CA2162822C - Novel leavening acid composition - Google Patents

Novel leavening acid composition Download PDF

Info

Publication number
CA2162822C
CA2162822C CA002162822A CA2162822A CA2162822C CA 2162822 C CA2162822 C CA 2162822C CA 002162822 A CA002162822 A CA 002162822A CA 2162822 A CA2162822 A CA 2162822A CA 2162822 C CA2162822 C CA 2162822C
Authority
CA
Canada
Prior art keywords
monocalcium phosphate
heating
leavening
temperature
leavening acid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
CA002162822A
Other languages
French (fr)
Other versions
CA2162822A1 (en
Inventor
Frank Hsin Yau Chung
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Innophos Inc
Original Assignee
Innophos Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Innophos Inc filed Critical Innophos Inc
Publication of CA2162822A1 publication Critical patent/CA2162822A1/en
Application granted granted Critical
Publication of CA2162822C publication Critical patent/CA2162822C/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • AHUMAN NECESSITIES
    • A21BAKING; EDIBLE DOUGHS
    • A21DTREATMENT, e.g. PRESERVATION, OF FLOUR OR DOUGH, e.g. BY ADDITION OF MATERIALS; BAKING; BAKERY PRODUCTS; PRESERVATION THEREOF
    • A21D10/00Batters, dough or mixtures before baking
    • AHUMAN NECESSITIES
    • A21BAKING; EDIBLE DOUGHS
    • A21DTREATMENT, e.g. PRESERVATION, OF FLOUR OR DOUGH, e.g. BY ADDITION OF MATERIALS; BAKING; BAKERY PRODUCTS; PRESERVATION THEREOF
    • A21D2/00Treatment of flour or dough by adding materials thereto before or during baking
    • A21D2/02Treatment of flour or dough by adding materials thereto before or during baking by adding inorganic substances

Abstract

A composition of matter comprising a monocalcium phosphate leavening acid having a neutralizing value of between about 44 and about 63 wherein the neutralizing value is the amount by weight of sodium bicarbonate needed to neutralize 100 parts by weight of said monocalcium phosphate leavening acid.

Description

NOVEL LEAVENING ACID COMPOSTTION
1. Field of the Invention The present invention relates to leavening acid compositions for baked goods and more particularly monocalcium phosphate leavening acids which have excellent control release properties.
2. Technology Description Chemical leavening systems have been known for over 100 years.
The replacement of yeast to induce the process of fermentation by a carbonate alkali which is subjected to the neutralizing action of an acid has reduced the amount of time and materials required for the preparation of baked goods. From this early beginning various leavening systems have been invented and sold as baking powders which contain not only the leavening alkali and the acid employed to neutralize the acid, but also fillers which enabled convenient measurement, handling and storage of such baking powders.

216~82~
Leavening systems have long been known to comprise two basic ingredients. The first, of course, is the leavening acid such as cream-of-tartar, various phosphoric acids such as orthophosphoric acid, pyrophosphoric acid and the partial salts thereof such as monocalcium phosphate, sodium acid pyrophosphate, and any other suitable, edible, non-toxic acid which would not impart an undesirable taste to the resultant baked goods. Such acids have been known as "acidulants", or "baking acids" but more commonly as "leavening acids".
When added to a moist batter or dough, the acid reacts with a carbon dioxide liberating compound included in the batter or dough to yield the gas necessary for leavening. The rate of gas evolution is an important consideration determining largely the volume, density and texture qualities which will be imparted to the final baked product. This rate must occur within rather narrow limits for same applications such as in the preparation of prepared, canned dough for biscuits. Also, leavening requirements differ widely among the various baked goods fox each of these demands a particular speed of evolution to ensure highest quality products. One of the principal factors with respect to the speed of evolution of carbon dioxide is the reactivity of the carbon dioxide producing material.
It is a primary objective when using leavening acids to modulate and control the carbon dioxide liberation kinetics to yield a 2~6282~

