CA2167342C - Transcutaneous energy and information transmission apparatus - Google Patents

Transcutaneous energy and information transmission apparatus Download PDF

Info

Publication number
CA2167342C
CA2167342C CA002167342A CA2167342A CA2167342C CA 2167342 C CA2167342 C CA 2167342C CA 002167342 A CA002167342 A CA 002167342A CA 2167342 A CA2167342 A CA 2167342A CA 2167342 C CA2167342 C CA 2167342C
Authority
CA
Canada
Prior art keywords
signal
power
frequency
internal
external
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CA002167342A
Other languages
French (fr)
Other versions
CA2167342A1 (en
Inventor
Edward K. Prem
David E. Cuervo
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Vascor Inc
Original Assignee
Vascor Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Vascor Inc filed Critical Vascor Inc
Publication of CA2167342A1 publication Critical patent/CA2167342A1/en
Application granted granted Critical
Publication of CA2167342C publication Critical patent/CA2167342C/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N1/00Electrotherapy; Circuits therefor
    • A61N1/18Applying electric currents by contact electrodes
    • A61N1/32Applying electric currents by contact electrodes alternating or intermittent currents
    • A61N1/36Applying electric currents by contact electrodes alternating or intermittent currents for stimulation
    • A61N1/372Arrangements in connection with the implantation of stimulators
    • A61N1/37211Means for communicating with stimulators
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N1/00Electrotherapy; Circuits therefor
    • A61N1/18Applying electric currents by contact electrodes
    • A61N1/32Applying electric currents by contact electrodes alternating or intermittent currents
    • A61N1/36Applying electric currents by contact electrodes alternating or intermittent currents for stimulation
    • A61N1/372Arrangements in connection with the implantation of stimulators
    • A61N1/37211Means for communicating with stimulators
    • A61N1/37252Details of algorithms or data aspects of communication system, e.g. handshaking, transmitting specific data or segmenting data
    • A61N1/3727Details of algorithms or data aspects of communication system, e.g. handshaking, transmitting specific data or segmenting data characterised by the modulation technique
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N1/00Electrotherapy; Circuits therefor
    • A61N1/18Applying electric currents by contact electrodes
    • A61N1/32Applying electric currents by contact electrodes alternating or intermittent currents
    • A61N1/36Applying electric currents by contact electrodes alternating or intermittent currents for stimulation
    • A61N1/372Arrangements in connection with the implantation of stimulators
    • A61N1/378Electrical supply
    • A61N1/3787Electrical supply from an external energy source

Abstract

An apparatus for transcutaneously transmitting a power signal to, and communicating first and second information signals with, an implantable device. The apparatus can include an external unit having first power means for generating the power signal; first signalling means for generating the first information signal; first receiving means for receiving the second information signal; and first coupling means for independently coupling the power signal and said first information signal. The apparatus can also include an internal unit having second power means for receiving the power signal; second signalling means for generating the second information signal;
second receiving means for receiving the first information signal; and second coupling means for independently coupling the power signal and the second information signal.
The first power means transmits the power signal at a power frequency, and the first signalling means can transmit the first information signal at a frequency greater than the power frequency. The first power means may also include a power supply. The second signalling means, too, may transmit the second information signal at a frequency greater than the power frequency.
The external unit can include a power converter for converting a power input signal at a first preselected frequency to a power signal at the power frequency; an external coupler for transmitting the power signal, and for communicating the first and second information signals; an external signal conditioner for symmetrically transceiving the first and second information signals; and an external data controller for symmetrically controlling the first and second information signals.
The internal unit can include an internal coupler for receiving the power signal and for communicating the first and second information signals; a voltage regulator for converting the first power signal into said second power signal which is provided to the implantable device; an internal signal conditioner for symmetrically transceiving the first and second information signals; and an internal data controller symmetrically controlling the first and second information signals. Symmetrically controlling includes ASK modulation of a data signal upon an RF carrier signal of a preselected carrier frequency, which is presently preferred to be about 8 megaHertz (MHz).
The external and internal couplers each can include a primary and secondary tuned circuit, respectively. Each tuned circuit has a resonant frequency which can be, for example, about 160 kiloHertz (kHz). In addition, the first and second signal conditioners can include a first and second frequency-selective filter, respectively. Each frequency-selective filter can have cutoff frequencies of between about 7.9 MHz and 8.1 MHz, with a central frequency of about 8 MHz.

Description

TITLE

TRANSCUTANEOUS ENERGY AND
INFORMATION TRANSMISSION APPARATUS
BACKGROUND OF THE INVh NTION
1. FieldoftheInvention The present invention relates to transcutaneous energy tr~n~mi~ion systems wherein power and data is tl~n~lllilled to implanted cardiac assist devices using an external transmitting coil and subcutaneously located receiving coil.
2. Description of the Art The advent of implantable cardiac assist devices such as artificial hearts, ventricular assist devices, and the like, has lead to a concomitant need for a power source that meets the significant power requirements for such devices yet permits meaningful patient mobility.
One such power trAncmi~ion system transcutaneously transmits power to a Left Ventricle Assist Device (LVAD), but has no provision for data communications. Given the complexity of many cardiac assist devices, there is a need to receive data from the device which may include ECG, blood pressure, and device status information, as well as transmit progl,l.lll.ling and control information to the device, as needed to mAintAin system operation. It is desirable to combine energy trAn~mi~sion and data culllnlullication into a unitary system.
Another power kAn~mi~ion system allows bidirectional data trAn~micsion at 300 to 1200 baud. However, this system limits the data transfer speeds by making the data link and power conversion cilcuill~ interdependent. A data tr~n~mi~sion rate of 1200 baud is not fast enough to allow continuous, high resolution monitoring of multiple signals such as ECGs, blood plcssulc, motor control waveforms, etc., used in advanced, implanted cardiac assist systems.
The present invention uses an ext~rn~l coupler in conjunction with subcutaneously-located coupler for both power and data tr~n~mi~sion. The data tr~n~mi~ion technique employed in the present invention can be capable of data tr~n~mi~ion rates excee-ling 19200 bits per second without compromising the power tr~n~mi~sion scheme. The proposed transcutaneous energy and data tr~n.cmi~sion system provides data tr~n~mi~sion speeds required for progr~mming and monitoring advanced implanted cardiac assist systems.
SUMl\IARY OF THE INVENTION
An appaldllls is provided for transcutaneously transmitting a first power signal to, and communicating first and second information signals with, an implantable device. The a~aldlus can include an external unit having first power means for generating the first power signal; first sign~lling means for generating the first information signal; first receiving means for receiving the second information signal;
and first coupling means connected to the first power means, the first ~i~n~lling means, and the first receiving means, for independently coupling the first power signal and said first information signal. The appaldlus can also include an internal unit having second power means for receiving the first power signal; second ~ign~lling means for geneldlillg the second information signal; second receiving means for receiving the first information signal; and second coupling means connected to the second power means, the second .~i~n~lling means, and the second receiving means, for independently coupling the first power signal and the second information signal.
The first power means transmits the power signal at a power frequency, and the first ~ign~lling means can transmit the first information signal at a frequency greater than the power frequency. The first power means may also include a power supply. The second sign~lling means, too, may transmit the second information signal at a frequency greater than the power frequency. However, the tr~n~mitting frequencies of the first and second information signals are not required to be the same and, indeed, may be different to provide, for example, full-duplex communication.
The extern~l unit can include a power converter for converting a power input signal at a first preselected frequency to a first power signal at a power frequency;
an extçrn~l coupler coupled to the common tr~n~mis~ion channel for transmitting the first power signal, and for communicating the first and second information signals; an ext~rn~l signal conditioner interposed between the external coupler and the power converter for symmetrically transceiving the first and second information signals; and an extçrn~l data controller connected to the external signal conditioner for symmetrically controlling the first and second information signals.
The internal unit can include an internal coupler coupled to the common tr~n~mi~sion channel for receiving the first power signal and for communicating the first and second information signals; a voltage regulator connected between the internal coupler and the implantable device, for converting the first power signal into a second power signal which is provided to the implantable device; an intern~l signal conditioner interposed between the intern~l coupler and the voltage regulator for symmetrically transceiving the first and second information signals; and an internal data controller connected between the internal signal conditioner and the implantable device, symmetrically controlling the first and second information signals. Symmetrically controlling includes amplitude-shift-keying modulation of a data signal upon a radio-frequency carrier signal of a preselected carrier frequency, which is presently prerelled to be about 8 megaHertz (MHz).
The external and internal couplers each can include a primary and secondary tuned circuit, re~eclively. Each tuned circuit has a resonant frequency which can be, for example, about 160 kiloHertz (kHz). In addition, the first and second signal conditioners can include a first and second frequency-selective filter, respe~;lively. Each frequency-selective filter can have respective upper and lower cutoff frequencies of about 7.9 MHz and about 8.1 MHz, with a central frequency of about 8 MHz.
Fxt~rn~l and internal data controllers can have first and second ~u~pl~ssion means, respectively, for ~U~lC;ssillg detçrmini~tic noise in the first and second information signals. Also, the voltage regulator can include ~hllnting means for confining the power signal to the internal coupler when the signal current is about zero a"lperes. The shunting means can be synchronized to coincide with zero-crossings of the current, so that switching losses and electromagnetic interference are minimi7e~1 thereby.
BRTT~'Ti' DESCRTPTION OF THE DRAWINGS
Figure 1 is a general block diagram of the present invention.
Figure 2 is a detailed block diagram of the external electronics.
Figure 3 is a detailed block diagram of the implanted electronics.
Figure 4 is a schematic diagram of a portion of the extern~l electronics.
Figure 5 is a detailed block diagram of the H-bridge controller.
Figure 6 is a simplified schematic of the external blanking pulse generator.
Figure 7 is a simplified schem~tic of the external ASK demodulator.
Figure 8 is a schem~tic of the external ASK modulator.
Figure 9 is a schematic diagram of a portion of the internal electronics.
Figure 10 is a simplified schematic diagram of the internal blanking pulse generator.
Figure 11 is a simplified schematic diagram of the internal ASK
demodulator.
Figure 12 is a s~he-n~tic of the internal ASK modulator.

