CA2162015C - Multiplexed synchronous/asynchronous data bus and method therefor - Google Patents

Multiplexed synchronous/asynchronous data bus and method therefor

Info

Publication number
CA2162015C
CA2162015C CA002162015A CA2162015A CA2162015C CA 2162015 C CA2162015 C CA 2162015C CA 002162015 A CA002162015 A CA 002162015A CA 2162015 A CA2162015 A CA 2162015A CA 2162015 C CA2162015 C CA 2162015C
Authority
CA
Canada
Prior art keywords
data
communications lines
binary
state
bus
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CA002162015A
Other languages
French (fr)
Other versions
CA2162015A1 (en
Inventor
Eric J. Overtoom
Manohar A. Joglekar
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Motorola Solutions Inc
Original Assignee
Motorola Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Motorola Inc filed Critical Motorola Inc
Publication of CA2162015A1 publication Critical patent/CA2162015A1/en
Application granted granted Critical
Publication of CA2162015C publication Critical patent/CA2162015C/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F13/00Interconnection of, or transfer of information or other signals between, memories, input/output devices or central processing units
    • G06F13/38Information transfer, e.g. on bus
    • G06F13/42Bus transfer protocol, e.g. handshake; Synchronisation
    • G06F13/4282Bus transfer protocol, e.g. handshake; Synchronisation on a serial bus, e.g. I2C bus, SPI bus
    • G06F13/4291Bus transfer protocol, e.g. handshake; Synchronisation on a serial bus, e.g. I2C bus, SPI bus using a clocked protocol

Abstract

A multiplexed synchronous / asynchronous data bus (109) uses three communications lines (T, C, R) to convey bi-directional synchronous data between two data devices (115, 609) at a relatively low data transfer rate. The data bus is configured as a full-duplex asynchronous data bus by communicating a false address between the two data devices on two communications lines (T, C) using the synchronous data bus, holding the two communications lines (T, C) in a logic high state for a period of time, and continuing to hold one of the two communications lines (C) in the logic high state during full-duplex asynchronous communication. Full-duplex asynchronous data can then communicated between the two data devices (115, 609) at a higher data transfer rate on two of the three communications lines (T, R).

Description

__ '162015 MULTIPLEXED SYNCHRONOUS/ASYCHRONOUS DATA BUS
AND METHOD THEREFOR
Field of the Invention The present invention relates generally to data transmission systems and more particularly to a multiplexed synchronous /
asychronous data bus and method therefor.
Background of the Invention A synchronous self-clocking digital data transmission system has been described in U.S. Patent No. 4,369,516 to Byrns. This system provides a synchronous, self-clocking, bi-directional data transmission bus which is immune to speed and timing variations and suited for data bus structures of long length. The use by a data transmitter of two bit binary states of two data signal lines enables the unique definition of the beginning and end of a data signal and the binary states of the bits of a data signal while also differentiating between addresses and data signals. A third data signal line is used by peripheral devices to return communications to the data transmitter. As implemented in some mobile and portable radiotelephone equipment currently available for cellular radiotelephone systems, the synchronous self-clocking data bus is operated at relatively low data rates. The inherent capabilities of the bus and its data rate allow operation in areas of high electrical noise (e.g. an automobile) and produces little electromagnetic interference itself.
Asynchronous serial data transmission systems are well known in the art and offer high rates of data transfer. For example, the 3o MC68HC11A8 microprocessor utilizes a serial communications interface (SCI) whereby the microprocessor may communicate with peripheral devices using in a standard NRZ (mark/space) format on both a receive data input port (RXD) and a transmit data output port (TXD). The 21~20~.
_2_ MC68HC11A8 serial communications interface is further described in the HMOS Single Chip Microcomputer Data Book, order number ADI1207R1, 1987, pp. 5-1 to 5-5.
In order to realize the features of both types of data transmission systems in the subscriber equipment of cellular radiotelephone .systems, it would be necessary to incorporate both on a common physical bus structure in order to reduce the number of lines and connectors. The size of the physical bus is particularly important in portable radiotelephone equipment. It is also desirable that the self-clocking synchronous bus in 1o current use continue in use unmodified without retrofitting equipment already in service. This desire is in conflict with the increasing necessity of exchanging data at higher transmission rates.
It would be desirable therefore, to combine the immunity to speed variations, timing variations, and long physical bus length of the present low data transfer rate synchronous data bus with the increased data transfer rate of the asynchronous data bus. Since in many applications the number of bus lines and corresponding connectors is an important consideration, it would also be desirable to maintain the number of signal lines in a combined bus structure.
Summar3~ of the Invention Accordingly, the foregoing need is substantially met by a multiplexed synchronous / asychronous data bus and method therefor. A
master device and method therefor employs a data transmission bus including three communications lines for transmitting a first data message from the master data device to a slave data device at a first rate of data transfer, and for transmitting a second data message from the master data device to the slave data device at a second rate of data transfer. Each of the 3o two data messages has a plurality of binary bits. Each bit has either a binary zero state or a binary one state for a period of time which is related to the data transfer rate. The master device comprises a data bus controller for applying a first binary state to a first and a second of the three communications lines before and after the first data message; for coupling the first data message to the first and second of the three communications lines; coupling a false address of the first data message to the first and the second of the three communications lines; for applying a second binary _ 216201 state to the first and the second of the three communications lines after the false address is coupled to the first and the second of the three communications lines; and for applying the binary bits of the second data message to the second of the three communications lines while the second binary state is applied to the first of the three communications lines.
The slave device and method therefor employs a data transmission bus including three communications lines for receiving a first data message transmitted from the master data device at a first rate of data transfer, for receiving a second data message transmitted from the master 1o data device at a second rate of data transfer, and for communicating a third data message to the master data device. Each of the three data messages has a plurality of binary bits. Each bit .has either a binary zero state or a binary one state for a period of time which is related to the data transfer rate. The slave device comprises a data bus controller for receiving a first binary state from a first and a second of the three communications lines before and after the first data message; for receiving the first data message from the first and second of the three communications lines; for coupling at the first rate of data transfer the binary bits of the third data message to a third of the three communications lines; for receiving a false address of 2o the first data message from the first and the second of the three communications lines; for receiving a second binary state from the first and the second of the three communications lines after the false address is received from the first and the second of the three communications lines;
and for receiving the binary bits of the second data message from the second of the three communications lines while the second binary state is received from the first of the three communications lines.

