en) 2006-01-24 2009-04-07 Covidien Ag Dual synchro-resonant electrosurgical apparatus with bi-directional magnetic coupling
US9186200B2 (en) 2006-01-24 2015-11-17 Covidien Ag System and method for tissue sealing
US20070181043A1 (en) 2006-01-25 2007-08-09 Heim Warren P Coating suitable for surgical instruments
US7845537B2 (en) 2006-01-31 2010-12-07 Ethicon Endo-Surgery, Inc. Surgical instrument having recording capabilities
US20110006101A1 (en) 2009-02-06 2011-01-13 EthiconEndo-Surgery, Inc. Motor driven surgical fastener device with cutting member lockout arrangements
US8763879B2 (en) 2006-01-31 2014-07-01 Ethicon Endo-Surgery, Inc. Accessing data stored in a memory of surgical instrument
US11224427B2 (en) 2006-01-31 2022-01-18 Cilag Gmbh International Surgical stapling system including a console and retraction assembly
US20120292367A1 (en) 2006-01-31 2012-11-22 Ethicon Endo-Surgery, Inc. Robotically-controlled end effector
US20110024477A1 (en) 2009-02-06 2011-02-03 Hall Steven G Driven Surgical Stapler Improvements
US7753904B2 (en) 2006-01-31 2010-07-13 Ethicon Endo-Surgery, Inc. Endoscopic surgical instrument with a handle that can articulate with respect to the shaft
US8186555B2 (en) 2006-01-31 2012-05-29 Ethicon Endo-Surgery, Inc. Motor-driven surgical cutting and fastening instrument with mechanical closure system
US8708213B2 (en) 2006-01-31 2014-04-29 Ethicon Endo-Surgery, Inc. Surgical instrument having a feedback system
US9861359B2 (en) 2006-01-31 2018-01-09 Ethicon Llc Powered surgical instruments with firing system lockout arrangements
US11278279B2 (en) 2006-01-31 2022-03-22 Cilag Gmbh International Surgical instrument assembly
US20110290856A1 (en) 2006-01-31 2011-12-01 Ethicon Endo-Surgery, Inc. Robotically-controlled surgical instrument with force-feedback capabilities
US8161977B2 (en) 2006-01-31 2012-04-24 Ethicon Endo-Surgery, Inc. Accessing data stored in a memory of a surgical instrument
US8820603B2 (en) 2006-01-31 2014-09-02 Ethicon Endo-Surgery, Inc. Accessing data stored in a memory of a surgical instrument
US11793518B2 (en) 2006-01-31 2023-10-24 Cilag Gmbh International Powered surgical instruments with firing system lockout arrangements
US7651493B2 (en) 2006-03-03 2010-01-26 Covidien Ag System and method for controlling electrosurgical snares
US7648499B2 (en) 2006-03-21 2010-01-19 Covidien Ag System and method for generating radio frequency energy
US8992422B2 (en) 2006-03-23 2015-03-31 Ethicon Endo-Surgery, Inc. Robotically-controlled endoscopic accessory channel
US20070225562A1 (en) 2006-03-23 2007-09-27 Ethicon Endo-Surgery, Inc. Articulating endoscopic accessory channel
US7651492B2 (en) 2006-04-24 2010-01-26 Covidien Ag Arc based adaptive control system for an electrosurgical unit
US8753334B2 (en) 2006-05-10 2014-06-17 Covidien Ag System and method for reducing leakage current in an electrosurgical generator
US8322455B2 (en) 2006-06-27 2012-12-04 Ethicon Endo-Surgery, Inc. Manually driven surgical cutting and fastening instrument
US20080004619A1 (en) * 2006-06-28 2008-01-03 Synergetics Usa, Inc. Electrosurgical bipolar instrument
US7740159B2 (en) 2006-08-02 2010-06-22 Ethicon Endo-Surgery, Inc. Pneumatically powered surgical cutting and fastening instrument with a variable control of the actuating rate of firing with mechanical power assist
US8034049B2 (en) 2006-08-08 2011-10-11 Covidien Ag System and method for measuring initial tissue impedance
US7731717B2 (en) 2006-08-08 2010-06-08 Covidien Ag System and method for controlling RF output during tissue sealing
US7722603B2 (en) 2006-09-28 2010-05-25 Covidien Ag Smart return electrode pad
US7794457B2 (en) 2006-09-28 2010-09-14 Covidien Ag Transformer for RF voltage sensing
US7927329B2 (en) 2006-09-28 2011-04-19 Covidien Ag Temperature sensing return electrode pad
US10568652B2 (en) 2006-09-29 2020-02-25 Ethicon Llc Surgical staples having attached drivers of different heights and stapling instruments for deploying the same
US20110087276A1 (en) 2009-10-09 2011-04-14 Ethicon Endo-Surgery, Inc. Method for forming a staple
US10130359B2 (en) 2006-09-29 2018-11-20 Ethicon Llc Method for forming a staple
US8485412B2 (en) 2006-09-29 2013-07-16 Ethicon Endo-Surgery, Inc. Surgical staples having attached drivers and stapling instruments for deploying the same
US8459520B2 (en) 2007-01-10 2013-06-11 Ethicon Endo-Surgery, Inc. Surgical instrument with wireless communication between control unit and remote sensor
US8684253B2 (en) 2007-01-10 2014-04-01 Ethicon Endo-Surgery, Inc. Surgical instrument with wireless communication between a control unit of a robotic system and remote sensor
US11291441B2 (en) 2007-01-10 2022-04-05 Cilag Gmbh International Surgical instrument with wireless communication between control unit and remote sensor
US8652120B2 (en) 2007-01-10 2014-02-18 Ethicon Endo-Surgery, Inc. Surgical instrument with wireless communication between control unit and sensor transponders
US8701958B2 (en) 2007-01-11 2014-04-22 Ethicon Endo-Surgery, Inc. Curved end effector for a surgical stapling device
US11039836B2 (en) 2007-01-11 2021-06-22 Cilag Gmbh International Staple cartridge for use with a surgical stapling instrument
WO2008125962A2 (en) * 2007-03-01 2008-10-23 Endymed Medical Ltd. Electrosurgical methods and devices employing semiconductor chips
US8727197B2 (en) 2007-03-15 2014-05-20 Ethicon Endo-Surgery, Inc. Staple cartridge cavity configuration with cooperative surgical staple
US8057498B2 (en) 2007-11-30 2011-11-15 Ethicon Endo-Surgery, Inc. Ultrasonic surgical instrument blades
US8911460B2 (en) 2007-03-22 2014-12-16 Ethicon Endo-Surgery, Inc. Ultrasonic surgical instruments
US8142461B2 (en) 2007-03-22 2012-03-27 Ethicon Endo-Surgery, Inc. Surgical instruments
US8226675B2 (en) 2007-03-22 2012-07-24 Ethicon Endo-Surgery, Inc. Surgical instruments
US8893946B2 (en) 2007-03-28 2014-11-25 Ethicon Endo-Surgery, Inc. Laparoscopic tissue thickness and clamp load measuring devices
US8021360B2 (en) 2007-04-03 2011-09-20 Tyco Healthcare Group Lp System and method for providing even heat distribution and cooling return pads
US8777940B2 (en) 2007-04-03 2014-07-15 Covidien Lp System and method for providing even heat distribution and cooling return pads
US8080007B2 (en) 2007-05-07 2011-12-20 Tyco Healthcare Group Lp Capacitive electrosurgical return pad with contact quality monitoring
US8777941B2 (en) 2007-05-10 2014-07-15 Covidien Lp Adjustable impedance electrosurgical electrodes
US8388612B2 (en) 2007-05-11 2013-03-05 Covidien Lp Temperature monitoring return electrode
US8231614B2 (en) 2007-05-11 2012-07-31 Tyco Healthcare Group Lp Temperature monitoring return electrode
US8157145B2 (en) 2007-05-31 2012-04-17 Ethicon Endo-Surgery, Inc. Pneumatically powered surgical cutting and fastening instrument with electrical feedback
US8534528B2 (en) 2007-06-04 2013-09-17 Ethicon Endo-Surgery, Inc. Surgical instrument having a multiple rate directional switching mechanism
US11672531B2 (en) 2007-06-04 2023-06-13 Cilag Gmbh International Rotary drive systems for surgical instruments
US7832408B2 (en) 2007-06-04 2010-11-16 Ethicon Endo-Surgery, Inc. Surgical instrument having a directional switching mechanism
US8931682B2 (en) 2007-06-04 2015-01-13 Ethicon Endo-Surgery, Inc. Robotically-controlled shaft based rotary drive systems for surgical instruments
US7905380B2 (en) 2007-06-04 2011-03-15 Ethicon Endo-Surgery, Inc. Surgical instrument having a multiple rate directional switching mechanism
US8308040B2 (en) 2007-06-22 2012-11-13 Ethicon Endo-Surgery, Inc. Surgical stapling instrument with an articulatable end effector
US7753245B2 (en) 2007-06-22 2010-07-13 Ethicon Endo-Surgery, Inc. Surgical stapling instruments
US11849941B2 (en) 2007-06-29 2023-12-26 Cilag Gmbh International Staple cartridge having staple cavities extending at a transverse angle relative to a longitudinal cartridge axis
US7834484B2 (en) 2007-07-16 2010-11-16 Tyco Healthcare Group Lp Connection cable and method for activating a voltage-controlled generator
US8882791B2 (en) 2007-07-27 2014-11-11 Ethicon Endo-Surgery, Inc. Ultrasonic surgical instruments
US8808319B2 (en) 2007-07-27 2014-08-19 Ethicon Endo-Surgery, Inc. Surgical instruments
US8523889B2 (en) 2007-07-27 2013-09-03 Ethicon Endo-Surgery, Inc. Ultrasonic end effectors with increased active length
US8512365B2 (en) 2007-07-31 2013-08-20 Ethicon Endo-Surgery, Inc. Surgical instruments
US8430898B2 (en) 2007-07-31 2013-04-30 Ethicon Endo-Surgery, Inc. Ultrasonic surgical instruments
US9044261B2 (en) 2007-07-31 2015-06-02 Ethicon Endo-Surgery, Inc. Temperature controlled ultrasonic surgical instruments
US8801703B2 (en) 2007-08-01 2014-08-12 Covidien Lp System and method for return electrode monitoring
US8100898B2 (en) 2007-08-01 2012-01-24 Tyco Healthcare Group Lp System and method for return electrode monitoring
US8216220B2 (en) 2007-09-07 2012-07-10 Tyco Healthcare Group Lp System and method for transmission of combined data stream
US8512332B2 (en) 2007-09-21 2013-08-20 Covidien Lp Real-time arc control in electrosurgical generators
US8623027B2 (en) 2007-10-05 2014-01-07 Ethicon Endo-Surgery, Inc. Ergonomic surgical instruments
US7972335B2 (en) * 2007-10-16 2011-07-05 Conmed Corporation Coaptive tissue fusion method and apparatus with current derivative precursive energy termination control
US7972334B2 (en) * 2007-10-16 2011-07-05 Conmed Corporation Coaptive tissue fusion method and apparatus with energy derivative precursive energy termination control
US10010339B2 (en) 2007-11-30 2018-07-03 Ethicon Llc Ultrasonic surgical blades
US8523853B2 (en) * 2008-02-05 2013-09-03 Covidien Lp Hybrid contact quality monitoring return electrode
US8561870B2 (en) 2008-02-13 2013-10-22 Ethicon Endo-Surgery, Inc. Surgical stapling instrument
US8453908B2 (en) 2008-02-13 2013-06-04 Ethicon Endo-Surgery, Inc. Surgical stapling instrument with improved firing trigger arrangement
US7905381B2 (en) 2008-09-19 2011-03-15 Ethicon Endo-Surgery, Inc. Surgical stapling instrument with cutting member arrangement
US8540133B2 (en) 2008-09-19 2013-09-24 Ethicon Endo-Surgery, Inc. Staple cartridge
US7766209B2 (en) 2008-02-13 2010-08-03 Ethicon Endo-Surgery, Inc. Surgical stapling instrument with improved firing trigger arrangement
US8622274B2 (en) 2008-02-14 2014-01-07 Ethicon Endo-Surgery, Inc. Motorized cutting and fastening instrument having control circuit for optimizing battery usage
BRPI0901282A2 (en) 2008-02-14 2009-11-17 Ethicon Endo Surgery Inc surgical cutting and fixation instrument with rf electrodes
US7866527B2 (en) 2008-02-14 2011-01-11 Ethicon Endo-Surgery, Inc. Surgical stapling apparatus with interlockable firing system
US8657174B2 (en) 2008-02-14 2014-02-25 Ethicon Endo-Surgery, Inc. Motorized surgical cutting and fastening instrument having handle based power source
US8752749B2 (en) 2008-02-14 2014-06-17 Ethicon Endo-Surgery, Inc. Robotically-controlled disposable motor-driven loading unit
US7819298B2 (en) 2008-02-14 2010-10-26 Ethicon Endo-Surgery, Inc. Surgical stapling apparatus with control features operable with one hand
US7793812B2 (en) 2008-02-14 2010-09-14 Ethicon Endo-Surgery, Inc. Disposable motor-driven loading unit for use with a surgical cutting and stapling apparatus
US8758391B2 (en) 2008-02-14 2014-06-24 Ethicon Endo-Surgery, Inc. Interchangeable tools for surgical instruments