DETAILED DESCRIPTION OF THE PREFERRED li l~BODIMENTS
Figure 1 is a block diagram of the intern~l and external components of a transcutaneous energy and data tr~n~mi~ion app~dlus according to one embodiment of the present invention. In general, the app~dlus can include çxtern~l unit 1 which can be located external to the body, and internal unit 2 which can be implanted, for example, within the body of a patient.
The first power means of external unit 1 can include power converter 4.
The first power means can also include power supply 3. External unit 1 can have a first si~n~llin~ means for generating a first information signal 23 which can include external signal conditioner 16, in addition to particular components of external data controller 5 such as, for example, ASK modulator 39 and line driver 40, both in Figure 2. The first ~ign~lling means may also include external control unit 9. The first receiving means can receive the second information signal 24 and can include external signal conditioner 16, and components of data controller 5 such as, for example, RF detector 37 and ASK demodulator 38, both in Figure 2. The first receiving means may also include external control unit 9. Also, external unit 1 may include first coupling means for independently coupling the power signal and the first information signal 23. Such coupling means can be extern~l coupler 10 which can have therewithin primary tuned circuit 31 in Figure 2.
The second power means of internal unit 2 can include internal voltage regulator 12 which receives the power signal transmitted by extern~l unit 1. Internal -unit 2 can also include a second sign~lling means for generating the second information signal 24, which ~i~n~lling means can include intern~l signal conditioner 17 and conlpollents of internal data controller 18 such as, for example, ASK modulator 59 and line driver 60, both in Figure 3. The second ~i~n~lling means may also include implantable device 20. The second receiving means can receive the first information signal 23 and can include internal signal conditioner 17, and components of data controller 18 such as, for example, RF detector 58 and ASK demodulator 57, both in Figure 3. The second receiving means may also include implantable device 20. Also, internal unit 2 may include second coupling means for independently coupling the power signal and the second information signal 24. Such coupling means can be internal coupler 11 which can have therewithin secondary tuned circuit 46 in Figure 3.
In e~t~rn~l unit 1, power supply 3 may be a patient-worn DC battery belt or a stationary power supply physically separate from the patient. The DC battery belt can provide sufficient power at a suitable DC voltage, such as 12 VDC. The stationary power supply could secure input power from commercial 50/60 Hz AC power sources, and convert the AC input voltage to a suitable DC voltage, for example, 12 VDC, which is similar to the voltage produced by the battery belt.
Power converter 4 can convert electrical current from power supply 3 into a power frequency, i.e., high-frequency AC, current first power signal 6. A first information signal 23 can be received from external control unit 9 by external data controller 5 via external link 21. The preselected data in first information signal 23 may be, in turn, modulated onto a radio-frequency (RF) carrier signal by a suitable modulation technique such as, for example, amplitude-shift-keying (ASK) modulation within controller 5. It is pler~.red that the frequency of the RF carrier signal be greater than the power frequency, or frequency of the power signal. In one embodiment of the present invention, a single carrier frequency is used for tr~n~mi~sion between units 1 and 2. It is preferred that the carrier frequency be about 8 MHz, although other frequencies may be equally suitable. However, different frequencies may be used for tr~n~mi~sion by each of external unit 1 and internal unit 2, if such is desired, for example, to provide full-duplex information signal communication.
The data-modulated RF carrier signal can be received from controller 5 by external signal conditioner 16 and be mixed with power signal 6 by ext~rn~l signal conditioner 16, becoming outgoing composite extern~l signal 7. Signal conditioner 16 can symmetrically transceive an information signal. That is, signal conditioner can act both to generate a data-modulated RF carrier signal bearing first information signal 23 for tr~n~mi~sion to internal unit 2 and to receive a data-modulated RF carrier signal bearing second information signal 24 which may be received from internal unit 2. Such symmetric transceiving can be independent of power signal tr~n~mi~ion by external unit 1.
Signal 7 can be provided to external coupler 10, which may have a tuned circuit with an induction coil therein, and can create in external coupler 10 a first magnetic field 8 responsive to signal 7. Magnetic field 8 thus can be representative of g first power signal 6 or first information signal 23 bearing the data-modulated carrier signal, or both. Field 8 can be transmitted symmetrically between external unit 1 and internal unit 2 within the common tr~n~mi~sion channel. The comrnon tr~n~mi~sion channel can traverse a composite of tr~n~mi.~sion media which can include non-ferrite cutaneous and pericutaneous entities such as air, clothing, tissue, body fluids, and the like.
Within internal unit 2, magnetic field 8 can induce an incoming composite internal signal 13 within internal coupler 11. Signal 13 can be representative of signal 7 because external coupler 10 and internal coupler 1 1 can act together as an air-core transformer. Signal 13 can include a data-modulated RF carrier signal imposed upon a high-frequency AC current. Voltage regulator 12 converts the first power signal, or high-frequency AC current of signal 13, into a second power signal such as, for example, regulated Vcc voltage signal 205, which may be used to energize implantable device 20. Implantable device 20 can include cardiac assist device 14, and internal microcontroller unit 15.
In addition, data which may still be in the form of a data-modulated RF
carrier signal can be extracted from signal 13 by internal signal conditioner 17. Similar to ~xt~ l signal conditioner 16, internal signal conditioner 17 can symmetrically transceive first and second information signals. That is, signal conditioner 17 can act both to generate the second information signal 24 in the data-modulated RF carrier signal for tr~n~mi~sion to external unit 1 and to receive first information signal 23 in the data-modulated RF carrier signal which may be received from extçrn~l unit 1. Such symmetric transceiving can be independent of power signal tr~n~mi~ion by extçrn~l unit 1.
This data-mo~ te~l RF carrier signal can be demodulated within internal data controller 18 which in turn transmits the demodulated data stream to internal microcontroller 15 via internal link 22. Internal microcontroller 15 can transmit the received data to cardiac assist device 14.
Data can be transferred symmetrically between internal unit 2 and external unit 1. That is, a first or second information signal may be transmitted or received by device 20, Ic~e~ ely. For example, device 14 may provide data to internal microcontroller 15 which, in turn, transmits as data to int~rn~l data controller 18 via internal link 22. Tntçrn~l microcontroller 15 itself may provide additional data to internal data controller 18 via internal link 22. Data controller 18 can modulate the outgoing data by any suitable scheme such as, for example, ASK modulation. Indeed, it is plcre~lcd that internal data controller 18 modulate outgoing data in the same manner as extPrn~l data controller 5.
Similar to extt rn~l data controller 5, data are ASK-modulated onto an RF carrier signal with a frequency of, for example, 8 MHz, by intem~l data controller 18. The data-modulated carrier signal can be provided to internal signal conditioner 17 which, in turn, can be input to internal coupler 1 1 in which a second magnetic field 19 representative of the outgoing data can be generated. Second magnetic field 19 impinges upon extçrn~l coupler 10 thus inducing an electrical current thelc;wiLhin, which current can be representative of the ASK-modulated carrier transmitted from int~rn~l unit 2. Signal conditioner 16 can direct the ASK-modulated carrier signal to ext~rn~l data controller 5 for demodulation such that the demodulated data stream can be provided to external control unit 9. Fxtçrn~l control unit 9 can be used to provide progr~mming, control, diagnostic, and data collection functions in conjunction with implantable device 20.
Figure 2 further illustrates a present embodiment of external unit 1 as found in Figure 1. As in Figure 1, power supply 3 can provide DC power to power converter 4. In power converter 4, H-bridge inverter 27 can convert the voltage supplied by DC power supply 3 to an altçrn~ting voltage of a preselected frequency, which is the power frequency. The frequency of the ~ltern~ting voltage is chosen to be substantially at the resonant frequency of primary tuned circuit 31 which may be within external coupler 10 in Figure 1. Primary tuned circuit 31 may be composed of primary high-current capacitor 30 and primary external coil 29.
Primary tuned circuit 31 presents a low impedance path to the g voltage oscillating at the fundamental frequency of circuit 31, while subst~nti~lly ~tt~nu~ting other harmonic frequencies. The resulting current through primary tuned circuit 31is subst~nti~lly sinusoidal when excited by a voltage source at preselected resonant frequency of primary tuned circuit 31. The preselected resonant frequency is chosen to provide a desired minimum power tr~n~mi~ion level, such as 70 watts, to the intern~l components while using the lowest anticipated voltage from power supply 3 such as, for instance, 10 volts. In the present embodiment, the preselected resonant, or power, frequency is belweell about 152 kHz and 168 kHz, preferably between about 158.4 kHz and 161.8 kHz, and more preferably about 160 kHz.
In power converter 4, H-bridge controller 32 can determine both the duty cycle and the switching frequency of H-bridge inverter 27. In order to protect the components of external unit 1 from excessive currents, and to m~int~in efficient energy transfer to the components of internal unit 2, H-bridge controller 32 can utilize the inputs from over-current detector 33 and shunt detector 36. If the magnitude of the sinusoidal current through current sensor 28 exceeds a preselected maximum threshold, over-current detector 33 can signal H-bridge conkoller 32 to cease power tr~n~mi~sion for one cycle.
Shunt detector 36 monitors the voltage created by current sensor 28 to determine if there is a shunt across internal tuned circuit 46 (Figure 3). If shunt detector 36 indicates that internal tuned circuit 46 (Figure 3) is ~hllntçcl7 H-bridge controller 32 can reduce the duty cycle of H-bridge inverter 27 from nearly 100 percent to some lower value such as about 10 percent. Conversely, if internal tuned circuit 46 (Figure 3) is not .~hllnte~l, H-bridge inverter 27 can be driven at nearly 100 percent duty cycle. To m~int~in an accurate drive frequency to H-bridge inverter 27, H-bridge controller 32 uses a clock frequency derived from a clock circuit which may be crystal oscillator 26.

Fxtern~l link 21 between external control unit 9 and external data controller 5 in Figure 1 can include three control lines, namely, tx_rx signal 300, data_rx signal 301, and data_tx signal 302, as seen in Figure 2. Signal 300 signifies the transmitlreceive control signal. Signal 301 signifies the data-to-be-received signal.
Signal 302 signifies the data-to-be-transmitted signal. Each of signals 300, 301, and 302 can assume a value of either logic zero or logic one.
In one embodiment according to the present invention, when signal 300 is a logic one, ASK modulator 39 modulates the carrier frequency from crystal oscillator 26 with signal 302. Accordingly, when signal 302 is a logic one, ASK
modulator 39 sends a logic zero to line driver 40. If signal 302 is a logic zero while signal 300 is a logic one, ASK modulator 39 permits clock signal 26a of crystal oscillator 26 to drive line driver 40 directly.
The differential output of line driver 40 can be coupled to extern~l signal conditioner 16, which may have first frequency-selective filter 316 therewithin, the center frequency of the frequency-selective filter is plefelled to be about the same as the carrier frequency used for modulation, here, about 8 Mhz. In an embodiment according to the invention herein, it is prerelled that the respective lower and upper cutoff frequencies of filter 316 be about 7.84 MHz and 8.16 MHz, and preferably about 7.9 MHz and 8.1 MHz, with the center frequency being about 8 MHz. Because first frequency-selective filter 316 in signal conditioner 16 can have a high impedance at frequencies near its central frequency, and low impedance otherwise, signal conditioner 16 can remain transparent to the power tr~nemi~sion cil~;ui~ly, at power tr~n~mi~sion frequencies, e.g., about 160 kiloHertz. Thus, the power tr~n~mi~sion current can pass, substantially unimpeded, serially through filter 316, while the approximately 8 MHz carrier frequency data signal causes a detectable voltage to be developed across filter 316.
In effect, filter 316 acts as a notch filter relative to the power tr~n~mi~ion current, wherein all current frequencies except about 8 MHz are passed, and, conversely, as a b~n~p~es filter relative to the data carrier voltage, wherein a voltage develops across filter 316 only in response to signals with frequencies around 8 MHz.
During data tr~n~mi~sion, external signal conditioner 16 converts the square wave output of line driver 40 into a sinusoidal voltage for tr~n~mi~sion through a tr~n~mi~cion medium. The resulting voltage across signal conditioner 16 causes a high frequency current to flow in external coil 29. This magnetic field can be coupled to an internal coupler such as, for example, internal coupler 11 in Figure 1.
During the demodulation process, i.e., when signal 300 is a logic zero, radio frequency current which can be in-luce~l in ext~rn:~l coil 29, travels through first frequency-selective filter 316 in signal conditioner 16. Data transformer 34 senses and scales the voltage across first frequency-selective filter 316 and, thus, signal conditioner 16 and routes it to RF detector 37. RF detector 37 converts analog inputs above a preselected threshold to digital level pulses. With a logic zero on signal 300, ASK
demodulator 38 receives the digital level pulses and extracts signal 301 thelcfio~
The fast rise times employed by the transistors in H-bridge inverter 27 can create bursts of bro~lb~n~l energy that may be coupled to signal conditioner 16.
The resulting transient sine waves in signal conditioner 16 generate determini~tic noise which could be mi~inttqrpreted as a valid RF signal. Therefore, a first suppression means for suppressing this, and other, del~. " li ~ tic noise can be employed, and may be specifically embodied by blanking pulse generator 35. Generator 35 can be used during data demodulation to create a blanking pulse of sufficient width, such as 750 nsecs to inhibit ASK demodulator 38 coincidentally with the critical edges of the input to H-bridge inverter 27.
Figure 3 describes one embodiment of internal unit 2. Tntt rn~l coupler 11 can include secondary tuned circuit 46 which itself may include internal coil 44 and int~rn~l high-current capacitor 45. Current circulating in primary tuned circuit 31 in Figure 2 can induce an alt~rn~ting current in secondary tuned circuit 46. This ~lt~rn~ting current can be incoming composite internal signal 13 which may include highfrequency AC current power signal and a data modulated RF carrier signal. Signal 13 can be provided to internal signal conditioner 17, described below, for extraction of exicting data and then provided to voltage regulator 12, also described below for conversion of the first power signal into the second power signal. The second power signal, which can be conditioned Vcc voltage signal 205, can be then provided to irnplantable device 20 to provide power for cardiac assist device 14.
In voltage regulator 12, Vcc voltage signal 205 can be m~int~ined at a subst~nti~lly constant amplitude by regulating the amount of current delivered to output capacitor 52. Diode bridge 51 and output capacitor 52 convert the alternating current to a direct current. When voltage signal 205 is approximately at a m;lxi."u.", current can be directed away from output capacitor 52 and confined to internal tuned circuit 46 by shlmting means which can be part of voltage regulator 12, and can include shunt controller 50 and shunt switch 49.
Shunting means can be responsive to zero-crossings of signal 13.
Output voltage monitor 53 alerts shunt controller 50 whenever voltage signal 205 is at a preselected m~imllm voltage. When voltage signal 205 reaches the preselected m~imllm, such as, for example, 17 volts, shunt controller 50 can activate shunt switch 49 immediately after zero-crossing detector 47 indicates the sinusoidal current in int~rn~l tuned circuit 46 is zero. By turning on shunt switch 49 while it has near-zero current passing therethrough, i.e., by synchronizing the operation of shunt controller 50 and shunt switch 49 with zero-crossings of signal 13, ~hunting means can minimi7.~q.
switching losses, and electromagnetic interference. After voltage signal 205 drops to a preselected minimum value, for example, 16 volts, shunt controller 50 can turn off shunt switch 49 and allow current to flow through diode bridge 51 and then into output capacitor 52.

