CA2162915A1 - Procede de preparation d'un support pour catalyseurs, catalyseur pour la polymerisation d'olefines et procede pour la polymerisation d'olefines au moyen de ce catalyseur - Google Patents

Procede de preparation d'un support pour catalyseurs, catalyseur pour la polymerisation d'olefines et procede pour la polymerisation d'olefines au moyen de ce catalyseur

Info

Publication number
CA2162915A1
CA2162915A1 CA002162915A CA2162915A CA2162915A1 CA 2162915 A1 CA2162915 A1 CA 2162915A1 CA 002162915 A CA002162915 A CA 002162915A CA 2162915 A CA2162915 A CA 2162915A CA 2162915 A1 CA2162915 A1 CA 2162915A1
Authority
CA
Canada
Prior art keywords
gel
process according
catalyst
water
silicon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
CA002162915A
Other languages
English (en)
Inventor
Helmut Derleth
Benoit Koch
Andre Rulmont
Fabienne Wijzen
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ineos Manufacturing Belgium NV
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Publication of CA2162915A1 publication Critical patent/CA2162915A1/fr
Abandoned legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/03Precipitation; Co-precipitation
    • B01J37/036Precipitation; Co-precipitation to form a gel or a cogel
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/12Silica and alumina
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/14Phosphorus; Compounds thereof
    • B01J27/16Phosphorus; Compounds thereof containing oxygen, i.e. acids, anhydrides and their derivates with N, S, B or halogens without carriers or on carriers based on C, Si, Al or Zr; also salts of Si, Al and Zr
    • B01J35/60
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/03Precipitation; Co-precipitation
    • B01J37/031Precipitation
    • B01J37/033Using Hydrolysis
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F10/00Homopolymers and copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond
    • B01J35/615
    • B01J35/617
    • B01J35/638

Abstract

Procédé pour la fabrication d'un support contentant de la silice et au moins un constituant choisi parmi l'alumine et le phosphate d'aluminium, selon lequel on mélange un alcool, de l'eau, un alcoolate de silicium et un acide dans des conditions telles qu'on évite une gélification ou précipitation de silice, on y ajoute une solution acide d'un composé d'aluminium et/ou une solution d'une source d'ions phosphates, on y ajoute un agent gélifiant, on recueille un gel que l'on soumet à un lavage à l'eau et ensuite au moyen d'un liquide organique, puis on sèche le gel par atomisation jusqu'à l'obtention d'une poudre, et on calcine la poudre. Polymérisation d'oléfines en présence d'un catalyseur contenant du chrome sur un support tel que décrit ci-dessus.

Description

9 ~ ~
-Procédé de préparation d'un support pour catalyseurs, catalyseur pour _a polymérisation d'oléfines et procédé
pour la polymérisa-ion d'oléfines au moyen de ce catalyseur La présente invention concerne un procédé de fabrication d'un support pour catalyseurs, contenant de la silice et au moins un constituant choisi parmi l'alumine et le phosphate d'alu-minium. Elle concerne en outre des catalyseurs pour la polyméri-sation d'oléfines contenant du chrome sur un tel support, ainsi que l'utilisation de ces catalyseurs dans la polymérisation d'oléfines Des supports constitués de mélanges d'o~ydes utilisables pour la conversion d'hydrocarbures sont connus. Par e~emple, la O demande de brevet d'inventiQn FR-~-2315g'~7 di-{ulgue un procédé de préparation de supports comprenant de l'alumine et du phosphate d'aluminium~se~on le~uel on fait r~agir un alcoolate d'aluminium ~-~
avec une solution aqueuse renfermant des ions phosphates, on récupère le~.support et on le calcine.
- l~ Dans la demande de brevet EP-~-283815 on divulgue un procédé
de préparation d'une composition contenant de l'alumine comme constituant prépondérant et de la silice. qui comprend les étapes . suivantes :
(a) mélanger une première quantité d'une solution aqueuse (I) 2Q d'un sel d'aluminium avec une première quantité d'une solution aqueuse (II) d'un aluminate de métal alcalin pour obtenir une suspension d'un hydrogel d'alumine précipité à pH
de.8 à 10, (b) y ajouter une deuxième ~uantité de la solution (I~ pour ~5 obtenir un F~ de 2 s 4, (c) y ajouter une deuxième ~quantite de-la solution (II~ pour ...
obtenir un pH de 8 à 10, .
(d) répéter.au moins une fois les étapes (b) et (c), .:
(e~ y aJoUter une solutian aqueusc d~un siIicate de méta~.~alcalIn pour obtenir--une suspension d'un hydrogel alumine-.sili~e, FFUILLE !\AOG~FlEE

-23 ~2~15 - lbis -(f) séparer l'hydrogel de la suspension, (g) déshydrater l'hydrogel ainsi obtenu par chaufra~e.
Le procédé peut comprendre des étapes additionnelles et notamment une étape d'imprégnation de la composition obtenue en (g) au moyen d'une solution contenant un composé de phosphore suivies d'étapes de chauffage.
Dans l'exemple IA de la demande de brevet GB-A-~090158, on décrit un procédé de préparation d'un support pour catalyseurs, composé de silice et de phosphate d'aluminium, sel~n lequel on prépare une solution contenant de l'isopropanol, de l'eau, de l'acide phosphorique, de l'éthylate de silicium et de l'acide sulfurique, on y ajoute du nitrate d'aluminium, de l'acide phosphoramideux et du nitrate de chrome, et on y introduit de l'hydroxyde d'ammonium pour effectuer une cogélific_tion.
IS Ce support connu présente un degré d'hétérogénéité élevé et cristallise dès lors très vite lorsqu'il est soumis à une calci-nation à des températures supérieures à 700 C. D'autre part, ce .- ~ s-upport ne cQmbine pas~simultanément une-surface spécifique ~;
élevée avec un volume poreux élevé. Il en résulte ~ue ce support ~0 connu ne permet pas de fabriquer des catalyseurs à base de chrome pour la polymérisation d'oléfines. qui présententr à la fois, une -activité catalytique élevée, une période faible d'induction de la polymérisation et une bonne réponse à l'hydrogène. En outre, il ne permet pas d'obtenir des pol~oléfines ayant une distribution de masses moléculaires modulable entre une distribution moyen-nement large et une distribution très large pour un indice de fluidité donné, et il donne généralemen~ lieu à une for~ation .. in~partante,d'aligQmères.
L'invention re.~édie à ces.inconvenients en fournissant un - ' ' '`' ,.
- u .~
~~ . '' ..

r~ ji I L h~ F~
2 ~
W O 94/26791 PCT~EP94/01514 procédé nouveau, permettant l'obtention d'un support de structure homogène et amorphe, résistant à la cristallisation, possédant simultanément un volume poreux élevé et une surface spécifique ~élevée, et qui, lorsqu'il est mis en oeuvre comme support pour un catalyseur à base de chrome dans la polymérisation d'oléfines, confère à ce catalyseur l'ensemble des avantages suivants :
- une activité catalytique élevée même en l'absence d'un cocata-lyseur, - une période d'induction de la polymérisation faible, voire nulle, une bonne réponse à l'hydrogène, ce catalyseur permettant d'obtenir des polyoléfines ayant :
-- une distribution des masses moléculaires modulable entre une distribution moyennement large et une distribution très large pour un indice de fluidité donné, et -- une fraction faible en oligomères.
En conséquence, l'invention concerne un procédé de prépa-ration d~un support pour catalyseurs contenant de la silice et au moins un constituant choisi parmi l'alumine et le phosphate d'aluminium, selon lequel on mélange, dans une première étape, un alcool, de l'eau, un alcoolate de silicium et un acide en des quantités telles que le rapport molaire eau/silicium soit de 2 à
50, la première étape étant réalisée à pH acide et comprenant, d'une part, l'adjonction de l'eau, de l'acide, de l'alcoolate de silicium et de l'alcool, la température, pendant l'adjonction, étant inférieure ou égale à 30 C, et, d'autre part, un mûrissage du milieu d'hydrolyse ainsi obtenu à une température au moins égale à 20 C et inférieure à la température d'ébullition du milieu, de manière à substituer une partie au moins des groupements alkoxy de l'alcoolate de silicium par des groupements hydroxy, sans qu'il se produise une gélification ou une précipi-tation de silice, on ajoute au milieu d'hydrolyse ainsi obtenu, dans une deuxième étape, une solution acide d'un composé d'alu-minium et/ou une solution d'une source d'ions phosphates, et, dans une troisième étape, un agent gélifiant pour former un gel précurseur, puis on lave le gel précurseur à l'eau et ensuite au 2~G29~S
W O 94/2679]L PCT~EP94/01514
- 3 -moyen d'un liquide organique, on recueille une suspension du gel dans le liquide organique, puis on soumet la suspension à un séchage jusqu'à l'obtention d'une poudre, et on calcine la poudre; selon l'invention, le séchage est effectué par atomi-sation.
Dans le procédé selon l'invention, l'alcoolate de siliciummis en oeuvre à la première étape, peut être tout composé dans lequel le silicium est lié à au moins un groupement alkoxy, tel qu'un alkoxy aromatique ou aliphatique linéaire, branché ou cyclique, saturé ou insaturé, non substitué ou substitué. Les groupements alkoxy comprennent habituellement de 1 à 20 atomes de carbone. Les alcoolates de silicium comprenant des groupements alkoxy du type aliphatique sont spécialement recommandés; ceux comprenant des groupements alkoxy du type aliphatique saturé, non substitué sont préférés, tels que, par exemple, les groupements méthyle, éthyle, n-propyle, iso-propyle, n-butyle et iso-butyle.
Les alcoolates de silicium qui conviennent bien sont le tétra-éthylate, le tétra-méthylate et le tétra-isopropylate de silicium. Tout particulièrement préferé est le tétra-éthylate de silicium. On peut bien entendu mettre en oeuvre plusieurs alcoo-lates de silicium à la première étape du procédé selon l'invention.
Dans le procédé selon l'invention, l'alcool mis en oeuvre dans la première étape a pour fonction de dissoudre l'alcoolate de silicium. En principe, tout alcool qui solubilise l'alcoolate de silicium et qui est miscible à l'eau, peut convenir. On peut ainsi mettre en oeuvre un alcool dont le groupement hydrocarboné
peut être saturé, insaturé, aromatique ou aliphatique, linéaire ou cyclique, non substitué ou substitué partiellement ou tota-lement. Les alcools aliphatiques linéaires sont préférés. Onpeut citer comme exemple l'éthanol, l'isopropanol et le méthanol.
Tout particulièrement préféré est l'éthanol. Il va de soi qu'on peut mettre en oeuvre simultanément plusieurs alcools dans la première étape du procédé selon l'invention. On utilise de préférence un alcool dont le groupément hydrocarboné correspond à
celui du groupe alkoxy de l'alcoolate de silicium utilisé.