zls~ol~

Brief Description of the Drawings FIG. 1 is a block diagram of a known portable radiotelephone which may employ the present invention.
FIG. 2 is a block diagram of a known generalized data communication system which may be useful in employing the present invention.
FIG. 3 is a state diagram for a known method of communicating data in the system of FIG. 2.
to FIG. 4 is a timing diagram showing the relationship between the input data and the data transmitted over the system of FIG. 2.
FIG. 5 is a timing diagram showing information and addressing data which may be transmitted over the system of FIG. 2 and may be used to select a particular data receiver for the information.
FIG. 6 is a simplified block diagram of a radiotelephone remote unit having a three wire bus structure with multiplexing capability.
FIG. 7 is a block diagram of a portable radiotelephone remote unit and a converter peripheral which may employ the present invention.
FIGs. 8-1, 8-2 and 8-3 illustrate the signaling scheme which unifies 2o the operation of the control unit, the control head, and peripherals which communicate on the data bus in accordance with the present invention.
FIG. 9 is a flowchart of the process of multiplexing asynchronous data with the synchronous data as employed in the present invention.
FIG. 10 is a flowchart of the response of a slave unit to the transmission of asynchronous data shown in the flowchart of FIG. 9.
FIG. 11 is a timing diagram of the multiplexed synchronous and asynchronous data appearing on the T, C, and R lines of the bus.
FIG. 12 is a diagram of the asynchronous data packet structure as employed in the present invention.
Detailed Description of the Preferred Embodiment One application which may advantageously employ the present invention is that of a portable radiotelephone in which a minimum number of data bus lines and associated connectors aids in the miniaturization of the radiotelephone equipment. Although the invention is described with portable radiotelephones as the preferred _. ~1~2a1~