During data tr~n~mi~sion from internal unit 2 to external unit 1, internal data controller 18 can receive information from internal microcontroller 15 through intçrn~l link 22, as seen in Figure 1. As seen in Figure 3, internal link 22 between int~rn~l microcontroller 15 and internal data controller 18 can include three control lines, namely, sec_tx_rx signal 304, sec_data_tx signal 305, and sec_data_rx signal 306. Signal 304 represents the secondary transmit/receive control signal. Signal 305 signifies the secondary data-to-be-transmitted signal. Signal 306 signifies the secondary data-to-be-received signal. Each of signals 304, 305, and 306 can assume a value of either logic zero or logic one.
When signal 304 is a logic one, ASK modulator 59 modulates the carrier frequency from crystal oscillator 54 with the data signal to be tran.~mitte-l Accordingly, when signal 305 is a logic one, ASK modulator 59 sends a logic zero to line driver 60. If signal 305 is a logic zero while signal 304 is a logic one, ASK
modulator 59 allows crystal oscillator 54 to drive line driver 60 directly. The differential output of line driver 60 can be provided to internal signal conditioner 17 and can be coupled to second frequency-selective filter 48 through internal data transformer 56.
Similar to first frequency-selective filter 316 in Figure 2, second frequency-selective filter 48 is l,lerelled to have a central frequency about the carrier frequency of the modulated data, here, about 8 MHz. In an embodiment according to the invention herein, it is plefelled that the respective lower and upper cutoff frequencies of filter 48 be about 7.84 MHz and 8.16 MHz, and preferably about 7.9 MHz and 8.1 MHz, with the center frequency being about 8 MHz.
Also similar to filter 316 in Figure 2, second frequency-selective filter 48 can have a high impedance at frequencies near its central frequency, and low impedance otherwise. Therefore, signal conditioner 17 can remain l~ sl,alenl to the power tr~ncmi~sion circuill y, at power tr~n~mi~ion frequencies, e.g., about 160 kiloHertz. The power tr~n~mi~ion current can pass, substantially unimpeded, serially through filter 48, while the approximately 8 MHz carrier frequency data signal causes a detectable voltage to be developed across filter 48.
In an effect similar to filter 316 in Figure 2, filter 48 in Figure 3 acts as a notch filter relative to the power tr~n~mi~sion current, wherein all current frequencies except about 8 MHz are passed, and, conversely, as a b~n~p~s filter relative to the data carrier voltage, wherein a voltage develops across filter 48 only in response to signals with frequencies around 8 MHz.
During data tr~n~mi~ion, second frequency-selective filter 48 converts the square wave output of line driver 60 to a sinusoidal voltage for tr~n~mi~sion through the tr~ncmi~ion medium. The resulting voltage across second frequency-selective filter 48 causes high frequency current to flow in internal coil 44, inducing a m~gnetiC field which can be coupled to çxtçrn~l coil 29 in external coupler 10 in Figures 1 and 2.

During the demodulation process, i.e., when data is being received from ext~qrn~l unit 1, the RF current in~ cecl in intemal coil 44 passes through second frequency-selective filter 48. Because filter 48 has a high impedance at its center frequency, for instance, 100 ohms, current flowing through second frequency-selective filter 48 creates a voltage thereacross. At power tr~n~mi~sion frequencies, second frequency-selective filter 48 presents a very low impedance and thus remains ent to the power reception circuitry. Data transfommer 56 scales the voltage across second frequency-selective filter 48 and directs it to RF detector 58. RF detector 58 converts analog inputs above a preselected threshold value to digital level pulses.
During demodulation, signal 304 is a logic zero causing ASK demodulator to receive the digital level pulses from RF detector 58, and extract the secondary data to be received, i.e., signal 306. Signal 306 can be clesign~tecl sec_data_rx signal.
When current through secondary tuned circuit 46 crosses zero amplitude, the resultant bias reversal of diode bridge 51 can induce transients across second frequency-selective filter 48, which may be sinusoidal. Such transient waves in filter 48 are (let~rmini~tic noise which could be mi~int~rpreted as a valid RF signal.
Therefore, a second ~u~les~ion means for suppressing such d~ ,"i~ tic noise can be employed, and may be specifically embodied by blanking pulse generator 55. Blanking pulse generator 55 can be synchronized to create a blanking pulse of sufficient width, such as, for example, 500 nsecs, to inhibit ASK demodulator 57 coincidentally with the zero current crossings of secondary tuned circuit 46. Zero-crossing detector 47 can trigger blanking pulse generator 55 to effect noise ~u~ression.
Figure 4 further illustrates an embodiment of external app~dllls cil~;uill y excluding the digital logic implemented within a programmable logic device (PLD).
Control signals 128, 129, 130, and 131 (Figure 5) control H-bridge driver 65a and 65b outputs 64, 67, 68, and 70. MOSFETs 88, 89, 90 and 91, along with primary tuned circuit 31, comprise an H-bridge. High current driver outputs 64, 67, 68, 70 drive the gate inputs of the MOSFETs in the H-bridge. Driver output 66, diode D2, and capacitor C5 create a level shifted supply voltage at driver lead 72 that can be appl.,xilllately twice the voltage provided by power supply 3 (Figure 1). The voltage at driver lead 72 can be used to create a drive voltage at output 64 sufficient to turn on N-channel MOSFETs. Likewise, driver pin 69, diode D3, and capacitor C6 create a bool~lld~ed supply for driver lead 71. Level shifting the output voltage of outputs 64 and 68 allows the H-bridge to contain all N-channel MOSFETs with low on resistance.
This, in turn, m~imi~s power conversion efficiency.
Current sensor 28 senses a voltage lepresell~ g the current flowing in primaly tuned circuit 31. Current circulating through the H-bridge can be scaled by current transformer 74 and routed to diode bridge 75 through leads 320 and 105. The rectified current develops a ground-referenced voltage across R1, which can be conn~ctec~ to non-inverting input 76 of colllpaldlor 80. Colllpaldlor 80 has its inverting te~nin~l 77 connected to a reference voltage source Vrefl, positive supply t~rmin~l 70 connected to a five-volt source, negative supply tçrmin~l 78 connected to ground potential, and output to termin~l 81.
As configured, output termin~l 81 can be high whenever the current through primary tuned circuit 31 can be above a set threshold such as, for example, 25 ~llp~lcs. Input 76 can be connected to inverting colllpaldlol input 82 of colllpaldlor 86 through a low pass filter formed by R7 and C4. Non-inverting termin~l 83 can be connected to another voltage reference Vref2, which may be derived from Vrefl t~rmin~l 77. Comparator 86 includes a positive supply tçrmin~l 84 connected to a five-volt source, negative supply t~rrnin~l 85 attached to ground potential, and a tennin~l for comparator output 87. Cvlllpalator output 87 can be asserted high when the average current through primary tuned circuit 31 is below a set threshold. Comp~dlor input 82 can be also tied to non-inverting input 112 of colll~dlor 108. Colllp~dlor 108 includes positive supply terminal 111 connected to a five-volt source, negative supply tçr~nin~l 110 attached to ground potential, and com~dlor output termin~l 109.
Inverting input 113 can be connected to a voltage reference Vref3. Compaldlor output t~rrnin~l 109 is asserted when the average current through primary tuned circuit 31 is above a set threshold such as, for example, 13 amps.
Figure 4 illustrates the components that can be used for data tr~n~mi~sion and reception. During data reception, high frequency current in~ ce~1 in ç~rn~l coil 29 creates a voltage across first frequency-selective filter leads 103 and 104, which are also connected to data transformer 34. Inductor L1 connected between leads 103 and 104 can be a small air core inductor (~40nH) having a small inductance in comparison to the much larger external coil 29 (~1.9uH). By making L1 a small air core inductor, resi~t~nce of the coil can be minimi7~d (~4 milliohms) and thus has rr inim~l effect on power tr~n~mi~cion efficiency.
Lead 92a of transformer 34 can be connected to output lead 92b of line driver 101. Line driver 101 includes another output lead 94, which can be connected to transformer lead 93 through a decoupling capacitor C 1. Lead 103 can be connected to a five-volt supply source while negative supply pin 102 can be connected to ground.
Output pins of driver 101 are controlled by enable pin 106 and input pin 107. If enable pin 106 is held logic low, output leads 92b and 94 can be put in tri-state mode, and electrically disconn~ctecl from transformer leads 92a and 93. Alternately, leads 92b and 94 can be isolated from the transformer leads with active switches.
Input pin 107 is driven by ASK_mod on output 182. When line driver 101 is enabled by a logic one from tx_rx signal 300, differential output leads 94 and 92b drive data transformer 34 through transformer leads 93 and 92a. Data transformer 34 genc;l~les a scaled sinusoidal output voltage across leads 103 and 104 while isolating line driver 40 block from the high ~;ullellls in first frequency-selective filter 316. The voltage across first frequency-selective filter terminals 103 and 104 is effectively in parallel with external coil 29 at frequencies well above the resonant frequency of primary tuned circuit 31. The high frequency voltage across external coil 29 can be then coupled to internal coil 44 in Figure 3.