US8459525B2 (en) 2008-02-14 2013-06-11 Ethicon Endo-Sugery, Inc. Motorized surgical cutting and fastening instrument having a magnetic drive train torque limiting device
US8584919B2 (en) 2008-02-14 2013-11-19 Ethicon Endo-Sugery, Inc. Surgical stapling apparatus with load-sensitive firing mechanism
US9179912B2 (en) 2008-02-14 2015-11-10 Ethicon Endo-Surgery, Inc. Robotically-controlled motorized surgical cutting and fastening instrument
US8573465B2 (en) 2008-02-14 2013-11-05 Ethicon Endo-Surgery, Inc. Robotically-controlled surgical end effector system with rotary actuated closure systems
US8636736B2 (en) 2008-02-14 2014-01-28 Ethicon Endo-Surgery, Inc. Motorized surgical cutting and fastening instrument
US20090206142A1 (en) 2008-02-15 2009-08-20 Ethicon Endo-Surgery, Inc. Buttress material for a surgical stapling instrument
US11272927B2 (en) 2008-02-15 2022-03-15 Cilag Gmbh International Layer arrangements for surgical staple cartridges
US9615826B2 (en) 2010-09-30 2017-04-11 Ethicon Endo-Surgery, Llc Multiple thickness implantable layers for surgical stapling devices
US20090206131A1 (en) 2008-02-15 2009-08-20 Ethicon Endo-Surgery, Inc. End effector coupling arrangements for a surgical cutting and stapling instrument
US8608044B2 (en) 2008-02-15 2013-12-17 Ethicon Endo-Surgery, Inc. Feedback and lockout mechanism for surgical instrument
US8409186B2 (en) 2008-03-13 2013-04-02 Covidien Lp Crest factor enhancement in electrosurgical generators
US20090240244A1 (en) * 2008-03-19 2009-09-24 Synergetics Usa, Inc. Electrosurgical Generator Having Boost Mode Control Based on Impedance
US8257349B2 (en) * 2008-03-28 2012-09-04 Tyco Healthcare Group Lp Electrosurgical apparatus with predictive RF source control
EP2319447B1 (en) 2008-03-31 2012-08-22 Applied Medical Resources Corporation Electrosurgical tool with jaws actuatable by a force regulation mechanism
US8226639B2 (en) 2008-06-10 2012-07-24 Tyco Healthcare Group Lp System and method for output control of electrosurgical generator
US9089360B2 (en) 2008-08-06 2015-07-28 Ethicon Endo-Surgery, Inc. Devices and techniques for cutting and coagulating tissue
US8083120B2 (en) 2008-09-18 2011-12-27 Ethicon Endo-Surgery, Inc. End effector for use with a surgical cutting and stapling instrument
PL3476312T3 (en) 2008-09-19 2024-03-11 Ethicon Llc Surgical stapler with apparatus for adjusting staple height
US9050083B2 (en) 2008-09-23 2015-06-09 Ethicon Endo-Surgery, Inc. Motorized surgical instrument
US9005230B2 (en) 2008-09-23 2015-04-14 Ethicon Endo-Surgery, Inc. Motorized surgical instrument
US11648005B2 (en) 2008-09-23 2023-05-16 Cilag Gmbh International Robotically-controlled motorized surgical instrument with an end effector
US8210411B2 (en) 2008-09-23 2012-07-03 Ethicon Endo-Surgery, Inc. Motor-driven surgical cutting instrument
US9386983B2 (en) 2008-09-23 2016-07-12 Ethicon Endo-Surgery, Llc Robotically-controlled motorized surgical instrument
US8608045B2 (en) 2008-10-10 2013-12-17 Ethicon Endo-Sugery, Inc. Powered surgical cutting and stapling apparatus with manually retractable firing system
US8308721B2 (en) 2008-12-04 2012-11-13 Olympus Medical Systems Corp. Surgical system and surgical method
US8262652B2 (en) 2009-01-12 2012-09-11 Tyco Healthcare Group Lp Imaginary impedance process monitoring and intelligent shut-off
US8486058B1 (en) * 2009-01-30 2013-07-16 Chest Innovations, Inc. Minigenerator
US8485413B2 (en) 2009-02-05 2013-07-16 Ethicon Endo-Surgery, Inc. Surgical stapling instrument comprising an articulation joint
US8397971B2 (en) 2009-02-05 2013-03-19 Ethicon Endo-Surgery, Inc. Sterilizable surgical instrument
US8414577B2 (en) 2009-02-05 2013-04-09 Ethicon Endo-Surgery, Inc. Surgical instruments and components for use in sterile environments
US8517239B2 (en) 2009-02-05 2013-08-27 Ethicon Endo-Surgery, Inc. Surgical stapling instrument comprising a magnetic element driver
JP2012517287A (en) 2009-02-06 2012-08-02 エシコン・エンド−サージェリィ・インコーポレイテッド Improvement of driven surgical stapler
US8444036B2 (en) 2009-02-06 2013-05-21 Ethicon Endo-Surgery, Inc. Motor driven surgical fastener device with mechanisms for adjusting a tissue gap within the end effector
US9522039B2 (en) 2009-03-11 2016-12-20 Covidien Lp Crest factor enhancement in electrosurgical generators
US8066167B2 (en) 2009-03-23 2011-11-29 Ethicon Endo-Surgery, Inc. Circular surgical stapling instrument with anvil locking system
US9265556B2 (en) 2009-04-17 2016-02-23 Domain Surgical, Inc. Thermally adjustable surgical tool, balloon catheters and sculpting of biologic materials
US9131977B2 (en) 2009-04-17 2015-09-15 Domain Surgical, Inc. Layered ferromagnetic coated conductor thermal surgical tool
US8523851B2 (en) 2009-04-17 2013-09-03 Domain Surgical, Inc. Inductively heated multi-mode ultrasonic surgical tool
US9107666B2 (en) 2009-04-17 2015-08-18 Domain Surgical, Inc. Thermal resecting loop
US9078655B2 (en) 2009-04-17 2015-07-14 Domain Surgical, Inc. Heated balloon catheter
US9700339B2 (en) 2009-05-20 2017-07-11 Ethicon Endo-Surgery, Inc. Coupling arrangements and methods for attaching tools to ultrasonic surgical instruments
DE102009024612A1 (en) * 2009-06-10 2010-12-16 Erbe Elektromedizin Gmbh Supply device for providing an HF output voltage, HF surgery device with corresponding supply device and method for operating an HF generator unit
US8663220B2 (en) 2009-07-15 2014-03-04 Ethicon Endo-Surgery, Inc. Ultrasonic surgical instruments
US8932282B2 (en) 2009-08-03 2015-01-13 Covidien Lp Power level transitioning in a surgical instrument
US8685015B2 (en) * 2009-09-24 2014-04-01 Covidien Lp System and method for multi-pole phase-shifted radio frequency application
US8652125B2 (en) 2009-09-28 2014-02-18 Covidien Lp Electrosurgical generator user interface
US11090104B2 (en) 2009-10-09 2021-08-17 Cilag Gmbh International Surgical generator for ultrasonic and electrosurgical devices
USRE47996E1 (en) 2009-10-09 2020-05-19 Ethicon Llc Surgical generator for ultrasonic and electrosurgical devices
US8951248B2 (en) 2009-10-09 2015-02-10 Ethicon Endo-Surgery, Inc. Surgical generator for ultrasonic and electrosurgical devices
US10441345B2 (en) 2009-10-09 2019-10-15 Ethicon Llc Surgical generator for ultrasonic and electrosurgical devices
US9168054B2 (en) 2009-10-09 2015-10-27 Ethicon Endo-Surgery, Inc. Surgical generator for ultrasonic and electrosurgical devices
AU2010314930C1 (en) 2009-11-05 2014-04-03 Stratus Medical, LLC Methods and systems for spinal radio frequency neurotomy
US8899466B2 (en) 2009-11-19 2014-12-02 Ethicon Endo-Surgery, Inc. Devices and methods for introducing a surgical circular stapling instrument into a patient
US8136712B2 (en) 2009-12-10 2012-03-20 Ethicon Endo-Surgery, Inc. Surgical stapler with discrete staple height adjustment and tactile feedback
US8851354B2 (en) 2009-12-24 2014-10-07 Ethicon Endo-Surgery, Inc. Surgical cutting instrument that analyzes tissue thickness
US8220688B2 (en) 2009-12-24 2012-07-17 Ethicon Endo-Surgery, Inc. Motor-driven surgical cutting instrument with electric actuator directional control assembly
US8267300B2 (en) 2009-12-30 2012-09-18 Ethicon Endo-Surgery, Inc. Dampening device for endoscopic surgical stapler
US8608046B2 (en) 2010-01-07 2013-12-17 Ethicon Endo-Surgery, Inc. Test device for a surgical tool
US9198712B1 (en) * 2010-01-29 2015-12-01 Chest Innovations Minigenerator
US8579928B2 (en) 2010-02-11 2013-11-12 Ethicon Endo-Surgery, Inc. Outer sheath and blade arrangements for ultrasonic surgical instruments
US8486096B2 (en) 2010-02-11 2013-07-16 Ethicon Endo-Surgery, Inc. Dual purpose surgical instrument for cutting and coagulating tissue
US8469981B2 (en) 2010-02-11 2013-06-25 Ethicon Endo-Surgery, Inc. Rotatable cutting implement arrangements for ultrasonic surgical instruments
US8961547B2 (en) 2010-02-11 2015-02-24 Ethicon Endo-Surgery, Inc. Ultrasonic surgical instruments with moving cutting implement
US8951272B2 (en) 2010-02-11 2015-02-10 Ethicon Endo-Surgery, Inc. Seal arrangements for ultrasonically powered surgical instruments
JP2013526940A (en) 2010-05-21 2013-06-27 ニンバス・コンセプツ・エルエルシー Systems and methods for tissue ablation
GB2480498A (en) 2010-05-21 2011-11-23 Ethicon Endo Surgery Inc Medical device comprising RF circuitry
US8636730B2 (en) 2010-07-12 2014-01-28 Covidien Lp Polarity control of electrosurgical generator
US8795327B2 (en) 2010-07-22 2014-08-05 Ethicon Endo-Surgery, Inc. Electrosurgical instrument with separate closure and cutting members
US9192431B2 (en) 2010-07-23 2015-11-24 Ethicon Endo-Surgery, Inc. Electrosurgical cutting and sealing instrument
US8801735B2 (en) 2010-07-30 2014-08-12 Ethicon Endo-Surgery, Inc. Surgical circular stapler with tissue retention arrangements
US8789740B2 (en) 2010-07-30 2014-07-29 Ethicon Endo-Surgery, Inc. Linear cutting and stapling device with selectively disengageable cutting member
US8783543B2 (en) 2010-07-30 2014-07-22 Ethicon Endo-Surgery, Inc. Tissue acquisition arrangements and methods for surgical stapling devices
US8360296B2 (en) 2010-09-09 2013-01-29 Ethicon Endo-Surgery, Inc. Surgical stapling head assembly with firing lockout for a surgical stapler
US9289212B2 (en) 2010-09-17 2016-03-22 Ethicon Endo-Surgery, Inc. Surgical instruments and batteries for surgical instruments
US8632525B2 (en) 2010-09-17 2014-01-21 Ethicon Endo-Surgery, Inc. Power control arrangements for surgical instruments and batteries
US20120078244A1 (en) 2010-09-24 2012-03-29 Worrell Barry C Control features for articulating surgical device
US8733613B2 (en) 2010-09-29 2014-05-27 Ethicon Endo-Surgery, Inc. Staple cartridge
US9307989B2 (en) 2012-03-28 2016-04-12 Ethicon Endo-Surgery, Llc Tissue stapler having a thickness compensator incorportating a hydrophobic agent
US9314246B2 (en) 2010-09-30 2016-04-19 Ethicon Endo-Surgery, Llc Tissue stapler having a thickness compensator incorporating an anti-inflammatory agent
US20120080498A1 (en) 2010-09-30 2012-04-05 Ethicon Endo-Surgery, Inc. Curved end effector for a stapling instrument
US9220500B2 (en) 2010-09-30 2015-12-29 Ethicon Endo-Surgery, Inc. Tissue thickness compensator comprising structure to produce a resilient load
US9700317B2 (en) 2010-09-30 2017-07-11 Ethicon Endo-Surgery, Llc Fastener cartridge comprising a releasable tissue thickness compensator
US9332974B2 (en) 2010-09-30 2016-05-10 Ethicon Endo-Surgery, Llc Layered tissue thickness compensator
US9044228B2 (en) 2010-09-30 2015-06-02 Ethicon Endo-Surgery, Inc. Fastener system comprising a plurality of fastener cartridges
US9204880B2 (en) 2012-03-28 2015-12-08 Ethicon Endo-Surgery, Inc. Tissue thickness compensator comprising capsules defining a low pressure environment
US11925354B2 (en) 2010-09-30 2024-03-12 Cilag Gmbh International Staple cartridge comprising staples positioned within a compressible portion thereof
US9386988B2 (en) 2010-09-30 2016-07-12 Ethicon End-Surgery, LLC Retainer assembly including a tissue thickness compensator
US9220501B2 (en) 2010-09-30 2015-12-29 Ethicon Endo-Surgery, Inc. Tissue thickness compensators
US9113865B2 (en) 2010-09-30 2015-08-25 Ethicon Endo-Surgery, Inc. Staple cartridge comprising a layer
US9232941B2 (en) 2010-09-30 2016-01-12 Ethicon Endo-Surgery, Inc. Tissue thickness compensator comprising a reservoir