suitable final baked good product. More particularly, it is desirable to limit the reactive effect of water with the leavening acid. Ideally, the leavening acid would be designed so that it would not be reactive at the time of kneading or cold storing of the dough but would be reactive during heating, where the leavening of the final product takes place.
Particularly useful leavening acids are phosphate materials, and more specifically monocalcium phosphate. This acid is considered desirable as a commercial candidate as it does not possess sodium and has no aftertaste. While monocalcium phosphate does not possess sodium it has been difficult to adequately control its reaction rate which results in the release of carbon dioxide bases at various stages during the baking cycle. The fundamental problem with the use of monocalcium phosphate is that it liberates gas at too fast a desired rate. As a result, its commercial use has generally been limited to being a part of a leavening acid blend. Such blends can be less than optimal because they either may contain sodium, for example blends of monocalcium phosphate with sodium aluminum phosphate or sodium pyrophosphate, or may not have a completely bland taste.
It has been known to regulate the speed of carbon dioxide evolution by control of the reactivity of the leavening acid.
Numerous attempts to control the speed of reaction of the f..-..
leavening acid are known in the art. Typical examples include U.S. Pat. No. 3,034,899 to Tucker wherein a finely divided calcium salt is combined with the acid to control the speed of reaction.
Calcium salts have been employed in chemical leavening systems from its earliest days. A typical example of such use is found in U.S. Pat. No. 315,831 to Peters. However, such calcium salts as taught in Peters are relatively slow acting and have not provided satisfactory performance as the carbonate factor particularly in comparison with the alkali metal salts. Although calcium salts such as calcium carbonate have been employed for various purposes such as preservatives for the leavening acid, etc. as noted in U.S. Pat. Nos. 4,388,336 and 4,526,801, such carbonates do not provide the reactivity desired far a carbonate factor in baked goods.
The use of so-called "coated" monocalcium phosphate where the monocalcium phosphate has a thin coating of phosphate surrounding its acid core is known in the art. However, the "coating" does not provide the reaction kinetics that is ideally preferred and typically can only be used as part of a blend composition. Such materials are disclosed in U.S. Patent No.
2,160,232. To produce the coated materials, the starting monocalcium phosphate material is subjected to heat treatment at a temperature above about 140°C. The reference further states that the materials should not be heated to above 230°C as it is <~lleged that this can cause rapid conversion of leavening acid to a pyrophosphate form. The reference further suggests that the neutralizing value, i.e., the amount of sodium bicarbonate which is completely neutralized by 100 parts by weight of the acid phosphate, of the acids so produced is between about 83 and 88. While this technology has improved the controlled reactivity of the monocalcium phosphate its performance is inferior as compared to sodium containing leavening acids such as sodium acid pyrophosphate and sodium aluminum phosphate.
C1.S. Patent No. 2,160,700 discloses that anhydrous monocalcium phosphate can be prepared by crystallization from an acid solution. A preferred method of preparing crystalline anhydrous monocalcium phosphate is also disclosed in this patent. In the method, a slight excess of lime is added to a relatively concentrated phosphoric acid solution to spontaneously produce a reaction temperature in excess of 140°C. The temperature is controlled in a range above 140°C but below a temperature at which substantial amounts of pyrophosphate form. The temperature is usually controlled by the rate of lime addition.
The reaction is continued until a substantially dry mass of solid anhydrous monocalcium phosphate is produced.
L1.S. Patent No. 3,109,738 is directed to a leavening acid composition which is a mixture of sodium aluminum phosphate and anhydrous monocalcium phosphate. This composition demonstrates excellent release properties but requires the use of a sodium containing acid.
U.S. Patent No. 3,954,939 is directed to a monocalcium phosphate having reduced caking tendencies by admixing water with a monocalcium phosphate compositian having a loss on ignition between about 14 and about 17~, permitting the water and monocalcium phosphate to remain in contact for a sufficient length of time to form a hydrated monocalcium phosphate composition with a loss on ignition between 17 and 21.5, and drying the monocalcium phosphate composition to a free moisture content below to and preferably below about 0.5~ if the admixture has a free moisture content above this level.
Accordingly, it would be desirable to produce a monocalcium phosphate leavening acid whose release rate properties can be tightly controlled for optimal use for a multiple of baking applications.
In accordance with the present invention, leavening acid compositions which have excellent controlled release properties for reaction with leavening bases during various stages in the baking of baked goods are provided. The acid compositions are particularly characterized by being monocalcium phosphate compositions which have been synthesized to provide a specifically desired neutralizing value.
One embodiment of the present invention comprises a composition of matter comprising a monocalcium phosphate leavening acid having a neutralizing value of between about 44 and about 63 to wherein the neutralizing value is the amount by weight of sodium bicarbonate needed to neutralize 100 parts by weight of said monocalcium phosphate leavening acid.
In specific embodiments, the monocalcium phosphate may be used in its anhydrous or monohydrate form.
To produce the inventive monocalcium phosphate of the present invention, a sample of monocalcium phosphate is heated to an elevated temperature for a period of time suitable to yield a material having a neutralization value of between 44 and 63.
This typically is accomplished by heating 100 parts of monocalcium phosphate to between about 200°C and about 310°C for between about 0.25 hours and about 30 hours to yield 83 to 93 parts of resulting material.
Another embodiment of the present invention comprises a baking mix for preparing an edible baked good including a composition of matter comprising a monocalcium phosphate leavening acid having a neutralizing value of between about 44 and about 63 wherein the neutralizing value is the amount by weight of sodium bicarbonate needed to neutralize 100 parts by weight of said monocalcium phosphate leavening acid.
The baking mix may be used to prepare a cake, muffin, doughnut, bread, pastry, cookie, brownie, hush puppy, pancake, waffle, pizza crust or roll.
Accordingly, the present invention provides a composition useful as a leavening acid which has excellent stability and release properties. The present invention also provides a process for producing the novel leavening acid composition. The present invention also provide a baking mix using the novel leavening acid composition.
These, and other aspects, will readily be apparent to those skilled in the art as reference is made to the detailed description of the preferred embodiment.
The Drawing is a graph of the Dough Rate of Reaction (DRR) of monocalcium phosphate heated to different temperatures for defined periods of time in accordance with the present invention as compared to an unheated sample and to a commercially successful sodium aluminum phosphate leavening acid.
In describing the preferred embodiment, certain terminology will be utilized for the sake of clarity. Such terminology is intended to encompass the recited embodiment, as well as all technical equivalents which operate in a similar manner for a similar purpose to achieve a similar result.
The main focus of the present invention is to develop leavening acid compounds which have desirable control release properties so that the acid would be released only when the proper time in the baking cycle takes place. More particularly, the liberation of carbon dioxide should take place either by an input of water to a baking mixture containing the leavening acid compound, by the elevation of temperature during heating or by the combined effect. Conversely, it is desired that the acid not prematurely release carbon dioxide gas during the preparation of the baking mix, or subsequent dough, for example, during the kneading phase, or while it is being stored prior to baking. The present invention accomplishes the above criteria by treating a monocalcium phosphate leavening acid composition such that its neutralizing value is reduced to between about 44 and about 63.
Particularly preferred compositions have a neutralizing value between about 44 and about 57, even more preferred between about 46 and about 55.
The leavening acid which forms the present invention can be any of the following materials: monocalcium phosphate, monohydrate;
arid monocalcium phosphate, anhydrous. Particularly preferred is the use of monocalcium phosphate in its hydrated form.
The monocalcium phosphate typically has a mean particle size of between about 20 and about 200 microns, with particle sizes ranging from about 30 to about 120 microns or from about 50 to about 20o microns being commercially available.
Before the heat treatment of the present invention, the neutralizing value of the monocalcium phosphate is typically about 80-85. To reduce the neutralizing value to where the monocalcium phosphate leavening acid can be used by itself as a multifunctional leavening acid it is simply heated for a period of time until its neutralizing value ranges between about 44 and 63.