The data demodulation circuit contains a high-speed comparator 99 with output lead 100, positive supply pin 98, negative supply pin 97, non-inverting input 95, and inverting input 96. Supply pin 98 can be ~ rllçcl to a five-volt supply, while supply pin 97 can be connected to a minus five-volt supply. Inverting input 96 can be attached to 92a through a high pass filter. The high pass filter formed by C3, R3, and R4 reduces the effects of signals near the power tr~n~mi~sion frequencies such as, for example, 160 kHz upon the operation of RF detector 37. R5 and R6 also prevent the voltages on input 96 from exceeding the common-mode range of colllp~dlor 99 while line driver 101 is enabled.
Non-inverting input 95 can be connected to transformer lead 93 through the high pass filter formed by C2, R2, and R5. Again, this filter reduces the effects of signals near the power tr~n~mi~sion frequencies upon RF detector 37 and can ensure proper common-mode operation of comparator 99. Resistor R6, connected between lead 100 and input 95, provides positive hysteresis to non-inverting input 95. The value of R6 sets the minimum required amplitude of a signal between transformer leads 92a and 93 such that is considered a valid signal. As configured, lead 100 can remain high until the voltage differential between input 95 and input 96, such as 500 millivolts, is sufficient enough to cause lead 100 to pulse low.
Figure 5 is a diagram representative of H-bridge controller 32, which is designed to control the switching sequence of the switches used in a standard H-bridge inverter configuration. Control signals 128, 129, 130, and 131 control the state of 2 ~ 67342 H-bridge drivers 65a and 65b (Figure 4). Specifically, outputs A_high, control signal 128, and B high, control signal 130 control the on-time, or duty cycle, of each leg of the H-bridge. Outputs A_high, control signal 128 and B_low, control signal 131, collsLiluLe one leg ofthe drive sequence while B_high, control signal 130, and A_low, control signal 129, make up the other leg. Drive_A 127 and Drive_B 126 units are arranged such that adequate dead-time, such as 250 nanoseconds (nsecs), can be provided bt;~wc;e~l drive sequences. This dead-time allows H-bridge inverter 27 (Figure 2~ to change phase without creating any shoot-through CU~lelltS. The dead-time can be controlled by dead_clock signal 138.
The timing sequences for H-bridge controller 32 are derived from crystal oscillator 26 (Figure 2) output frequency. First, clock divider 124 divides crystal oscillator 26 output frequency, for example 8 MHz, to the output signals that include drvclk signal 132, dead-clock signal 138, and duty-clock signal 133. One cycle of drvclk signal 132 constitutes a power switching cycle in H-bridge controller 32. The pulse width of duty clock output signal 133 controls the duty cycle of H-bridge controller 32 while it is in low-duty-cycle mode.
The frequency of drvclk signal 132 can be at twice the preselected resonant frequency of primary tuned circuit 31 (Figure 2). Toggle register 123 uses drvclk signal 132 input to create an output 137 that toggles the power switching phase of control signals 128, 129, 130 and 131.

Current limit control unit 120 use drvclk signal 132 and I_lim signal on output termin~l 81 (Figure 4) to create a signal on output 134. Output 134 can be routed to output decoder unit 125 and eventually turns offactive control signals 128 or 130 until the next rising edge on drvclk signal 132.
Shutdown unit 121 has inputs ofthe sd_trigger signal on co~.~pa dlor output terminal 109 (Figure 4) and drvclk signal 132. When the sd_trigger signal on termin~l 109 is active (average current in primary tuned circuit out of range), output 135 can turn offcontrol signals 128 and 130 indefinitely.
Duty cycle control unit 122 controls the duty cycle ofthe output registers. The duty cycle of a power cycle can be between about 10 percent to nearly 100 percent. If the low_high signal on comparator output 87, i.e, the shunt detector input (Figure 4), is a logic one, output signal 136 can place the output registers in an approximately 10 percent duty cycle. Duty_clock signal 133 can control the duty cycle.
Once co-..pa.~lor output 87 indicates internal tuned circuit 41 (Figure 3) is no longer ~hlmte-l duty cycle control unit 122 can allow nearly 100 percent duty cycle power tr~mmi~ion to resume.
Decoder unit 125 takes outputs 134, 135, 136, and 137 and routes the a~rop.;ate logic levels to Drive_A unit 127 and Drive_B unit 126. Units 126 and 127 use outputs 139 and 140 to place control signals 128, 129, 130, and 131 in the al)prop.iate state.

21 67~42 Figure 6 represents one possible implementation of blanking pulse generator 35. When an upper MOSFET in the H-bridge is switched on or off, first frequency-selective filter 316 in Figure 2 oscillates, or rings out, as result of the broadband energy created by switching the MOSFET, thus constituting another source of determini~tic noise. Because edges on either A_high, i.e., control signal 128, or B_high, i.e., control signal 130, initiate the switching of an upper MOSFET in the H-bridge, they are used to initiate the blanking pulse. When edge detector 145 detects edges on either control signals 128 or 130, output 146 toggles to a logic one state for one cycle oftiming circuit 26, for example, 125 nsecs. A logic one on output 146 causes blank register 148 to place a logic one on blanking pulse 154. A logic one at 146 also triggers one-shot counter 153 to begin counting. After one-shot counter 153 reaches the desired count, such as decimal 7, blank register 148 can be reset and blanking pulse 154 can return to a logic zero until the next edge is detected at control signals 128 or 130. The width of blanking pulse 154, for example 750 nsecs, can be chosen to ensure that the ringing in first frequency-selective filter 316 (Figure 2) can not be hllel~ led as a valid signal.
Figure 7 is a schematic circuit diagram of the ASK demodulator used in the a~al~lus. A logic zero on blanking pulse 154 and a falling edge of RF_pulse input on lead 100 enables AND gate 162 to supply counter 160 with a rising clock edge.
RF_pulse input on lead 100 can be the output of con~alalor 144 from Figure 4. When blanking pulse 154 from Figure 6 is a logic one, sample_clk signal 162a can be held at a logic zero level. This prevents sample counter 160 from incrementing its count during an active blanking pulse 154. Any pulses on lead 100 can be ignored while blanking pulse 154 is a logic one. If counter outputs 165, 166, 167, and 168 are all a logic one, i.e., decimal count 16, input 176a can hold counter 160 in that state until a logic one on output 169a resets counter 160 back to zero. When tx_rx signal 300 is a logic one, i.e., transmit mode, OR gate 169 is enabled, and counter 160 can be cleared by output 169a.
Five-bit-period counter 178 increments its output with each clock pulse on clock signal 26a while tx_rx signal 300 is a logic zero. A logic one on blanking pulse 154 can hold period counter 178 in its current state. When period counter outputs 171, 172, 173, and 174, are a logic one and output 170 is a logic zero, clock signal 175 can clock demod register input 176. Input 176 is a logic one only if RF
pulse counter 160 is at decimal count 16. By way of example, if 16 or more RF pulses on lead 100 are detected by RF pulse counter 160 in the time it takes period counter 178 to count 31 clock pulses on signal 26a, data_rx signal 301 will be a logic zero.
Otherwise, it will be a logic one. On the 32nd clock pulse input 26a, period counter 178 outputs 170, 171, 172, 173, and 174 will all be a logic one and output 179 can enable OR gate 169 and reset RF pulse counter 160 to zero. On the next rising edge of signal 26a, period counter outputs 170, 171, 172, 173, and 174 can reset to a logic zero, and a new sampling period will begin. During transmit mode, while tx_rx signal 300 is a logic one, period counter 178 outputs 170, 171, 172, 173, and 174 can be reset to logic zero.
ASK modulator 39 in Figure 2 used in the apparatus is shown in the schematic representation in Figure 8. Three-input AND gate 180 has inputs clock line 26a, data_tx signal 302, and tx_rx signal 300. A logic one on tx_rx signal 300 input activates ASK modulator 39. The data to be transmitted, data_tx signal 302, is inverted, and then applied to AND gate 180. Output 182 can be either clock signal 26a or a logic zero. In this configuration, an RF carrier can be transmitted when signal 301 is a logic zero.
A portion of the internal a~aldlus electronics is shown in Figure 9.
Current circul~ting through internal tuned circuit 46 can be scaled by transformer 190 con~i~ting of output tcrrnin~l~ 191 and 192. Terminal 192 can be tied to ground potential. Terminal 191 can be connected to resistor R19 and inverting tçrrnin~l 198 of c~m~dlor 193. Colllp~dtor 193 has its positive supply termin~l 194 connected to a five-volt source and negative supply terrnin~l 195 connected to a minus five-volt potential. Output terminal 196 can be connected to non-inverting input 197 through resistor R17. Non-inverting input 197 can be also connected to resistor R11. The resistor combination of R17 and R18 provide a small, for example 1 OmV, positive hy~l~lesis to non-inverting input 197. Output tçrmin~l 196 of zero-crossing detector 47 changes state each time the sinusoidal current through internal tuned circuit 46 crosses zero.

Shunt switch 49 can be connected across internal tuned circuit 46 at leads 201 and 199. Shllnting MOSFET Q1 has its drain connected to lead 201, source connected to ground potential, and gate tied to output pin 204 of MOSFET driver 202.
MOSFET Q2 has its drain connected to lead 199, its source connected to ground potential, and its gate tied to output pin 204 of MOSFET driver 202. The MOSFET
driver has positive supply terminal 203 connected to Vcc voltage signal 205, negative supply t~rmin~l 207 connected to ground potential, input pin 206 connected to shunt signal 315, and inverted output pin 204 connected to the gate inputs of Q1 and Q2.
When a logic low is received on input 206, Q1 and Q2 are turned on. With Q1 and Q2 on, leads 199 and 200 of internal tuned circuit 46 are shorted together through ground.
This prevents current from flowing through diode bridge 51 and into output capacitors 52.
Voltage comparator 209, of output voltage monitor 53, has a positive supply tçnnin~l 211 connected to Vcc voltage signal 205, negative supply t~rmin~l 210 conn~cted to ground potential, and output pin 214 connected to resistors R15 and R16.
Inverting input 213 can be tied to a reference voltage Vref4. Non-inverting input 212 connecte~l to hysteresis resistor R16 and the output of the voltage divider formed by R12 and R14. As voltage signal 205 rises, output pin 214 can remain at a logic low state until signal 205 reaches its maximum desired level such as 17 volts. When signal 205 reaches its maximum, pin 214 can switch to a logic one level and signal shunt controller 50 to activate shunt switch 49. Output pin 214 can remain at a logic one until the energy stored in output capacitors 52 is drained by the load and voltage signal 205 falls to its mh~ value such as 16 volts. Once pin 214 falls to a logic zero, shunt controller 50 can deactivate shunt switch 49 at the next zero-current crossing edge on outputt~rmin~l 196.
Also shown in Figure 9 are the components used for data tr~n~mi~sion and reception. During data reception, high frequency current in~ ce~l in internal coil 44 creates a voltage across second frequency-selective filter leads 200 and 201, which are connected to data transformer 56 termin~l~. The inductor L1 connected between leads 200 and 201 can be a small air core inductor (~60nH) having a small inductance in comparison to the much larger internal coil 44 (~15uH). Also by making L1 a small air core inductor, resistance of the coil can be minimi7~1 and thus have little effect on power tr~n~mi~ion efficiency. Data transformer lead 221 can be connected to output line 229 of line driver 224. Line driver 224 also includes output line 223 which can be connected to data transformer lead 222 through a decoupling capacitor C5. Power supply t~rmin~l 227 can be connected to a five-volt supply source while negative supply pin 225 can be connected to ground. The output of line driver 224 is controlled by enable pin 226 and input pin 228. If enable pin 226 is held logic low, output lines 229 and 223 can be put in tri-state mode and electrically disconnected from data transformer leads 221 and 222. Alternately, lines 229 and 223 can be isolated from the transformer leads with active switches. Input pin 228 can be driven by sec_data_tx signal 305.