embodiment, the invention may just as well be employed in other applications having similar requirements or requirements necessitating interconnection with equipment employing the present invention.
Radiotelephones provide the same type of fully automatic telephone service to a mobile or portable user that is provided to a conventional land line subscriber. In a cellular radiotelephone system, service is provided over a .wide geographic area by dividing the area into a number of cells. Each cell typically has a base station which provides a signaling radio channel and a number of voice radio channels. Telephone 1o calls are placed to, and originated by, radiotelephones over the signaling channel in each of the cells. Upon completion of the signaling, the radiotelephone is assigned a voice channel to which it switches form the signaling channel for the duration of the call. In the event that a radiotelephone leaves the cell and enters another cell, the radiotelephone is automatically switched over, or handed off, to an available voice channel in the new cell.
The present invention has been designed to operate in the portable radiotelephone units of a cellular system, although it could be used in any automatic radiotelephone system. The portable unit may be one such as 2o that marketed by Motorola, Inc. as sales model F09FGD8453AA or generally of the type described in U.S. Patent No. 3,906,166 "Radio Telephone System" by Cooper et al. and U.S. Patent No. 3,962,553 "Portable Telephone System Having a Battery Saver Feature" by Linder et al.
In order to accommodate the signaling and control functions in an automatic radiotelephone system, a microprocessor, memory, and related peripheral devices are employed in a logic unit for control of the portable radiotelephone. This logic unit may be configured such that the signaling received from the base station or transmitted to the based station is handled on a high speed interrupt basis while control signals for the radio 3o unit, including keypad and display, are handled on a lower speed basis by way of a separate serial data bus. Such a microprocessor control system is further described in U.S. Patent No. 4,434,461 "Microprocessor with Duplicate Registers for Processing Interrupts" by Puhl. Alternately, all data communication between the logic unit, the portable transceiver and the integral keypad and display may be handled on a high speed serial data bus as shown in FIG. 1. In FIG. l, a conventional logic unit 101 is connected to the receiver 103 and the transmitter 105 and in interface 107 via a self-_~ 21 620 1 5 clocking serial data bus 109. The receiver 103, transmitter 105, and logic unit 101 with its associated memory 119 may be physically grouped together as a radio unit 115. The interface 107 and telephone keypad 111 and user character display 113 may be a separate control unit 117 (as in a mobile radiotelephone configuration) or it may be fully integrated into one package (as in a portable radiotelephone). The self-clocking nature of the serial data bus 109 enables the interface 107 to be remotely located from the logic unit 101.
The serial data bus may be briefly described in conjunction with FIG.
2. A more detailed description of this data bus is found in U.S. Patent No.
4,369,516, by Byres. A general data transmitter 201 is coupled to data receivers 203, 205, and 207 by two signal lines, labeled T (true data) and C
(compliment data): The data receivers 203 and 205 may also transmit return data signals to the data transmitter by means of a shared signal line labeled R (return data). A separate return data line (R') may also be used to transmit return data signals to the data transmitter as shown for data receiver 207. The return data signals transmitted by the data receivers 203, 205, and 207 on the return data signal lines are transmitted in synchronism with the data signals received from the data transmitter 201 on the true 2o data and complement data signal lines.
If the general bi-directional bus concept of FIG. 2 is applied to the control circuitry of a portable radiotelephone, the data transmitter becomes the logic unit and the data receivers become the transmitter, receiver, user interface, and other devices sharing the bus.
The format taken by the data transmitted by the data transmitter 201 to the data receivers 203, 205, and 207 makes use of the four two-bit binary states which can be assumed by the true data and complement data signal lines taken together. For example, referring to the state diagram of FIG. 3, a first two-bit binary state may be referred to as a "reset" state 301, where 3o the true data signal line has a binary zero value and the complement date signal line also has a binary zero value. When no data is being transmitted, the reset state 301 is provided on the true data and complement data signal lines. When a data signal is to be transmitted, a transition is made form the reset state 301 to either a "zero" state 303 or a "one" state 305 corresponding to a zero or a one in the input data to be transmitted. In the zero state 303, the true data line assumes a zero binary value and the complement data line assumes a one binary value. In the one state 305, the true data line assumes a one binary value and the complement data line assumes a binary zero value. Following the one state 305 or the zero state 303, the serial data bus assumes an "idle" state in which both the true data line and the complement data line assume a one binary value. A transition is then made from the idle state 307 to either the one state 305 or the zero state 303. For all succeeding bits of the data signal to be transmitted, a transition is made to the idle state 307 before a transition to the one state 305 or the zero state 303. This can be seen in FIG. 4.
Transitions between the states in FIG. 4 are selected such that only one signal line is changing binary value during each transition.
Transitions between the reset state 301 and the idle state 307 and between the one state 305 and the zero state 303 are not allowed since they would require that the value of both the true and the complement data signal lines change simultaneously. This limiting of transitions between the binary states minimizes the effects of skewing and timing variations.
Moreover, by transmitting data signals as illustrated in the state diagram of FIG. 3, the transmission on the true data and complement data signal lines is both self-clocking and independent of the transmitting frequency. The time duration between each of the state transitions need not be the same 2o and may vary dynamically thereby enabling the frequency of the data transmission to be entirely asynchronous with randomly varying time intervals between successive state transitions.
Understanding of the synchronous data format may be enhanced by referring to FIG. 4. For transmission of a data signal, two state transitions occur for each input data bit shown in input data stream 400. For the first bit of the transmitted data signal, a transition is made from the reset state 301 to the one state 305 resulting in the true data signal line attaining a binary one as shown at 401. Next, a state transition is made to the idle state 307 resulting in the complement data signal line attaining a binary one 3o value at 403. Then, for each succeeding bit of the data signal, a transition is made the one state 305 or the zero state 303 and then back to the idle state 307 for each bit of the data input signal to be transmitted, the received idle state 307 can be utilized at the data receivers to generate a bit clock signal 407. For the last bit of the data signal, the last state transition is made from the one state 305 or the zero state 303 to the reset state 301: Returning to the reset state 301 after the last bit of the data signal has been transmitted _8_ indicates to the data receivers 203, 205, and 207 that a complete data signal has been transmitted.
In order to provide for the bi-directional transmission of data signals between the data transmitter 201 and the data receivers 203, 205, and 207, another signal line referred to as the return data signal .line 409 is provided for carrying data signals from the data receivers 203, 205, and 207.
The data receivers can transmit a return data signal on the return data signal line by utilizing the bit clock signal 407 developed by detecting the bit value of the true data and complement data signal lines. As previously to described, separate return data signal lines can be provided to each data receiver as for data receiver 207, or a number of data receivers such as data receivers 203 and 205 can be connected to one return data signal line. If a number of data receivers are connected to the same return data signal line, it becomes necessary to selectively address the particular data receiver that is to transmit a return data signal. Many different addressing schemes may be utilized and one such addressing scheme, which utilizes a portion of the data signal transmitted by the data transmitter to provide an address, is shown in FIG. 5. The number of bits dedicated to the address function determines the maximum number of data receivers which can be uniquely addressed. It has been shown in U.S. Patent No. 4,390,963, "Interface Adaptor Architecture" by Puhl, et al. that the true data and complement date signal lines may be dynamically interchanged and an additional number of unique addresses may be obtained.
A serial asynchronous bus which may be utilized in the present invention is that which may be employed as the Serial Communication Interface (SCI) for the MC68HC11 family of 8-bit microprocessors (or their equivalents). Such an asynchronous bus is characterized by a standard NRZ format (one start bit, eight or nine data bits, and one stop bit) and meets the following criteria:
1) The idle line is brought to a logic one state prior to transmission/reception of a character.
2) A start bit (logic zero) is used to indicate the start of a frame.
3) The data is transmitted and received least-significant-bit first.
4) A stop bit (logic one) is used to indicate the end of a frame. A
frame consists of a start bit, a character of eight or nine data bits, and a stop bit.