The heating step is simply accomplished by using any heat means known in the art such as using an oven, steam, either tossed air or convection type, a hat plate, fluidized bed rotary drum dryer and the like. To determine when the manocalcium phosphate has the desired neutralizing value can be accomplished by measuring the amount of material lost upon heating. In practice, to obtain a composition having a neutralizing value of between 44 and 63, it is heated until its mass weighs between 83 and about 93 percent of its starting mass (i,e., the loss on drying (LOD) is between about 7 and about 17 percent) , even more preferred is heating to where the final amount of material produced weighs between about 83 to about 89 percent of its starting mass (the LOD is between 11 and 17). Outstanding material is obtained when the final amount of material produced weighs between about 85 to about 86.5 percent of its starting mass (the LOD is between 13.5 and 15).
Heating conditions used generally involve the heating of the monocalcium phosphate starting material so that the material temperature reaches between about 200°C to about 314°C and the material is held at that temperature for a time period of between about .25 hours to about 30 hours. The heating temperature and time are selected to obtain the above-recommended LOD values. For example, when the temperature of the monocalcium phosphate is heated to about 220°C, the time of heating is between about 20 and about 30 hours; when the temperature of the monocalcium phosphate is heated to about 250°C, the time of heating is between about 2 and about 5 hours;
when the temperature of the monocalcium phosphate is heated to about 270°C, the time of heating is between about 1 and about 2 hours; when the temperature of the monocalcium phosphate is heated to about 290°C, the time of heating is between about 0.75 and about 1.50 hours; and when the temperature of the monocalcium phosphate is heated to about 310°C, the time of heating is between about 0.50 and about 0,75 hours. ' After the monocalcium phosphate has been heated for the suitable amount of time, it is cooled and stored under conditions so that the material does not absorb moisture. Particularly preferred storage conditions include watertight packaging or storage in the presence of a desiccant.
Once produced, the novel leavening acid compositions of the present invention may be incorporated in baking mixes for food products where the acids react with bases, typically sodium bicarbonate, to produce the leavening function that any known chemical leavening agent or biological leavener such as yeast would ordinarily provide. The inventive chemical leavening system of this invention may be incorporated into a baking powder product conveniently prepared by admixing the acid with an base as a dry powder mix. It is well known that baking powders in the dry powder form are best prepared together with fillers contributing to the bulk of the powder and aiding its measurement for actual use. Fillers such as starch, calcium sulfate or calcium carbonate are generally employed in baking powders of this invention. Conventional preservatives and fillers may be employed together with the baking powder composition of this invention as is known in the art.
Examples of food products which can incorporate the inventive compositions, include, but are not limited to the following:
cake, including layer and pound cake; muffin; doughnut; bread;
pastry; cookie; room temperature, refrigerated or frozen dough;
brownie; hush puppy; pancake; waffle; pizza crust or roll. The food products may be stored at room temperature or at reduced temperatures, e.g., refrigerated or frozen storage conditions.
In use, when the baking mixes are heated, the leavening acids, which typically comprise between about 0.2 to about 4.0 percent by weight of the mix, controllably release and react with the bases to produce a properly leavened food product . The use of the inventive monocalcium phosphate material provides a control release profile such that a particularly high quality leavened product is produced. The present invention enables the use of monocalcium phosphate alone as a leavening acid. This is a significant improvement as it contains no sodium, has a bland taste and reacts slowly enough to provided desired leavening properties.
Fresh dough can be prepared from the leavening systems of this invention in the conventional manner as has been practiced in the art. Typically the ingredients are mixed together in the dry state and may be stored for conventional time periods. It is preferable to refrigerate dry mixed materials if extended time l0 periods occur between mixing and the preparation of the fresh dough. The dry mix is employed to prepare fresh dough by incorporating suitable liquids such as milk and shortening materials as is known in the art.
As is known in the art, the desired pH of the final baked good can be controlled by incorporating into fresh dough leavening acids and alkaline carbonate sources normally employed for that purpose in the art. Generally, the pH of the final baked product 2o ranges from about 5.5 to about 9.0, preferably from about 6.9 to about 7.5. The amount of alkaline carbonate material added should be sufficient to provide a pH within the above-described ranges. Typically there is included from about 0.35 by weight to about 3~ by weight of the edible, alkaline agent, based upon the weight of the powdered ingredients employed.