US9629814B2 (en) 2010-09-30 2017-04-25 Ethicon Endo-Surgery, Llc Tissue thickness compensator configured to redistribute compressive forces
US11812965B2 (en) 2010-09-30 2023-11-14 Cilag Gmbh International Layer of material for a surgical end effector
US11298125B2 (en) 2010-09-30 2022-04-12 Cilag Gmbh International Tissue stapler having a thickness compensator
US8893949B2 (en) 2010-09-30 2014-11-25 Ethicon Endo-Surgery, Inc. Surgical stapler with floating anvil
US9351730B2 (en) 2011-04-29 2016-05-31 Ethicon Endo-Surgery, Llc Tissue thickness compensator comprising channels
CA2812553C (en) 2010-09-30 2019-02-12 Ethicon Endo-Surgery, Inc. Fastener system comprising a retention matrix and an alignment matrix
US9414838B2 (en) 2012-03-28 2016-08-16 Ethicon Endo-Surgery, Llc Tissue thickness compensator comprised of a plurality of materials
US9364233B2 (en) 2010-09-30 2016-06-14 Ethicon Endo-Surgery, Llc Tissue thickness compensators for circular surgical staplers
US10945731B2 (en) 2010-09-30 2021-03-16 Ethicon Llc Tissue thickness compensator comprising controlled release and expansion
ES2664081T3 (en) 2010-10-01 2018-04-18 Applied Medical Resources Corporation Electrosurgical system with a radio frequency amplifier and with means for adapting to the separation between electrodes
US8695866B2 (en) 2010-10-01 2014-04-15 Ethicon Endo-Surgery, Inc. Surgical instrument having a power control circuit
USD650074S1 (en) 2010-10-01 2011-12-06 Ethicon Endo-Surgery, Inc. Surgical instrument
US8632462B2 (en) 2011-03-14 2014-01-21 Ethicon Endo-Surgery, Inc. Trans-rectum universal ports
US9044229B2 (en) 2011-03-15 2015-06-02 Ethicon Endo-Surgery, Inc. Surgical fastener instruments
US8540131B2 (en) 2011-03-15 2013-09-24 Ethicon Endo-Surgery, Inc. Surgical staple cartridges with tissue tethers for manipulating divided tissue and methods of using same
US8800841B2 (en) 2011-03-15 2014-08-12 Ethicon Endo-Surgery, Inc. Surgical staple cartridges
US8926598B2 (en) 2011-03-15 2015-01-06 Ethicon Endo-Surgery, Inc. Surgical instruments with articulatable and rotatable end effector
US8857693B2 (en) 2011-03-15 2014-10-14 Ethicon Endo-Surgery, Inc. Surgical instruments with lockable articulating end effector
AU2012250197B2 (en) 2011-04-29 2017-08-10 Ethicon Endo-Surgery, Inc. Staple cartridge comprising staples positioned within a compressible portion thereof
US9072535B2 (en) 2011-05-27 2015-07-07 Ethicon Endo-Surgery, Inc. Surgical stapling instruments with rotatable staple deployment arrangements
US11207064B2 (en) 2011-05-27 2021-12-28 Cilag Gmbh International Automated end effector component reloading system for use with a robotic system
US9259265B2 (en) 2011-07-22 2016-02-16 Ethicon Endo-Surgery, Llc Surgical instruments for tensioning tissue
US9107663B2 (en) 2011-09-06 2015-08-18 Ethicon Endo-Surgery, Inc. Stapling instrument comprising resettable staple drivers
WO2013040255A2 (en) 2011-09-13 2013-03-21 Domain Surgical, Inc. Sealing and/or cutting instrument
US9050084B2 (en) 2011-09-23 2015-06-09 Ethicon Endo-Surgery, Inc. Staple cartridge including collapsible deck arrangement
CN104039255B (en) 2011-12-06 2017-10-24 领域外科股份有限公司 The system and method for controlling the power of surgical instruments to convey
US10076383B2 (en) 2012-01-25 2018-09-18 Covidien Lp Electrosurgical device having a multiplexer
US9037447B2 (en) * 2012-01-27 2015-05-19 Covidien Lp Systems and methods for phase predictive impedance loss model calibration and compensation
US9480523B2 (en) * 2012-01-27 2016-11-01 Covidien Lp Systems and methods for phase predictive impedance loss model calibration and compensation
EP2811932B1 (en) 2012-02-10 2019-06-26 Ethicon LLC Robotically controlled surgical instrument
US9044230B2 (en) 2012-02-13 2015-06-02 Ethicon Endo-Surgery, Inc. Surgical cutting and fastening instrument with apparatus for determining cartridge and firing motion status
US9078653B2 (en) 2012-03-26 2015-07-14 Ethicon Endo-Surgery, Inc. Surgical stapling device with lockout system for preventing actuation in the absence of an installed staple cartridge
US9198662B2 (en) 2012-03-28 2015-12-01 Ethicon Endo-Surgery, Inc. Tissue thickness compensator having improved visibility
BR112014024098B1 (en) 2012-03-28 2021-05-25 Ethicon Endo-Surgery, Inc. staple cartridge
JP6305979B2 (en) 2012-03-28 2018-04-04 エシコン・エンド−サージェリィ・インコーポレイテッドEthicon Endo−Surgery,Inc. Tissue thickness compensator with multiple layers
RU2644272C2 (en) 2012-03-28 2018-02-08 Этикон Эндо-Серджери, Инк. Limitation node with tissue thickness compensator
US9226766B2 (en) 2012-04-09 2016-01-05 Ethicon Endo-Surgery, Inc. Serial communication protocol for medical device
US9237921B2 (en) 2012-04-09 2016-01-19 Ethicon Endo-Surgery, Inc. Devices and techniques for cutting and coagulating tissue
US9241731B2 (en) 2012-04-09 2016-01-26 Ethicon Endo-Surgery, Inc. Rotatable electrical connection for ultrasonic surgical instruments
US9439668B2 (en) 2012-04-09 2016-09-13 Ethicon Endo-Surgery, Llc Switch arrangements for ultrasonic surgical instruments
US9724118B2 (en) 2012-04-09 2017-08-08 Ethicon Endo-Surgery, Llc Techniques for cutting and coagulating tissue for ultrasonic surgical instruments
US9044238B2 (en) 2012-04-10 2015-06-02 Covidien Lp Electrosurgical monopolar apparatus with arc energy vascular coagulation control
US9101358B2 (en) 2012-06-15 2015-08-11 Ethicon Endo-Surgery, Inc. Articulatable surgical instrument comprising a firing drive
US9561038B2 (en) 2012-06-28 2017-02-07 Ethicon Endo-Surgery, Llc Interchangeable clip applier
US20140005705A1 (en) 2012-06-29 2014-01-02 Ethicon Endo-Surgery, Inc. Surgical instruments with articulating shafts
US9125662B2 (en) 2012-06-28 2015-09-08 Ethicon Endo-Surgery, Inc. Multi-axis articulating and rotating surgical tools
US9101385B2 (en) 2012-06-28 2015-08-11 Ethicon Endo-Surgery, Inc. Electrode connections for rotary driven surgical tools
US8747238B2 (en) 2012-06-28 2014-06-10 Ethicon Endo-Surgery, Inc. Rotary drive shaft assemblies for surgical instruments with articulatable end effectors
US9028494B2 (en) 2012-06-28 2015-05-12 Ethicon Endo-Surgery, Inc. Interchangeable end effector coupling arrangement
US9119657B2 (en) 2012-06-28 2015-09-01 Ethicon Endo-Surgery, Inc. Rotary actuatable closure arrangement for surgical end effector
US9408606B2 (en) 2012-06-28 2016-08-09 Ethicon Endo-Surgery, Llc Robotically powered surgical device with manually-actuatable reversing system
BR112014032776B1 (en) 2012-06-28 2021-09-08 Ethicon Endo-Surgery, Inc SURGICAL INSTRUMENT SYSTEM AND SURGICAL KIT FOR USE WITH A SURGICAL INSTRUMENT SYSTEM
US20140001231A1 (en) 2012-06-28 2014-01-02 Ethicon Endo-Surgery, Inc. Firing system lockout arrangements for surgical instruments
US9204879B2 (en) 2012-06-28 2015-12-08 Ethicon Endo-Surgery, Inc. Flexible drive member
US9289256B2 (en) 2012-06-28 2016-03-22 Ethicon Endo-Surgery, Llc Surgical end effectors having angled tissue-contacting surfaces
US9282974B2 (en) 2012-06-28 2016-03-15 Ethicon Endo-Surgery, Llc Empty clip cartridge lockout
US9072536B2 (en) 2012-06-28 2015-07-07 Ethicon Endo-Surgery, Inc. Differential locking arrangements for rotary powered surgical instruments
JP6290201B2 (en) 2012-06-28 2018-03-07 エシコン・エンド−サージェリィ・インコーポレイテッドEthicon Endo−Surgery,Inc. Lockout for empty clip cartridge
US11202631B2 (en) 2012-06-28 2021-12-21 Cilag Gmbh International Stapling assembly comprising a firing lockout
US9408622B2 (en) 2012-06-29 2016-08-09 Ethicon Endo-Surgery, Llc Surgical instruments with articulating shafts
US9820768B2 (en) 2012-06-29 2017-11-21 Ethicon Llc Ultrasonic surgical instruments with control mechanisms
US9393037B2 (en) 2012-06-29 2016-07-19 Ethicon Endo-Surgery, Llc Surgical instruments with articulating shafts
US9351754B2 (en) 2012-06-29 2016-05-31 Ethicon Endo-Surgery, Llc Ultrasonic surgical instruments with distally positioned jaw assemblies
US20140005702A1 (en) 2012-06-29 2014-01-02 Ethicon Endo-Surgery, Inc. Ultrasonic surgical instruments with distally positioned transducers
US9283045B2 (en) 2012-06-29 2016-03-15 Ethicon Endo-Surgery, Llc Surgical instruments with fluid management system
US9326788B2 (en) 2012-06-29 2016-05-03 Ethicon Endo-Surgery, Llc Lockout mechanism for use with robotic electrosurgical device
US9226767B2 (en) 2012-06-29 2016-01-05 Ethicon Endo-Surgery, Inc. Closed feedback control for electrosurgical device
US9198714B2 (en) 2012-06-29 2015-12-01 Ethicon Endo-Surgery, Inc. Haptic feedback devices for surgical robot
US9492224B2 (en) 2012-09-28 2016-11-15 EthiconEndo-Surgery, LLC Multi-function bi-polar forceps
US9386985B2 (en) 2012-10-15 2016-07-12 Ethicon Endo-Surgery, Llc Surgical cutting instrument
US9095367B2 (en) 2012-10-22 2015-08-04 Ethicon Endo-Surgery, Inc. Flexible harmonic waveguides/blades for surgical instruments
US10201365B2 (en) 2012-10-22 2019-02-12 Ethicon Llc Surgeon feedback sensing and display methods
US20140135804A1 (en) 2012-11-15 2014-05-15 Ethicon Endo-Surgery, Inc. Ultrasonic and electrosurgical devices
US9386984B2 (en) 2013-02-08 2016-07-12 Ethicon Endo-Surgery, Llc Staple cartridge comprising a releasable cover
US10092292B2 (en) 2013-02-28 2018-10-09 Ethicon Llc Staple forming features for surgical stapling instrument
US20140249557A1 (en) 2013-03-01 2014-09-04 Ethicon Endo-Surgery, Inc. Thumbwheel switch arrangements for surgical instruments
BR112015021098B1 (en) 2013-03-01 2022-02-15 Ethicon Endo-Surgery, Inc COVERAGE FOR A JOINT JOINT AND SURGICAL INSTRUMENT
RU2669463C2 (en) 2013-03-01 2018-10-11 Этикон Эндо-Серджери, Инк. Surgical instrument with soft stop
US9345481B2 (en) 2013-03-13 2016-05-24 Ethicon Endo-Surgery, Llc Staple cartridge tissue thickness sensor system
US9883860B2 (en) 2013-03-14 2018-02-06 Ethicon Llc Interchangeable shaft assemblies for use with a surgical instrument
US9629629B2 (en) 2013-03-14 2017-04-25 Ethicon Endo-Surgey, LLC Control systems for surgical instruments
US10226273B2 (en) 2013-03-14 2019-03-12 Ethicon Llc Mechanical fasteners for use with surgical energy devices
US9241728B2 (en) 2013-03-15 2016-01-26 Ethicon Endo-Surgery, Inc. Surgical instrument with multiple clamping mechanisms
US9795384B2 (en) 2013-03-27 2017-10-24 Ethicon Llc Fastener cartridge comprising a tissue thickness compensator and a gap setting element
US9332984B2 (en) 2013-03-27 2016-05-10 Ethicon Endo-Surgery, Llc Fastener cartridge assemblies
US9572577B2 (en) 2013-03-27 2017-02-21 Ethicon Endo-Surgery, Llc Fastener cartridge comprising a tissue thickness compensator including openings therein
US10136887B2 (en) 2013-04-16 2018-11-27 Ethicon Llc Drive system decoupling arrangement for a surgical instrument
BR112015026109B1 (en) 2013-04-16 2022-02-22 Ethicon Endo-Surgery, Inc surgical instrument
US9574644B2 (en) 2013-05-30 2017-02-21 Ethicon Endo-Surgery, Llc Power module for use with a surgical instrument
US9872719B2 (en) * 2013-07-24 2018-01-23 Covidien Lp Systems and methods for generating electrosurgical energy using a multistage power converter
US9655670B2 (en) 2013-07-29 2017-05-23 Covidien Lp Systems and methods for measuring tissue impedance through an electrosurgical cable
US9924942B2 (en) 2013-08-23 2018-03-27 Ethicon Llc Motor-powered articulatable surgical instruments
MX369362B (en) 2013-08-23 2019-11-06 Ethicon Endo Surgery Llc Firing member retraction devices for powered surgical instruments.