_9_ 21 620 1 5 5) A break is defined as the transmission or reception of a low (logic zero) for at least one complete frame time.
It is an important feature of the present invention that the faster asynchronous SCI bus is layered over the top of the synchronous bus.
This enables backwards compatibility with equipment which may utilize only the synchronous bus while increasing the rate of data transfer. In a portable radiotelephone with integral radio unit and control unit (generically called a remote unit), the T (true data) and C (complement data) lines are unidirectional lines that go between the logic unit 101 of the 1o radio unit 115 and the interface of the control unit 117 and from the radio unit 115 to external or other internal peripherals. The third line is the bi-directional R (return) line, it is used by the control unit 117 and peripherals to talk to the radio unit 115 logic unit 101 as well as other devices on the bus. Data is passed down the bus, with T and C setting up the timing. It is a synchronous bus. In the preferred embodiment, a high speed asynchronous data bus is configured on the T and R data lines of the synchronous self-clocking data bus (called herein a three-wire bus, or TWB). The high speed asynchronous bus (SCI-Serial Communication Interface) (conventionally 9600 bps) runs at over 30 times the speed of the 2o TWB (conventionally 300 bps) and, through software control, can share the same data line. The SCI employed in the present in the present invention is a dual line full-duplex bus. All devices that communicate on this bus write to the R data line receive data from the T data line. FIG. 6 shows the configuration of the two multiplexed buses.
As shown, the TWB of T, C, and R lines are coupled from the radio unit 115 to the control unit 1I7. In a portable radiotelephone remote unit the radio unit 115 and the control unit 117 are physically located in the same housing. Peripheral 605 which is also coupled to the T, C, and R
lines can receive data from the TWB as well as send data to other 3o peripherals 607 (if any), as well as the radio unit 115 and the control unit 117. Such peripherals may be scramblers, data devices such as modems, for example, or additional handsets and may be internal or external to the portable radiotelephone remote unit. Another example of a peripheral is described in U.S. Patent No. 4,680,787 "Portable Radiotelephone Vehicular Converter and Remote Handset" to Marry, which is a vehicle-mounted converter which can provide external power, an external antenna, radio-frequency (RF) amplification for the receiver and transmitter of a portable -io-remote unit, and other features which may not be available on the portable radiotelephone.
When the portable radiotelephone is placed in the converter, it is desirable that an automatic integration of all logic functions occur.
Initially, the portable radiotelephone logic unit 101 must verify that it has been connected to the converter peripheral 605. Once this is accomplished, functions which originally were part of the portable radiotelephone may be transferred to the converter peripheral 605. This transfer of functions conventionally has been a data exchange on the TWB. However, in some to instances the transfer may require too much time to complete. For example, in virtually every cellular radiotelephone system, each individual remote unit, portable or mobile, has one or more unique associated information sets, one of which includes NAM data (e.g., phone number, system ID, system channel scan data and serial number). The phone number in the NAM data is used by the cellular radiotelephone systems to identify the remote unit using the system. Since it is useful for the system user to have a portable radiotelephone and a vehicle mounted converter peripheral, it is economically advantageous to have the converter peripheral contain most, if not all, of the functions of a mobile 2o radiotelephone and be endowed with the capability of assuming the identity of the portable radiotelephone as defined in the aforementioned NAM data. A process of transferring identity is described in U.S. Patent Application No. 107,227 "Radio Arrangement Having Two Radios Sharing Circuitry" filed on October 9, 1987 in behalf of Metroka. NAM data transfer communication between the converter peripheral and the portable radiotelephone includes data transfer between microprocessors resident in the converter peripheral and the portable radiotelephone logic unit 101.
The portable radiotelephone must download its NAM, serial number and telephone number repertory memory into the converter 3o peripheral in order for the system to work without annoying delays to the user. When the TWB is used, a delay is encountered due to the slow rate of data transfer of the TWB. Further, the use of the TWB alone limits the versatility of the portable converter system because the converter peripheral, in order to keep user-feature continuity between the operation of the portable radiotelephone alone and the operation of the radiotelephone when the portable is plugged into the converter, must have software that has the same user features as the portable. As the 21620~~
portable's functions change in response to market requirements, the converter peripheral functions must also be updated. The higher speed asynchronous data bus allows the necessary data transfer.
The present invention multiplexes the dual-line (T and R data lines) asynchronous serial bus with the T and R data lines of the synchronous TWB. Both the TWB and the SCI devices can share the same bus lines without conflict. The equipment remains backwards compatible, while still increasing the effective data transfer rate of the bus.
The interconnection of a high speed peripheral interconnection 1o with the multiplexed synchronous/asynchronous data bus of the present invention is illustrated by the connection of peripheral 609 to the T and R
data lines of the TWB. The multiplexed data bus may accommodate a plurality of peripherals (607, 611). It is also likely that a peripheral will have the capability of accessing both the parallel TWB and the high speed serial bus. The converter peripheral of the preferred embodiment is such a peripheral.