'rhe invention will be better understood by reference to the following examples.
F~13T1 1 20 parts of monocalcium phosphate, monohydrate form (MCP), is weighed accurately into a large, flat porcelain casserole dish and placed in a gravity convection oven. The oven is heated so that the temperature of the material in the oven reaches 200°C
and the material is held at this temperature for 0.25 hours.
The neutralizing value of this material is measured by determining haw many parts by weight of sodium bicarbonate are needed to neutralize 100 parts of this composition. This value is shown in Table 1. The neutralizing value for untreated MCP
(Regent 12XX) is 80 and for Levair, a commercially available sodium aluminum phosphate widely recognized for its excellent control release properties is 100.
The loss on drying (oLOD) is measured by weighing the resulting material and determining the percent of material lost by the heating process as compared to the initial amount used. This value is listed in Table 1.

'rhe dough rate of reaction (DRR) is a term that defines the :peed of carbon dioxide evolved during mixing and holding of a dough prior to baking. It is determined by measuring the volume of carbon dioxide evolved from a standard dough formulation containing known quantities of leavening acid and baking soda under a constant temperature of 27°C in a modified Chittick Apparatus. The DRR is often used as a guide for selecting the type of leavening acid that is best suited for a particular product application. A low value for the DRR, i.e., less than 50 over 2, 6 and/or 10 to 15 minute reaction times, tends to indicate an excellent controlled reaction rate.
To measure the amount of C02 liberated upon reaction with sodium hydrogen carbonate for the Example 1 composition, 73.5 parts of a simulated dry dough mix containing flour, nonfat dry milk, salt and shortening, 0.75 parts of NaHC03 and 0.93 parts of the Example 1 composition are added to a reaction bomb. 43 parts of water are added and the contents are mixed. Using a modified Chittick Apparatus (or any similar apparatus which capable of measuring gas evolutiori)the amount of COZ evolved compared to the total amount available to be evolved (DRR) is measured at t imes of 1, 2 , 4 , 6 , 8 , 10 , 12 and 15 minutes . The DRR values are listed in Table 2, as are the DRR values for Regent 12XX and Levair.

~~6~8~~
To determine if the above Example leavening acid composition would work well in baking mixes, the following yellow cake mix is prepared;

-,.
Cake Flour 236.00 parts Granulated Sugar 280.84 parts Shortening 53.57 parts Nonfat Dry Milk 18.17 parts Egg Yolk Solids 22.89 parts Egg White Solids 9.20 parts NaCl 6.37 parts Inventive Leavening Acid 9.0-13.0 parts Composition Sodium Bicarbonate 5.66 parts Pregelatinized Wheat Starch 2.60 parts Emulsifier 5.00 parts A batter is made by adding to the mixture first, 170.00 parts of water, then 142.00 parts of water. The batter was immediately added to a baking dish and baked at 375°F for 25 minutes to form a yellow cake.
To determine if the above batters could produce high quality cakes after baking, they were quantitatively analyzed by using the following criteria; Batter Specific Gravity, Cake Specific Volume and Cake pH. A specific volume of 3.25 is considered commercially acceptable. The values for these criteria are shown in Table 1.