W O 94/26791 PCT~EPg4/01514 ~
2~91~ 4 _ La quantité d'alcool mise en oeuvre dans la première étape du procédé selon l'invention, doit être suffisante pour permettre une dissolution complète de l'alcoolate de silicium et dépend dès lors de l'alcoolate de silicium et de l'alcool sélectionnés, de la solubilité de l'alcoolate de silicium dans l'alcool et de la température à laquelle la première étape est effectuée En pratique, on n'a pas intérêt à utiliser une quantité très supé-rieure à la quantité inil le nécessaire, car un large excès entraînerait une dilution inutile du mélange issu de la première étape, ce qui est à éviter.
La première étape du procédé suivant l'invention a pour objectif (a) d'hydrolyser partiellement l'alcoolate de silicium en présence d'eau et (b) de condenser partiellement l'alcoolate de silieium hydrolysé, selon les réactions suivantes :
(a) Si(O-R)4 + x H2O -> Si(OH)X(O-R)4-x + x R-OH
(b) 2 Si(OH)X(O-R)4_X -> O-[si(oH)x-l(o-R)4-x]2 + H2O
ou 2 Si(OH)X(O-R)4_x -> [si(oH)x(o-R)3-x]-o-[si(oH)x-l(o-R)4 x] + R-OH
dans lesquelles R représente un radical hydrocarboné pouvant être aromatique ou aliphatique, saturé ou insaturé, linéaire, branché
ou cyclique, qui peut éventuellement être différent dans les quatre groupes (O-R), et x représente un nombre supérieur à 0 et inférieur à 4, de préférence de 0,1 à 3,9. Dans la première étape on utilise une quantité d'eau telle que le rapport molaire entre cette quantité d'eau et la quantité de l'alcoolate de silicium mise en oeuvre soit de 2 à 50. De préférence, ce rapport molaire est de 2 à 20, plus particulièrement de 8 à 12, par exemple environ 10.
Par la suite, on entend désigner par l'expression ~'alcoolate de silicium hydrolysé et condensé" les composés -[Si(H)x-l(~R)4-x]2 et [si(oH)x(o-R)3-x]-o-[si(oH)x-l(o-R)4 x]
tels que définis ci-dessus.
Une des caractéristiques essentielles du procédé selon l'invention est la combinaison de conditions opératoires, à la première étape d'hydrolyse, telles qu'on évite toute précipi-tation ou gélification de silice dans le milieu d'hydrolyse. A

~ 0 94/26791 2 1 6 2 ~ 1~ PCTAEP94/01514 cet effet, le mélange à la première étape est réalisé dans des conditions déterminées concernant le pH et la température du milieu d'hydrolyse, le rapport molaire des quantités d'eau et d'alcoolate de silicium mises en oeuvre, et la manière de mélanger les réactifs. Par milieu d'hydrolyse, on entend désigner le milieu obtenu après mélange de l'eau, de l'acide, de l'alcoolate de silicium et de l'alcool. A cet effet, dans la première étape du procédé selon l'invention, le pH du milieu d'hydrolyse est acide. En général, le pH est inférieur à 3, de préférence de 0,5 à 2,5, par exemple environ égal à 1~ L'acide mis en oeuvre à la première étape peut être de nature minérale ou organique. Il est avantageusement choisi parmi les acides miscibles à l'eau et dont l'anion est facilement éliminable dans un traitement ultérieur du gel précurseur. Il peut par exemple s'agir de l'acide chlorhydrique, nitrique, phosphorique ou sulfu-rique. On utilise de préférence l'acide chlorhydrique ou l'acide nitrique. L'acide chlorhydrique convient particulièrement bien.
On peut éventuellement mettre en oeuvre plusieurs acides dans la première étape du procédé selon l'invention. La quantité d'acide doit etre suffisante pour maintenir le pH acide pendant toute la durée de la première étape. La quantité d'acide dépend dès lors du degré d'acidité de l'acide utilisé ainsi que des autres réactifs, et de la température à laquelle la première étape est réalisée. On n'a pas intérêt à utiliser une quantité trop élevée de l'acide pour éviter de devoir éliminer, dans une étape ulté-rieure de traitement du gel précurseur, l'excédent d'acide ou de ses dérivés.
Dans la première étape du procédé selon l'invention, il est important de mélanger les réactifs de manière controlée afin d'éviter une précipitation ou une gélification de silice et d'éviter que le mélange ne s'échauffe. A cet effet, les réactifs peuvent etre mélangés par tout moyen connu adéquat pour autant que la température pendant l'adjonction des réactifs soit au r~xi - égale à 30 C et qu'il ne se produise pas de précipi-tation ni de gélification de silice. De préférence, le mélange est réalisé par addition d'un pr~mélAn~e comprenant l'eau et W 0 94/26791 2 ~ ~ 2 ~15 6 - PCT~EP94/01514 ~

l'acide à un pr~m~l~nge contenant l'alcoolate de silicium et l'alcool. Ceci peut être effectué en ajoutant le pr ~l~nge eau/acide au pr. ~l~nge alcool/alcoolate de silicium. Une autre méthode consiste à ajouter le pr -l~nge alcool/alcoolate de silicium au pL. ~l~nge eau/acide. On obtient de bons résultats en ajoutant l'un des pr~mél~nges goutte à goutte dans l'autre pL.' -l~n~e maintenu sous agitation. On obtient des résultats particulièrement satisfaisants en ajoutant le prémélange eau/acide, goutte à goutte et sous agitation, au pro~ nge alcool/alcoolate de silicium.
Dans la première étape du procédé selon l'invention, on maintient la température, pendant l'addition des réactifs, infé-rieure à 30 C, de préférence inférieure à 20 C, typiquement environ 10 C, les températures supérieures à O C étant recom-mandées; ensuite, le milieu d'hydrolyse est soumis à un mûrissageà une température au moins égale à 20 C et inférieure à la température d'ébullition du milieu, par exemple de 30 à 100 C, les températures de 40 à 80 C étant les plus courantes et celles de 50 à 70 C étant recommandées. De préférence, le mûrissage du milieu d'hydrolyse est réalisé à une température supérieure à
celle de l'addition des réactifs.
Dans la première étape du procédé selon l'invention, le mûrissage a pour fonction de permettre une hydrolyse et une condensation progressives de l'alcoolate de silicium selon les réactions définies plus haut. Toutes autres choses restant égales, le taux d'hydrolyse de l'alcoolate est d'autant plus élevé (le nombre x est d'autant plus grand) que la durée du mûrissage est grande. La durée du mûrissage doit dès lors être suffisante pour que la réaction d'hydrolyse telle que décrite plus haut ait lieu; elle doit toutefois être inférieure au temps requis pour qu'une gélification ou une précipitation de silice se produise. La durée optimale du mûrissage dépend du pH du milieu d'hydrolyse, de la nature des réactifs présents dans le milieu d'hydrolyse et de la température, et peut varier de quelques minutes à plusieures dizaines d'heures. En général, la durée ne dépasse pas 24 heures. De préférence, la durée est de 0.5 à
3 heures.

0 94/26791 ~ I ~ 2 915 PCT~EP94/01514 Dans un mode de réalisation particulièrement avantageux du procédé selon l'invention, on met en oeuvre en outre, dans la première étape, un alcoolate de titane. L'alcoolate de titane peut par exemple être un composé dans lequel le titane est lié à
au moins un groupement alkoxy, tel qu'un alkoxy aromatique ou aliphatique linéaire, branché ou cyclique, saturé ou insaturé, non substitué ou substitué. Les groupements alkoxy comprennent habituellement de 1 à 20 atomes de carbone. L'alcoolate de titane est de préférence soluble dans le milieu d'hydrolyse. L'acétyl-acétonate de titane convient particulièrement bien On peut bien entendu mettre en oeuvre plusieurs alcoolates de titane à la première étape du procédé selon l'invention. L'alcoolate de titane peut éventuellement être mis en oeuvre à l'état d'une solution dans un hydrocarbure liquide. Les alcools conviennent bien.
La quantité d'alcoolate de titane mise en oeuvre dans ce mode de réalisation est généralement telle que le titane soit présent dans le gel précurseur en une proportion variant de 0,05 à 20 % en poids, de préférence de 0,1 à 15 % en poids, plus particulièrement de 0,5 à 10 ~ en poids de titane sur base du poids total de la fraction solide du gel précurseur.
Dans ce mode de réalisation, l'alcoolate de titane peut être mis en oeuvre à tout moment à la première étape. L'alcoolate de titane peut par exemple être ajouté au prémélange comprenant l'eau et l'acide, ou au pre l~nge contenant l'alcoolate de silicium et l'alcool. En variante, l'alcoolate de titane peut être ajouté au milieu d'hydrolyse obtenu après mélange de l'eau, de l'acide, de l'alcoolate de silicium et de l'alcool, avant, pendant ou après le mûrissage. De bons résultats sont obtenus lorsque l'on ajoute l'alcoolate de titane pendant le mûrissage.
r On préconise d'ajouter l'alcoolate de titane après une première partie du mûrissage, qui représente avantageusement de 40 à 60 ~, par exemple environ 50 ~, de la durée totale du mûrissage, la deuxième partie étant effectuée après l'addition de l'alcoolate de titane.
Ce mode de réalisation s~avère spécialement avantageux W 0 94/26791 2 ~ 6 2 ~ ~ S 8 - PCT~EP94/01~14 ~