The present invention may also be advantageously utilized in a high speed data modem as the peripheral using a signaling scheme well known as Cellular Digital Packet Data (CDPD). Specifications for the operation of CDPD in general is found in the CDPD Specification, release 1.0, books 1-6. In particular, CDPD Specification, release 1.0, book 3, volume 4, discusses an air link interface to couple data signals between the modem and the radiotelephone. The synchronous TWB cannot meet the high speed data requirements of the CDPD specification. According to the present invention, however, the high speed data requirement of the CDPD
specification is met using the asychronous data bus configuration discussed herein below.
Referring now to FIG. 7, a remote unit is shown in detail coupled to a converter peripheral. As described previously, a portable radiotelephone 3o user may insert a portable radiotelephone into a vehicular-mounted converter for external power, external antenna, RF amplification, and other features. A connector interface 701 is illustrated in FIG. 7 which connects audio connections 710 and 714, TWB lines 718, 720, and 722, and power connection 724. Other connections, of course, may be made as necessary.
Connections 710 and 714 are audio connections which allow the portable to act as a handset, while the portable and converter are -i2- 21 6 2 0 1 5 intercoupled. A speaker 728 and a microphone 730, conventional in portables, are coupled to the audio connections 710 and 714 through mute gates 732 and 734 to provide this function. The mute gates may be controlled by microcomputers 736 and 107 as is conventionally provided in stand alone portables or mobiles. See, for example, Motorola Instruction Manual Nos. 68P81070E40 and 68P81046E60, entitled "DYNA
TAC Cellular Mobile Telephone Instruction Manual" and "DYNA TAC
Cellular Portable Telephone Instruction Manual" respectively. Both manuals are available from Motorola C & E Parts, 1313 Algonquin Road, 1o Schaumburg, IL, 60196, U.S.A. Microcomputers 736 and 744 may be conventional microprocessors such as MC68HC11A8 or equivalent devices.
The converter peripheral of the preferred embodiment may contain a complete radio transceiver 738, as described in aforementioned U.S.
z5 Patent Application No. 107,227, in which case the portable radiotelephone transmitter 103 and receiver 105 are deactivated during the time the portable is coupled to the converter peripheral. The converter peripheral, in effect, takes on the identity of the portable radiotelephone during the period of coupling and is operated by the user as though it were a 2o conventional mobile radiotelephone.
Upon the portable radiotelephone being plugged into the converter peripheral, an exchange of data occurs on the multiplexed synchronous/asynchronous data bus of the present invention whereby the NAM information stored in the portable memory EEPROM 756 is 25 downloaded via microcomputer 744 into RAM 764. Such a data transfer allows the converter peripheral to assume the portable's identity for subsequent communication on the cellular system. Additional portable functions, such as repertory dialing telephone numbers, may also be downloaded into converter peripheral memory EEPROM 758. Likewise, 3o control of audio transducers 766 and 768 may be relinquished to microcomputer 744 and audio control 770.
The amount of data to be exchanged is, therefore, a sizable amount and would require a relatively long time to transfer at the 300 bps rate of the conventional TWB. The multiplexing of the present invention allows 35 a much higher rate of data transfer by placing the TWB in an in-use state (thereby preventing the interface 107 of the portable radiotelephone, for example, from accessing and applying data to the TWB) and transferring the identifying data from the portable radiotelephone on the serial data bus of the R line. To accomplish this the T, C and R data lines are coupled between the microcomputer 736 and 744 as shown. The microcomputer 736 and the microcomputer 744 communicate bi-directional synchronous data on the T, C, and R data lines. When the data transmission bus is configured as an asynchronous data bus, the microcomputer 736 and microcomputer 744 communicate SCI data using the alternate T and R
data line ports.
FIGS. 8-1 through 8-3 show the signaling scheme which unifies the operation of the logic unit, the control head, and a number of peripheral units which communicate on the data bus of the present invention. The signaling scheme presented is discussed in further detail in U.S. Patent No.
4,654,655 by Kowahski: According to the principles of the present invention, data placed on the serial bus lines is organized in groups of sixteen bits. When data is to be communicated on the bus, the T and C lines provide clocking information as well as a data path which communicates data from the bus controller to the various handsets or peripheral devices. Each of the devices which utilize the serial data bus are assigned a four bit address which also corresponds to a zo predetermined priority for that unit. The priority assignments are used to determine which unit will get service on the bus if several handsets of peripheral devices request service simultaneously. It should be noted that the signaling scheme of the present invention does not require continuous clocking on the serial data bus and the signaling scheme here described is not data rate dependent. Since clocking information is directly derived from the data present on the T and C lines, the bus control unit can variably alter the data rate during data communications if desired.
The bus control unit is assigned an address which corresponds to the highest priority unit on the bus. The primary handset used on the bus is 3o assigned the next highest priority. The bus addresses are organized in groups so that any handset on the bus will have a higher priority than any peripheral device on the bus. The preferred address assignments used in accordance with the preferred embodiment of the present table are shown below in Table 1.
A