As a first comparison, the cake specific volume measured for the Regent 12XX cake is 2.59 and the cake specific volume measured for the Levair cake is 3.55.
The procedure of Example 1 is repeated except that the heating conditions (temperature and time) used are shown in Table 1, and f.or Examples 20-23 and 34-47, 100 parts of monocalcium phosphate monohydrate starting material are used. Also shown in Table 1 are the values for %Loss on Drying (% LOD), Neutralizing Value (NV), Batter Specific Gravity (Sp, Gravity), Cake Specific Volume (Sp. Volume) and Cake pH (pH).
The DRR data for Examples 2-19 and 24-33 are shown in Table 2.
~'8~..~.
Example Temp("C) Time % LOD NV Sp. Sp. pH

(hr) volume Gravity Levair _ _ _ _ ~_-_ 100 3.55 0.92 7.79 Regent - - - - - - 78 2.59 0.86 7.34 1 200 0.25 7.6 67 2.67 0.85 7.21 2162~2~
200 0.50 8.0 66 2.74 0.85 7.16 3 200 1.00 8.2 65 2.75 0.87 7.19 4 200 1.50 8.3 66 2.80 0.85 7/16 200 2.00 8.3 67 3.11 0.77 7.12 6 200 3.00 8.4 67 3.18 0.77 7.16 7 200 7.00 8.6 66 3.18 0.74 7.09 8 200 17.00 9.0 65 3.18 0.75 7.07 200 20.00 9.0 65 3,27 0.74 7.07 220 0.25 7.5 67 2.64 0.83 7.13 11 220 0.50 8.3 66 2.73 0.83 7.17 12 220 1.00 8.7 65 x.88 0.81 7.14 1:3 220 1.50 8.8 66 3.06 0.79 7.12 14 220 2.00 8.9 65 3.05 0.78 7.12 220 3.00 9.3 63 3.29 0,75 7.15 16 220 5.00 9.5 62 3.31 0.76 7.13 1'~ 220 7.00 9.9 62 3.31 0.76 7.18 18 220 17.00 10.9 59 3.42 0,78 7.32 1'~ 220 20.00 11.2 58 3.46 0.80 7.33 2 220 22.00 12.9 54 3.29 0.87 7.51 21 220 24.00 13.0 53 3.37 0.89 7.49 22 220 26.00 13.1 51 3.46 0.91 7.50 23 220 28.00 13.3 52 3.41 0.90 7.50 24 250 0.25 7.6 65 3.00 0.82 7.21 250 0.50 10,3 61 3.29 0,78 7.29 26 250 1.00 11,3 59 3.36 0.79 7.41 27 250 1.50 13.9 56 3.49 0.81 7.61 28 250 2.00 13.3 54 3,57 0.87 7.50 29 250 3.00 13.6 53 3.50 0.90 7.54 30 250 5.00 14.1 51 3.53 0,98 7.75 31 250 7.00 14.7 51 3.45 0.91 7.78 32 250 17.00 14.9 50 3.51 0.96 8.99 33 250 20.00 15.5 48 3.37 0.98 8.65 34 270 0,50 9.8 59 3.11 0.80 7.09 35 270 1.00 13.9 50 3.53 0.85 7.15 36 270 1.50 14.6 46 3.62 0.92 7.10 37 270 2.00 15.1 44 3.56 0.92 7.15 38 290 0.50 11.0 63 3.32 0.80 7.37 39 290 0.75 12.9 57 3.39 0.85 7.55 40 290 1.00 14.9 52 3.52 0.92 7.50 41 290 1.25 15.4 52 3.43 0.93 8.31 42 290 1.50 15.5 52 3.37 0.94 8,17 43 310 0.25 9.3 67 2.81 0.85 7.23 44 310 0.50 13.9 55 3.50 0.89 7.77 45 310 0.75 15.2 53 3.36 0.93 8.51 46 310 1,00 15.8 52 3.00 0.94 9.31 4'7 310 1.25 16.0 49 2.94 0.93 9.38 ~1~2~2~
DRR OFILE F EXAMPLE MATER IALS
PR O

min. min. min. min. min. min. min. min.