lorsque l'on souhaite incorporer le titane dans le gel précurseur en une quantité élevée, qui peut aller jusque 20 ~ en poids du poids total de la fraction solide du gel précurseur, tout en évitant la formation, dans une étape ultérieure, d~agglomérats de dioxyde de titane cristallin sous la forme "anltase" ou "rutile'.
Le composé d'aluminium mis en oeuvre à la deuxième étape du procédé selon l'invention peut être tout composé d'aluminium qui est soluble dans la solution acide mise en oeuvre à la deuxième étape et qui est susceptible d'être gélifié sous l'effet d~un agent gélifiant. Spécialement recommandés sont les sels inorga-niques d'aluminium et les alcoolates d'aluminium. Parmi les alcoolates d'aluminium, on utilise habituellement ceux dans lesquels l'aluminium est lié à au moins un groupement alkoxy.
Parmi les alcoolates d'aluminium, ceux contenant des groupements aliphatiques sont spécialement recommandés; ceux contenant des groupements aliphatiques linéaires saturés non substitués sont préférés, tels que, par exemple, les groupements méthyle, éthyle, n-propyle, iso-propyle, n-butyle et iso-butyle. On utilise de préférence un alcoolate d'aluminium dont les groupements alkoxy contiennent de 1 à 20 atomes de carbone.
Les alcoolates d'aluminium dont le groupement alkoxy correspond à
celui de l'alcoolate de silicium utilisé, conviennent particuliè-rement bien.
On obtient des résultats satisfaisants avec les sels inorga-niques d'aluminium. Parmi les sels inorganiques d'aluminium, le nitrate et le chlorure d'aluminium sont particulièrement préférés.
Dans une forme d'exécution particulière du procédé selon l'invention, dans laquelle on utilise un alcoolate d'aluminium à
titre de composé d'aluminium, on met celui-ci en oeuvre, au moins en partie, à la première étape du procédé selon l'invention, de préférence, le cas échéant, dans le p~ nge alcool/alcoolate de silicium. L'alcoolate d'aluminium peut également être ajouté
à l'issue de la première étape, après le mûrissage Dans le procédé selon l'invention, la source d'ions phosphates désigne tout composé soluble dans la solution mise en ~ 0 94/26791 2 16 2 ~1S PCT~EPg4/01514 _ g _ oeuvre à la deuxième étape et susceptible d'y former des ions phosphates. Spécialement recommandés sont les sels inorganiques phosphatés [par exemple le phosphate monocalcique de formule CaH4(P04)2, le phosphate disodique de formule Na2HP04 et le phosphate tricalcique de formule Ca3(P04)23, les éthers-sels phosphatés lpar exemple le phosphate d'éthyle de formule (C2Hs)3P04] et l'acide phosphorique. On utilise de préférence l'acide phosphorique.
La solution acide du composé d'aluminium et la solution de la source d'ions phosphates mise en oeuvre à la deuxième étape du procédé selon l'invention, peuvent être préparées par tout moyen connu adéquat et sont de préférence miscibles avec le mélange obtenu à la première étape du procédé selon l'invention.
Dans une forme d'exécution avantageuse du procédé selon l'invention, la source d'ions phosphates est ajoutée au préalable à la solution acide du composé d'aluminium de manière à ne mettre en oeuvre, à la deuxième étape du procédé selon l'invention, qu'une seule solution, acide, comprenant simultanément le composé
d'aluminium et la source d'ions phosphates.
Dans une première variante de cette forme d'exécution du procédé selon l'invention, où la solution acide ne contient que le composé d'aluminium et est exempte de source d'ions phosphates, la solution acide est habituellement obtenue par dissolution du composé d'aluminium dans une quantité d'eau et/ou d'un alcool, suffisante pour assurer une dissolution complète, et en y ajoutant un acide en une quantité suffisante pour éviter la formation d'hydroxyde d'aluminium, qui précipiterait immédia-eement et ne participerait dès lors plus à la formation du gel précurseur. On utilise de préférence de l'eau pour dissoudre le composé d'aluminium. En pratique, on n~a pas intérêt à utiliser une quantité de solvant (eau ou alcool) supérieure à la quantité
~jni -le nécessaire, car tout excès de solvant impliquerait de l'~li iner lors du traitement ultérieur de séchage du gel.
L,'acide mis en oeuvre peut être choisi parmi ceux utilisables dans la première étape du procédé selon l'invention.
Dans une deuxième variante de cette forme d'exécution du W O 94/26791 ~ ~ 6 ~ ~ ~ 5 PCT~EP94/01514 ~

procédé selon l'invention, où la solution acide ne contient que la source d'ions phosphates et est exempte de composé d'alu-minium, la solution acide est généralement préparée en dissolvant la source d'ions phosphates dans une quantité d'eau et/ou d'alcool suffisante et de préférence sans excès exagéré pour les motifs exposés ci-dessus. Dans cette deuxième variante, la source d'ions phosphates confère un caractère acide à la solution, de sorte qu'il est inutile d'ajouter un acide supplé-mentaire à la solution.
Dans une troisième variante de cette forme d'exécution du procédé selon l'invention, qui est préférée, la solution contient simultanément le composé d'aluminium et la source d'ions ! phosphates, et la solution acide est obtenue par dissolution du composé d'aluminium et de la source d'ions phosphates dans un ordre quelconque dans une quantité d'eau et/ou d'alcool suffi-sante mais sans excès exagéré pour les motifs exposés ci-dessus.
Dans cette variante préférée, il peut s'avérer inutile d'y ajouter en outre un acide, à condition que la source d'ions phosphates confère à la solution une acidité suffisante pour éviter la formation d'hydroxyde d'aluminium.
Il va de soi que l'on peut mettre en oeuvre simultanément, à
la deuxième étape, plusieurs composés d'aluminium et/ou plusieurs sources d'ions phosphates.
Dans la deuxième étape du procédé selon l'invention, l'addition de la solution acide du composé d'aluminium et de la solution de la source d'ions phosphates au mélange obtenu à la première étape peut par exemple être effectuée en versant le mélange issu de la première étape dans une des deux solutions ou dans le mélange de ces deux solutions (la solution acide du composé d'aluminium et la solution de la source d'ions phosphates). En variante, le mélange des deux solutions peut être ajoutée au mélange issu de la première étape, dans quel cas on préfère opérer de manière très lente pour éviter que le milieu ainsi obtenu s'échauffe, en introduisant le mélange des deux solutions goutte à goutte dans le milieu, sous une forte agitation, le milieu étant thermostatisé à une température ~ 0 94/~6791 2 16 ~ ~ 15 PCT~94/01514 inférieure à 30 C, typiquement inférieure ou égale à 20 C, par exemple comprise entre O et 10 C pendant toute la durée de l'ajout.
L'agent gélifiant mis en oeuvre à la troisième étape du procédé selon l'invention, est tout compose susceptible de provoquer une cogélification des réactifs mis en oeuvre à la première et la deuxième étape (l'alcoolate de silicium hydrolysé
et condensé issu de la première étape et défini plus haut, le composé d'aluminium ettou la source d'ions phosphates et éven-tuellement l'alcoolate de titane) sous la forme d'un oxyde mixte de silicium et d'aluminium et/ou de phosphore et éventuellement de titane. On peut citer comme exemple d'agent gélifiant, l'oxyde d'éthylène, le carbonate d'ammonium et l'hydroxyde d'ammonium. On utilise de préférence une solution aqueuse d'hydroxyde d'ammonium.
La quantité d'agent gélifiant mise en oeuvre à la troisième étape est de préférence suffisante pour permettre une gélifi-cation complète de l'alcoolate de silicium hydrolysé et condensé
défini plus haut, du composé d'aluminium et du composé phosphaté
présents dans le milieu de cogélification. Par milieu de cogéli-fication, on entend désigner le mélange réactionnel en cours de gélification à la troisième étape du procédé. Le milieu de cogé-lification comprend dès lors le milieu obtenu à l'issue de la deuxième étape du procédé selon l'invention (comprenant l'alcoo-late de silicium hydrolysé et condensé, le composé d'aluminium et/ou la source d'ions phosphates) et l'agent gélifiant. La quantité d'agent gélifiant mise en oeuvre est avantageusement suffisante pour permettre une cogélification complète de la masse totale d'alcoolate de silicium hydrolysé et condensé, de composé
d'aluminium et de source d'ions phosphates; elle est de préfé-rence légèrement supérieure à cette quantité suffisante.
Dans la troisième étape du procédé selon l'invention, le pH
du milieu de cogélification est généralement supérieur ou égal à
5, typiquement supérieur ou égal à 6; il est habituellement inférieur à 11, les valeurs inférieures à 10 étant recommandées.
De préférence, on maintient le pH constant à une valeur de 6 à

W O 94/26791 PCT~EP94/01514 ~

- lZ -10, par exemple 8, pendant toute la durée de la cogélification.
La constance du pH peut être assurée par tout moyen connu adéquat, par exemple en utilisant un tampon inerte vis-à-vis des réactifs en cours de gélification, ou en utilisant une instal-lation permettant une alimentation contrôlée, continue ou discon-tinue, d'un composé modifiant le pH, dans le milieu de cogéli-fication. On utilise de préférence un récipient contenant l'agent gélifiant, dans lequel on introduit séparément et de manière contrôlée le mélange issu de la deuxième étape et un composé régulateur de pH. On peut employer comme composé régu-lateur de pH, tout composé acide ou basique, inerte vis-à-vis des réactifs en cours de gélification.
Dans la troisième étape du procédé selon l'invention, il peut s'avérer avantageux, selon les propriétés du gel précurseur qu'on souhaite obtenir, de thermostatiser le milieu de cogélifi-cation à une température inférieure ou égale à 30 C, de préfé-rence à une température de O à 20 C.
Dans une première forme d'exécution particulièrement avanta-geuse du procédé selon l'invention, on peut en outre incorporer dans le gel précurseur, un métal de transition choisi parmi les éléments des groupes IVB et VB du tableau périodique, tels que le zirconium et le vanadium, ou un élément du groupe IIIA du tableau périodique, différent de l'aluminium, tel que le bore. A cet effet, on ajoute un sel organique ou inorganique ou un alcoolate d'un de ces éléments au mélange obtenu à la première ou à la deuxième étape du procédé selon l'invention, avant d'effectuer l~étape suivante. Le cas échéant, on peut ajouter le sel ou l'alcoolate au pr ~lange eau/acide ou au p~ nge alcoo-l/alcoolate de silicium mis en oeuvre à la première étape du procédé selon l'invention.
Dans une deuxième forme d'exécution du procédé selon l'invention, que l'on préfère, on soumet le gel issu de la troisième étape à une maturation. Celle-ci est réalisée dans un milieu de maturation, qui peut être le milieu de cogélification recueilli de la troisième étape, éventuellement sous agitation.
On peut y ajouter un composé inerte modifiant le pH du milieu de ~ 0 94/26791 ~16 29 ~ 5 PCT~EP94/01514 maturation, par exemple un composé basique. En variante, le gel est d'abord séparé du milieu de cogélification, par exemple par centrifugation, et ensuite remis en suspension dans un liquide inerte tel que de l'eau ou un alcool pour effectuer la matu-ration. Cette variante présente l'avantage d'eliminer une partiedes impuretés ioniques adsorbées dans le gel, provenant des réactifs mis en oeuvre lors de la fabrication du gel.
La maturation a pour fonction de prolonger la cogélification et ainsi modifier la surface spécifique et le volume poreux du gel. Elle est habituellement effectuée à une température pouvant varier de la température ambiante jusqu'à la température d'ébul-lition du milieu de maturation. On opère de préférence à environ 20 C. La durée de la maturation dépend de la température et des propriétés (surface spécifique et volume poreux) requises du support. Elle peut dès lors varier de quelques minutes à
plusieurs dizaines d'heures. Les meilleurs résultats sont obtenus avec une durée d'au moins une heure. Pour des considé-rations d'ordre économique, on n'a pas intérêt à prolonger la maturation au delà de 48 heures.
La maturation est en général effectuée à un pH supérieur ou égal à 6, de préférence de 8 à 10.
A l'issue de la troisième étape du procédé selon l'invention et, le cas échéant, après maturation on recueille un gel précurseur que l'on soumet ensuite à un lavage, d'abord à l'eau et ensuite au moyen d'un liquide organique.
Le lavage à l'eau consiste en général à mettre le gel en suspension dans une quantité d'eau suffisante pour éliminer une partie au moins des impuretés contenues dans le gel, et ensuite a éliminer une partie au moins de cette quantité d'eau par tout moyen connu adéquat, par exemple par centrifugation ou par filtration. On opère de préférence par centrifugation compte tenu de la rapidité de cette méthode. On peut bien entendu repéter ce lavage à l'eau plusieurs fois. La température à
laquelle ce lavage est effectué a peu d'influence sur l'effica-cité du lavage et peut dès lors varier dans une large mesure. On opère de préférence à température ambiante.