Address Unit Priority 0000 Controller Highest 0001 Handset #1 to 0110 Handset #6 0111 Handset All Call 1000 Option #1 1111 Option #8 Lowest Referring now to FIG. 8-1, there is shown the signaling format for a sixteen bit data packet which would be communicated from the bus controller to the handsets or peripheral devices using the T and C lines of the serial data bus. According to FIG. 8-1 the first bit (B15) of the data packet comprises a read/write bit which indicates that the bus controller is ready to either send data to or answer a request for service from the handsets and peripheral devices. The next four bits (B14-B11), referred to as destination bits, indicate the address of the unit which is to communicate with the bus controller. The destination bits are followed by three control bits (B10-B8) which indicate a register within the handset or peripheral which will be accessed by the bus controller. The registers 3o within a handset or peripheral may contain such information as a desired phone number, frequency or channel information or other such information. The control bits are followed by eight data bits (B7-BO) which are to be communicated between devices.
FIG. 8-2 shows the signaling format for the serial data bus line R
when information is to be communicated from a handset or peripheral device to the bus control unit. When information is to be sent from a handset or peripheral device to the bus control unit, the serial bus lines T
and C toggle between data states 305 or 303 and idle state 307 in FIG. 3 to provide clocking information to the handset or peripheral device sending 4o data. The T and C lines will continue to toggle for the duration of the '162015 sixteen bit message. When the sixteen bit message has bee completed, the T and C lines will revert to the reset state 301 until another handset or peripheral device requests service on the bus. Referring now to FIG. 8-2 there is shown the signaling scheme used to communicated information on the R line from a handset or peripheral device to the bus controller or between peripheral units. The first four bits of the sixteen bit data packet (B15-Bll) comprises the addressed (referred to as the source address) of the device requesting service on the bus. The source address serves two purposes. The source address identifies the device requesting service of 1o the bus as well as providing the means for arbitration if two units request service of the bus simultaneously. The source address bits are followed by a four bit address (B11-B8), referred to as the destination address, which indicate the device intended to receive the following data field. The next eight bits (B7-BO) comprise the data field, which is to be communicated between devices.
Referring now to FIG. 8-3 there is shown an alternate signaling format which could be used to communicate information on the bus from a peripheral device to a handset. According to FIG. 8-3 the first four bits (B15-B11) comprise the source address of the data to be placed on the bus.
2o The source address bits are followed by a three bit destination address (B11-B9) and a one bit register control B8. Since this signaling stream is used for communication between a peripheral device and a handset, a four bit destination address is not required, and therefore, a single bit (B8) is reserved to select a destination register within a handset. The destination bits and register control bits are then followed by an eight bit data field (B7-BO) comprising the data to be communicated from the peripheral to the handset. As mentioned earlier, whenever a data packet has been communicated on the bus, the bus conductors T, C, and R will return to an idle state until service is again required on the bus.
3o The method exercised by microcomputer 736 (as stored in memory ROM 778) to control the multiplexed synchronous/asynchronous data bus of the present invention is shown in the flow chart of FIG. 9. Under most operating conditions, the TWB mode is in synchronous operation at step 901 and data is exchanged as described previously on the T, C, and R lines.
When an exchange of a substantial amount of data must occur as detected at step 902, such as when a portable radiotelephone remote unit is placed in a converter, the portable detects a change in power source and processes ._ . ~~~z~n an initial power-up sequence. If no request for SCI asynchronous communication occurs, the flow routes back to step 901 to continue normal TWB operation. At step 903, the radiotelephone sends a false address message to the converter to cause the converter not to listen to the synchronous data bus any longer. At step 904, the radiotelephone sets the T and C data lines high (the idle state) so that the converter will not request service on the synchronous data bus. At step 905, the process then waits for a period of time greater than one normal TWB data bit before commencing the transmission of an SCI asynchronous message. The to asynchronous bus is now configured for high speed data use without interference from any peripheral on the synchronous data bus. At step 906 the radiotelephone sends to the converter an SCI message on the T data line while the C data line is held in a logic high state. Maintaining the C
data line is held in a logic high state keeps the data bus in the asychronous data bus configuration. At step 907, the radiotelephone checks to see if any SCI data is received on the asychronous data bus. If the determination is positive, the flow returns to step 904 thereby placing the data bus in the idle state. If the determination is negative, the radiotelephone determines if the SCI communication is complete. If the determination is negative, 2o the flow returns to step 904 thereby placing the data bus in the idle state.
If the determination is negative, the flow continues to step 909 wherein the T and C data lines are set to a logic low state thereby placing the data bus in a reset state. The placement of the logic low on the T and C data lines returns the data bus to normal TWB operation at step 901.
The response of the portable radiotelephone to high speed data upon the return of power after the portable is plugged into the converter is shown in FIG. 10. At this point in time, the portable is considered the slave unit. At step 1001 the TWB operates as a synchronous data bus. At step 1002 the peripheral requests SCI communication on the R data line of 3o the TWB. At step 1003, if the SCI request is not granted by the radiotelephone, the flow returns to step 1002 wherein SCI communication is again requested. If, at step 1003, the SCI request is granted, the flow continues to step 1004~wherein the peripheral receives the false address sent by the radiotelephone. The peripheral responds by not acknowledging any further communications on the synchronous data bus.
At step 1005, the T and C data lines are set to a logic high state (the idle state) for a period of time determined at step 1006 (greater than one data time). In the idle state the peripheral will not request service on the synchronous data bus. The data bus is not configured for asychronous communication. At step 1007, the peripheral receives an SCI message on the T line while the C line is held in a logic high state. At step 1008, the peripheral determines if it needs to transmits SCI data on the R line. If the determination is positive, the flow returns to step 1005 wherein the bus returns to the idle state. If the determination is negative , the data is sent and the flow continues to step 1009 wherein a determination is made if the SCI communication is complete. If the determination is negative, the flow to returns to step 1005 wherein the bus returns to the idle state. If the determination is positive, the flow continues to step 1011 wherein the T
and C data lines are set to a logic low state to reset the data bus as a synchronous data bus.
A timing diagram of the activity on the TWB during the process previously described is shown in FIG. 11 Normal TWB operation occurs during the time designated "A". (Both the portable radiotelephone and the converter peripheral have independent TWBs prior to the coupling of the portable and the peripheral. The activity during "A" could be either TWB). Assuming the portable radiotelephone and the converter are 2o plugged together at time "t", the portable processes a power-up sequence after "tl". The TWB activity and any high speed data exchange is dominated by the converter peripheral and the converter peripheral is the "master" for the high speed serial data bus. The microcomputer 736 send a false address to the microcomputer 744. In the preferred embodiment, the 2s false address is "0000" which is the address of the remote unit. Therefore when the microcomputer 736 sends out an address intended for itself no peripherals are capable of responding. This causes all the peripheral to ignore future messages sent from the microcomputer 736 on the synchronous bus during the SCI synchronous data bus communication.
3o The microcomputer 736 then sets the T and C data lines high at time "t2"
which places the data bus in the idle state 307 as discussed in FIG. 3.
Placing the data bus in the idle state causes the peripherals to not communicate on the synchronous bus during the SCI synchronous data bus communication. The microcomputer 744 will wait at least one data 35 state time duration to be certain that the idle state is recognized as a valid state. The SCI asynchronous communication is performed on the T and R
lines. Asynchronous data is sent to the peripheral from the remote unit z162015 on the T line and received from the peripheral on the R line. At time "t3"
the T, C, and R lines return to synchronous TWB operation when the SCI
asychronous messaging is complete by resetting the T and C data lines to a logic low state.
In the preferred embodiment of the present invention, master status and control is passed to the portable radiotelephone at this point if the converter peripheral does not have an auxiliary control unit or telephone handset coupled to it. If the converter peripheral does have such a control unit or handset, the converter retains master status and the 1o control unit of the portable radiotelephone is deactivated as described in aforementioned U.S. Patent No. 4,680,787.
If the converter peripheral does not include a control unit or handset, a high speed message transferring control to the portable is transmitted to the portable on the R line. The portable, in response to the high speed data message on the R line, confirms and transmits a control message on the T line. The converter microcomputer 744 subsequently releases the C line to the logic low state. All further control is assumed by the portable radiotelephone microcomputer 736 which activates and deactivates the serial high speed data bus. The portable radiotelephone is 2o the master and initiates subsequent communications with any high speed peripherals (including the converter peripheral). Any such peripherals may respond to the communications when their address is part of the communicated message. ,The release of C line to the logic low state returns the TWB to normal operation.
A diagram of the high speed data message format is illustrated in FIG. 12. A preamble 1201 has a four bit value in the least significant nibble 1203 of the first transmitted byte to provide a synchronization pattern with all devices on the SCI high speed data bus. Additional fields identify the response desired from the addressed unit (1205) and other overhead 3o functions. The count field 1207 provides a count of the total number of data bytes to be transmitted in the packet. The address field 1209 identifies the logical device source 1211 and destination 1213 address fields thus enabling the selective communication with individual devices on the bus.
The control field 1215 is used to indicate the defined action or the proper interpretation of the following data field(s). The data fields) comprise any required data and may be of variable length to include the required data.