US9814514B2 (en) 2013-09-13 2017-11-14 Ethicon Llc Electrosurgical (RF) medical instruments for cutting and coagulating tissue
US20140171986A1 (en) 2013-09-13 2014-06-19 Ethicon Endo-Surgery, Inc. Surgical Clip Having Comliant Portion
US9265926B2 (en) 2013-11-08 2016-02-23 Ethicon Endo-Surgery, Llc Electrosurgical devices
GB2521228A (en) 2013-12-16 2015-06-17 Ethicon Endo Surgery Inc Medical device
GB2521229A (en) 2013-12-16 2015-06-17 Ethicon Endo Surgery Inc Medical device
US9839428B2 (en) 2013-12-23 2017-12-12 Ethicon Llc Surgical cutting and stapling instruments with independent jaw control features
US9724092B2 (en) 2013-12-23 2017-08-08 Ethicon Llc Modular surgical instruments
US9585662B2 (en) 2013-12-23 2017-03-07 Ethicon Endo-Surgery, Llc Fastener cartridge comprising an extendable firing member
US9642620B2 (en) 2013-12-23 2017-05-09 Ethicon Endo-Surgery, Llc Surgical cutting and stapling instruments with articulatable end effectors
US9681870B2 (en) 2013-12-23 2017-06-20 Ethicon Llc Articulatable surgical instruments with separate and distinct closing and firing systems
US20150173756A1 (en) 2013-12-23 2015-06-25 Ethicon Endo-Surgery, Inc. Surgical cutting and stapling methods
US9795436B2 (en) 2014-01-07 2017-10-24 Ethicon Llc Harvesting energy from a surgical generator
CN103736592A (en) * 2014-01-24 2014-04-23 镇江天力变压器有限公司 Automatic control system of electrical dust removal high-frequency power supply
US9962161B2 (en) 2014-02-12 2018-05-08 Ethicon Llc Deliverable surgical instrument
US20140166725A1 (en) 2014-02-24 2014-06-19 Ethicon Endo-Surgery, Inc. Staple cartridge including a barbed staple.
CN106232029B (en) 2014-02-24 2019-04-12 伊西康内外科有限责任公司 Fastening system including firing member locking piece
US9554854B2 (en) 2014-03-18 2017-01-31 Ethicon Endo-Surgery, Llc Detecting short circuits in electrosurgical medical devices
BR112016021943B1 (en) 2014-03-26 2022-06-14 Ethicon Endo-Surgery, Llc SURGICAL INSTRUMENT FOR USE BY AN OPERATOR IN A SURGICAL PROCEDURE
US20150272580A1 (en) 2014-03-26 2015-10-01 Ethicon Endo-Surgery, Inc. Verification of number of battery exchanges/procedure count
US9820738B2 (en) 2014-03-26 2017-11-21 Ethicon Llc Surgical instrument comprising interactive systems
US9804618B2 (en) 2014-03-26 2017-10-31 Ethicon Llc Systems and methods for controlling a segmented circuit
US9913642B2 (en) 2014-03-26 2018-03-13 Ethicon Llc Surgical instrument comprising a sensor system
US10463421B2 (en) 2014-03-27 2019-11-05 Ethicon Llc Two stage trigger, clamp and cut bipolar vessel sealer
US10092310B2 (en) 2014-03-27 2018-10-09 Ethicon Llc Electrosurgical devices
US9737355B2 (en) 2014-03-31 2017-08-22 Ethicon Llc Controlling impedance rise in electrosurgical medical devices
US9913680B2 (en) 2014-04-15 2018-03-13 Ethicon Llc Software algorithms for electrosurgical instruments
US9801628B2 (en) 2014-09-26 2017-10-31 Ethicon Llc Surgical staple and driver arrangements for staple cartridges
US20150297222A1 (en) 2014-04-16 2015-10-22 Ethicon Endo-Surgery, Inc. Fastener cartridges including extensions having different configurations
US11185330B2 (en) 2014-04-16 2021-11-30 Cilag Gmbh International Fastener cartridge assemblies and staple retainer cover arrangements
CN106456176B (en) 2014-04-16 2019-06-28 伊西康内外科有限责任公司 Fastener cartridge including the extension with various configuration
JP6532889B2 (en) 2014-04-16 2019-06-19 エシコン エルエルシーEthicon LLC Fastener cartridge assembly and staple holder cover arrangement
BR112016023825B1 (en) 2014-04-16 2022-08-02 Ethicon Endo-Surgery, Llc STAPLE CARTRIDGE FOR USE WITH A SURGICAL STAPLER AND STAPLE CARTRIDGE FOR USE WITH A SURGICAL INSTRUMENT
US10357306B2 (en) 2014-05-14 2019-07-23 Domain Surgical, Inc. Planar ferromagnetic coated surgical tip and method for making
JP6573663B2 (en) 2014-05-16 2019-09-11 アプライド メディカル リソーシーズ コーポレイション Electrosurgical system
AU2015266619B2 (en) 2014-05-30 2020-02-06 Applied Medical Resources Corporation Electrosurgical instrument for fusing and cutting tissue and an electrosurgical generator
US10045781B2 (en) 2014-06-13 2018-08-14 Ethicon Llc Closure lockout systems for surgical instruments
US9760520B2 (en) 2014-07-11 2017-09-12 Covidien Lp Dynamic system management bus for an electrosurgical system
US10285724B2 (en) 2014-07-31 2019-05-14 Ethicon Llc Actuation mechanisms and load adjustment assemblies for surgical instruments
US11311294B2 (en) 2014-09-05 2022-04-26 Cilag Gmbh International Powered medical device including measurement of closure state of jaws
BR112017004361B1 (en) 2014-09-05 2023-04-11 Ethicon Llc ELECTRONIC SYSTEM FOR A SURGICAL INSTRUMENT
US10135242B2 (en) 2014-09-05 2018-11-20 Ethicon Llc Smart cartridge wake up operation and data retention
US10105142B2 (en) 2014-09-18 2018-10-23 Ethicon Llc Surgical stapler with plurality of cutting elements
US11523821B2 (en) 2014-09-26 2022-12-13 Cilag Gmbh International Method for creating a flexible staple line
MX2017003960A (en) 2014-09-26 2017-12-04 Ethicon Llc Surgical stapling buttresses and adjunct materials.