W O 94/26791 ; PCT~EP94/01514 ~
~6~

Ensuite, on soumet le gel lavé à l'eau, à un lavage au moyen d'un liquide organique, par exemple en dispersant le gel dans ce liquide organique à température ambiante. Le lavage avec le liquide organique a pour fonction d~éliminer une partie au moins de l'eau qui imprègne le gel. Le liquide organique sélectionné
doit être au moins partiellement miscible avec l'eau, inerte vis-à-vis du gel mais toutefois capable de mouiller le gel. Il présente préférentiellement une température de vaporisation infé-rieure à 120 C, typiquement inférieure à lOO C, par exemple de 70 à 90 C. Des liquides organiques utilisables dans ce lavage sont les alcools, les éthers ou leurs mélanges. Les alcools sont préférés, particulièrement ceux comprenant de l à 4 atomes de carbone. L'isopropanol convient bien. On peut bien entendu répéter plusieurs fois ce lavage au moyen d'un liquide organique, et mettre en oeuvre simult~n~ -~t plusieurs liquides organiques.
A l'issue du lavage, il est souhaitable de séparer le gel d'une partie au moins de l'eau et du liquide organique utilisé par centrifugation ou par filtration.
Dans le procédé selon l'invention, on recueille après lavage au moyen d'un liquide organique une suspension du gel dans le liquide organique, qu'on soumet à un séchage par atomisation afin d'éliminer l'eau et le liquide organique non éliminés précé-demment, jusqu'à l'obtention d'une poudre du support à l'état de particules atomisées.
L'atomisation peut par exemple être réalisée en pulvérisant la suspension du gel à travers un orifice de petite dimension.
Elle est en général effectuée dans un courant gazeux inerte vis-à-vis du gel. Le courant gazeux est de préférence exempt d'oxy-gène. Un courant gazeux comprenant essentiellement de l'azote convient bien. La température du courant gazeux est le plus souvent supérieure à lOO C. On préconise par exemple des tempé-ratures de 150 à 450 C (de préférence de 200 à 400 C, par exemple environ 300 C) à l'entrée de l'orifice d'atomisation, et de 20 à 200 C (de préférence de 50 à 150 C) à la fin de l'ato-misation. On peut travailler indifféremment sous pression inférieure, égale ou supérieure à la pression atmosphérique. Les 0 941~6791 ~ 1 6 2 ~ 15 PCTIEPg4/01514 pressions supérieures ou égales à la pression atmosphérique sont préférées, les valeurs de 1 à 10 bar étant les plus recommandées.
La suspension du gel peut être introduite à la température ambiante (entre 15 et 25 C) dans le gaz, les particules ato-misées se trouvant habituellement à la même temperature que legaz à la fin de l'atomisation.
On obtient le plus souvent, à l'issue du séchage, une poudre présentant une teneur en humidité inférieure à 1 ~ en poids, de préférence inférieure à 0,5 X en poids, par exemple inférieure à
0,2 X en poids.
Le séchage par atomisation s'avère particulièrement avan-tageux car il permet d'optimiser simultanément la morphologie etla porosité des supports obtenus, de manière à ce qu'ils sont aptes à être utilisés comme supports de catalyseurs pour la poly-mérisation d'oléfines. En effet, les particules atomisées sontcaractérisées, d'une part, par une distribution étroite de dimensions, et d'autre part, par une distribution étroite des rayons de pores et par une teneur en macropores de rayon supérieur à 2000 A réduite voire nulle, tout en conservant un volume poreux élevé.
A l'issue du séchage par atomisation, on recueille une poudre du support, que l'on peut éventuellement passer au tamis pour en séparer les grains de taille non souhaitée. On soumet cette poudre à une calcination. La calcination a pour fonction d'extraire, à température élevée, les impuretés organiques de la poudre. Elle est généralement poursuivie jusqu'à ce que le poids de la poudre reste constant au cours du temps, tout en évitant une cristallisation de la poudre. La calcination peut être effectuée sous air (de préférence sous air sec) dans un lit fluidisé à une température inférieure à la température de cristallisation de la poudre. La température est en général de 300 à 1500 C, typiquement de 350 à 1000 C, de préférence de 400 à 600 C.
Le procédé selon l'invention permet, moyennant un mode opé-ratoire unique, de préparer des supports pour catalyseurs, contenant des oxydes mixtes de silicium, d'aluminium et/ou de , W O 94/26791 PCT~EP94/01514 ~

~. 6~ 15 16 -phosphore dans une large gamme de concentrations. En effet, le procédé selon l'invention permet de parcourir tout le diagramme ternaire entre la composition de la silice, de l'alumine et du phosphate d'aluminium. ~La figure annexée représente ce diagramme ternaire des phases. Le procédé selon l'invention apparait particulièrement performant pour la fabrication de supports dont la composition est située dans la partie hachurée dudit diagramme ternaire des phases. Le procédé selon l'invention permet éga-lement l'incorporation dans le support d'un métal de transition ou d'un élément tel que le bore.
Le procédé selon l'invention permet de préparer des supports pour catalyseurs à l'état amorphe qui présentent une dispersion des constituants très homogène, et qui présentent, en combi-naison, une surface spécifique, un volume poreux et une résis-tance à la cristallisation qui les rendent performants dans lapolymérisation d'oléfines.
Vu ses caractéristiques physiques et structurales, le support obtenu au moyen du procédé selon l'invention trouve une application particulièrement intéressante comme support pour catalyseurs dans la polymérisation d'oléfines, le catalyseur consistant avantageusement en oxyde de chrome.
Les supports préparés au moyen du procédé selon l'invention de préparation d'un support sont particulièrement performants car ils permettent l'obtention de catalyseurs pour la fabrication de polyoléfines dont l'indice de fluidité peut varier dans une large mesure.
Par ailleurs, les supports contenant en outre du titane permettent l'obtention de catalyseurs pour la fabrication de polyoléfines de bonnes propriétés mécaniques. En outre, la présence de titane dans le support permet l'obtention de poly-oléfines d'indice de fluidité très variable.
L'invention concerne dès lors également un catalyseur pour la polymérisation d'oléfines contenant du chrome sur un support obtenu au moyen du procédé conforme à l'invention, défini plus haut.
Le catalyseur selon l'invention peut être obtenu de manière 2~2~5 0 94/26791 PCT~EP94/01514 connue en soi par imprégnation de la poudre de support avec une solution aqueuse ou organique d'un composé du chrome, suivie d'un séchage en atmosphère oxydante. On peut utiliser à cet effet un composé du chrome choisi parmi les sels solubles tels que les oxydes, l'acétate, le chlorure, le sulfate, le chromate et le bichromate en solution aqueuse, ou tel que l'acétylacétonate en solution organique. Après l'imprégnation du support avec le composé du chrome, le support imprégné est habituellement activé
en le chauffant à une température de 400 à 1000 C pour transformer une partie au moins du chrome en chrome hexavalent.
Le catalyseur selon l'invention peut également être obtenu au moyen d'un mélange mécanique de la poudre du support avec un composé solide du chrome, par exemple de l'acétylacétonate de chrome. Ensuite, ce mélange peut être préactivé à une tempéra-ture inférieure à la température de fusion du composé du chrome avant de l'activer conventionnellement comme décrit ci-dessus.
En variante, le composé du chrome peut également être incor-poré à la poudre du support pendant la fabrication de celle-ci ou pendant la fabrication du gel précurseur de ce support. A cet effet, il peut par exemple être ajouté, en partie ou en totalité, à la solution acide du composé d'aluminium et/ou de la source d'ions phosphates mise en oeuvre à la deuxième étape du procédé
selon l'invention de fabrication d'un gel précurseur de manière à
coprécipiter l'oxyde de chrome simultanément avec l'oxyde de silicium, d'aluminium et/ou de phosphore. On peut également ajouter le composé du chrome au gel précurseur avant ou après le mûrissage de celui-ci.
Dans le catalyseur selon l'invention, le chrome est généra-lement présent en proportion variant de 0,05 à 10 % en poids, de préférence de 0,1 à 5 X en poids, plus particulièrement de 0,25 à
- 2 % en poids de chrome sur base du poids total du catalyseur.
Le catalyseur selon l'invention apparaît particulièrement performant dans la polymérisation d'oléfines. En effet, pour cette application, le catalyseur selon l'invention présente l'ensemble des avantages suivants :
- une activité catalytique élevée même en l'absence d'un cocata-W O 94/26791 PCT~EP94/01514 ~
2~62~ ~ 18 -lyseur, - une période d'induction faible, voire nulle, - une bonne réponse à l'hydrogène;
il permet en outre l'obtention de polyoléfines ayant :
- une distribution des masses moléculaires modulable de moyen-nement large à très large pour un indice de fluidité donné, et - une teneur faible en oligomères.
Le catalyseur selon l'invention peut être utilisé pour la polymérisation d'oléfines contenant de 2 à 8 atomes de carbone par molécule, et en particulier, pour la production d~homopoly-mères de l~éthylène ou de copolymères de l'éthylène avec un ou plusieurs comonomères sélectionnés parmi les alpha-oléfines décrites ci-dessus. De préférence, ces comonomères sont le propylène, le 1-butène, le 1-pentène, le 3-méthyl-1-butène, le 1-hexène, les 3- et 4- méthyl-1-pentènes et le 1-octène. Des dioléfines comprenant de 4 à 18 atomes de carbone peuvent éga-lement être copolymérisées avec l~éthylène. De préférence, les dioléfines sont des dioléfines aliphatiques non conjuguées telles que le 4-vinylcyclohexène ou des dioléfines alicycliques ayant un pont endocyclique telles que le dicyclopentadiène, le méthylène-et l'éthylidène-norbornène, et des dioléfines aliphatiques conjuguées telles que le 1,3-butadiène, l'isoprène et le 1,3-pentadiène.
Le catalyseur selon l'invention convient particulièrement bien pour la fabrication d'homopolymères de l'éthylène et de copolymères contenant au moins 90 %, de préférence au moins 95 %
en poids d'éthylène. Les comonomères préférés sont le propylène, le 1-butène, le 1-hexène ou le 1-octène.
L'invention concerne dès lors également un procédé pour la polymérisation d'oléfines telles que définies plus haut, mettant en oeuvre un catalyseur conforme à l'invention. Dans le procédé
de polymérisation selon l'invention, la polymérisation peut être effectuée indifféremment en solution, en suspension dans un diluant hydrocarboné ou encore en phase gazeuse. On obtient de bons résultats dans les polymérisations en suspension.
La polymérisation en suspension est effectuée dans un 2~ 6~91S