REGEN 57.1 61.9 64.4 65.3 65.8 66.0 66.3 66.7 T

LEVAI 21.6 23.7 26.5 28.3 29.9 31.5 32.7 34.5 R

1 61.3 65.6 67.9 69.0 69.7 70.2 70.6 71.1 2 57.0 62.0 64.2 65.4 66.1. 66.3 66.5 67.0 3 48.5 59.5 63.8 65.4 66.1 66.8 67.2 67.7 4 48.1 57.9 61.5 62.9 63.6 63.8 63.8 64.0 43.5 56.0 61,5 63.1 63.8 64.2 64.5 64.7 6 38.3 51.5 58.3 59.9 60.8 61.5 62.0 62.2 7 36.5 50.3 59.2 61.1 62.0 62.4 62.9 63.3 8 30.5 44.2 54.9 57.9 59.2 59.9 60.6 61.1 9 30.5 44.2 55.1 58.3 59.7 60.1 60.8 61.5 59.8 65.3 67.6 68.8 69.5 69.7 70.0 70.2 11 40.0 54.3 61.4 63.7 64.9 65.8 66.3 66.7 12 32.7 47.4 58.4 61.2 62.4 63.0 63.5 64.4 13 30.1 44.9 56.8 60.3 61.7 62.6 63.0 63.7 14 30.1 44.4 55.9 58.4 59.8 60.7 61.2 61.7 28.1 41.4 55.7 59.8 61.4 62.6 63.3 64.0 16 27.2 39.8 53.6 58.0 59.8 60.7 61.7 62.4 17 26.5 38.4 53.2 57.5 59.8 61.0 61.7 62.6 18 2.4.4 33.4 45.8 50.2 52.0 53.2 53.8 54.8 19 24.9 33.1 44.6 48.8 50.6 51.8 52.5 53.6 24 31.3 45.4 57.1 60.1 61.5 62.4 63.1 63.8 25 29.0 40.1 50.5 53.5 55.1 56.0 56.7 57.4 26 24.9 33.2 44.2 48.4 50.2 51.4 52.1 53.0 27 24.0 28.8 37.6 41.7 44.0 45.6 46.5 47.9 28 21.7 25.3 31.3 34.1 36.4 37.8 38.7 40.1 29 20.7 23.5 28.1 30.4 32.3 33.4 34.3 35.5 30 19.8 21.9 25.1 26.7 27.8 28.5 29.0 29.9 31 17.9 19,8 21.6 22.5 23.5 24.4 24.9 25.5 32 18.4 19.8 21.4 22,5 23.4 23.9 24.1 24.8 33 17.9 18.8 19.8 20.2 21.1 21.6 22.1 22.3 The above data demonstrates that the monocalcium phosphate compositions which have been heat treated so that the neutralizing value for the resulting composition is between 44 and 63, and more preferably between 44 and 57 and yet most preferably between 46 and 55 yield leavening acids which have excellent control release properties while producing cakes that have a high specific volume. These neutralizing values correspond to a loss on drying of between about 7 and 17%, with a loss of between about 11 and 16% being particularly preferred.

In nearly every example where the monocalcium phosphate is heated, the resulting properties exceed those of untreated monocalcium phosphate (Regent 12XX).
The data further demonstrates that it is the combination of heating temperature and heating time which should be monitored to yield satisfactory compositions. For example, particularly with respect to producing cakes having excellent specific volumes, at 220°C, excellent results are obtained when heating the monocalcium phosphate for between 20 and 28 hours (Examples 19-23); at 250°C, excellent results are obtained when heating the monocalcium phosphate for between 2 and 5 hours (Examples 28-30); at 270°C, excellent results are obtained when heating the monocalcium phosphate for between 1 and 2 hours (Examples 35-37); at 290°C, excellent results are obtained when heating the monocalcium phosphate for between 0.75 and 1.5 hours lExamples 39-42); and at 310°C, excellent results are obtained when heating the monocalcium phosphate for between 0.50 and 0.75 hours (Examples 44-45).
When compared to a commercially successful sodium aluminum phosphate, Levair, manufactured by Rhone--Poulenc Inc., under certain heating conditions, the inventive materials perform comparably without containing any sodium or aluminum. Referring to the Figure, the following inventive compositions yield control release profiles comparable to that of Levair: Example CA 02162822 1995-12-20 2 ~. 6 2 g 2 2 ~9, Example 30, Example 36, Example 40 and Example 44. Each of l~hese materials have a neutralizing value of between 46 and 55, with a loss on drying of between 13.6 and 14.9. As a reference, t:he control release profile of the untreated monocalcium phosphate, Regent 12XX, is shown. Its release properties are t:oo rapid to be considered suitable for use alone in multiple leavening applications.
In short, the present invention produces a versatile leavening l0 acid composition which is easy to produce, minimizes health risks, is bland to the taste and does not require blending with other leavening acid materials.
Having described the invention in detail and by reference to the preferred embodiments thereof, it will be apparent that modifications and variations are possible without departing from the scope of the appended claims.