US10076325B2 (en) 2014-10-13 2018-09-18 Ethicon Llc Surgical stapling apparatus comprising a tissue stop
US9924944B2 (en) 2014-10-16 2018-03-27 Ethicon Llc Staple cartridge comprising an adjunct material
US11141153B2 (en) 2014-10-29 2021-10-12 Cilag Gmbh International Staple cartridges comprising driver arrangements
US10517594B2 (en) 2014-10-29 2019-12-31 Ethicon Llc Cartridge assemblies for surgical staplers
US9844376B2 (en) 2014-11-06 2017-12-19 Ethicon Llc Staple cartridge comprising a releasable adjunct material
US10639092B2 (en) 2014-12-08 2020-05-05 Ethicon Llc Electrode configurations for surgical instruments
US10736636B2 (en) 2014-12-10 2020-08-11 Ethicon Llc Articulatable surgical instrument system
RU2703684C2 (en) 2014-12-18 2019-10-21 ЭТИКОН ЭНДО-СЕРДЖЕРИ, ЭлЭлСи Surgical instrument with anvil which is selectively movable relative to staple cartridge around discrete fixed axis
US9844375B2 (en) 2014-12-18 2017-12-19 Ethicon Llc Drive arrangements for articulatable surgical instruments
US10117649B2 (en) 2014-12-18 2018-11-06 Ethicon Llc Surgical instrument assembly comprising a lockable articulation system
US9987000B2 (en) 2014-12-18 2018-06-05 Ethicon Llc Surgical instrument assembly comprising a flexible articulation system
US10085748B2 (en) 2014-12-18 2018-10-02 Ethicon Llc Locking arrangements for detachable shaft assemblies with articulatable surgical end effectors
US10004501B2 (en) 2014-12-18 2018-06-26 Ethicon Llc Surgical instruments with improved closure arrangements
US9844374B2 (en) 2014-12-18 2017-12-19 Ethicon Llc Surgical instrument systems comprising an articulatable end effector and means for adjusting the firing stroke of a firing member
US10188385B2 (en) 2014-12-18 2019-01-29 Ethicon Llc Surgical instrument system comprising lockable systems
EP3236870B1 (en) 2014-12-23 2019-11-06 Applied Medical Resources Corporation Bipolar electrosurgical sealer and divider
USD748259S1 (en) 2014-12-29 2016-01-26 Applied Medical Resources Corporation Electrosurgical instrument
US10245095B2 (en) 2015-02-06 2019-04-02 Ethicon Llc Electrosurgical instrument with rotation and articulation mechanisms
US11154301B2 (en) 2015-02-27 2021-10-26 Cilag Gmbh International Modular stapling assembly
US10180463B2 (en) 2015-02-27 2019-01-15 Ethicon Llc Surgical apparatus configured to assess whether a performance parameter of the surgical apparatus is within an acceptable performance band
US10226250B2 (en) 2015-02-27 2019-03-12 Ethicon Llc Modular stapling assembly
US10321907B2 (en) 2015-02-27 2019-06-18 Ethicon Llc System for monitoring whether a surgical instrument needs to be serviced
JP2020121162A (en) 2015-03-06 2020-08-13 エシコン エルエルシーEthicon LLC Time dependent evaluation of sensor data to determine stability element, creep element and viscoelastic element of measurement
US9901342B2 (en) 2015-03-06 2018-02-27 Ethicon Endo-Surgery, Llc Signal and power communication system positioned on a rotatable shaft
US10617412B2 (en) 2015-03-06 2020-04-14 Ethicon Llc System for detecting the mis-insertion of a staple cartridge into a surgical stapler
US10245033B2 (en) 2015-03-06 2019-04-02 Ethicon Llc Surgical instrument comprising a lockable battery housing
US10045776B2 (en) 2015-03-06 2018-08-14 Ethicon Llc Control techniques and sub-processor contained within modular shaft with select control processing from handle
US10687806B2 (en) 2015-03-06 2020-06-23 Ethicon Llc Adaptive tissue compression techniques to adjust closure rates for multiple tissue types
US9808246B2 (en) 2015-03-06 2017-11-07 Ethicon Endo-Surgery, Llc Method of operating a powered surgical instrument
US10052044B2 (en) * 2015-03-06 2018-08-21 Ethicon Llc Time dependent evaluation of sensor data to determine stability, creep, and viscoelastic elements of measures
US9993248B2 (en) 2015-03-06 2018-06-12 Ethicon Endo-Surgery, Llc Smart sensors with local signal processing
US10441279B2 (en) 2015-03-06 2019-10-15 Ethicon Llc Multiple level thresholds to modify operation of powered surgical instruments
US9895148B2 (en) 2015-03-06 2018-02-20 Ethicon Endo-Surgery, Llc Monitoring speed control and precision incrementing of motor for powered surgical instruments
US9924961B2 (en) 2015-03-06 2018-03-27 Ethicon Endo-Surgery, Llc Interactive feedback system for powered surgical instruments
US10321950B2 (en) 2015-03-17 2019-06-18 Ethicon Llc Managing tissue treatment
US10342602B2 (en) 2015-03-17 2019-07-09 Ethicon Llc Managing tissue treatment
US10595929B2 (en) 2015-03-24 2020-03-24 Ethicon Llc Surgical instruments with firing system overload protection mechanisms
US10390825B2 (en) 2015-03-31 2019-08-27 Ethicon Llc Surgical instrument with progressive rotary drive systems
US10034684B2 (en) 2015-06-15 2018-07-31 Ethicon Llc Apparatus and method for dissecting and coagulating tissue
US11020140B2 (en) 2015-06-17 2021-06-01 Cilag Gmbh International Ultrasonic surgical blade for use with ultrasonic surgical instruments
US10405863B2 (en) 2015-06-18 2019-09-10 Ethicon Llc Movable firing beam support arrangements for articulatable surgical instruments
US11051873B2 (en) 2015-06-30 2021-07-06 Cilag Gmbh International Surgical system with user adaptable techniques employing multiple energy modalities based on tissue parameters
US10034704B2 (en) 2015-06-30 2018-07-31 Ethicon Llc Surgical instrument with user adaptable algorithms
US10898256B2 (en) 2015-06-30 2021-01-26 Ethicon Llc Surgical system with user adaptable techniques based on tissue impedance
US10357303B2 (en) 2015-06-30 2019-07-23 Ethicon Llc Translatable outer tube for sealing using shielded lap chole dissector
US11141213B2 (en) 2015-06-30 2021-10-12 Cilag Gmbh International Surgical instrument with user adaptable techniques
US11129669B2 (en) 2015-06-30 2021-09-28 Cilag Gmbh International Surgical system with user adaptable techniques based on tissue type
US10154852B2 (en) 2015-07-01 2018-12-18 Ethicon Llc Ultrasonic surgical blade with improved cutting and coagulation features
US11058425B2 (en) 2015-08-17 2021-07-13 Ethicon Llc Implantable layers for a surgical instrument
US10098642B2 (en) 2015-08-26 2018-10-16 Ethicon Llc Surgical staples comprising features for improved fastening of tissue
BR112018003693B1 (en) 2015-08-26 2022-11-22 Ethicon Llc SURGICAL STAPLE CARTRIDGE FOR USE WITH A SURGICAL STAPPING INSTRUMENT
MX2022006189A (en) 2015-09-02 2022-06-16 Ethicon Llc Surgical staple configurations with camming surfaces located between portions supporting surgical staples.
US10238390B2 (en) 2015-09-02 2019-03-26 Ethicon Llc Surgical staple cartridges with driver arrangements for establishing herringbone staple patterns
US10076326B2 (en) 2015-09-23 2018-09-18 Ethicon Llc Surgical stapler having current mirror-based motor control
US10363036B2 (en) 2015-09-23 2019-07-30 Ethicon Llc Surgical stapler having force-based motor control
US10085751B2 (en) 2015-09-23 2018-10-02 Ethicon Llc Surgical stapler having temperature-based motor control
US10238386B2 (en) 2015-09-23 2019-03-26 Ethicon Llc Surgical stapler having motor control based on an electrical parameter related to a motor current
US10327769B2 (en) 2015-09-23 2019-06-25 Ethicon Llc Surgical stapler having motor control based on a drive system component
US10105139B2 (en) 2015-09-23 2018-10-23 Ethicon Llc Surgical stapler having downstream current-based motor control
US10299878B2 (en) 2015-09-25 2019-05-28 Ethicon Llc Implantable adjunct systems for determining adjunct skew
US10980539B2 (en) 2015-09-30 2021-04-20 Ethicon Llc Implantable adjunct comprising bonded layers
US10285699B2 (en) 2015-09-30 2019-05-14 Ethicon Llc Compressible adjunct
US10687884B2 (en) 2015-09-30 2020-06-23 Ethicon Llc Circuits for supplying isolated direct current (DC) voltage to surgical instruments
US10561420B2 (en) 2015-09-30 2020-02-18 Ethicon Llc Tubular absorbable constructs
US11890015B2 (en) 2015-09-30 2024-02-06 Cilag Gmbh International Compressible adjunct with crossing spacer fibers
US10595930B2 (en) 2015-10-16 2020-03-24 Ethicon Llc Electrode wiping surgical device
US10292704B2 (en) 2015-12-30 2019-05-21 Ethicon Llc Mechanisms for compensating for battery pack failure in powered surgical instruments
US10265068B2 (en) 2015-12-30 2019-04-23 Ethicon Llc Surgical instruments with separable motors and motor control circuits
US10368865B2 (en) 2015-12-30 2019-08-06 Ethicon Llc Mechanisms for compensating for drivetrain failure in powered surgical instruments
US10179022B2 (en) 2015-12-30 2019-01-15 Ethicon Llc Jaw position impedance limiter for electrosurgical instrument
US10575892B2 (en) 2015-12-31 2020-03-03 Ethicon Llc Adapter for electrical surgical instruments
US10709469B2 (en) 2016-01-15 2020-07-14 Ethicon Llc Modular battery powered handheld surgical instrument with energy conservation techniques
US11229471B2 (en) 2016-01-15 2022-01-25 Cilag Gmbh International Modular battery powered handheld surgical instrument with selective application of energy based on tissue characterization
US10716615B2 (en) 2016-01-15 2020-07-21 Ethicon Llc Modular battery powered handheld surgical instrument with curved end effectors having asymmetric engagement between jaw and blade
US11129670B2 (en) 2016-01-15 2021-09-28 Cilag Gmbh International Modular battery powered handheld surgical instrument with selective application of energy based on button displacement, intensity, or local tissue characterization
US10433837B2 (en) 2016-02-09 2019-10-08 Ethicon Llc Surgical instruments with multiple link articulation arrangements
BR112018016098B1 (en) 2016-02-09 2023-02-23 Ethicon Llc SURGICAL INSTRUMENT
US11213293B2 (en) 2016-02-09 2022-01-04 Cilag Gmbh International Articulatable surgical instruments with single articulation link arrangements
US10258331B2 (en) 2016-02-12 2019-04-16 Ethicon Llc Mechanisms for compensating for drivetrain failure in powered surgical instruments
US11224426B2 (en) 2016-02-12 2022-01-18 Cilag Gmbh International Mechanisms for compensating for drivetrain failure in powered surgical instruments
US10448948B2 (en) 2016-02-12 2019-10-22 Ethicon Llc Mechanisms for compensating for drivetrain failure in powered surgical instruments
US10555769B2 (en) 2016-02-22 2020-02-11 Ethicon Llc Flexible circuits for electrosurgical instrument
US11045191B2 (en) 2016-04-01 2021-06-29 Cilag Gmbh International Method for operating a surgical stapling system
US10413293B2 (en) 2016-04-01 2019-09-17 Ethicon Llc Interchangeable surgical tool assembly with a surgical end effector that is selectively rotatable about a shaft axis
US10617413B2 (en) 2016-04-01 2020-04-14 Ethicon Llc Closure system arrangements for surgical cutting and stapling devices with separate and distinct firing shafts
US10485542B2 (en) 2016-04-01 2019-11-26 Ethicon Llc Surgical stapling instrument comprising multiple lockouts
US11284890B2 (en) 2016-04-01 2022-03-29 Cilag Gmbh International Circular stapling system comprising an incisable tissue support
US10828028B2 (en) 2016-04-15 2020-11-10 Ethicon Llc Surgical instrument with multiple program responses during a firing motion
US10335145B2 (en) 2016-04-15 2019-07-02 Ethicon Llc Modular surgical instrument with configurable operating mode
US10357247B2 (en) 2016-04-15 2019-07-23 Ethicon Llc Surgical instrument with multiple program responses during a firing motion
US10426467B2 (en) 2016-04-15 2019-10-01 Ethicon Llc Surgical instrument with detection sensors
US10405859B2 (en) 2016-04-15 2019-09-10 Ethicon Llc Surgical instrument with adjustable stop/start control during a firing motion
US11179150B2 (en) 2016-04-15 2021-11-23 Cilag Gmbh International Systems and methods for controlling a surgical stapling and cutting instrument
US10492783B2 (en) 2016-04-15 2019-12-03 Ethicon, Llc Surgical instrument with improved stop/start control during a firing motion
US10456137B2 (en) 2016-04-15 2019-10-29 Ethicon Llc Staple formation detection mechanisms
US11607239B2 (en) 2016-04-15 2023-03-21 Cilag Gmbh International Systems and methods for controlling a surgical stapling and cutting instrument
US20170296173A1 (en) 2016-04-18 2017-10-19 Ethicon Endo-Surgery, Llc Method for operating a surgical instrument
US11317917B2 (en) 2016-04-18 2022-05-03 Cilag Gmbh International Surgical stapling system comprising a lockable firing assembly
US10478181B2 (en) 2016-04-18 2019-11-19 Ethicon Llc Cartridge lockout arrangements for rotary powered surgical cutting and stapling instruments