The checksum field 1217 contains a value that causes a simple sum of all transmitted bytes to equal zero as a method of detecting errors on the bus.
In summary, then, a multiplexed synchronous/asynchronous data bus has been shown and described. This multiplexed data bus utilizes a synchronous self-clocking three line bus for reliable transfer of data at a relatively low data throughput rate. In order to transfer data at a significantly higher data rate, two of the three bus lines are used to carry relatively high speed full-duplex asynchronous serial data messages. To prevent interaction between the low and high rate data, the low speed 1o synchronous data bus is placed in an in-use busy state during the transmission of the asynchronous serial data. Such a multiplexed synchronous/asynchronous data bus is particularly useful for a portable radiotelephone which may be coupled to a vehicle mounted converter supplying power, antenna, radio frequency amplification, and other features to the portable radiotelephone. It is advantageous for the portable radiotelephone to transfer its identification and other operational characteristics to the converter unit at a rapid data rate. Such a multiplexed synchronous/asynchronous data bus is also useful for a portable radiotelephone which may be coupled to a high speed data modem. It is 2o advantageous for the portable radiotelephone to transfer data to the data modem at a rapid data rate.
What is claimed is:

Claims (10)

1. A master data device employing a data transmission bus including three communications lines for transmitting a first data message from the master data device to a slave data device at a first rate of data transfer and for transmitting a second data message from the master data device to the slave data device at a second rate of data transfer, each of the two data messages having a plurality of binary bits, each bit having either a binary zero state or a binary one state for a period of time which is related to the data transfer rate, the master data device comprising:
means for applying a first binary state to a first and a second of the three communications lines before and after the first data message;
means for coupling the first data message to the first and second of the three communications lines;
means for coupling a false address of the first data message to the first and the second of the three communications lines;
means for applying a second binary state to the first and the second of the three communications lines after the false address is coupled to the first and the second of the three communications lines; and means for applying the binary bits of the second data message to the second of the three communications lines while the second binary state is applied to the first of the three communications lines.
2. A master data device in accordance with claim 1 wherein the means for coupling the first data message further comprises means for applying, for each bit of the first data message, a second binary state to the first of the three communications lines and the first binary state to the second of the three communications lines during at least part of the time a first data message bit has a binary zero state, and applying the first binary state to the first of the three communications lines and the second binary state to the second of the three communications lines during at least part of the time a first data message bit has a binary one state.
3. A master data device in accordance with claim 2 wherein the means for applying, for each bit of the first data message, a second binary state further comprises means for applying the second binary state to the first and the second of the three communications lines between successive bits of the first data message.
4. A master data device in accordance with claim 1 further comprising means for receiving from the slave data device on the third of the three communications lines a third data message at the second rate of data transfer while the second binary state is applied to the first of the three communications lines.
5. A master data device in accordance with claim 1 further comprising means for successively applying the first binary state to the first and second of the three communications lines following applying the binary bits of the second data message to the second of the three communications lines.
6. A slave data device employing a data transmission bus including three communications lines for receiving a first data message transmitted from a master data device at a first rate of data transfer, for receiving a second data message transmitted from the master data device at a second rate of data transfer, and for communicating a third data message to the master data device, each of the three data messages having a plurality of binary bits, each bit having either a binary zero state or a binary one state for a period of time which is related to the data transfer rate, the slave data device comprising:
means for receiving a first binary state from a first and a second of the three communications lines before and after the first data message;
means for receiving the first data message from the first and second of the three communications lines;
means for coupling at the first rate of data transfer the binary bits of the third data message to a third of the three communications lines;
means for receiving a false address of the first data message from the first and the second of the three communications lines;
means for receiving a second binary state from the first and the second of the three communications lines after the false address is received from the first and the second of the three communications lines;
and means for receiving the binary bits of the second data message from the second of the three communications lines while the second binary state is received from the first of the three communications lines.
7. A slave data device in accordance with claim 6 wherein the means for receiving the first data message further comprises means for receiving, for each bit of the first data message, a second binary state from the first of the three communications lines and the first binary state from the second of the three communications lines during at least part of the time a first data message bit has a binary zero state, and receiving the first binary state from the first of the three communications lines and the second binary state from the second of the three communications lines during at least part of the time a first data message bit has a binary one state.
8. A slave data device in accordance with claim 7 wherein the means for receiving, for each bit of the first data message, a second binary state further comprises means for receiving the second binary state from the first and the second of the three communications lines between successive bits of the first data message.
9. A slave data device in accordance with claim 6 further comprising means for communicating to the master data device on the third of the three communications lines a third data message at the second rate of data transfer while the second binary state is applied to the first of the three communications lines.
10. A slave data device in accordance with claim 6 further comprising means for successively receiving the first binary state from the first and second of the three communications lines following receiving the binary bits of the second data message from the second of the three communications lines.
CA002162015A 1994-11-14 1995-11-02 Multiplexed synchronous/asynchronous data bus and method therefor Expired - Fee Related CA2162015C (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US08/338,993 1994-11-14
US08/338,993 US5835785A (en) 1994-11-14 1994-11-14 Multiplexed three line synchronous/full-duplex asychronous data bus and method therefor

Publications (2)