When line driver 214 is enabled, dirrelenlial output lines 229 and 223 drive transformer T1 through leads 221 and 222. Data transformer 56 generates a scaled sinusoidal output voltage across leads 200 and 201 while isolating line driver 60 block from the high ~ e~ in second frequency-selective filter 48. The voltage across frequency-selective filter tçrmin~l leads 200 and 201 is effectively in parallel with internal coil 44 at frequencies well above the resonant frequency of internal tuned circuit 46. The high frequency voltage across internal coil 44 can be then coupled to external coil 29.
RF detector 58 contains high speed coll,paldlor 218 with output pin 215, positive supply pin 220, negative supply pin 219, non-inverting input 217, and inverting input 216. Supply pin 220 can be att~rh~cl to a five-volt supply, while supply pin 219 can be connected to a minus five-volt supply. Inverting input 216 can be attached to lead 222 through a high pass filter. The high pass filter formed by C6, R8, and R11 reduces the effects of signals near the power tr~n~mi.csion frequencies, for example, 160 kHz, upon the operation of RF detector 58. R8 and R11 also prevent the voltages on input 216 from exceetling the common-mode range of amplifier 218 while line driver 60 is enabled.
Non-inverting input 217 can be connected to lead 221 through the high pass filter formed by C7, R9, and R10. Again, this filter reduces the influence of signals near the power tr~n~mi~ion frequencies upon RF conlp~dlor 218 and subst~nti~lly ensures proper common-mode operation of amplifier 218. Resistor R12, connected b~lw~ell output 215 and input 217, provides positive hysteresis to non-inverting input 217. The value of R12 sets the minimum required amplitude of a signal between leads 221 and 222 such that it can be considered a valid signal.
Referring to Figure 3, when the current through internal tuned circuit 46 crosses through zero, the voltage across diode bridge 51 reverses. This bias reversal induces cleterminictic noise across second frequency-selective filter 48 which can be counteracted by second ~upl)lession means, as embodied, for example, by the blanking pulse generator shown in Figure 10. Because edges on the zero_x signal on output termin~l 196 represent zero-current crossings in internal tuned circuit 46 (Figure 3), the zero_x signal on output terminal 196 can be used to initiate a blanking pulse for the purpose of data reception. When edge detector 235 in Figure 10 detects an edge on output tennin~l 196, output 236 toggles to a logic one state for one cycle of crystal oscillator signal 54a, for example 125 nsecs.
A logic one on output 236 causes blank register 237 to place a logic one on its output 238. A logic one at output 236 triggers one-shot counter 239 to begin counting. After one-shot counter 239 reaches the desired count, such as, for example, decimal 5, blank register 237 can be reset and blanking pulse 238 can return to a logic zero until the next edge is detected at output terminal 196. The width of blanking pulse 238, for example 500 nsecs, can be chosen to ensure that the ringing in second frequency-selective filter 48 (Figure 3) will not be interpreted as a valid signal.

Figure 11 is a schematic circuit diagram of the ASK demodulator used in the app~lus. A logic zero on blanking pulse input 238 and a falling edge on the RF_pulse input on output pin 215 enables AND gate 245 to RF pulse counter 249 with a rising clock edge. The RF pulse input on output pin 215 is the output of comparator 218 from Figure 9. When blanking pulse input 238 from Figure 10 is a logic one, output 245a can be held at a logic zero level. This prevents RF pulse counter 249 from incrementing its count during an active blanking pulse on 238. Any pulses on output pin 215 can be ignored while blanking pulse line 238 is a logic one. If counter outputs 255, 256, 257, and 258 are all a logic one, i.e., decimal count 16, input 250a can hold RF pulse counter 249 in that state until a logic one on output 254a resets counter 249 back to zero. When sec_tx_rx line 304 is a logic one, i.e., transmit mode, OR gate 254 can be enabled, and counter 249 can be cleared by output 254a.
Five-bit-period counter 264 increments its output with each clock pulse on 54 while sec_tx_rx signal 304 is a logic zero. A logic one on blanking line 238 can hold period counter 264 in its current state. When period counter outputs 260, 261, 262, and 263 are a logic one, and output 259 is a logic zero, clock signal 253 can clock demod register 251. Input 250 is a logic one only if RF pulse counter 249 is at decimal count 16. By way of example, if 16 or more RF pulses on output pin 215 are detected by RF pulse counter 249 in the time it takes period counter 264 to count 31 clock pulses on signal 54a, sec_data_rx output will be a logic zero. Otherwise, it will be a logic one.
On the 32nd clock pulse signal 54a, period counter outputs 259, 260, 261, 262, and 263 will all be a logic one, and output 265 can enable OR gate 254, resetting RF pulse counter 249 to zero. On the next rising edge of signal 54a, period counter outputs 259, 260, 261, 262, and 263 can reset to a logic zero, and a new sampling period will begin.
During transmit mode, while sec_tx_rx 304 is a logic one, period counter 264 outputs 259, 260, 261, 262, and 263 can be reset to logic zero.
Internal ASK modulator 59 used with internal link 22 is shown in the schematic replesenlation in Figure 12. Three-input AND gate 275 has inputs clock 54, sec_data_tx 305, and sec_tx_rx 304. A logic one on sec_tx_rx 304 input activates ASK
modulator 59. The data to be transmitted, sec_data_tx signal 305 can be inverted and then applied to AND gate input 276. AND gate output 277 can be either the clock signal on line 54a or a logic zero. In this configuration, an RF carrier can be tr~n~mitted when signal 305 is a logic zero.
While specific embotlim~nt~ of practicing the invention have been described in detail, it will be appreciated by those skilled in the art that various modifications and alternatives to those details could be developed in light of the overall t~chingc of the disclosure. Accordingly, the particular arrangements disclosed are meant to be illustrative only and not limiting to the scope of the invention which is to be given the full breadth of the following claims, and any and all embodiments thereof.

Claims (44)

1. An apparatus for transcutaneously providing a first power signal to and communication of a first and a second information signal with an implantable device, said apparatus comprising:
a. an external unit including first power means for generating said first power signal, first signalling means for generating said first information signal, first receiving means for receiving said second information signal, and first coupling means connected to said first power means and said signalling means and said first receiving means, said first coupling means for independently coupling said first power signal and said first information signal;
and b. an internal unit including second power means for receiving said first power signal, second signalling means for generating said second information signal, second receiving means for receiving said first information signal, and second coupling means connected to said second power means and said second signalling means and said second receiving means for independently coupling said first power signal and said second information signal.
2. The apparatus of claim 1 wherein said first power means generates said power signal at a power frequency, said first signalling means generates said first information signal at a frequency greater than said power frequency, said second signalling means generates said second information signal at a frequency greater than said power frequency, and said frequency of said first signalling means being different from said frequency of said second signalling means.
3. The apparatus of claim 1 wherein said first power means transmits said power signal at a first power frequency, and said first and second signalling means generates said first and second information signal at a frequency greater than said first power frequency, said frequency of said first signalling means being approximately equal to said frequency of said second signalling means.
4. The apparatus of claim 2 wherein said external unit comprises:
a. a power converter for converting a power input signal at a first preselected frequency to said first power signal at said power frequency;
b. an external coupler connected to said power converter and coupled to a common transmission channel for transmitting said power signal and for communicating said first and second information signals;

c. an external signal conditioner interposed between said external coupler and said power converter for symmetrically transceiving said first and second information signals; and d. an external data controller connected to said external signal conditioner for symmetrically controlling said first and second information signals.
5. The apparatus of claim 2 wherein said internal unit comprises:
a. an internal coupler coupled to a common transmission channel for receiving said first power signal and for communicating said first and second information signals;
b. a voltage regulator connected between said internal coupler and said implantable device, said voltage regulator for converting said first power signal into a second power signal having a preselected current and providing said second power signal to said implantable device;
c. an internal signal conditioner interposed between said internal coupler and said voltage regulator for symmetrically transceiving said first and second information signals; and d. an internal data controller connected between said internal signal conditioner and said implantable device, said internal data controller for symmetrically controlling said first and second information signals.
6. The apparatus of claim 3 wherein said external unit comprises:
a. a power converter for converting a power input signal at a first preselected frequency to said first power signal at said power frequency;
b. an external coupler connected to said power converter and coupled to a common transmission channel for transmitting said first power signal and for communicating said first and second information signals;
c. an external signal conditioner interposed between said external coupler and said power converter for symmetrically transceiving said first and second information signals; and d. an external data controller connected to said external signal conditioner for symmetrically controlling said first and second information signals.
7. The apparatus of claim 3 wherein said internal unit comprises:
a. an internal coupler coupled to a common transmission channel for receiving said first power signal and for communicating said first and second information signals;
b. a voltage regulator connected between said internal coupler and said implantable device, said voltage regulator for converting said first power signal into a second power signal having a preselected current and providing said second power signal to said implantable device;
c. an internal signal conditioner interposed between said internal coupler and said voltage regulator for symmetrically transceiving said first and second information signals; and d. an internal data controller connected between said internal signal conditioner and said implantable device, said controller for symmetrically controlling said first and second information signals.
8. The apparatus of claim 4 wherein said external data controller further comprises first suppression means for suppressing deterministic noise in at least one of said first and second information signals.
9. The apparatus of claim 5 wherein said internal data controller further comprises second suppression means for suppressing deterministic noise in at least one of said first and second information signals.
10. The apparatus of claim 5 wherein said voltage regulator further comprises shunting means for confining said power signal to said internal coupler when said preselected current is approximately zero amperes, said shunting means being synchronized to coincide with zero-crossings of said preselected current, so that switching losses and electromagnetic interference are minimized thereby.
11. The apparatus of claim 8 wherein said internal data controller further comprises second suppressing means for suppressing deterministic noise in at least one of said first and second information signals.
12. The apparatus of claim 7 wherein said external unit comprises:
a. a power converter for converting a power input signal at a first preselected frequency to said power signal at said power frequency;
b. an external coupler connected to said power converter and coupled to said common transmission channel for transmitting said power signal and for communicating said first and second information signals;
c. an external signal conditioner interposed between said external coupler and said power converter for symmetrically transceiving said first and second information signals; and d. an external data controller connected to said external signal conditioner for symmetrically controlling said first and second information signals.
13. The apparatus of claim 12 wherein said external coupler includes a primary tuned circuit and said internal coupler includes a secondary tuned circuit.
14. The apparatus of claim 12 wherein said first signal conditioner includes a first frequency-selective filter, and said second signal conditioner includes a second frequency-selective filter, each of said frequency-selective filters having an upper cutoff frequency and a lower cutoff frequency and a center frequency.
15. The apparatus of claim 12 wherein said symmetrically controlling includes amplitude-shift-keying modulation of a data signal upon a radio-frequency carrier signal of a preselected carrier frequency.
16. The apparatus of claim 12 wherein said first preselected frequency is about zero Hertz and said power input signal is a DC power input signal.
17. The apparatus of claim 12 wherein the first preselected frequency is about 60 Hertz and said power input signal is an AC power input signal.
18. The apparatus of claim 12 wherein said power frequency is about 160 kiloHertz.
19. The apparatus of claim 13 wherein said primary and secondary tuned circuits have a resonant frequency.
20. The apparatus of claim 14 wherein the respective lower and upper cutoff frequencies of said first and second frequency-selective filters are about 7.9 megaHertz and about 8.1 megaHertz, and the center frequency of said first and second frequency-selective filters is about 8 megaHertz.
21. The apparatus of claim 15 wherein said preselected carrier frequency is about 8 megaHertz.
22. The apparatus of claim 19 wherein said resonant frequency is about 160 kiloHertz.
23. The apparatus of claim 7 wherein said internal data controller further comprises second suppression means for suppressing deterministic noise in at least one of said first and second information signals.
24. The apparatus of claim 7 wherein said voltage regulator further comprises shunting means for confining said power signal to said internal coupler when said preselected current is approximately zero amperes, said shunting means being synchronized to coincide with zero-crossings of said preselected current, so that switching losses and electromagnetic interference are minimized thereby.
25. The apparatus of claim 12 wherein said external data controller further comprises first suppression means for suppressing deterministic noise in at least one of said first and second information signals.
26. The apparatus of claim 25 wherein said internal data controller further comprises second suppressing means for suppressing deterministic noise in at least one of said first and second information signals.
27. An apparatus for transcutaneously providing a power signal to and communication of a first and a second information signals with an implantable device, said apparatus comprising:
a. an external unit having i. a power converter for converting a power input signal at a first preselected frequency to a power signal at a power frequency;
ii. an external coupler connected to said power converter and coupled to a common transmission channel for transmitting said power signal and for communicating said first and second information signals, said transmitting being independent of said communicating;
iii. an external signal conditioner interposed between said external coupler and said power converter for symmetrically transceiving said first and second information signals; and iv. an external data controller connected to said external signal conditioner for symmetrically controlling said first and second information signals; and b. an internal unit having i. an internal coupler coupled to said common transmission channel for receiving said power signal and for communicating said first and second information signals, said receiving being independent of said communicating;
ii. a voltage regulator connected between said internal coupler and said implantable device, said voltage regulator for converting said power signal into said second power signal and providing said second power signal to said implantable device;
iii. an internal signal conditioner interposed between said internal coupler and said voltage regulator for symmetrically transceiving said first and second information signals; and iv. an internal data controller connected between said internal signal conditioner and said implantable device, said controller for symmetrically controlling said first and second information signals.
28. The apparatus of claim 27 wherein said external coupler includes a primary tuned circuit and said internal coupler includes a secondary tuned circuit.
29. The apparatus of claim 27 wherein said first signal conditioner includes a first frequency-selective filter, and said second signal conditioner includes a second frequency-selective filter, each of said frequency-selective filters having an upper cutoff frequency and a lower frequency cutoff and a center frequency.
30. The apparatus of claim 27 wherein said symmetrically controlling includes amplitude-shift-keying modulation of a data signal upon a radio-frequency carrier signal of a preselected carrier frequency.
31. The apparatus of claim 27 wherein said power frequency is about 160 kiloHertz.
32. The apparatus of claim 27 wherein said primary and secondary tuned circuits have a resonant frequency.
33. The apparatus of claim 29 wherein the respective lower and upper cutoff frequencies of said first and second frequency-selective filters are about 7.9 megaHertz and about 8.1 megaHertz, and the center frequency of said first and second frequency-selective filters is about 8 megaHertz.
34. The apparatus of claim 30 wherein said preselected carrier frequency is about 8 megaHertz.
35. The apparatus of claim 32 wherein said resonant frequency is about 160 kiloHertz.
36. An apparatus for transcutaneously providing a power signal to and communication of a first and second information signals between an external control unit and an implantable device, said apparatus comprising:
a. an external unit having i. a power converter for receiving a power input signal and converting said power input signal at said first preselected frequency to said power signal at a power frequency;
ii. an external coupler connected to said power converter and coupled to a common transmission channel, said external coupler for transmitting said signal and for communicating said first and second information signals, said transmitting being independent of said communicating;