US10646269B2 (en) 2016-04-29 2020-05-12 Ethicon Llc Non-linear jaw gap for electrosurgical instruments
US10485607B2 (en) 2016-04-29 2019-11-26 Ethicon Llc Jaw structure with distal closure for electrosurgical instruments
US10702329B2 (en) 2016-04-29 2020-07-07 Ethicon Llc Jaw structure with distal post for electrosurgical instruments
US10456193B2 (en) 2016-05-03 2019-10-29 Ethicon Llc Medical device with a bilateral jaw configuration for nerve stimulation
USD847989S1 (en) 2016-06-24 2019-05-07 Ethicon Llc Surgical fastener cartridge
USD826405S1 (en) 2016-06-24 2018-08-21 Ethicon Llc Surgical fastener
US10675024B2 (en) 2016-06-24 2020-06-09 Ethicon Llc Staple cartridge comprising overdriven staples
CN109310431B (en) 2016-06-24 2022-03-04 伊西康有限责任公司 Staple cartridge comprising wire staples and punch staples
USD850617S1 (en) 2016-06-24 2019-06-04 Ethicon Llc Surgical fastener cartridge
US10245064B2 (en) 2016-07-12 2019-04-02 Ethicon Llc Ultrasonic surgical instrument with piezoelectric central lumen transducer
US10893883B2 (en) 2016-07-13 2021-01-19 Ethicon Llc Ultrasonic assembly for use with ultrasonic surgical instruments
US10842522B2 (en) 2016-07-15 2020-11-24 Ethicon Llc Ultrasonic surgical instruments having offset blades
US10376305B2 (en) 2016-08-05 2019-08-13 Ethicon Llc Methods and systems for advanced harmonic energy
US10285723B2 (en) 2016-08-09 2019-05-14 Ethicon Llc Ultrasonic surgical blade with improved heel portion
USD847990S1 (en) 2016-08-16 2019-05-07 Ethicon Llc Surgical instrument
US10779847B2 (en) 2016-08-25 2020-09-22 Ethicon Llc Ultrasonic transducer to waveguide joining
US10952759B2 (en) 2016-08-25 2021-03-23 Ethicon Llc Tissue loading of a surgical instrument
US10603064B2 (en) 2016-11-28 2020-03-31 Ethicon Llc Ultrasonic transducer
EP3884895B1 (en) * 2016-11-29 2022-10-05 St. Jude Medical, Cardiology Division, Inc. Electroporation systems and catheters for electroporation systems
US11266430B2 (en) 2016-11-29 2022-03-08 Cilag Gmbh International End effector control and calibration
US10758229B2 (en) 2016-12-21 2020-09-01 Ethicon Llc Surgical instrument comprising improved jaw control
US10517595B2 (en) 2016-12-21 2019-12-31 Ethicon Llc Jaw actuated lock arrangements for preventing advancement of a firing member in a surgical end effector unless an unfired cartridge is installed in the end effector
US20180168648A1 (en) 2016-12-21 2018-06-21 Ethicon Endo-Surgery, Llc Durability features for end effectors and firing assemblies of surgical stapling instruments
US10675025B2 (en) 2016-12-21 2020-06-09 Ethicon Llc Shaft assembly comprising separately actuatable and retractable systems
US10945727B2 (en) 2016-12-21 2021-03-16 Ethicon Llc Staple cartridge with deformable driver retention features
US10856868B2 (en) 2016-12-21 2020-12-08 Ethicon Llc Firing member pin configurations
US10588630B2 (en) 2016-12-21 2020-03-17 Ethicon Llc Surgical tool assemblies with closure stroke reduction features
BR112019011947A2 (en) 2016-12-21 2019-10-29 Ethicon Llc surgical stapling systems
US20180168608A1 (en) 2016-12-21 2018-06-21 Ethicon Endo-Surgery, Llc Surgical instrument system comprising an end effector lockout and a firing assembly lockout
US10675026B2 (en) 2016-12-21 2020-06-09 Ethicon Llc Methods of stapling tissue
US11419606B2 (en) 2016-12-21 2022-08-23 Cilag Gmbh International Shaft assembly comprising a clutch configured to adapt the output of a rotary firing member to two different systems
US10426471B2 (en) 2016-12-21 2019-10-01 Ethicon Llc Surgical instrument with multiple failure response modes
US10893864B2 (en) 2016-12-21 2021-01-19 Ethicon Staple cartridges and arrangements of staples and staple cavities therein
US11134942B2 (en) 2016-12-21 2021-10-05 Cilag Gmbh International Surgical stapling instruments and staple-forming anvils
US20180168625A1 (en) 2016-12-21 2018-06-21 Ethicon Endo-Surgery, Llc Surgical stapling instruments with smart staple cartridges
US10588632B2 (en) 2016-12-21 2020-03-17 Ethicon Llc Surgical end effectors and firing members thereof
US10687810B2 (en) 2016-12-21 2020-06-23 Ethicon Llc Stepped staple cartridge with tissue retention and gap setting features
US10682138B2 (en) 2016-12-21 2020-06-16 Ethicon Llc Bilaterally asymmetric staple forming pocket pairs
US10617414B2 (en) 2016-12-21 2020-04-14 Ethicon Llc Closure member arrangements for surgical instruments
JP7010956B2 (en) 2016-12-21 2022-01-26 エシコン エルエルシー How to staple tissue
CN110099619B (en) 2016-12-21 2022-07-15 爱惜康有限责任公司 Lockout device for surgical end effector and replaceable tool assembly
US10993715B2 (en) 2016-12-21 2021-05-04 Ethicon Llc Staple cartridge comprising staples with different clamping breadths
US11684367B2 (en) 2016-12-21 2023-06-27 Cilag Gmbh International Stepped assembly having and end-of-life indicator
US20180168615A1 (en) 2016-12-21 2018-06-21 Ethicon Endo-Surgery, Llc Method of deforming staples from two different types of staple cartridges with the same surgical stapling instrument
US10980537B2 (en) 2017-06-20 2021-04-20 Ethicon Llc Closed loop feedback control of motor velocity of a surgical stapling and cutting instrument based on measured time over a specified number of shaft rotations
US10881399B2 (en) 2017-06-20 2021-01-05 Ethicon Llc Techniques for adaptive control of motor velocity of a surgical stapling and cutting instrument
USD879808S1 (en) 2017-06-20 2020-03-31 Ethicon Llc Display panel with graphical user interface
USD890784S1 (en) 2017-06-20 2020-07-21 Ethicon Llc Display panel with changeable graphical user interface
US11090046B2 (en) 2017-06-20 2021-08-17 Cilag Gmbh International Systems and methods for controlling displacement member motion of a surgical stapling and cutting instrument
US10779820B2 (en) 2017-06-20 2020-09-22 Ethicon Llc Systems and methods for controlling motor speed according to user input for a surgical instrument
US10390841B2 (en) 2017-06-20 2019-08-27 Ethicon Llc Control of motor velocity of a surgical stapling and cutting instrument based on angle of articulation
US10881396B2 (en) 2017-06-20 2021-01-05 Ethicon Llc Surgical instrument with variable duration trigger arrangement
US11517325B2 (en) 2017-06-20 2022-12-06 Cilag Gmbh International Closed loop feedback control of motor velocity of a surgical stapling and cutting instrument based on measured displacement distance traveled over a specified time interval
US11071554B2 (en) 2017-06-20 2021-07-27 Cilag Gmbh International Closed loop feedback control of motor velocity of a surgical stapling and cutting instrument based on magnitude of velocity error measurements
US10327767B2 (en) 2017-06-20 2019-06-25 Ethicon Llc Control of motor velocity of a surgical stapling and cutting instrument based on angle of articulation
US10646220B2 (en) 2017-06-20 2020-05-12 Ethicon Llc Systems and methods for controlling displacement member velocity for a surgical instrument
US11382638B2 (en) 2017-06-20 2022-07-12 Cilag Gmbh International Closed loop feedback control of motor velocity of a surgical stapling and cutting instrument based on measured time over a specified displacement distance
US10624633B2 (en) 2017-06-20 2020-04-21 Ethicon Llc Systems and methods for controlling motor velocity of a surgical stapling and cutting instrument
US11653914B2 (en) 2017-06-20 2023-05-23 Cilag Gmbh International Systems and methods for controlling motor velocity of a surgical stapling and cutting instrument according to articulation angle of end effector
US10368864B2 (en) 2017-06-20 2019-08-06 Ethicon Llc Systems and methods for controlling displaying motor velocity for a surgical instrument
US10813639B2 (en) 2017-06-20 2020-10-27 Ethicon Llc Closed loop feedback control of motor velocity of a surgical stapling and cutting instrument based on system conditions
USD879809S1 (en) 2017-06-20 2020-03-31 Ethicon Llc Display panel with changeable graphical user interface
US10888321B2 (en) 2017-06-20 2021-01-12 Ethicon Llc Systems and methods for controlling velocity of a displacement member of a surgical stapling and cutting instrument
US10307170B2 (en) 2017-06-20 2019-06-04 Ethicon Llc Method for closed loop control of motor velocity of a surgical stapling and cutting instrument
US10993716B2 (en) 2017-06-27 2021-05-04 Ethicon Llc Surgical anvil arrangements
US11324503B2 (en) 2017-06-27 2022-05-10 Cilag Gmbh International Surgical firing member arrangements
US10856869B2 (en) 2017-06-27 2020-12-08 Ethicon Llc Surgical anvil arrangements
US11266405B2 (en) 2017-06-27 2022-03-08 Cilag Gmbh International Surgical anvil manufacturing methods
US10772629B2 (en) 2017-06-27 2020-09-15 Ethicon Llc Surgical anvil arrangements
US20180368844A1 (en) 2017-06-27 2018-12-27 Ethicon Llc Staple forming pocket arrangements
US11020114B2 (en) 2017-06-28 2021-06-01 Cilag Gmbh International Surgical instruments with articulatable end effector with axially shortened articulation joint configurations
USD906355S1 (en) 2017-06-28 2020-12-29 Ethicon Llc Display screen or portion thereof with a graphical user interface for a surgical instrument
USD869655S1 (en) 2017-06-28 2019-12-10 Ethicon Llc Surgical fastener cartridge
US10903685B2 (en) 2017-06-28 2021-01-26 Ethicon Llc Surgical shaft assemblies with slip ring assemblies forming capacitive channels
US11678880B2 (en) 2017-06-28 2023-06-20 Cilag Gmbh International Surgical instrument comprising a shaft including a housing arrangement
USD854151S1 (en) 2017-06-28 2019-07-16 Ethicon Llc Surgical instrument shaft
US11564686B2 (en) 2017-06-28 2023-01-31 Cilag Gmbh International Surgical shaft assemblies with flexible interfaces
US11259805B2 (en) 2017-06-28 2022-03-01 Cilag Gmbh International Surgical instrument comprising firing member supports
US10716614B2 (en) 2017-06-28 2020-07-21 Ethicon Llc Surgical shaft assemblies with slip ring assemblies with increased contact pressure
EP3420947B1 (en) 2017-06-28 2022-05-25 Cilag GmbH International Surgical instrument comprising selectively actuatable rotatable couplers
US11246592B2 (en) 2017-06-28 2022-02-15 Cilag Gmbh International Surgical instrument comprising an articulation system lockable to a frame
USD851762S1 (en) 2017-06-28 2019-06-18 Ethicon Llc Anvil
US10211586B2 (en) 2017-06-28 2019-02-19 Ethicon Llc Surgical shaft assemblies with watertight housings
US10765427B2 (en) 2017-06-28 2020-09-08 Ethicon Llc Method for articulating a surgical instrument
US10258418B2 (en) 2017-06-29 2019-04-16 Ethicon Llc System for controlling articulation forces
US10898183B2 (en) 2017-06-29 2021-01-26 Ethicon Llc Robotic surgical instrument with closed loop feedback techniques for advancement of closure member during firing
US10398434B2 (en) 2017-06-29 2019-09-03 Ethicon Llc Closed loop velocity control of closure member for robotic surgical instrument
US10932772B2 (en) 2017-06-29 2021-03-02 Ethicon Llc Methods for closed loop velocity control for robotic surgical instrument
US11007022B2 (en) 2017-06-29 2021-05-18 Ethicon Llc Closed loop velocity control techniques based on sensed tissue parameters for robotic surgical instrument
US10820920B2 (en) 2017-07-05 2020-11-03 Ethicon Llc Reusable ultrasonic medical devices and methods of their use
US11944300B2 (en) 2017-08-03 2024-04-02 Cilag Gmbh International Method for operating a surgical system bailout
US11471155B2 (en) 2017-08-03 2022-10-18 Cilag Gmbh International Surgical system bailout
US11304695B2 (en) 2017-08-03 2022-04-19 Cilag Gmbh International Surgical system shaft interconnection
USD917500S1 (en) 2017-09-29 2021-04-27 Ethicon Llc Display screen or portion thereof with graphical user interface
USD907648S1 (en) 2017-09-29 2021-01-12 Ethicon Llc Display screen or portion thereof with animated graphical user interface
USD907647S1 (en) 2017-09-29 2021-01-12 Ethicon Llc Display screen or portion thereof with animated graphical user interface
US10729501B2 (en) 2017-09-29 2020-08-04 Ethicon Llc Systems and methods for language selection of a surgical instrument
US10743872B2 (en) 2017-09-29 2020-08-18 Ethicon Llc System and methods for controlling a display of a surgical instrument
US10796471B2 (en) 2017-09-29 2020-10-06 Ethicon Llc Systems and methods of displaying a knife position for a surgical instrument
US10765429B2 (en) 2017-09-29 2020-09-08 Ethicon Llc Systems and methods for providing alerts according to the operational state of a surgical instrument
US11399829B2 (en) 2017-09-29 2022-08-02 Cilag Gmbh International Systems and methods of initiating a power shutdown mode for a surgical instrument