~ 0 94/26791 PCTAEP94/01514 _ 19 --diluant hydrocarboné tel que les hydrocarbures aliphatiques, cycloaliphatiques et aromatiques liquides, à une température ~elle qu'au moins 80 % (de préférence au moins 90 %) du polymère ~ormé y soit insoluble. Les diluants préférés sont les alcanes linéaires tels que le n-butane, le n-hexane et le n-heptane ou les alcanes ramifiés tels que l'isobutane, l'isopentane, l'iso-octane et le 2,2-diméthylpropane ou les cycloalcanes tels que le cylcopentane et le cyclohexane ou leurs mélanges.
La température de polymérisation est choisie généralement entre 20 et 200 C, de préférence entre 50 et 150 C, en parti-culier entre 80 et 115 C. La pression d'éthylène est choisie le plus souvent entre la pression atmosphérique et 5 MPa, de préfé-rence entre 0,4 et 2 MPa, plus particulièrement entre 0,6 et 1,5 MPa.
La polymérisation peut être effectuée en continu ou en discontinu, en un seul réacteur ou dans plusieurs réacteurs disposés en série, les conditions de polymérisation (température, teneur éventuelle en comonomère, teneur éventuelle en hydrogène, type de milieu de polymérisation) dans un réacteur étant diffé-rentes de celles utilisées dans les autres réacteurs.
Les exemples dont la description suit, servent à illustrer l'invention. Dans ces exemples on a d'abord préparé des supports pour catalyseurs. Puis on a appliqué des catalyseurs sur ces supports. On a employé les catalyseurs supportés ainsi obtenus, pour polymériser de l'éthylène.
La signification des symboles utilisés exprimant les grandeurs mentionnées et les méthodes de mesure de ces grandeurs sont explicitées ci-dessous.
SS ~ surface spécifique du support mesurée par la méthode de pénétration à l'azote selon la méthode volumétrique de la - norme britannique BS 4359/1 (1984).
VP = volume poreux du support, égal à la somme du volume poreux constitué de pores de rayon inférieur ou égal à
75 A, mesuré par la méthode de pénétration à l'azote selon la méthode volumétrique de la norme britannique BS
4359/1 (1984), et du volume poreux mesuré par la méthode W 0 94/26791 21 ~ 2 ~ 1 ~ PCT~EP94/01514 ~

de pénétration au mercure au moyen du porosimètre du type PORO 2000 commercialisé par CARLO ERBA CO, selon la norme belge NBN B 05-202 (1976).
Tc = température de cristallisation déterminée au moyen de la méthode définie plus haut.
FO = fraction en oligomères du polymère, exprimée en gramme d'oligomères par kilo de polymère et mesurée par extraction à l'hexane à la température d'ébullition de l'hexane.
10 a = activité catalytique exprimée en grammes de polymère, obtenus par heure et par gramme de catalyseur mis en oeuvre et divisés par la pression partielle de l'oléfine exprimée en bar.
Tind = temps d'induction, exprimé en minutes et défini comme étant le temps écoulé entre l'introduction de l'éthylène et l'apparition d'une diminution de pression caractéris-tique du début de la polymérisation.
HLMI = indice de fluidité du polymère fondu à 190 C, mesuré
sous une charge de 21,6 kg et exprimé en g/10 min, suivant la norme ASTM D 1238 (1986).
~0/~2 = rapport entre la viscosité dynamique (no), exprimée en dPa.s et mesurée à un gradient de vitesse de 1 s-l et à
190 C, et la viscosité dynamique (~2)~ exprimée en dPa.s et mesurée à un gradient de vitesse de 100 s-1 et à
190 C.
Exemples 1 et 2 (conformes à l'invention) A. Préparation d'un gel précurseur a) Premiere étape On a ajouté, goutte à goutte, à une solution de tétra-éthylate de silicium et d'éthanol, thermostatisée à 10 C, une solution d'eau et d'acide chlorhydrique 1 M, de telle manière à
obtenir une concentration en H+ de 0,1 M. Les quantités de tétra-éthylate de silicium, d'éthanol, d'eau et d'acide chlorhy-drique qui ont été mises en oeuvre, sont présentées dans le tableau I. Ensuite, on a soumis le milieu d'hydrolyse ainsi obtenu à un mûrissage à 60 C pendant 2 heures.

21~29~
0 94/26791 PCT~EP94101514 b) Deuxième étape On a préparé une solution aqueuse contenant du nitrate (exemple l), respectivement du chlorure d'aluminium hydraté
(exemple 2) et de l'acide phosphorique, les quantités mises en oeuvre étant représentées dans le tableau I. Ensuite, on a ajouté la solution ainsi obtenue au milieu d'hydrolyse obtenu en (a), sous agitation vigoureuse et à lO C.
c) Troisième étape On a ajouté à 500 g d'une solution aqueuse d'hydroxyde d'ammonium de pH 8 thermostatisée à lO C, le mélange obtenu en (b), en maintenant le pH constant à une valeur de 8, afin d'effectuer une gélification.
d) Maturation On a soumls le gel obtenu en (c) à une maturation à pH 8, pendant 2 heures, sous légère agitation et à 60 C.
. Préparation d'un support de catalyseur a) Lavage On a lavé le gel obtenu en A d'abord 3 fois à l'eau, puis l fois au moyen d'isopropanol et on a recueilli une suspension du gel dans l'isopropanol.
b) Séchage On a soumis la suspension obtenue en (a) à une atomisation par passage à travers un orifice de pulvérisation de l mm de dia-mètre, à l'intérieur d'une enceinte parcourue par un courant d'un gaz contenant essentiellement de l'azote. Le débit du gaz a été
réglé de manière à ce que sa température chute de 300 C, à
]'entrée de l'enceinte, à une température de 80 à lOO C à la sortie de celle-ci. On a recueilli après atomisation des parti-cules dont la teneur en humidité est inférieure à l % en poids.
c) Calcination On a calciné la poudre obtenue en (b) dans un lit fluidisé
sous balayage d'air sec, pendant 4 heures à 500 C. On a recueilli une poudre d'un support dont la composition (~ molaire de silice, d'alumine et de phosphate d'aluminium), la surface spécifique, le volume poreux et la température de cristallisation sont représentés dans le tableau I.

W O 94126791 2 ~ 6 ~ 22 - PCT~EP94101~1 4 Tableau I

Exemple 1 2 Première étape :
quantité mise en oeuvre de :
tétra-éthylate de silicium (g)34,7 46,3 éthanol (g) 41,7 55,6 eau (g) 18,9 24,9 acide chlorhydrique 1 M (g)11,5 16,5 Deuxième étape :

quantité mise en oeuvre de :
AlX3.xH2O (g) 62,5 160,8 X=N03 X=Cl x=9 x=6 acide phosphorique de 85 ~ (g) 25,6 25,6 eau (g) 33,3 133,2 Support obtenu :
composition : Si (% en poids) 14,6 8,9 Al (X en poids) 14,3 29,4 P (~ en poids)14,5 10,9 SS (m2/g) 385 290 VP (cm3/g) 2,47 3,44 Tc (C) > 700 > 700 C. Préparation d'un catalyseur On a mélangé le support obtenu en B avec de l'acétylacéto-nate de chrome en une quantité telle que le mélange comprenne 0,7 X en poids de chrome. Puis, on a traité le mélange ainsi obtenu dans un lit fluidisé à 150 C pendant 2 heures sous balayage d'air sec. Ensuite, on l'a calciné dans le lit fluidisé
à 700 C pendant 5 heures sous air sec, et on a recueilli le ~ 0 94/26791 21 6~ 9 l ~ PCTrEP94/01~14 catalyseur.
D. Polymérisation de l'éthylène Dans un autoclave de 3 litres, préalablement séché et muni d'un agitateur, on a introduit lO0 mg du catalyseur obtenu en C
et l litre d'isobutane. La température a été élevée à 104 C et de l'éthylène a été introduit dans l'autoclave à une pression partielle de l,09 MPa. De l'hydrogène a été introduit à une pression partielle de 0,29 MPa. La pression d'éthylène et la température ont été maintenues constantes durant le temps néces-saire à la production d'une quantité définie de polyéthylène.
~près dégazage, le polymère a été récupéré sous forme de parti-cules, dont les propriétés sont rassemblées dans le tableau II, ainsi que l'activité du catalyseur.
Tableau II