iii. an external signal conditioner interposed between said external coupler and said power converter for symmetrically transceiving said first and second information signals through said common transmission channel; and iv. an external data controller connected to said external signal conditioner for symmetrically controlling said first and second information signals, said external data controller having external link communicating said first and second information signals with said external control unit across said external link, said symmetrically controlling including modulation and demodulation of said first and second information signals according to a preselected modulation technique;
b. an internal unit having i. an internal coupler coupled to said common transmission channel for receiving said power signal, said internal coupler for receiving said power signal and for communicating said first and second information signals, said receiving being independent of said communicating;

ii. a voltage regulator connected between said internal coupler and said implantable device, said voltage regulator for converting said power signal into said second power signal, said second power signal having a preselected current with a preselected voltage at a preselected frequency, said voltage regulator providing said second power signal to said implantable device;
iii. an internal signal conditioner interposed between said internal coupler and said voltage regulator for symmetrically transceiving said first and second information signals through said common transmission channel; and iv. an internal data controller connected between said internal signal conditioner and said implantable device for symmetrically controlling said first and second information signals, said symmetrically controlling including modulation and demodulation of said first and second information signals according to said preselected modulation technique, said implantable device being in communication with said external control unit thereby;
and c. said external coupler including a primary tuned circuit, said internal coupler including a secondary tuned circuit, said primary and secondary tuned circuits having a resonant frequency, said first signal conditioner including a first frequency-selective filter, said second signal conditioner including a second frequency-selective filter, each of said first and second frequency-selective filters having a cutoff frequencies and a center frequency, said preselected modulation technique including amplitude-shift-keying modulation of a data signal upon a radio-frequency carrier signal of a preselected carrier frequency, said center frequency being approximately equal to said preselected carrier frequency.
37. The apparatus of claim 36 wherein said power frequency is about 160 kiloHertz.
38. The apparatus of claim 36 wherein said cutoff frequencies of said first and second frequency-selective filters is between about 7.9 megaHertz and 8.1 megaHertz, and said center frequency is about 8 megaHertz.
39. The apparatus of claim 36 wherein said preselected carrier frequency is about 8 megaHertz.
40. The apparatus of claim 36 wherein said resonant frequency is about 160 kiloHertz.
41. The apparatus of claim 36 wherein said external data controller further comprises first suppression means for suppressing deterministic noise in at least one of said first and second information signals.
42. The apparatus of claim 36 wherein said internal data controller further comprises second suppression means for suppressing deterministic noise in at least one of said first and second information signals.
43. The apparatus of claim 36 wherein said voltage regulator further comprises shunting means for confining said power signal to said internal coupler when said preselected current is approximately zero amperes, said shunting means being synchronized to coincide with zero-crossings of said preselected current, so that switching losses and electromagnetic interference are minimized thereby.
44. The apparatus of claim 41 wherein said internal data controller further comprises second suppressing means for suppressing deterministic noise in at least one of said first and second information signals.
CA002167342A 1995-01-19 1996-01-16 Transcutaneous energy and information transmission apparatus Expired - Fee Related CA2167342C (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US08/375,357 US5630836A (en) 1995-01-19 1995-01-19 Transcutaneous energy and information transmission apparatus
US375,357 1995-01-19

Publications (2)

Publication Number Publication Date
CA2167342A1 CA2167342A1 (en) 1996-07-20
CA2167342C true CA2167342C (en) 2001-03-06

Family

ID=23480575

Family Applications (1)

Application Number Title Priority Date Filing Date
CA002167342A Expired - Fee Related CA2167342C (en) 1995-01-19 1996-01-16 Transcutaneous energy and information transmission apparatus

Country Status (6)

Country Link
US (1) US5630836A (en)
CA (1) CA2167342C (en)
DE (1) DE19601866B4 (en)
FR (1) FR2733897B1 (en)
GB (1) GB2297037B (en)
NL (1) NL1002130C2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20200061267A1 (en) * 2017-05-11 2020-02-27 Berlin Heart Gmbh Heart pump device and operating method for a heart pump device