Claims (14)

1. A leavening acid composition comprising a monocalcium phosphate leavening acid having a neutralizing value of between 44 and 63, wherein the neutralizing value is the amount by weight of sodium bicarbonate needed to neutralize 100 parts by weight of said monocalcium phosphate leavening acid.
2. The composition according to claim 1, wherein the neutralizing value is between 44 and 57,
3. The composition according to claim 2, wherein the neutralizing value is between 46 and 55.
4. A process for producing a leavening acid composition comprising heating monocalcium phosphate at a temperature of from 200 to 310°C for a period of time of from 0.25 to 30 hours so that the resulting material has a neutralizing value of between 44 and 63.
5. The process according to claim 4, wherein the temperature of said monocalcium phosphate when heated is 220°C and wherein the time of heating is between 20 and 30 hours.
6. The process according to claim 4, wherein the temperature of said monocalcium phosphate when heated is 250°C and wherein the time of heating is between 2 and 5 hours.
7. The process according to claim 4, wherein the temperature of said monocalcium phosphate when heated is 270°C and wherein the time of heating is between 1 and 2 hours.
8. The process according to claim 4, wherein the temperature of said monocalcium phosphate when heated is 290°C and wherein the time of heating is between 0.75 and 1.50 hours.
9. The process according to claim 4, wherein the temperature of said monocalcium phosphate when heated is 310°C and wherein the time of heating is between 0.50 and 0.75 hours.
10. The process according to any one of claims 4 to 9, wherein the heating occurs so that the weight of the resulting leavening acid composition is between 83 to 93 percent of the weight prior to heating.
11. The process according to claim 10, wherein the heating occurs so that the weight of the resulting leavening acid composition is between 83 to 89 percent of the weight prior to heating.
12. A baking mix for preparing an edible baked good comprising the composition according to claim 1, 2 or 3.
13. The baking mix according to claim 12, comprising between 0.2 to 4.0 percent by weight of the composition of claim 1, 2 or 3.
14. The baking mix according to claim 12 or 13, which is used to produce a cake, muffin, doughnut, bread, pastry, cookie, room temperature, refrigerated or frozen dough, brownie, hush puppy, pancake, waffle, pizza crust or roll.
CA002162822A 1994-11-22 1995-11-14 Novel leavening acid composition Expired - Lifetime CA2162822C (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US08/344,322 US5554404A (en) 1994-11-22 1994-11-22 Leavening acid composition
US08/344,322 1994-11-22

Publications (2)

Publication Number Publication Date
CA2162822A1 CA2162822A1 (en) 1996-05-23
CA2162822C true CA2162822C (en) 2005-10-18

Family

ID=23350035

Family Applications (1)

Application Number Title Priority Date Filing Date
CA002162822A Expired - Lifetime CA2162822C (en) 1994-11-22 1995-11-14 Novel leavening acid composition

Country Status (13)

Country Link
US (4) US5554404A (en)
EP (1) EP0713648B1 (en)
JP (1) JPH08205757A (en)
AR (1) AR000175A1 (en)
AT (1) ATE222058T1 (en)
AU (1) AU686900B2 (en)
BR (1) BR9505246B1 (en)
CA (1) CA2162822C (en)
DE (1) DE69527764T2 (en)
DK (1) DK0713648T3 (en)
ES (1) ES2183858T3 (en)
NZ (1) NZ280497A (en)
PT (1) PT713648E (en)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5554404A (en) * 1994-11-22 1996-09-10 Rhone-Poulenc Inc. Leavening acid composition
US6030654A (en) * 1996-09-11 2000-02-29 Church & Dwight Co., Inc. Composition for no fat of reduced fat bakery products
US6080441A (en) * 1998-05-08 2000-06-27 Rhodia Inc. Leavening acid composition
US20020172747A1 (en) * 2001-04-02 2002-11-21 Rhodia Inc. Self rising dough-containing food product
DE10117171B4 (en) * 2001-04-06 2006-03-30 Itw Automotive Products Gmbh & Co. Kg Arrangement of a workpiece and a thread-forming screw
US6886452B2 (en) * 2001-08-23 2005-05-03 Claud S. Gordon Company System and method of leavening with carbon dioxide monitoring
US20090123607A1 (en) * 2004-01-09 2009-05-14 John Brodie Self-rising dough-containing food product and related manufacturing methods
US7625461B2 (en) * 2006-09-21 2009-12-01 Kimberly-Clark Worldwide, Inc. Modified linkbelt molding and throughdrying fabrics
EP2087796A4 (en) * 2006-12-01 2015-02-11 Mitsubishi Chem Corp Quality improving agent for foods and foods
US7851008B2 (en) * 2007-04-30 2010-12-14 James Stewart Campbell High fat to protein ratio egg yolk product and methods for making and utilizing same
JP5740771B2 (en) * 2011-04-04 2015-07-01 月島食品工業株式会社 White shoe puff and manufacturing method thereof
WO2015195113A1 (en) * 2014-06-18 2015-12-23 General Mills, Inc. Method of producing a frozen dough, and related products