Exemple l 2 a 34448 30032 Tind 5 4 nO/~2 8,0 9,4

Claims (10)

R E V E N D I C A T I O N S
1 - Procédé pour la fabrication d'un support pour cata-lyseurs contenant de la silice et au moins un constituant choisi parmi l'alumine et le phosphate d'aluminium, selon lequel on mélange, dans une première étape, un alcool, de l'eau, un alco-olate de silicium et un acide en des quantités telles que le rapport molaire eau/silicium soit de 2 à 50, la première étape étant réalisée à pH acide, et comprenant, d'une part, l'adjonction de l'eau, de l'acide, de l'alcoolate de silicium et de l'alcool, la température, pendant l'adjonction, étant infé-rieure ou égale à 30 °C, et, d'autre part, un mûrissage du milieu d'hydrolyse ainsi obtenu à une température au moins égale à 20 °C
et inférieure à la température d'ébullition du milieu, de manière à substituer une partie au moins des groupements alkoxy de l'alcoolate de silicium par des groupements hydroxy, sans qu'il se produise une précipitation ou gélification de silice, on ajoute au milieu d'hydrolyse ainsi obtenu, dans une deuxième étape, une solution acide d'un composé d'aluminium et/ou une solution d'une source d'ions phosphates, et, dans une troisième étape, un agent gélifiant pour former un gel précurseur, puis on lave le gel à l'eau et ensuite au moyen d'un liquide organique, on recueille une suspension du gel dans le liquide organique, puis on soumet la suspension à un séchage jusqu'à l'obtention d'une poudre, et on calcine la poudre, caractérisé en ce que le séchage est effectué par atomisation.
2 - Procédé selon la revendication 1, caractérisé en ce que l'atomisation est réalisée en pulvérisant la suspension du gel à
travers un orifice de petite dimension.
3 - Procédé selon la revendication 1 ou 2, caractérisé en ce que l'atomisation est réalisée dans un courant gazeux inerte vis-à-vis du gel.
4 - Procédé selon la revendication 3, caractérisé en ce que le courant gazeux comprend essentiellement de l'azote et est exempt d'oxygène.
5 - Procédé selon l'une quelconque des revendications 1 à 4, caractérisé en ce que la température du courant gazeux est supérieure à 100 °C.
6 - Procédé selon la revendication 5, caractérisé en ce que la température du courant gazeux est de 150 à 450 °C à l'entrée de l'orifice d'atomisation, et de 20 à 200 °C à la fin de l'atomisation.
7 - Procédé selon l'une quelconque des revendications 1 à 6, caractérisé en ce que l'atomisation est effectuée à une pression de 1 à 10 bar.
8 - Catalyseur pour la polymérisation d'oléfines contenant du chrome sur un support obtenu au moyen du procédé conforme à
l'une quelconque des revendications 1 à 7.
9 - Procédé pour la polymérisation d'oléfines selon lequel on met en oeuvre un catalyseur conforme à la revendication 8.
10 - Procédé selon la revendication 9 appliqué à la polymé-risation de l'éthylène.
CA002162915A 1993-05-17 1994-05-10 Procede de preparation d'un support pour catalyseurs, catalyseur pour la polymerisation d'olefines et procede pour la polymerisation d'olefines au moyen de ce catalyseur Abandoned CA2162915A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
BE9300508 1993-05-17
BE9300508A BE1007148A3 (fr) 1993-05-17 1993-05-17 Support pour catalyseurs, procede pour la fabrication d'un gel precurseur d'un support pour catalyseurs, procede de preparation d'un support pour catalyseurs, catalyseur pour la polymerisation d'olefines et procede pour la polymerisation d'olefines au moyen de ce catalyseur.

Publications (1)

Publication Number Publication Date
CA2162915A1 true CA2162915A1 (fr) 1994-11-24

Family

ID=3887055

Family Applications (2)

Application Number Title Priority Date Filing Date
CA002163119A Abandoned CA2163119A1 (fr) 1993-05-17 1994-05-10 Support pour catalyseurs, procede pour la fabrication d'un gel precurseur d'un support pour catalyseurs, procede de preparation d'un support pour catalyseurs, catalyseur pour la polymerisation d'olefines et procede pour la polymerisatio d'olefines au moyen de ce catalyseur
CA002162915A Abandoned CA2162915A1 (fr) 1993-05-17 1994-05-10 Procede de preparation d'un support pour catalyseurs, catalyseur pour la polymerisation d'olefines et procede pour la polymerisation d'olefines au moyen de ce catalyseur

Family Applications Before (1)

Application Number Title Priority Date Filing Date
CA002163119A Abandoned CA2163119A1 (fr) 1993-05-17 1994-05-10 Support pour catalyseurs, procede pour la fabrication d'un gel precurseur d'un support pour catalyseurs, procede de preparation d'un support pour catalyseurs, catalyseur pour la polymerisation d'olefines et procede pour la polymerisatio d'olefines au moyen de ce catalyseur

Country Status (22)

Country Link
US (3) US5834572A (fr)
EP (2) EP0700404B1 (fr)
JP (2) JPH09500663A (fr)
KR (2) KR100319213B1 (fr)
CN (2) CN1050366C (fr)
AT (2) ATE157101T1 (fr)
AU (2) AU696784B2 (fr)
BE (1) BE1007148A3 (fr)
BR (2) BR9406408A (fr)
CA (2) CA2163119A1 (fr)
DE (2) DE69405099T2 (fr)
DK (2) DK0700403T3 (fr)
ES (2) ES2108462T3 (fr)
FI (2) FI955531A (fr)
MX (1) MX9403604A (fr)
MY (2) MY111095A (fr)
NO (2) NO308217B1 (fr)
NZ (2) NZ266777A (fr)
PL (2) PL178487B1 (fr)
RU (2) RU2117675C1 (fr)
TW (2) TW341527B (fr)
WO (2) WO1994026791A1 (fr)