US11090075B2 (en) 2017-10-30 2021-08-17 Cilag Gmbh International Articulation features for surgical end effector
US11134944B2 (en) 2017-10-30 2021-10-05 Cilag Gmbh International Surgical stapler knife motion controls
US10779903B2 (en) 2017-10-31 2020-09-22 Ethicon Llc Positive shaft rotation lock activated by jaw closure
US10842490B2 (en) 2017-10-31 2020-11-24 Ethicon Llc Cartridge body design with force reduction based on firing completion
US10828033B2 (en) 2017-12-15 2020-11-10 Ethicon Llc Handheld electromechanical surgical instruments with improved motor control arrangements for positioning components of an adapter coupled thereto
US10779826B2 (en) 2017-12-15 2020-09-22 Ethicon Llc Methods of operating surgical end effectors
US10743875B2 (en) 2017-12-15 2020-08-18 Ethicon Llc Surgical end effectors with jaw stiffener arrangements configured to permit monitoring of firing member
US10743874B2 (en) 2017-12-15 2020-08-18 Ethicon Llc Sealed adapters for use with electromechanical surgical instruments
US10869666B2 (en) 2017-12-15 2020-12-22 Ethicon Llc Adapters with control systems for controlling multiple motors of an electromechanical surgical instrument
US10687813B2 (en) 2017-12-15 2020-06-23 Ethicon Llc Adapters with firing stroke sensing arrangements for use in connection with electromechanical surgical instruments
US11071543B2 (en) 2017-12-15 2021-07-27 Cilag Gmbh International Surgical end effectors with clamping assemblies configured to increase jaw aperture ranges
US10966718B2 (en) 2017-12-15 2021-04-06 Ethicon Llc Dynamic clamping assemblies with improved wear characteristics for use in connection with electromechanical surgical instruments
US10779825B2 (en) 2017-12-15 2020-09-22 Ethicon Llc Adapters with end effector position sensing and control arrangements for use in connection with electromechanical surgical instruments
US11197670B2 (en) 2017-12-15 2021-12-14 Cilag Gmbh International Surgical end effectors with pivotal jaws configured to touch at their respective distal ends when fully closed
US11006955B2 (en) 2017-12-15 2021-05-18 Ethicon Llc End effectors with positive jaw opening features for use with adapters for electromechanical surgical instruments
US11033267B2 (en) 2017-12-15 2021-06-15 Ethicon Llc Systems and methods of controlling a clamping member firing rate of a surgical instrument
US10835330B2 (en) 2017-12-19 2020-11-17 Ethicon Llc Method for determining the position of a rotatable jaw of a surgical instrument attachment assembly
US10716565B2 (en) 2017-12-19 2020-07-21 Ethicon Llc Surgical instruments with dual articulation drivers
US11045270B2 (en) 2017-12-19 2021-06-29 Cilag Gmbh International Robotic attachment comprising exterior drive actuator
US11020112B2 (en) 2017-12-19 2021-06-01 Ethicon Llc Surgical tools configured for interchangeable use with different controller interfaces
US10729509B2 (en) 2017-12-19 2020-08-04 Ethicon Llc Surgical instrument comprising closure and firing locking mechanism
USD910847S1 (en) 2017-12-19 2021-02-16 Ethicon Llc Surgical instrument assembly
US11129680B2 (en) 2017-12-21 2021-09-28 Cilag Gmbh International Surgical instrument comprising a projector
US11311290B2 (en) 2017-12-21 2022-04-26 Cilag Gmbh International Surgical instrument comprising an end effector dampener
US11076853B2 (en) 2017-12-21 2021-08-03 Cilag Gmbh International Systems and methods of displaying a knife position during transection for a surgical instrument
US11179151B2 (en) 2017-12-21 2021-11-23 Cilag Gmbh International Surgical instrument comprising a display
US11045247B2 (en) * 2018-02-20 2021-06-29 Covidien Lp Systems and methods for controlling arcing
US10779821B2 (en) 2018-08-20 2020-09-22 Ethicon Llc Surgical stapler anvils with tissue stop features configured to avoid tissue pinch
US11253256B2 (en) 2018-08-20 2022-02-22 Cilag Gmbh International Articulatable motor powered surgical instruments with dedicated articulation motor arrangements
USD914878S1 (en) 2018-08-20 2021-03-30 Ethicon Llc Surgical instrument anvil
US10912559B2 (en) 2018-08-20 2021-02-09 Ethicon Llc Reinforced deformable anvil tip for surgical stapler anvil
US11324501B2 (en) 2018-08-20 2022-05-10 Cilag Gmbh International Surgical stapling devices with improved closure members
US10842492B2 (en) 2018-08-20 2020-11-24 Ethicon Llc Powered articulatable surgical instruments with clutching and locking arrangements for linking an articulation drive system to a firing drive system
US11045192B2 (en) 2018-08-20 2021-06-29 Cilag Gmbh International Fabricating techniques for surgical stapler anvils
US11039834B2 (en) 2018-08-20 2021-06-22 Cilag Gmbh International Surgical stapler anvils with staple directing protrusions and tissue stability features
US11083458B2 (en) 2018-08-20 2021-08-10 Cilag Gmbh International Powered surgical instruments with clutching arrangements to convert linear drive motions to rotary drive motions
US11291440B2 (en) 2018-08-20 2022-04-05 Cilag Gmbh International Method for operating a powered articulatable surgical instrument
US10856870B2 (en) 2018-08-20 2020-12-08 Ethicon Llc Switching arrangements for motor powered articulatable surgical instruments
US11207065B2 (en) 2018-08-20 2021-12-28 Cilag Gmbh International Method for fabricating surgical stapler anvils
CA3111558A1 (en) 2018-09-05 2020-03-12 Applied Medical Resources Corporation Electrosurgical generator control system
US11696796B2 (en) 2018-11-16 2023-07-11 Applied Medical Resources Corporation Electrosurgical system
US11696761B2 (en) 2019-03-25 2023-07-11 Cilag Gmbh International Firing drive arrangements for surgical systems
US11147551B2 (en) 2019-03-25 2021-10-19 Cilag Gmbh International Firing drive arrangements for surgical systems
US11172929B2 (en) 2019-03-25 2021-11-16 Cilag Gmbh International Articulation drive arrangements for surgical systems
US11147553B2 (en) 2019-03-25 2021-10-19 Cilag Gmbh International Firing drive arrangements for surgical systems
US11432816B2 (en) 2019-04-30 2022-09-06 Cilag Gmbh International Articulation pin for a surgical instrument
US11903581B2 (en) 2019-04-30 2024-02-20 Cilag Gmbh International Methods for stapling tissue using a surgical instrument
US11648009B2 (en) 2019-04-30 2023-05-16 Cilag Gmbh International Rotatable jaw tip for a surgical instrument
US11471157B2 (en) 2019-04-30 2022-10-18 Cilag Gmbh International Articulation control mapping for a surgical instrument
US11452528B2 (en) 2019-04-30 2022-09-27 Cilag Gmbh International Articulation actuators for a surgical instrument
US11253254B2 (en) 2019-04-30 2022-02-22 Cilag Gmbh International Shaft rotation actuator on a surgical instrument
US11426251B2 (en) 2019-04-30 2022-08-30 Cilag Gmbh International Articulation directional lights on a surgical instrument
US11426167B2 (en) 2019-06-28 2022-08-30 Cilag Gmbh International Mechanisms for proper anvil attachment surgical stapling head assembly
US11291451B2 (en) 2019-06-28 2022-04-05 Cilag Gmbh International Surgical instrument with battery compatibility verification functionality
US11259803B2 (en) 2019-06-28 2022-03-01 Cilag Gmbh International Surgical stapling system having an information encryption protocol
US11553971B2 (en) 2019-06-28 2023-01-17 Cilag Gmbh International Surgical RFID assemblies for display and communication
US11771419B2 (en) 2019-06-28 2023-10-03 Cilag Gmbh International Packaging for a replaceable component of a surgical stapling system
US11523822B2 (en) 2019-06-28 2022-12-13 Cilag Gmbh International Battery pack including a circuit interrupter
US11376098B2 (en) 2019-06-28 2022-07-05 Cilag Gmbh International Surgical instrument system comprising an RFID system
US11051807B2 (en) 2019-06-28 2021-07-06 Cilag Gmbh International Packaging assembly including a particulate trap
US11399837B2 (en) 2019-06-28 2022-08-02 Cilag Gmbh International Mechanisms for motor control adjustments of a motorized surgical instrument
US11478241B2 (en) 2019-06-28 2022-10-25 Cilag Gmbh International Staple cartridge including projections
US11298132B2 (en) 2019-06-28 2022-04-12 Cilag GmbH Inlernational Staple cartridge including a honeycomb extension
US11684434B2 (en) 2019-06-28 2023-06-27 Cilag Gmbh International Surgical RFID assemblies for instrument operational setting control
US11627959B2 (en) 2019-06-28 2023-04-18 Cilag Gmbh International Surgical instruments including manual and powered system lockouts
US11660163B2 (en) 2019-06-28 2023-05-30 Cilag Gmbh International Surgical system with RFID tags for updating motor assembly parameters
US11219455B2 (en) 2019-06-28 2022-01-11 Cilag Gmbh International Surgical instrument including a lockout key
US11298127B2 (en) 2019-06-28 2022-04-12 Cilag GmbH Interational Surgical stapling system having a lockout mechanism for an incompatible cartridge
US11464601B2 (en) 2019-06-28 2022-10-11 Cilag Gmbh International Surgical instrument comprising an RFID system for tracking a movable component
US11229437B2 (en) 2019-06-28 2022-01-25 Cilag Gmbh International Method for authenticating the compatibility of a staple cartridge with a surgical instrument
US11638587B2 (en) 2019-06-28 2023-05-02 Cilag Gmbh International RFID identification systems for surgical instruments
US11497492B2 (en) 2019-06-28 2022-11-15 Cilag Gmbh International Surgical instrument including an articulation lock
US11224497B2 (en) 2019-06-28 2022-01-18 Cilag Gmbh International Surgical systems with multiple RFID tags
US11246678B2 (en) 2019-06-28 2022-02-15 Cilag Gmbh International Surgical stapling system having a frangible RFID tag
US11364076B2 (en) 2019-12-12 2022-06-21 Covidien Lp Monopolar return pad
US11607219B2 (en) 2019-12-19 2023-03-21 Cilag Gmbh International Staple cartridge comprising a detachable tissue cutting knife
US11464512B2 (en) 2019-12-19 2022-10-11 Cilag Gmbh International Staple cartridge comprising a curved deck surface
US11701111B2 (en) 2019-12-19 2023-07-18 Cilag Gmbh International Method for operating a surgical stapling instrument
US11529137B2 (en) 2019-12-19 2022-12-20 Cilag Gmbh International Staple cartridge comprising driver retention members
US11304696B2 (en) 2019-12-19 2022-04-19 Cilag Gmbh International Surgical instrument comprising a powered articulation system
US11844520B2 (en) 2019-12-19 2023-12-19 Cilag Gmbh International Staple cartridge comprising driver retention members
US11291447B2 (en) 2019-12-19 2022-04-05 Cilag Gmbh International Stapling instrument comprising independent jaw closing and staple firing systems
US11446029B2 (en) 2019-12-19 2022-09-20 Cilag Gmbh International Staple cartridge comprising projections extending from a curved deck surface
US11576672B2 (en) 2019-12-19 2023-02-14 Cilag Gmbh International Surgical instrument comprising a closure system including a closure member and an opening member driven by a drive screw
US11559304B2 (en) 2019-12-19 2023-01-24 Cilag Gmbh International Surgical instrument comprising a rapid closure mechanism
US11911032B2 (en) 2019-12-19 2024-02-27 Cilag Gmbh International Staple cartridge comprising a seating cam
US11931033B2 (en) 2019-12-19 2024-03-19 Cilag Gmbh International Staple cartridge comprising a latch lockout
US11529139B2 (en) 2019-12-19 2022-12-20 Cilag Gmbh International Motor driven surgical instrument
US11504122B2 (en) 2019-12-19 2022-11-22 Cilag Gmbh International Surgical instrument comprising a nested firing member
US11234698B2 (en) 2019-12-19 2022-02-01 Cilag Gmbh International Stapling system comprising a clamp lockout and a firing lockout
US20210196344A1 (en) 2019-12-30 2021-07-01 Ethicon Llc Surgical system communication pathways
US11786291B2 (en) 2019-12-30 2023-10-17 Cilag Gmbh International Deflectable support of RF energy electrode with respect to opposing ultrasonic blade
US11779387B2 (en) 2019-12-30 2023-10-10 Cilag Gmbh International Clamp arm jaw to minimize tissue sticking and improve tissue control
US11684412B2 (en) 2019-12-30 2023-06-27 Cilag Gmbh International Surgical instrument with rotatable and articulatable surgical end effector
US11911063B2 (en) 2019-12-30 2024-02-27 Cilag Gmbh International Techniques for detecting ultrasonic blade to electrode contact and reducing power to ultrasonic blade
US11660089B2 (en) 2019-12-30 2023-05-30 Cilag Gmbh International Surgical instrument comprising a sensing system
US11589916B2 (en) 2019-12-30 2023-02-28 Cilag Gmbh International Electrosurgical instruments with electrodes having variable energy densities