Publication Number Publication Date
CA2162015A1 CA2162015A1 (en) 1996-05-15
CA2162015C true CA2162015C (en) 1999-09-07

Family

ID=23327000

Family Applications (1)

Application Number Title Priority Date Filing Date
CA002162015A Expired - Fee Related CA2162015C (en) 1994-11-14 1995-11-02 Multiplexed synchronous/asynchronous data bus and method therefor

Country Status (4)

Country Link
US (1) US5835785A (en)
AR (1) AR000104A1 (en)
BR (1) BR9505156A (en)
CA (1) CA2162015C (en)

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100214624B1 (en) * 1996-12-03 1999-08-02 구자홍 Displaying device in ref.
US6324592B1 (en) 1997-02-25 2001-11-27 Keystone Aerospace Apparatus and method for a mobile computer architecture and input/output management system
KR100285956B1 (en) 1998-06-30 2001-04-16 윤종용 Apparatus and method for controlling synchronous and asynchronous devices connected to high speed serial bus
US6549917B1 (en) * 1999-04-29 2003-04-15 Waveware Communications, Inc. Synchronization of host computers and handheld remote computers
EP1050826A1 (en) * 1999-05-05 2000-11-08 Motorola, Inc. Method for operating a communication system on a serial bus
US6430624B1 (en) 1999-10-21 2002-08-06 Air2Web, Inc. Intelligent harvesting and navigation system and method
US6557062B1 (en) * 1999-12-09 2003-04-29 Trw Inc. System and method for low-noise control of radio frequency devices
US7076225B2 (en) * 2001-02-16 2006-07-11 Qualcomm Incorporated Variable gain selection in direct conversion receiver
US20050064835A1 (en) * 2003-09-18 2005-03-24 International Business Machines Corporation Audio system responsive to incoming phone calls
US7328001B2 (en) * 2004-08-05 2008-02-05 International Business Machines Corporation Traffic shaping of cellular service consumption through modification of consumer behavior encouraged by cell-based pricing advantages
US7076237B2 (en) * 2004-08-05 2006-07-11 International Business Machines Corporation Traffic shaping of cellular service consumption through delaying of service completion according to geographical-based pricing advantages
DE102007024737A1 (en) * 2007-05-25 2008-11-27 Robert Bosch Gmbh Data transfer method between master and slave devices
US10312914B2 (en) * 2017-05-23 2019-06-04 Texas Instruments Incorporated Gate driver with serial communication
US11824658B2 (en) * 2018-07-25 2023-11-21 Ali Abedi Channel disruption wireless communication system
US20220190919A1 (en) * 2020-11-02 2022-06-16 Cisco Technology, Inc. Dispersing data rate to mitigate electromagnetic interference

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4654655A (en) * 1984-03-02 1987-03-31 Motorola, Inc. Multi-user serial data bus
US4803481A (en) * 1987-03-30 1989-02-07 Peaktronics, Inc. Asynchronous communications system
US5267263A (en) * 1987-04-23 1993-11-30 Cq Computer Communications, Inc. Method and apparatus for interfacing synchronous data devices over an asynchronous communications channel
US4972432A (en) * 1989-01-27 1990-11-20 Motorola, Inc. Multiplexed synchronous/asynchronous data bus
US5214774A (en) * 1990-07-30 1993-05-25 Motorola, Inc. Segmented memory transfer and message priority on synchronous/asynchronous data bus
US5150359A (en) * 1990-08-06 1992-09-22 Motorola, Inc. Multiplexed synchronous/asynchronous data bus
US5175820A (en) * 1990-08-31 1992-12-29 Advanced Micro Devices, Inc. Apparatus for use with a computing device controlling communications with a plurality of peripheral devices including a feedback bus to indicate operational modes
US5280623A (en) * 1992-03-04 1994-01-18 Sun Microsystems, Inc. Versatile peripheral bus
US5561821A (en) * 1993-10-29 1996-10-01 Advanced Micro Devices System for performing I/O access and memory access by driving address of DMA configuration registers and memory address stored therein respectively on local bus
JPH0844665A (en) * 1994-07-14 1996-02-16 Fujitsu Ltd Bus for supporting plural data transfer sizes and protocols

Also Published As

Publication number Publication date
US5835785A (en) 1998-11-10
BR9505156A (en) 1997-10-21
AR000104A1 (en) 1997-05-21
CA2162015A1 (en) 1996-05-15

Similar Documents

Publication Publication Date Title
US4972432A (en) Multiplexed synchronous/asynchronous data bus
CA2162015C (en) Multiplexed synchronous/asynchronous data bus and method therefor
US5848072A (en) Method of and apparatus for communicating messages
GB2157923A (en) Multi-user serial data bus
IE54944B1 (en) Dual bus communication system
US5214774A (en) Segmented memory transfer and message priority on synchronous/asynchronous data bus
US5150359A (en) Multiplexed synchronous/asynchronous data bus
JPH0667019B2 (en) Switch control system
JPS61290838A (en) Telecommunication exchange
US5109402A (en) Bus for a cellular telephone
US4779262A (en) Connection of subscriber communication network base station to external information network
TW200818815A (en) Coexistence device communication
CA2250580A1 (en) Digital telecommunications system with a dect interface for fax and data applications
JP2654027B2 (en) Digital key telephone equipment
EP0103324A2 (en) Simultaneous voice and data transmission circuit having a digital loop transceiver
FI109074B (en) Abonnentmultiplexeringsanordning
JPS6128252A (en) Transmitter possible for extension transfer
KR20010111717A (en) Apparatus for router of base station in IMT-2000 system
JPS63219295A (en) Digital bus transmission switching system
JPS6064593A (en) General-purpose trunk device
JPS5977743A (en) Variable speed terminal adaptor

Legal Events

Date Code Title Description
EEER Examination request
MKLA Lapsed