Families Citing this family (175)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2156236C (en) * 1995-08-16 1999-07-20 Stephen J. Borza Biometrically secured control system for preventing the unauthorized use of a vehicle
US5935078A (en) * 1996-01-30 1999-08-10 Telecom Medical, Inc. Transdermal communication system and method
US5728154A (en) * 1996-02-29 1998-03-17 Minnesota Mining And Manfacturing Company Communication method for implantable medical device
US5861018A (en) * 1996-05-28 1999-01-19 Telecom Medical Inc. Ultrasound transdermal communication system and method
US5755748A (en) * 1996-07-24 1998-05-26 Dew Engineering & Development Limited Transcutaneous energy transfer device
US5733313A (en) 1996-08-01 1998-03-31 Exonix Corporation RF coupled, implantable medical device with rechargeable back-up power source
US5713939A (en) * 1996-09-16 1998-02-03 Sulzer Intermedics Inc. Data communication system for control of transcutaneous energy transmission to an implantable medical device
DE19646747C1 (en) 1996-11-01 1998-08-13 Nanotron Ges Fuer Mikrotechnik Method for the wireless transmission of a message imprinted on a signal
DE19646748C2 (en) 1996-11-01 2003-03-20 Nanotron Ges Fuer Mikrotechnik security system
DE19646746C2 (en) * 1996-11-01 2003-09-18 Nanotron Technologies Gmbh Transmission method for wireless communication with an implanted medical device
DE19646745C2 (en) 1996-11-01 1999-07-08 Nanotron Ges Fuer Mikrotechnik Transfer procedure and arrangement for carrying out the procedure
US5814089A (en) * 1996-12-18 1998-09-29 Medtronic, Inc. Leadless multisite implantable stimulus and diagnostic system
US5941906A (en) * 1997-10-15 1999-08-24 Medtronic, Inc. Implantable, modular tissue stimulator
US6046676A (en) * 1997-11-14 2000-04-04 International Business Machines Corporation Self powered electronic memory identification tag with dual communication ports
US5995874A (en) * 1998-02-09 1999-11-30 Dew Engineering And Development Limited Transcutaneous energy transfer device
ATE207224T1 (en) * 1998-03-03 2001-11-15 Infineon Technologies Ag DATA CARRIER FOR CONTACTLESS RECEIVING AMPLITUDE MODULATED SIGNALS
US6058330A (en) * 1998-03-06 2000-05-02 Dew Engineering And Development Limited Transcutaneous energy transfer device
US6477424B1 (en) * 1998-06-19 2002-11-05 Medtronic, Inc. Medical management system integrated programming apparatus for communication with an implantable medical device
US8489200B2 (en) 1998-07-06 2013-07-16 Abiomed, Inc. Transcutaneous energy transfer module with integrated conversion circuitry
JP4689825B2 (en) 1998-08-26 2011-05-25 センサーズ・フォー・メデセン・アンド・サイエンス・インコーポレーテッド Optical detector
US6304766B1 (en) 1998-08-26 2001-10-16 Sensors For Medicine And Science Optical-based sensing devices, especially for in-situ sensing in humans
US6240318B1 (en) 1998-10-27 2001-05-29 Richard P. Phillips Transcutaneous energy transmission system with full wave Class E rectifier
US6321118B1 (en) 1999-01-28 2001-11-20 Advanced Bionics Corporation Method and apparatus for power link detection with implantable medical devices
GB9910323D0 (en) * 1999-05-06 1999-06-30 Univ Ulster Cardiac defibrillation
US6285909B1 (en) 1999-05-27 2001-09-04 Cardiac Pacemakers, Inc. Preserving patient specific data in implantable pulse generator systems
US6442434B1 (en) * 1999-10-19 2002-08-27 Abiomed, Inc. Methods and apparatus for providing a sufficiently stable power to a load in an energy transfer system
US6400990B1 (en) * 2000-02-18 2002-06-04 Pacesetter, Inc. Patient activated telemetry control unit using bidirectional asymmetric dual-mode telemetry link to communicate with an implanted device
US6631296B1 (en) * 2000-03-17 2003-10-07 Advanced Bionics Corporation Voltage converter for implantable microstimulator using RF-powering coil
US8155752B2 (en) 2000-03-17 2012-04-10 Boston Scientific Neuromodulation Corporation Implantable medical device with single coil for charging and communicating
US6458164B1 (en) 2000-04-25 2002-10-01 The Penn State Research Foundation Artificial heart with energy recovery
US6395027B1 (en) 2000-04-25 2002-05-28 The Penn State Research Foundation Artificial heart with arrhythmia signalling
US6478820B1 (en) 2000-04-25 2002-11-12 The Penn State Research Foundation Artificial heart with synchronous rectification
US6451055B1 (en) * 2000-04-25 2002-09-17 The Penn State Research Foundation Artificial heart data communication system
US6579315B1 (en) 2000-04-25 2003-06-17 The Penn State Research Foundation Artificial heart power supply system
US7553280B2 (en) 2000-06-29 2009-06-30 Sensors For Medicine And Science, Inc. Implanted sensor processing system and method
US6400974B1 (en) 2000-06-29 2002-06-04 Sensors For Medicine And Science, Inc. Implanted sensor processing system and method for processing implanted sensor output
US6622044B2 (en) * 2001-01-04 2003-09-16 Cardiac Pacemakers Inc. System and method for removing narrowband noise
US6556871B2 (en) 2001-01-04 2003-04-29 Cardiac Pacemakers, Inc. System and method for receiving telemetry data from an implantable medical device
US7369897B2 (en) * 2001-04-19 2008-05-06 Neuro And Cardiac Technologies, Llc Method and system of remotely controlling electrical pulses provided to nerve tissue(s) by an implanted stimulator system for neuromodulation therapies
TWI252311B (en) * 2001-05-04 2006-04-01 Sensors For Med & Science Inc Electro-optical sensing device with reference channel
US7015769B2 (en) 2002-06-20 2006-03-21 Alfred E. Mann Foundation For Scientific Research System and method for automatic tuning of a magnetic field generator
US6772011B2 (en) * 2002-08-20 2004-08-03 Thoratec Corporation Transmission of information from an implanted medical device
US20040055610A1 (en) * 2002-09-25 2004-03-25 Peter Forsell Detection of implanted wireless energy receiving device
US20040064030A1 (en) * 2002-10-01 2004-04-01 Peter Forsell Detection of implanted injection port
US7065409B2 (en) * 2002-12-13 2006-06-20 Cardiac Pacemakers, Inc. Device communications of an implantable medical device and an external system
US7009511B2 (en) * 2002-12-17 2006-03-07 Cardiac Pacemakers, Inc. Repeater device for communications with an implantable medical device
US7395117B2 (en) * 2002-12-23 2008-07-01 Cardiac Pacemakers, Inc. Implantable medical device having long-term wireless capabilities
US7127300B2 (en) 2002-12-23 2006-10-24 Cardiac Pacemakers, Inc. Method and apparatus for enabling data communication between an implantable medical device and a patient management system
US6978182B2 (en) 2002-12-27 2005-12-20 Cardiac Pacemakers, Inc. Advanced patient management system including interrogator/transceiver unit
US20040128161A1 (en) * 2002-12-27 2004-07-01 Mazar Scott T. System and method for ad hoc communications with an implantable medical device
US20040199082A1 (en) * 2003-04-03 2004-10-07 Ostroff Alan H. Selctable notch filter circuits
US7570994B2 (en) * 2003-04-25 2009-08-04 Medtronic Physio-Control Corp. Apparatus and method for maintaining a defibrillator battery charge and optionally communicating
NZ528542A (en) * 2003-09-29 2006-09-29 Auckland Uniservices Ltd Inductively-powered power transfer system with one or more, independently controlled loads
US8140168B2 (en) * 2003-10-02 2012-03-20 Medtronic, Inc. External power source for an implantable medical device having an adjustable carrier frequency and system and method related therefore
US9259584B2 (en) * 2003-10-02 2016-02-16 Medtronic, Inc. External unit for implantable medical device coupled by cord
US8346361B2 (en) * 2003-10-02 2013-01-01 Medtronic, Inc. User interface for external charger for implantable medical device
US7342508B2 (en) * 2003-12-26 2008-03-11 Medtronic Minimed, Inc. Telemetry system and method with variable parameters
EP1557949A1 (en) * 2004-01-23 2005-07-27 Matsushita Electric Industrial Co., Ltd. Low-noise differential bias circuit and differential signal processing apparatus
US7471986B2 (en) * 2004-02-20 2008-12-30 Cardiac Pacemakers, Inc. System and method for transmitting energy to and establishing a communications network with one or more implanted devices
US7794499B2 (en) * 2004-06-08 2010-09-14 Theken Disc, L.L.C. Prosthetic intervertebral spinal disc with integral microprocessor
US20060020302A1 (en) * 2004-07-20 2006-01-26 Medtronic, Inc. Medical device telemetry arbitration system based upon user selection
WO2006012371A1 (en) * 2004-07-20 2006-02-02 Medtronic, Inc. Concurrent delivery of treatment therapy with telemetry in an implantable medical device
US20060020303A1 (en) * 2004-07-20 2006-01-26 Medtronic, Inc. Medical device telemetry arbitration system using signal strength
US8150509B2 (en) * 2004-10-21 2012-04-03 Cardiac Pacemakers, Inc. Systems and methods for drug therapy enhancement using expected pharmacodynamic models
US20060089856A1 (en) * 2004-10-21 2006-04-27 Cardiac Pacemakers Integrated pharmaceutical dispensing and patient management monitoring
US7585280B2 (en) 2004-12-29 2009-09-08 Codman & Shurtleff, Inc. System and method for measuring the pressure of a fluid system within a patient
US7775966B2 (en) 2005-02-24 2010-08-17 Ethicon Endo-Surgery, Inc. Non-invasive pressure measurement in a fluid adjustable restrictive device
US7545272B2 (en) 2005-02-08 2009-06-09 Therasense, Inc. RF tag on test strips, test strip vials and boxes
US7775215B2 (en) 2005-02-24 2010-08-17 Ethicon Endo-Surgery, Inc. System and method for determining implanted device positioning and obtaining pressure data
US7927270B2 (en) 2005-02-24 2011-04-19 Ethicon Endo-Surgery, Inc. External mechanical pressure sensor for gastric band pressure measurements
US7699770B2 (en) 2005-02-24 2010-04-20 Ethicon Endo-Surgery, Inc. Device for non-invasive measurement of fluid pressure in an adjustable restriction device
US8016744B2 (en) 2005-02-24 2011-09-13 Ethicon Endo-Surgery, Inc. External pressure-based gastric band adjustment system and method
US8066629B2 (en) 2005-02-24 2011-11-29 Ethicon Endo-Surgery, Inc. Apparatus for adjustment and sensing of gastric band pressure
US7658196B2 (en) 2005-02-24 2010-02-09 Ethicon Endo-Surgery, Inc. System and method for determining implanted device orientation
US20060211945A1 (en) * 2005-03-15 2006-09-21 Codman & Shurtleff, Inc. Pressure sensing methods
US10362947B2 (en) * 2005-03-15 2019-07-30 Integra LifeSciences Switzerland Sarl Pressure sensing devices
US7510533B2 (en) * 2005-03-15 2009-03-31 Codman & Shurtleff, Inc. Pressure sensing valve
US7308292B2 (en) 2005-04-15 2007-12-11 Sensors For Medicine And Science, Inc. Optical-based sensing devices
US7502594B2 (en) * 2005-04-27 2009-03-10 Codman Neuro Sciences Sárl Power regulation feedback to optimize robustness of wireless transmissions
US7752059B2 (en) * 2005-07-05 2010-07-06 Cardiac Pacemakers, Inc. Optimization of timing for data collection and analysis in advanced patient management system
US8152710B2 (en) 2006-04-06 2012-04-10 Ethicon Endo-Surgery, Inc. Physiological parameter analysis for an implantable restriction device and a data logger
US8870742B2 (en) 2006-04-06 2014-10-28 Ethicon Endo-Surgery, Inc. GUI for an implantable restriction device and a data logger
US8660660B2 (en) * 2006-11-14 2014-02-25 Second Sight Medical Products, Inc. Power scheme for implant stimulators on the human or animal body
US9561053B2 (en) 2007-04-25 2017-02-07 Medtronic, Inc. Implant tool to facilitate medical device implantation
US9399130B2 (en) 2007-04-25 2016-07-26 Medtronic, Inc. Cannula configured to deliver test stimulation
US20080294219A1 (en) * 2007-05-22 2008-11-27 Osypka Thomas P Power Management System for an Implantable Medical Device
DE202007018529U1 (en) * 2007-07-07 2008-12-04 Chamalow S.A. Implantable Radio Frequency Defibrillator R.F.
US8480612B2 (en) 2007-10-31 2013-07-09 DePuy Synthes Products, LLC Wireless shunts with storage
US7842004B2 (en) * 2007-10-31 2010-11-30 Codman & Shurtleff, Inc. Wireless pressure setting indicator
US8454524B2 (en) 2007-10-31 2013-06-04 DePuy Synthes Products, LLC Wireless flow sensor
US9204812B2 (en) * 2007-10-31 2015-12-08 DePuy Synthes Products, LLC Wireless pressure sensing shunts
US8187163B2 (en) 2007-12-10 2012-05-29 Ethicon Endo-Surgery, Inc. Methods for implanting a gastric restriction device
US8100870B2 (en) 2007-12-14 2012-01-24 Ethicon Endo-Surgery, Inc. Adjustable height gastric restriction devices and methods
US8142452B2 (en) 2007-12-27 2012-03-27 Ethicon Endo-Surgery, Inc. Controlling pressure in adjustable restriction devices
US8377079B2 (en) 2007-12-27 2013-02-19 Ethicon Endo-Surgery, Inc. Constant force mechanisms for regulating restriction devices
US8192350B2 (en) 2008-01-28 2012-06-05 Ethicon Endo-Surgery, Inc. Methods and devices for measuring impedance in a gastric restriction system
US8591395B2 (en) 2008-01-28 2013-11-26 Ethicon Endo-Surgery, Inc. Gastric restriction device data handling devices and methods
US8337389B2 (en) 2008-01-28 2012-12-25 Ethicon Endo-Surgery, Inc. Methods and devices for diagnosing performance of a gastric restriction system
US7844342B2 (en) 2008-02-07 2010-11-30 Ethicon Endo-Surgery, Inc. Powering implantable restriction systems using light
US8221439B2 (en) 2008-02-07 2012-07-17 Ethicon Endo-Surgery, Inc. Powering implantable restriction systems using kinetic motion
US8114345B2 (en) 2008-02-08 2012-02-14 Ethicon Endo-Surgery, Inc. System and method of sterilizing an implantable medical device
US8057492B2 (en) 2008-02-12 2011-11-15 Ethicon Endo-Surgery, Inc. Automatically adjusting band system with MEMS pump
US8591532B2 (en) 2008-02-12 2013-11-26 Ethicon Endo-Sugery, Inc. Automatically adjusting band system
US8034065B2 (en) 2008-02-26 2011-10-11 Ethicon Endo-Surgery, Inc. Controlling pressure in adjustable restriction devices
US8233995B2 (en) 2008-03-06 2012-07-31 Ethicon Endo-Surgery, Inc. System and method of aligning an implantable antenna
US8187162B2 (en) 2008-03-06 2012-05-29 Ethicon Endo-Surgery, Inc. Reorientation port
EP4258513A3 (en) * 2008-10-10 2023-10-25 Implantica Patent Ltd. Charger for implant
US8571678B2 (en) * 2009-02-03 2013-10-29 Medtronic, Inc. Adaptation of modulation parameters for communications between an implantable medical device and an external instrument
CN102596301B (en) 2009-10-28 2015-09-09 皇家飞利浦电子股份有限公司 There is the pressure support system of induction pipe
WO2011097289A1 (en) 2010-02-03 2011-08-11 Medtronic, Inc. Implantable medical devices and systems having dual frequency inductive telemetry and recharge
US9042995B2 (en) * 2010-02-03 2015-05-26 Medtronic, Inc. Implantable medical devices and systems having power management for recharge sessions
US20110218622A1 (en) * 2010-03-05 2011-09-08 Micardia Corporation Induction activation of adjustable annuloplasty rings and other implantable devices
US8594806B2 (en) 2010-04-30 2013-11-26 Cyberonics, Inc. Recharging and communication lead for an implantable device
JP5577506B2 (en) 2010-09-14 2014-08-27 ソーラテック コーポレイション Centrifugal pump device
US9166655B2 (en) * 2010-10-28 2015-10-20 Cochlear Limited Magnetic induction communication system for an implantable medical device
DK2654878T3 (en) 2010-12-20 2019-07-22 Abiomed Inc TRANSCUTANT ENERGY TRANSFER SYSTEM WITH A MULTIPLE OF SECONDARY COILS
WO2012087816A2 (en) 2010-12-20 2012-06-28 Abiomed, Inc. Method and apparatus for accurately tracking available charge in a transcutaneous energy transfer system
WO2012087819A2 (en) 2010-12-20 2012-06-28 Abiomed, Inc. Transcutaneous energy transfer system with vibration inducing warning circuitry
EP2693609B1 (en) 2011-03-28 2017-05-03 Thoratec Corporation Rotation and drive device and centrifugal pump device using same
EP4119184A1 (en) 2011-04-14 2023-01-18 Abiomed, Inc. Transcutaneous energy transfer coil with integrated radio frequency antenna
US9136728B2 (en) 2011-04-28 2015-09-15 Medtronic, Inc. Implantable medical devices and systems having inductive telemetry and recharge on a single coil
US8764621B2 (en) 2011-07-11 2014-07-01 Vascor, Inc. Transcutaneous power transmission and communication for implanted heart assist and other devices
US9950179B2 (en) * 2011-10-28 2018-04-24 Medtronic, Inc. Medical devices for trial stimulation
US9002468B2 (en) 2011-12-16 2015-04-07 Abiomed, Inc. Automatic power regulation for transcutaneous energy transfer charging system
US8974366B1 (en) 2012-01-10 2015-03-10 Piezo Energy Technologies, LLC High power ultrasound wireless transcutaneous energy transfer (US-TET) source
US8827889B2 (en) 2012-05-21 2014-09-09 University Of Washington Through Its Center For Commercialization Method and system for powering implantable devices
US11621583B2 (en) 2012-05-21 2023-04-04 University Of Washington Distributed control adaptive wireless power transfer system
US9287040B2 (en) 2012-07-27 2016-03-15 Thoratec Corporation Self-tuning resonant power transfer systems
WO2014018972A1 (en) 2012-07-27 2014-01-30 Thoratec Corporation Computer modeling for resonant power transfer systems
WO2014018971A1 (en) 2012-07-27 2014-01-30 Thoratec Corporation Resonant power transfer systems with protective algorithm
US10525181B2 (en) 2012-07-27 2020-01-07 Tc1 Llc Resonant power transfer system and method of estimating system state
EP2878062A4 (en) 2012-07-27 2016-04-20 Thoratec Corp Resonant power transmission coils and systems
US10383990B2 (en) 2012-07-27 2019-08-20 Tc1 Llc Variable capacitor for resonant power transfer systems
US9805863B2 (en) 2012-07-27 2017-10-31 Thoratec Corporation Magnetic power transmission utilizing phased transmitter coil arrays and phased receiver coil arrays
US9592397B2 (en) 2012-07-27 2017-03-14 Thoratec Corporation Thermal management for implantable wireless power transfer systems
US9343923B2 (en) 2012-08-23 2016-05-17 Cyberonics, Inc. Implantable medical device with backscatter signal based communication
US9935498B2 (en) 2012-09-25 2018-04-03 Cyberonics, Inc. Communication efficiency with an implantable medical device using a circulator and a backscatter signal
US8968174B2 (en) 2013-01-16 2015-03-03 Thoratec Corporation Motor fault monitor for implantable blood pump
US9371826B2 (en) 2013-01-24 2016-06-21 Thoratec Corporation Impeller position compensation using field oriented control
US9556873B2 (en) 2013-02-27 2017-01-31 Tc1 Llc Startup sequence for centrifugal pump with levitated impeller
WO2014145895A1 (en) 2013-03-15 2014-09-18 Thoratec Corporation Malleable tets coil with improved anatomical fit
US9680310B2 (en) 2013-03-15 2017-06-13 Thoratec Corporation Integrated implantable TETS housing including fins and coil loops
US9225194B2 (en) 2013-04-24 2015-12-29 Cyberonics, Inc. Implantable medical device charging apparatus having both parallel and series resonators
US10615642B2 (en) 2013-11-11 2020-04-07 Tc1 Llc Resonant power transfer systems with communications
US10695476B2 (en) 2013-11-11 2020-06-30 Tc1 Llc Resonant power transfer systems with communications
EP3069358B1 (en) 2013-11-11 2019-06-12 Tc1 Llc Hinged resonant power transfer coil
WO2015134871A1 (en) 2014-03-06 2015-09-11 Thoratec Corporation Electrical connectors for implantable devices
KR20140094674A (en) * 2014-06-30 2014-07-30 최창준 DC Power Line Communication Control System
DE102015112097A1 (en) 2014-07-25 2016-01-28 Minnetronix, Inc. power scale
DE102015112098A1 (en) 2014-07-25 2016-01-28 Minnetronix, Inc. Coil parameters and control
US9623161B2 (en) 2014-08-26 2017-04-18 Tc1 Llc Blood pump and method of suction detection
EP3198677B1 (en) 2014-09-22 2021-03-03 Tc1 Llc Antenna designs for communication between a wirelessly powered implant to an external device outside the body
US9583874B2 (en) 2014-10-06 2017-02-28 Thoratec Corporation Multiaxial connector for implantable devices
US10342908B2 (en) 2015-01-14 2019-07-09 Minnetronix, Inc. Distributed transformer
US10406267B2 (en) 2015-01-16 2019-09-10 Minnetronix, Inc. Data communication in a transcutaneous energy transfer system
WO2018031714A1 (en) 2016-08-11 2018-02-15 Foundry Innovation & Research 1, Ltd. Systems and methods for patient fluid management
EP3256185B1 (en) 2015-02-12 2019-10-30 Tc1 Llc System and method for controlling the position of a levitated rotor
CA2976465A1 (en) 2015-02-12 2016-08-18 Foundry Innovation & Research 1, Ltd. Implantable devices and related methods for heart failure monitoring
DE102016106657A1 (en) 2015-04-14 2016-10-20 Minnetronix, Inc. REPEATER RESONANCE CIRCUIT
WO2017024051A1 (en) 2015-08-03 2017-02-09 Foundry Innovation & Research 1, Ltd. Devices and methods for measurement of vena cava dimensions, pressure, and oxygen saturation
WO2017040317A1 (en) 2015-08-28 2017-03-09 Thoratec Corporation Blood pump controllers and methods of use for improved energy efficiency
US10148126B2 (en) 2015-08-31 2018-12-04 Tc1 Llc Wireless energy transfer system and wearables
EP3902100A1 (en) 2015-10-07 2021-10-27 Tc1 Llc Resonant power transfer systems having efficiency optimization based on receiver impedance
US10117983B2 (en) 2015-11-16 2018-11-06 Tc1 Llc Pressure/flow characteristic modification of a centrifugal pump in a ventricular assist device
EP3407966B1 (en) * 2016-01-27 2021-03-24 The Regents of the University of California Wireless implant for motor function recovery after spinal cord injury
DE102016212626A1 (en) * 2016-07-12 2018-01-18 Dualis Medtech Gmbh Energy and data transmission device and method for operating such
US11206992B2 (en) 2016-08-11 2021-12-28 Foundry Innovation & Research 1, Ltd. Wireless resonant circuit and variable inductance vascular monitoring implants and anchoring structures therefore
WO2018102435A1 (en) 2016-11-29 2018-06-07 Foundry Innovation & Research 1, Ltd. Wireless resonant circuit and variable inductance vascular implants for monitoring patient vasculature and fluid status and systems and methods employing same
US11701018B2 (en) 2016-08-11 2023-07-18 Foundry Innovation & Research 1, Ltd. Wireless resonant circuit and variable inductance vascular monitoring implants and anchoring structures therefore
EP4084271A1 (en) 2016-09-21 2022-11-02 Tc1 Llc Systems and methods for locating implanted wireless power transmission devices
US11197990B2 (en) 2017-01-18 2021-12-14 Tc1 Llc Systems and methods for transcutaneous power transfer using microneedles
WO2018220146A1 (en) 2017-05-31 2018-12-06 Foundry Innovation & Research 1, Ltd. Implantable sensors for vascular monitoring
EP3629937A1 (en) 2017-05-31 2020-04-08 Foundry Innovation & Research 1, Ltd. Implantable ultrasonic vascular sensor
EP3735733B1 (en) 2018-01-04 2024-01-17 Tc1 Llc Systems and methods for elastic wireless power transmission devices
US11895745B2 (en) * 2019-12-02 2024-02-06 Viza Electronics Pte. Ltd. Remote power delivery for distributed lighting with integrated data transmission