US11944366B2 (en) 2019-12-30 2024-04-02 Cilag Gmbh International Asymmetric segmented ultrasonic support pad for cooperative engagement with a movable RF electrode
US11937866B2 (en) 2019-12-30 2024-03-26 Cilag Gmbh International Method for an electrosurgical procedure
US11812957B2 (en) 2019-12-30 2023-11-14 Cilag Gmbh International Surgical instrument comprising a signal interference resolution system
US11779329B2 (en) 2019-12-30 2023-10-10 Cilag Gmbh International Surgical instrument comprising a flex circuit including a sensor system
US11744636B2 (en) 2019-12-30 2023-09-05 Cilag Gmbh International Electrosurgical systems with integrated and external power sources
US11937863B2 (en) 2019-12-30 2024-03-26 Cilag Gmbh International Deflectable electrode with variable compression bias along the length of the deflectable electrode
US11696776B2 (en) 2019-12-30 2023-07-11 Cilag Gmbh International Articulatable surgical instrument
US11452525B2 (en) 2019-12-30 2022-09-27 Cilag Gmbh International Surgical instrument comprising an adjustment system
USD967421S1 (en) 2020-06-02 2022-10-18 Cilag Gmbh International Staple cartridge
USD975850S1 (en) 2020-06-02 2023-01-17 Cilag Gmbh International Staple cartridge
USD966512S1 (en) 2020-06-02 2022-10-11 Cilag Gmbh International Staple cartridge
USD975851S1 (en) 2020-06-02 2023-01-17 Cilag Gmbh International Staple cartridge
USD975278S1 (en) 2020-06-02 2023-01-10 Cilag Gmbh International Staple cartridge
USD976401S1 (en) 2020-06-02 2023-01-24 Cilag Gmbh International Staple cartridge
USD974560S1 (en) 2020-06-02 2023-01-03 Cilag Gmbh International Staple cartridge
US20220031350A1 (en) 2020-07-28 2022-02-03 Cilag Gmbh International Surgical instruments with double pivot articulation joint arrangements
USD1013170S1 (en) 2020-10-29 2024-01-30 Cilag Gmbh International Surgical instrument assembly
US11844518B2 (en) 2020-10-29 2023-12-19 Cilag Gmbh International Method for operating a surgical instrument
US11534259B2 (en) 2020-10-29 2022-12-27 Cilag Gmbh International Surgical instrument comprising an articulation indicator
US11931025B2 (en) 2020-10-29 2024-03-19 Cilag Gmbh International Surgical instrument comprising a releasable closure drive lock
US11617577B2 (en) 2020-10-29 2023-04-04 Cilag Gmbh International Surgical instrument comprising a sensor configured to sense whether an articulation drive of the surgical instrument is actuatable
US11896217B2 (en) 2020-10-29 2024-02-13 Cilag Gmbh International Surgical instrument comprising an articulation lock
US11779330B2 (en) 2020-10-29 2023-10-10 Cilag Gmbh International Surgical instrument comprising a jaw alignment system
US11717289B2 (en) 2020-10-29 2023-08-08 Cilag Gmbh International Surgical instrument comprising an indicator which indicates that an articulation drive is actuatable
US11452526B2 (en) 2020-10-29 2022-09-27 Cilag Gmbh International Surgical instrument comprising a staged voltage regulation start-up system
US11517390B2 (en) 2020-10-29 2022-12-06 Cilag Gmbh International Surgical instrument comprising a limited travel switch
USD980425S1 (en) 2020-10-29 2023-03-07 Cilag Gmbh International Surgical instrument assembly
US11737751B2 (en) 2020-12-02 2023-08-29 Cilag Gmbh International Devices and methods of managing energy dissipated within sterile barriers of surgical instrument housings
US11653920B2 (en) 2020-12-02 2023-05-23 Cilag Gmbh International Powered surgical instruments with communication interfaces through sterile barrier
US11744581B2 (en) 2020-12-02 2023-09-05 Cilag Gmbh International Powered surgical instruments with multi-phase tissue treatment
US11627960B2 (en) 2020-12-02 2023-04-18 Cilag Gmbh International Powered surgical instruments with smart reload with separately attachable exteriorly mounted wiring connections
US11890010B2 (en) 2020-12-02 2024-02-06 Cllag GmbH International Dual-sided reinforced reload for surgical instruments
US11849943B2 (en) 2020-12-02 2023-12-26 Cilag Gmbh International Surgical instrument with cartridge release mechanisms
US11944296B2 (en) 2020-12-02 2024-04-02 Cilag Gmbh International Powered surgical instruments with external connectors
US11678882B2 (en) 2020-12-02 2023-06-20 Cilag Gmbh International Surgical instruments with interactive features to remedy incidental sled movements
US11653915B2 (en) 2020-12-02 2023-05-23 Cilag Gmbh International Surgical instruments with sled location detection and adjustment features
US11696757B2 (en) 2021-02-26 2023-07-11 Cilag Gmbh International Monitoring of internal systems to detect and track cartridge motion status
US11744583B2 (en) 2021-02-26 2023-09-05 Cilag Gmbh International Distal communication array to tune frequency of RF systems
US11925349B2 (en) 2021-02-26 2024-03-12 Cilag Gmbh International Adjustment to transfer parameters to improve available power
US11749877B2 (en) 2021-02-26 2023-09-05 Cilag Gmbh International Stapling instrument comprising a signal antenna
US11723657B2 (en) 2021-02-26 2023-08-15 Cilag Gmbh International Adjustable communication based on available bandwidth and power capacity
US11793514B2 (en) 2021-02-26 2023-10-24 Cilag Gmbh International Staple cartridge comprising sensor array which may be embedded in cartridge body
US11730473B2 (en) 2021-02-26 2023-08-22 Cilag Gmbh International Monitoring of manufacturing life-cycle
US11812964B2 (en) 2021-02-26 2023-11-14 Cilag Gmbh International Staple cartridge comprising a power management circuit
US11751869B2 (en) 2021-02-26 2023-09-12 Cilag Gmbh International Monitoring of multiple sensors over time to detect moving characteristics of tissue
US11701113B2 (en) 2021-02-26 2023-07-18 Cilag Gmbh International Stapling instrument comprising a separate power antenna and a data transfer antenna
US11723658B2 (en) 2021-03-22 2023-08-15 Cilag Gmbh International Staple cartridge comprising a firing lockout
US11826012B2 (en) 2021-03-22 2023-11-28 Cilag Gmbh International Stapling instrument comprising a pulsed motor-driven firing rack
US11826042B2 (en) 2021-03-22 2023-11-28 Cilag Gmbh International Surgical instrument comprising a firing drive including a selectable leverage mechanism
US11737749B2 (en) 2021-03-22 2023-08-29 Cilag Gmbh International Surgical stapling instrument comprising a retraction system
US11806011B2 (en) 2021-03-22 2023-11-07 Cilag Gmbh International Stapling instrument comprising tissue compression systems
US11717291B2 (en) 2021-03-22 2023-08-08 Cilag Gmbh International Staple cartridge comprising staples configured to apply different tissue compression
US11759202B2 (en) 2021-03-22 2023-09-19 Cilag Gmbh International Staple cartridge comprising an implantable layer
US11793516B2 (en) 2021-03-24 2023-10-24 Cilag Gmbh International Surgical staple cartridge comprising longitudinal support beam
US11849944B2 (en) 2021-03-24 2023-12-26 Cilag Gmbh International Drivers for fastener cartridge assemblies having rotary drive screws
US11744603B2 (en) 2021-03-24 2023-09-05 Cilag Gmbh International Multi-axis pivot joints for surgical instruments and methods for manufacturing same
US11857183B2 (en) 2021-03-24 2024-01-02 Cilag Gmbh International Stapling assembly components having metal substrates and plastic bodies
US11832816B2 (en) 2021-03-24 2023-12-05 Cilag Gmbh International Surgical stapling assembly comprising nonplanar staples and planar staples
US11896219B2 (en) 2021-03-24 2024-02-13 Cilag Gmbh International Mating features between drivers and underside of a cartridge deck
US11849945B2 (en) 2021-03-24 2023-12-26 Cilag Gmbh International Rotary-driven surgical stapling assembly comprising eccentrically driven firing member
US11786239B2 (en) 2021-03-24 2023-10-17 Cilag Gmbh International Surgical instrument articulation joint arrangements comprising multiple moving linkage features
US11944336B2 (en) 2021-03-24 2024-04-02 Cilag Gmbh International Joint arrangements for multi-planar alignment and support of operational drive shafts in articulatable surgical instruments
US11896218B2 (en) 2021-03-24 2024-02-13 Cilag Gmbh International Method of using a powered stapling device
US11903582B2 (en) 2021-03-24 2024-02-20 Cilag Gmbh International Leveraging surfaces for cartridge installation
US11786243B2 (en) 2021-03-24 2023-10-17 Cilag Gmbh International Firing members having flexible portions for adapting to a load during a surgical firing stroke
US20220378426A1 (en) 2021-05-28 2022-12-01 Cilag Gmbh International Stapling instrument comprising a mounted shaft orientation sensor
CN113520521B (en) * 2021-08-30 2023-11-03 江苏朴芃医疗科技有限公司 Current peak detection device, high-voltage generator and vascular calcification treatment equipment
US11877745B2 (en) 2021-10-18 2024-01-23 Cilag Gmbh International Surgical stapling assembly having longitudinally-repeating staple leg clusters
US11937816B2 (en) 2021-10-28 2024-03-26 Cilag Gmbh International Electrical lead arrangements for surgical instruments

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5710740B2 (en) * 1974-06-17 1982-02-27
US3964487A (en) * 1974-12-09 1976-06-22 The Birtcher Corporation Uncomplicated load-adapting electrosurgical cutting generator
US4092986A (en) * 1976-06-14 1978-06-06 Ipco Hospital Supply Corporation (Whaledent International Division) Constant output electrosurgical unit
US4126137A (en) * 1977-01-21 1978-11-21 Minnesota Mining And Manufacturing Company Electrosurgical unit
US4188927A (en) * 1978-01-12 1980-02-19 Valleylab, Inc. Multiple source electrosurgical generator
US4321926A (en) * 1979-04-16 1982-03-30 Roge Ralph R Insertion detecting probe and electrolysis system
US4372315A (en) * 1980-07-03 1983-02-08 Hair Free Centers Impedance sensing epilator
US4590934A (en) * 1983-05-18 1986-05-27 Jerry L. Malis Bipolar cutter/coagulator
US4658819A (en) * 1983-09-13 1987-04-21 Valleylab, Inc. Electrosurgical generator
US4727874A (en) * 1984-09-10 1988-03-01 C. R. Bard, Inc. Electrosurgical generator with high-frequency pulse width modulated feedback power control
US4632109A (en) * 1984-12-11 1986-12-30 Valleylab, Inc. Circuitry for processing requests made from the sterile field of a surgical procedure to change the output power level of an electrosurgical generator
US4658820A (en) * 1985-02-22 1987-04-21 Valleylab, Inc. Electrosurgical generator with improved circuitry for generating RF drive pulse trains
US4739759A (en) * 1985-02-26 1988-04-26 Concept, Inc. Microprocessor controlled electrosurgical generator
EP0336742A3 (en) * 1988-04-08 1990-05-16 Bristol-Myers Company Method and apparatus for the calibration of electrosurgical apparatus
US4961047A (en) * 1988-11-10 1990-10-02 Smiths Industries Public Limited Company Electrical power control apparatus and methods
US5167658A (en) * 1991-01-31 1992-12-01 Mdt Corporation Method and apparatus for electrosurgical measurement

Also Published As

Publication number Publication date
FI941787A0 (en) 1994-04-18
EP0695144B1 (en) 1998-12-09
EP0695144A1 (en) 1996-02-07
DE69415157D1 (en) 1999-01-21
JPH08504646A (en) 1996-05-21
JP2671966B2 (en) 1997-11-05
AU684756B2 (en) 1998-01-08
CA2160017A1 (en) 1994-10-27
AU6289394A (en) 1994-11-08
NO954153D0 (en) 1995-10-18
DE69415157T2 (en) 1999-05-06
NO954153L (en) 1995-10-18
WO1994023659A1 (en) 1994-10-27
FI941787A (en) 1994-10-20
US5370645A (en) 1994-12-06

Similar Documents

Publication Publication Date Title
CA2160017C (en) Electrosurgical processor and method of use
US7137980B2 (en) Method and system for controlling output of RF medical generator
US8608733B2 (en) Electrosurgical apparatus with predictive RF source control
US5108391A (en) High-frequency generator for tissue cutting and for coagulating in high-frequency surgery
US5720744A (en) Control system for neurosurgery
WO1996039086A1 (en) Power control for an electrosurgical generator
US5422567A (en) High frequency power measurement
US6251106B1 (en) Electrosurgical generator power control circuit and method
EP2095783B1 (en) System for closed loop monitoring of monopolar electrosurgical apparatus
EP1617776B1 (en) System for programing and controlling an electrosurgical generator system
US5931836A (en) Electrosurgery apparatus and medical apparatus combined with the same
JP2004329930A5 (en)
JP3780069B2 (en) Electrosurgical equipment
JPH05200046A (en) Electrical operation instrument

Legal Events

Date Code Title Description
EEER Examination request
MKEX Expiry

Effective date: 20140407