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US315831A (en) 1885-04-14 Phosphate baking-powder
US2160232A (en) * 1938-08-22 1939-05-30 Victor Chemical Works Heat-treated monocalcium phosphate
US2160700A (en) * 1938-08-22 1939-05-30 Victor Chemical Works Crystalline anhydrous monocalcium phosphate
US2263487A (en) * 1939-03-18 1941-11-18 Virginia Carolina Chem Corp Leavening agent
US2272617A (en) * 1939-03-18 1942-02-10 Virginia Carolina Chem Corp Calcium acid pyrophosphate composition and method of production
US2314090A (en) * 1939-07-21 1943-03-16 Monsanto Chemicals Leavening preparation
US2631102A (en) * 1951-06-01 1953-03-10 Monsanto Chemicals Monocalcium phosphate leavening composition and method of producing same
FR1060943A (en) * 1951-06-01 1954-04-07 Monsanto Chemicals Improved process for the production of artinsiolle yeast based on monocalcium phosphate and the resulting improved artificial yeast
US3034899A (en) 1960-03-08 1962-05-15 Stauffer Chemical Co Stabilized sodium acid pyrophosphate baking acid and method of making the same
US3109738A (en) * 1963-03-05 1963-11-05 Stauffer Chemical Co Self-rising flour compositions comprising mixtures of sodium aluminum phosphate and anhydrous monocalcium phosphate
US3954939A (en) * 1974-05-21 1976-05-04 Stauffer Chemical Company Method for preparing monocalcium phosphate compositions with reduced caking tendencies
US4388336A (en) 1981-05-11 1983-06-14 The Pillsbury Company Dough product containing an organic acid leavener
US4526801A (en) 1983-08-01 1985-07-02 The Pillsbury Company Refrigerated dough
US4838922A (en) * 1987-07-06 1989-06-13 Green, Inc. Method for producing monocalcium phosphate and products produced therefrom
DE3820198A1 (en) * 1988-06-14 1989-12-21 Benckiser Knapsack Gmbh USE OF CALCIUM DIHYDROGEN DIPHOSPHATE AS BACKUFFIC ACID FOR SLOWLY REACTIVE DRIVE SYSTEMS AND METHOD FOR THE PRODUCTION THEREOF
US5554404A (en) * 1994-11-22 1996-09-10 Rhone-Poulenc Inc. Leavening acid composition

Also Published As

Publication number Publication date
EP0713648A3 (en) 1996-08-07
US5925397A (en) 1999-07-20
DE69527764T2 (en) 2003-05-15
EP0713648A2 (en) 1996-05-29
ES2183858T3 (en) 2003-04-01
BR9505246B1 (en) 2009-01-13
ATE222058T1 (en) 2002-08-15
PT713648E (en) 2002-12-31
US5667836A (en) 1997-09-16
JPH08205757A (en) 1996-08-13
EP0713648B1 (en) 2002-08-14
US5554404A (en) 1996-09-10
AU686900B2 (en) 1998-02-12
AR000175A1 (en) 1997-05-21
US5834050A (en) 1998-11-10
NZ280497A (en) 1998-07-28
BR9505246A (en) 1997-09-16
CA2162822A1 (en) 1996-05-23
DK0713648T3 (en) 2002-12-16
AU3797395A (en) 1996-05-30
DE69527764D1 (en) 2002-09-19

Similar Documents

Publication Publication Date Title
US4966782A (en) Chemical leavening system
CA2162822C (en) Novel leavening acid composition
US5405636A (en) Leavening composition
US5409724A (en) Leavening composition and process of making
JP2011004767A (en) New leavening acid composition
MXPA01000805A (en) Process and formulation for a chemically leavened dough or bakery product.
MX2012004965A (en) Product comprising magnesium pyrophosphate and the use thereof as a leavening acid for producing baked goods.
Gélinas Inventions on phosphates for chemical leavening
US5773068A (en) Leavening system and products therefrom
US4230730A (en) Leavening acid composition
US5225226A (en) Chemical leavening system
US3275451A (en) Alpha-glucoheptono-gamma-lactone containing premix for leavened baked food products
US4500557A (en) Leavening acid composition
AU713457B2 (en) Novel leavening acid composition
US3275450A (en) D-galactono-gamma lactone containing premix for leavened baked food products
CA1336870C (en) Chemical leavening system
US5153018A (en) Chemical leavening system
US4196226A (en) Alkali metal aluminum phosphate
CA1175710A (en) Leavening system for fructose containing baked goods
MXPA98006782A (en) Novedoso system of fermentac
EP0699392A2 (en) Novel encapsulated leavening acid composition
Bennion et al. Chemical aeration
SU335798A1 (en) METHOD OF MANUFACTURE OF BAKERY PRODUCTS
CA2246600A1 (en) Novel leavening system
WO2016144855A1 (en) Leavening composition to replace aluminum based leavening acids

Legal Events

Date Code Title Description
EEER Examination request
MKEX Expiry

Effective date: 20151116