Families Citing this family (107)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BE1007148A3 (fr) * 1993-05-17 1995-04-11 Solvay Support pour catalyseurs, procede pour la fabrication d'un gel precurseur d'un support pour catalyseurs, procede de preparation d'un support pour catalyseurs, catalyseur pour la polymerisation d'olefines et procede pour la polymerisation d'olefines au moyen de ce catalyseur.
BE1008916A3 (fr) * 1994-11-16 1996-10-01 Solvay Systeme catalytique pour la polymerisation d'olefines et procede de polymerisation d'au moins une olefine en presence de ce systeme catalytique.
BE1009308A3 (fr) * 1995-04-28 1997-02-04 Solvay Polymere d'ethylene et procedes pour son obtention.
BE1009497A3 (fr) * 1995-07-31 1997-04-01 Solvay Procede de fabrication d'un support pour catalyseurs de polymerisation d'olefines et procede de polymerisation d'olefines.
EP0799841A3 (fr) * 1996-04-05 1998-01-07 SOLVAY POLYOLEFINS EUROPE - BELGIUM (Société Anonyme) Polymère d'éthylène et corps creux obtenu de celui-ci
KR100195111B1 (ko) * 1996-07-19 1999-06-15 윤종용 다공성 복합 산화물의 제조방법
KR100200612B1 (ko) * 1996-07-31 1999-06-15 윤종용 다공성 복합 산화물의 제조 방법
DE19641141A1 (de) 1996-10-05 1998-04-16 Rwe Dea Ag Verfahren zur Herstellung von dispergierbaren Alumosilikaten
DE19641142A1 (de) * 1996-10-05 1998-04-16 Rewe Dea Ag Fu Verfahren zur Herstellung von dispergierbaren Alumosilikaten
US7125532B2 (en) 1996-10-05 2006-10-24 Sasol Germany Gmbh Process for the manufacture of dispersible alumino-silicates
BE1010715A3 (fr) 1996-10-25 1998-12-01 Solvay Copolymere d'ethylene et d'au moins une alpha-olefine et procede pour son obtention.
EP0962468A1 (fr) 1998-06-05 1999-12-08 Fina Research S.A. Catalyseurs pour la production de polyéthylène et leur utilisation
EP0962469A1 (fr) * 1998-06-05 1999-12-08 Fina Research S.A. Catalyseur de chrome sur support silice-aluminophosphate, traité avec du titane
BE1012219A3 (fr) * 1998-10-05 2000-07-04 Solvay Catalyseur destine a la polymerisation des olefines, procede pour sa fabrication et utilisation.
DE19914752A1 (de) * 1999-03-31 2000-10-05 Elenac Gmbh Verfahren zur diskontinuierlichen, thermischen Behandlung von Katalysatormaterial
CN1868583B (zh) * 1999-12-30 2013-06-05 菲利浦石油公司 有机金属催化剂组合物
CN1267191C (zh) * 1999-12-30 2006-08-02 菲利浦石油公司 有机金属催化剂组合物
US6696388B2 (en) * 2000-01-24 2004-02-24 E. I. Du Pont De Nemours And Company Gel catalysts and process for preparing thereof
CN1444507A (zh) * 2000-07-24 2003-09-24 萨索尔技术(控股)有限公司 从合成气生产烃的方法
US6933258B2 (en) * 2000-12-19 2005-08-23 Univation Technologies, L.L.C. Catalyst composition and methods for its preparation and use in a polymerization process
US6805371B2 (en) * 2001-09-14 2004-10-19 Magic Wheels, Inc Two-speed wheel assembly for manual wheelchairs, with a quick-release mounting capability
US7381778B2 (en) 2002-06-06 2008-06-03 Exxonmobil Chemical Patents Inc. Method of preparing a treated support
US7022378B2 (en) * 2002-08-30 2006-04-04 Cree, Inc. Nitrogen passivation of interface states in SiO2/SiC structures
US7223822B2 (en) 2002-10-15 2007-05-29 Exxonmobil Chemical Patents Inc. Multiple catalyst and reactor system for olefin polymerization and polymers produced therefrom
CN101724110B (zh) 2002-10-15 2013-03-27 埃克森美孚化学专利公司 用于烯烃聚合的多催化剂体系和由其生产的聚合物
US6995112B2 (en) * 2002-11-08 2006-02-07 Chevron U.S.A. Inc. Highly homogeneous amorphous silica-alumina catalyst composition
US6860986B2 (en) * 2002-11-08 2005-03-01 Chevron U.S.A. Inc. Extremely low acidity ultrastable Y zeolite catalyst composition and process
US6872685B2 (en) 2002-11-08 2005-03-29 Chevron U.S.A. Inc. Method for preparing a highly homogeneous amorphous silica-alumina composition
US6902664B2 (en) * 2002-11-08 2005-06-07 Chevron U.S.A. Inc. Extremely low acidity USY and homogeneous, amorphous silica-alumina hydrocracking catalyst and process
CN100351275C (zh) 2003-03-21 2007-11-28 陶氏环球技术公司 形态控制的烯烃聚合方法
US7087301B2 (en) * 2003-08-06 2006-08-08 Fina Technology, Inc. Bicomponent fibers of syndiotactic polypropylene
US7244689B2 (en) * 2003-11-17 2007-07-17 Corning Incorporated Method of producing alumina-silica catalyst supports
US7348293B2 (en) * 2003-12-05 2008-03-25 Chevron U.S.A. Inc. Homogeneous modified-alumina Fischer-Tropsch catalyst supports
US7410926B2 (en) * 2003-12-30 2008-08-12 Univation Technologies, Llc Polymerization process using a supported, treated catalyst system
US20050182210A1 (en) 2004-02-17 2005-08-18 Natarajan Muruganandam De-foaming spray dried catalyst slurries
SG151301A1 (en) 2004-03-17 2009-04-30 Dow Global Technologies Inc Catalyst composition comprising shuttling agent for ethylene multi- block copolymer formation
AU2005224258B2 (en) 2004-03-17 2010-09-02 Dow Global Technologies Inc. Catalyst composition comprising shuttling agent for ethylene copolymer formation
BRPI0508173B1 (pt) 2004-03-17 2016-03-15 Dow Global Technologies Inc copolímeros em multibloco, polímero, copolímero, um derivado funcional, mistura homogênea de polímero, processo para a preparação de um copolímero em multibloco contendo propileno e processo para preparar um copolímero em multibloco contendo 4-metil-1-penteno
WO2006007094A2 (fr) 2004-06-16 2006-01-19 Dow Global Technologies Inc. Technique de selection de modificateurs de polymerisation
EP1778738B1 (fr) 2004-08-09 2014-05-07 Dow Global Technologies LLC Catalyseurs bis(hydroxyarylaryloxy) utilisés pour la fabrication de polymères
WO2006049700A1 (fr) * 2004-10-27 2006-05-11 Exxonmobil Chemical Patents Inc. Procede de preparation d'un support traite
EP1805226A1 (fr) 2004-10-29 2007-07-11 Exxonmobil Chemical Patents Inc. Compose catalytique contenant un ligand tridente divalent
US7241850B2 (en) * 2004-12-15 2007-07-10 Fina Technology, Inc. Polypropylene having improved clarity and articles prepared therefrom
KR20070087670A (ko) * 2004-12-21 2007-08-28 다우 글로벌 테크놀로지스 인크. 폴리프로필렌-기재의 접착제 조성물
WO2006101596A1 (fr) 2005-03-17 2006-09-28 Dow Global Technologies Inc. Composition catalytique contentant un agent navette pour formation tactique/atactique de copolymeres multiblocs
EP2894176B1 (fr) 2005-03-17 2022-06-01 Dow Global Technologies LLC Composition catalytique comprenant un agent d'échange réversible pour la formation d'un copolymère à plusieurs blocs régio-irréguliers
US9410009B2 (en) 2005-03-17 2016-08-09 Dow Global Technologies Llc Catalyst composition comprising shuttling agent for tactic/ atactic multi-block copolymer formation
US20060240733A1 (en) * 2005-04-25 2006-10-26 Fina Technology, Inc. Fibers and fabrics prepared from blends of homopolymers and copolymers
US7220806B2 (en) * 2005-04-29 2007-05-22 Fina Technology, Inc. Process for increasing ethylene incorporation into random copolymers
US7645834B2 (en) * 2005-04-29 2010-01-12 Fina Technologies, Inc. Catalyst system for production of polyolefins
US7081285B1 (en) 2005-04-29 2006-07-25 Fina Technology, Inc. Polyethylene useful for blown films and blow molding
US20060247394A1 (en) * 2005-04-29 2006-11-02 Fina Technology, Inc. Process for increasing ethylene incorporation into random copolymers
US7138474B1 (en) 2005-05-03 2006-11-21 Fina Technology, Inc. End use articles derived from polypropylene homopolymers and random copolymers
US7282546B2 (en) * 2005-06-22 2007-10-16 Fina Technology, Inc. Cocatalysts for reduction of production problems in metallocene-catalyzed polymerizations
BR122017016853B1 (pt) 2005-09-15 2018-05-15 Dow Global Technologies Inc. Processo para a polimerização de um ou mais monômeros polimerizáveis por adição
CA2622720A1 (fr) 2005-09-15 2007-03-29 Dow Global Technologies Inc. Copolymeres blocs olefiniques catalytiques obtenus par l'intermediaire d'un agent navette polymerisable
US8153243B2 (en) 2005-12-09 2012-04-10 Dow Global Technologies Llc Interpolymers suitable for multilayer films
AU2006329980A1 (en) 2005-12-16 2007-07-05 Dow Global Technologies Inc. Polydentate heteroatom ligand containing metal complexes, catalysts and methods of making and using the same
EP1803747A1 (fr) 2005-12-30 2007-07-04 Borealis Technology Oy Catalyseur de polymérisation à surface modifiée pour réduire la formation de gels dans des films
US7683002B2 (en) 2006-04-04 2010-03-23 Fina Technology, Inc. Transition metal catalyst and formation thereof
US20070299222A1 (en) 2006-04-04 2007-12-27 Fina Technology, Inc. Transition metal catalysts and formation thereof
US8354484B2 (en) * 2006-05-17 2013-01-15 Dow Global Technologies, Llc High temperature solution polymerization process
KR20100015391A (ko) * 2007-03-07 2010-02-12 다우 글로벌 테크놀로지스 인크. 테더링된 담지 전이 금속 착체
ITMI20070878A1 (it) 2007-05-02 2008-11-03 Dow Global Technologies Inc Processo per la polimerizzazine di polimeri tattici con l'uso di catalizzatori chirali
ITMI20070877A1 (it) 2007-05-02 2008-11-03 Dow Global Technologies Inc Processo per la produzione di copolimeri a blocchi multipli con l'utilizzo di solventi polari
EP2202246B1 (fr) 2007-10-16 2016-06-15 Sinopec Yangzi Petrochemical Company Ltd. Catalyseur non métallocène supporté sur un composé de magnésium et son procédé de préparation
KR101207294B1 (ko) 2007-10-16 2012-12-03 시노펙 양지 페트로케미컬 컴퍼니 엘티디. 담지된 비-메탈로센 촉매 및 이의 제조방법
ES2435568T3 (es) * 2007-11-19 2013-12-20 Dow Global Technologies Llc Copolímeros de propileno-alfa-olefina con ramificación de cadena larga
US9334342B2 (en) 2008-10-01 2016-05-10 Fina Technology, Inc. Polypropylene for reduced plate out in polymer article production processes
WO2010071798A1 (fr) 2008-12-18 2010-06-24 Univation Technologies, Llc Procédé de traitement d'un lit d'ensemencement pour une réaction de polymérisation
EP2757113A2 (fr) 2009-03-06 2014-07-23 Dow Global Technologies LLC Catalyseurs, procédés de fabrication de catalyseurs, procédés de fabrication de compositions de polyoléfines et de compositions de polyoléfines
WO2011016992A2 (fr) 2009-07-29 2011-02-10 Dow Global Technologies Inc. Agents de transfert (réversible) de chaînes polymères
ES2651292T3 (es) 2009-07-29 2018-01-25 Dow Global Technologies Llc Agentes de transferencia de cadena de doble o múltiple cabeza y su uso para la preparación de copolímeros de bloque
EP2490990B1 (fr) 2009-10-19 2013-12-04 Sasol Technology (Proprietary) Limited Oligomérisation de composés oléfiniques avec formation réduite de polymère
JP5670460B2 (ja) 2009-10-26 2015-02-18 中国石油化工股▲ふん▼有限公司 担持型非メタロセン触媒、その製造方法およびその使用
WO2011050566A1 (fr) 2009-10-26 2011-05-05 中国石油化工股份有限公司 Catalyseur non métallocène supporté, son procédé de préparation et ses utilisations
EP2500365B1 (fr) 2009-11-13 2020-05-06 China Petroleum & Chemical Corporation Catalyseur non-métallocène supporté et son procédé de préparation et ses utilisations
US8957169B2 (en) 2009-11-13 2015-02-17 China Petroleum & Chemical Corp. Supported nonmetallocene catalyst, preparation and use thereof
US8278403B2 (en) 2010-07-08 2012-10-02 Fina Technology, Inc. Multi-component catalyst systems and polymerization processes for forming broad composition distribution polymers
US9005355B2 (en) 2010-10-15 2015-04-14 Bunge Amorphic Solutions Llc Coating compositions with anticorrosion properties
EP2646480B1 (fr) 2010-11-30 2016-04-13 Univation Technologies, LLC Procédés pour la polymérisation d'oléfines avec des sels carboxylate de métal extraits
BR112013012545B1 (pt) 2010-11-30 2020-04-14 Univation Tech Llc composição catalisadora, processo de produção de uma composição catalisadora e processo de polimerização
RU2598023C2 (ru) 2011-05-13 2016-09-20 Юнивейшн Текнолоджиз, Ллк Полученные распылительной сушкой каталитические композиции и способы полимеризации, в которых они применяются
WO2013109787A1 (fr) * 2012-01-17 2013-07-25 Laine Richard M Glycoxy silanes comme source de silice et précipité de silicate
US9938361B2 (en) 2013-01-14 2018-04-10 Univation Technologies, Llc Methods for preparing catalyst systems with increased productivity
CN105189566A (zh) 2013-01-30 2015-12-23 尤尼威蒂恩技术有限责任公司 制造具有改进的流动的催化剂组合物的方法
US20150129460A1 (en) * 2013-11-14 2015-05-14 Indian Oil Corporation Limited Thermal cracking additive compositions for reduction of coke yield in delayed coking process
CA2943378C (fr) 2014-04-02 2023-09-12 Univation Technologies, Llc Compositions de continuite et leurs procedes de fabrication et d'utilisation
SG11201707037TA (en) 2015-03-10 2017-09-28 Univation Tech Llc Spray dried catalyst compositions, methods for preparation and use in olefin polymerization processes
ES2727734T3 (es) 2015-04-20 2019-10-18 Univation Tech Llc Ligandos bi-aromáticos puenteados y compuestos de metal de transición reparados a partir de ellos
CA2982900C (fr) 2015-04-20 2023-09-12 Univation Technologies, Llc Ligands bi-aromatiques pontes et catalyseurs de polymerisation d'olefines prepares a partir de ceux-ci
US10519256B2 (en) 2015-04-27 2019-12-31 Univation Technologies, Llc Supported catalyst compositions having improved flow properties and preparation thereof
CN108026115B (zh) 2015-09-30 2021-11-09 陶氏环球技术有限责任公司 可用于链穿梭的多头或双头组合物及其制备方法
MX2018009894A (es) 2016-02-26 2018-09-07 3M Innovative Properties Co Articulo de fregar de consumo con capa de textura libre de solvente y metodo para fabricarlo.
BR112019006150B1 (pt) 2016-09-30 2023-02-28 Dow Global Technologies Llc Composição e processo para preparar a composição
WO2018064553A1 (fr) 2016-09-30 2018-04-05 Dow Global Technologies Llc Compositions à têtes doubles ou multiples utiles dans le transfert de chaîne et procédé pour leur préparation
EP3519474A1 (fr) 2016-09-30 2019-08-07 Dow Global Technologies LLC Procédé de préparation de compositions à têtes multiples ou à deux têtes utiles pour le transfert de chaîne
US20200369803A1 (en) 2016-12-29 2020-11-26 Chevron Phillips Chemical Company Lp Methods of Preparing a Catalyst
US11267914B2 (en) 2016-12-29 2022-03-08 Chevron Phillips Chemical Company Lp Methods of preparing a catalyst
US10654953B2 (en) * 2016-12-29 2020-05-19 Chevron Phillips Chemical Company Lp Methods of preparing a catalyst
CN107459593B (zh) * 2017-08-18 2023-04-18 中国石油天然气股份有限公司吉林石化分公司 具有过小湿胶颗粒回收装置的氯磺化聚乙烯湿法凝聚后处理系统
EP3902807A1 (fr) 2018-12-28 2021-11-03 Dow Global Technologies LLC Agents de transfert de chaîne organométallique
EP3902852A1 (fr) 2018-12-28 2021-11-03 Dow Global Technologies LLC Polyoléfines téléchéliques et procédé de préparation de celles-ci
KR20210121043A (ko) 2018-12-28 2021-10-07 다우 글로벌 테크놀로지스 엘엘씨 불포화 폴리올레핀을 포함하는 경화성 조성물
CN113454091A (zh) 2018-12-28 2021-09-28 陶氏环球技术有限责任公司 包括不饱和聚烯烃的可固化组合物
CN113498414A (zh) 2018-12-28 2021-10-12 陶氏环球技术有限责任公司 包括遥爪聚烯烃的可固化组合物
CN114146724B (zh) * 2021-12-01 2024-01-30 南宁师范大学 改性zsm-5分子筛的制备方法