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3195540A (en) * 1963-03-29 1965-07-20 Louis C Waller Power supply for body implanted instruments
US3727616A (en) * 1971-06-15 1973-04-17 Gen Dynamics Corp Electronic system for the stimulation of biological systems
JPS5060085A (en) * 1973-09-27 1975-05-23
US3942535A (en) * 1973-09-27 1976-03-09 G. D. Searle & Co. Rechargeable tissue stimulating system
DE2861213D1 (en) * 1977-10-17 1981-12-24 Medtronic Inc Heart pacemaker and monitor
US4143661A (en) * 1977-12-12 1979-03-13 Andros Incorporated Power supply for body implant and method for operation
US4275739A (en) * 1979-01-26 1981-06-30 The Johns Hopkins University Charge control switch responsive to cell casing deflection
US4457673A (en) * 1980-11-28 1984-07-03 Novacor Medical Corporation Pump and actuator mechanism
US4384829A (en) * 1980-11-28 1983-05-24 Andros Incorporated Pump and actuator mechanism
US4561443A (en) * 1983-03-08 1985-12-31 The Johns Hopkins University Coherent inductive communications link for biomedical applications
US4548208A (en) * 1984-06-27 1985-10-22 Medtronic, Inc. Automatic adjusting induction coil treatment device
US4679560A (en) * 1985-04-02 1987-07-14 Board Of Trustees Of The Leland Stanford Junior University Wide band inductive transdermal power and data link
US4681111A (en) * 1985-04-05 1987-07-21 Siemens-Pacesetter, Inc. Analog and digital telemetry system for an implantable device
US4665896A (en) * 1985-07-22 1987-05-19 Novacor Medical Corporation Power supply for body implant and method of use
US4944299A (en) * 1989-08-08 1990-07-31 Siemens-Pacesetter, Inc. High speed digital telemetry system for implantable device
CA2007439C (en) * 1990-01-09 1996-08-13 John Miller Transcutaneous energy transfer device
FR2657479B1 (en) * 1990-01-19 1994-07-08 Bertin & Cie DEVICE FOR BIDIRECTIONAL TRANSMISSION OF INFORMATION TO A RECEIVER POWERED BY THE TRANSMITTER.
US5314457A (en) * 1993-04-08 1994-05-24 Jeutter Dean C Regenerative electrical

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20200061267A1 (en) * 2017-05-11 2020-02-27 Berlin Heart Gmbh Heart pump device and operating method for a heart pump device

Also Published As

Publication number Publication date
FR2733897B1 (en) 2000-02-11
CA2167342A1 (en) 1996-07-20
NL1002130A1 (en) 1996-07-19
US5630836A (en) 1997-05-20
DE19601866A1 (en) 1996-08-14
NL1002130C2 (en) 1999-02-15
GB9600945D0 (en) 1996-03-20
FR2733897A1 (en) 1996-11-15
GB2297037B (en) 1998-12-23
GB2297037A (en) 1996-07-24
DE19601866B4 (en) 2004-07-01

Similar Documents

Publication Publication Date Title
CA2167342C (en) Transcutaneous energy and information transmission apparatus
CA2348072C (en) Transcutaneous energy transmission system with full wave class e rectifier
CA2676911C (en) Inductive power and data transmission system based on class d and amplitude shift keying
CA1163343A (en) Method of, and apparatus for, inserting carrier frequency signal information onto distribution transformer primary winding
US7912210B2 (en) Inductive coupling for communications equipment interface circuitry
JPH0566827B2 (en)
CA2793377C (en) Monitoring device and a method for wireless data and power transmission in a monitoring device
US6658051B1 (en) Electrical isolation techniques for DSL modem
US6377163B1 (en) Power line communication circuit
CN105098844B (en) A kind of non-contact electric energy transmission device and method of electric energy transfer
CN109995392B (en) Magnetic coupling communication transceiver, magnetic coupling communication main chip and magnetic coupling communication system
US5563776A (en) Switching-mode, alternating current, wave replication system
WO1996024191A1 (en) Ac/dc converter
Zierhofer et al. The class-E concept for efficient wide-band coupling-insensitive transdermal power and data transfer
Sacristán-Riquelme et al. Simple and efficient inductive telemetry system with data and power transmission
US4648019A (en) High efficiency ringing generator
Najjarzadegan et al. A double-carrier wireless power and data telemetry for implantable biomedical systems
El Boutahiri et al. Design of 2MHz OOK transmitter/receiver for inductive power and data transmission for biomedical implant.
CN108258888B (en) Switching Power Supply phase shift parallel drive control circuit
Shabou et al. The RF circuit design for magnetic power transmission dedicated to cochlear prosthesis
Huettner et al. Lightweight power line communications for Smart Grid applications with standard RFID tags
GB2350744A (en) Power saving in a facsimile apparatus
Atluri A Wideband Power efficient inductive link for implantable biomedical devices using multiple carrier frequencies
Ki Analysis and IC Techniques of Wireless Power Transfer Circuits
Nogueira Electronics Engineering

Legal Events

Date Code Title Description
EEER Examination request
MKLA Lapsed