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2886512A (en) * 1955-08-30 1959-05-12 Grace W R & Co Process for preparing a silica-alumina gel catalyst and a hydrocarbon cracking process using said catalyst
US3342750A (en) * 1965-04-01 1967-09-19 Exxon Research Engineering Co Compositions containing stable aluminum phosphate gel and methods of making and using same
GB1356248A (en) * 1970-11-05 1974-06-12 Zirconal Processes Ltd Silica-metal oxide co-gels
FR2315997A1 (fr) * 1975-07-02 1977-01-28 Exxon Research Engineering Co Procede de preparation d'un support de catalyseur a base d'alumine et phosphate d'aluminium
NL7707961A (nl) * 1977-07-18 1979-01-22 Stamicarbon Werkwijze ter bereiding van poreus, zuiver siliciumdioxyde.
US4444963A (en) * 1980-12-31 1984-04-24 Phillips Petroleum Company Polymerization process using catalysts comprising chromium on silica/phosphate support
US4364839A (en) * 1980-12-31 1982-12-21 Phillips Petroleum Company Catalyst comprising chromium on silica/phosphate support
US4717708A (en) * 1983-12-27 1988-01-05 Stauffer Chemical Company Inorganic oxide aerogels and their preparation
US4806513A (en) * 1984-05-29 1989-02-21 Phillips Petroleum Company Silicon and fluorine-treated alumina containing a chromium catalyst and method of producing same
US4758544A (en) * 1985-07-17 1988-07-19 Chevron Research Company Catalyst composition and hydroprocessing of oils using same
US4721696A (en) * 1987-03-11 1988-01-26 Phillips Petroleum Company Silica-modified alumina and process for its preparation
IT1219692B (it) * 1988-05-06 1990-05-24 Eniricerche Spa Gel di silice e allumina cataliticamente attivo e procedimento per la sua preparazione
BE1007148A3 (fr) * 1993-05-17 1995-04-11 Solvay Support pour catalyseurs, procede pour la fabrication d'un gel precurseur d'un support pour catalyseurs, procede de preparation d'un support pour catalyseurs, catalyseur pour la polymerisation d'olefines et procede pour la polymerisation d'olefines au moyen de ce catalyseur.

Also Published As

Publication number Publication date
JPH09503234A (ja) 1997-03-31
EP0700403B1 (fr) 1997-08-20
NO308218B1 (no) 2000-08-14
CN1126479A (zh) 1996-07-10
NO954638D0 (no) 1995-11-16
PL311673A1 (en) 1996-03-04
NO954639L (no) 1996-01-16
CA2163119A1 (fr) 1994-11-24
NZ266777A (en) 1996-08-27
TW341527B (en) 1998-10-01
DE69405099D1 (de) 1997-09-25
TW349959B (en) 1999-01-11
DE69405100T2 (de) 1998-03-12
NO954638L (no) 1996-01-16
EP0700404B1 (fr) 1997-08-20
WO1994026791A1 (fr) 1994-11-24
NZ267088A (en) 1996-10-28
AU696784B2 (en) 1998-09-17
NO954639D0 (no) 1995-11-16
KR100319213B1 (ko) 2002-04-22
US5834572A (en) 1998-11-10
ES2108462T3 (es) 1997-12-16
RU2117676C1 (ru) 1998-08-20
DE69405100D1 (de) 1997-09-25
FI955531A (fi) 1996-01-12
WO1994026790A1 (fr) 1994-11-24
CN1126480A (zh) 1996-07-10
DK0700403T3 (da) 1998-04-06
MY111095A (en) 1999-08-30
DK0700404T3 (da) 1998-03-30
PL178575B1 (pl) 2000-05-31
NO308217B1 (no) 2000-08-14
BR9406408A (pt) 1995-12-19
PL178487B1 (pl) 2000-05-31
RU2117675C1 (ru) 1998-08-20
FI955531A0 (fi) 1995-11-16
ATE157101T1 (de) 1997-09-15
KR960702483A (ko) 1996-04-27
US5849852A (en) 1998-12-15
MY110978A (en) 1999-07-31
MX9403604A (es) 1995-01-31
JPH09500663A (ja) 1997-01-21
US6074980A (en) 2000-06-13
BE1007148A3 (fr) 1995-04-11
AU6927194A (en) 1994-12-12
AU677340B2 (en) 1997-04-17
KR100327301B1 (ko) 2002-07-12
FI955530A (fi) 1996-01-12
KR960702482A (ko) 1996-04-27
ES2108457T3 (es) 1997-12-16
FI112231B (fi) 2003-11-14
PL311674A1 (en) 1996-03-04
DE69405099T2 (de) 1998-03-05
CN1050366C (zh) 2000-03-15
FI955530A0 (fi) 1995-11-16
CN1048732C (zh) 2000-01-26
BR9406407A (pt) 1995-12-19
AU6843594A (en) 1994-12-12
ATE157102T1 (de) 1997-09-15
EP0700403A1 (fr) 1996-03-13
EP0700404A1 (fr) 1996-03-13

Similar Documents

Publication Publication Date Title
CA2162915A1 (fr) Procede de preparation d'un support pour catalyseurs, catalyseur pour la polymerisation d'olefines et procede pour la polymerisation d'olefines au moyen de ce catalyseur
EP0739909B1 (fr) Polymère d'éthylène et procédés pour son obtention
US5183792A (en) Catalyst for making polyethylene
US5576262A (en) Glycol ether compounds for the production of polyolefin catalysts and supports
EA018286B1 (ru) Предшественник катализатора для полимеризации олефинов, способ его получения, катализатор полимеризации олефинов и способ полимеризации олефинов
EP0320345A1 (fr) Zircone stabilisée, son procédé de préparation et son application dans des compositions céramiques
JPS5956411A (ja) エチレンとアルファ−オレフィンとの共重合体の製造方法
BE1004675A3 (fr) Procede d'obtention de particules microspheroidales homodisperses, particules microspheroidales de silice a surface specifique elevee, catalyseurs supportes sur ces particules et procede de polymerisation des alpha-olefines en presence de ces catalyseurs.
FR2581925A1 (fr) Procede de preparation de microspheres ceramiques
CA1268751A (fr) Support a base de silice et de chlorure de magnesium, son procede de fabrication, catalyseurs obtenus a partir de ce support
WO2008143429A1 (fr) Procédé de production d'agent de revêtement pour revêtement antiéblouissant, et agent de revêtement et film antiéblouissant
EP0700870A1 (fr) Dispersions colloidales d'un composé de cérium à pH élevé et leurs procédés de préparation
BE1008916A3 (fr) Systeme catalytique pour la polymerisation d'olefines et procede de polymerisation d'au moins une olefine en presence de ce systeme catalytique.
EP0757063B1 (fr) Procédé de fabrication d'un support pour catalyseurs de polymérisation d'oléfines et procédé de polymérisation d'oléfines
EP0827969A2 (fr) Catalyseurs de chrome supportés par des tamis moléculaires mésoporeux
CN117843450A (zh) 一种新型乙氧基镁载体及其Ziegler-Natta催化剂制备方法
CH424740A (fr) Procédé de préparation d'un aluminosilicate zéolithique cristallin et utilisation de ce corps

Legal Events

Date Code Title Description
EEER Examination request
FZDE Discontinued