CA2182799A1 - Flexible wearable computer - Google Patents

Flexible wearable computer

Info

Publication number
CA2182799A1
CA2182799A1 CA002182799A CA2182799A CA2182799A1 CA 2182799 A1 CA2182799 A1 CA 2182799A1 CA 002182799 A CA002182799 A CA 002182799A CA 2182799 A CA2182799 A CA 2182799A CA 2182799 A1 CA2182799 A1 CA 2182799A1
Authority
CA
Canada
Prior art keywords
computer
flexible
module
display device
elements
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
CA002182799A
Other languages
French (fr)
Inventor
Craig M. Janik
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
VIA Inc
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Publication of CA2182799A1 publication Critical patent/CA2182799A1/en
Abandoned legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F1/00Details not covered by groups G06F3/00 - G06F13/00 and G06F21/00
    • G06F1/16Constructional details or arrangements
    • G06F1/1613Constructional details or arrangements for portable computers
    • G06F1/163Wearable computers, e.g. on a belt
    • AHUMAN NECESSITIES
    • A41WEARING APPAREL
    • A41DOUTERWEAR; PROTECTIVE GARMENTS; ACCESSORIES
    • A41D1/00Garments
    • A41D1/002Garments adapted to accommodate electronic equipment
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/14Structural association of two or more printed circuits
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/18Printed circuits structurally associated with non-printed electric components
    • H05K1/189Printed circuits structurally associated with non-printed electric components characterised by the use of a flexible or folded printed circuit
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/36Assembling printed circuits with other printed circuits
    • H05K3/361Assembling flexible printed circuits with other printed circuits

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Theoretical Computer Science (AREA)
  • Human Computer Interaction (AREA)
  • Physics & Mathematics (AREA)
  • General Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • User Interface Of Digital Computer (AREA)
  • Calculators And Similar Devices (AREA)
  • Measuring Pulse, Heart Rate, Blood Pressure Or Blood Flow (AREA)
  • Power Sources (AREA)

Abstract

A flexible wearable computer in the form of a belt comprising, in combination, elements for computing comprising a microprocessor module (200), a RAM-I/O module (300), a plurality of mass memory modules (400), a power supply module (500), and a plurality of bus termination modules (100) operationally associated with a plurality of flexible signal relaying means. The computing elements are mechanically associated with a flexible non-stretchable member (004), and a protective covering means (006). The flexible non-stretchable wearable member (004) is secured around various parts of the body. An input and output device (060) is connected to the flexible wearable computer (004) by the I/O bus (061) attached to the output and input ports (326) and (327), respectively.

Description

~ WO95/21408 , ~1 827g9 ~ s ~ ~
, .
10 FLF~TRT F WEARABLE COMPUT

FTF.T.T- OF TT-TF. INVF.l~ION
This invention relates generally to the field of portable ~Ull~UL~
and more specifically to a flexible, wearable computer that can be wom on the body and repeatedly bent in an mfinite number of planes without 20 failure of operation.
DE~(-RTT'TION OF I~F.T ~TF.n ART
Definitions A computer system is defined as ~u~ lg three basic 25 ~V~ vll~ S. an input device, an output device and a computer. A
computer is defined as comprising memory, a processor, and associated support circuitry and ~UUI~JVllt~ . Memory comprises main memory which is volatile, and mass storage memory which is usually nonvolatile.
A portable computer system is one that the user can easily carry around.
30 Tl~uu~l.uul this text the author will refer to a computer to mean only and specifically the main and secondary storage memory, the processor, and a power supply. The author will also use volume to characterize both the size and the mass of ~:Ulll~U~ . This is because the overall density of WO 9SI21408 r ~
21827;9!7`,';~'`~1. --6ilicon-based ~UI111UU.~1D is aDylliluluLic to a constant. Therefore, volume will necessarily indicate a maximum weight.
Tntegrdtinn Small and therefore portable UUI~ ID have resulted from the r .`~ ll of innovations and inventions across a wide variety of domains and fields including the arts of silicon manipulation, and li.dl and electrical design, and Ulll,Uullt:llL ;"~ ,..li"". T~
is the process of decreasing the size of and the space between electrical 10 elements, and it has been the pathway to power reduction and speed. But size reduction accrued benefits independent of processing power.
Computers that once required buildings to house and small power plants to run can now be ~ull~ru~Lably lifted with one hand. Smce il,L~EjlaLiun and therefore " ,i";- l ", ;,,. ti~"~ has brought nearly all of the advances in service 15 levels to date, it is the major force in the creation of the prior art in portable ~:u~ uuLil~g and the direction of future adva~ L for computer CUllD~lU~iUII in general.
There has been tremendous innovation and invention using illL~;laLiull as a means of making ~UUII~UL~l~D portable. Computers are 20 available that are small enough to be lifted by one finger. The result has been explosive demand for portable computing devices. Dataquest predicts that by 1994 sales of portable ~uu~uuLiulg devices will be well over $13 billion (Byte, volume 16, number I1, p. 194)~
"Pi~u~uulluLlL~lD" are the shte of the art of i"~ " as a means of 25 creating portable computers (New York Times, March 23,1992). Inventors such as M. E. Jones, Jr. have developed a single chip that contams all of the elements needed for a computer. This has allowed creation of computer systems that can fit in the breast pocket of a man's jacket and run for 100 hours on a ~u~v~Liullal flashlight battery. The major l;",il,~li"~lC of these 30 computer systems is that they have very small amounts of memory greatly limiting the usefulness of the device for tasks to which most WO 95/21rU~8 ' ~ 1 ~ 2 7 ~ 9 ~ o computer users are ~ They also have very small input and output devices which are slow and illCUllVt:lUt~ to use.
Useful Portables Other innovations include ~UUL~UL.l, with increased processing abilities that-must be carried with one hand. These rigid rectilinear-shaped devices fall into the classes lap-top, palm-top or hand-held (.:UUI,UU~ and increase the processing and memory capacity of the picocomputer by including the required processors and memory power in a larger enclosure. For the episodic portable computer user that spends little time actually carrying these devices, these rigid rectilinear devices provide high levels of service rivaling desk-top micro and mini.ulll~u~lD. For the intensive user that processes large amounts of data and must also carry the corr.puter for long periods of time, these devices have several disadvanhges.
First, research has shown that people carrying these ~Ull~lU~ for long periods of time are prone to flexi carpi ulnaris tendonitis which can be painful and debilitating. This affliction is due to prolonged and ~im1lltAnPous clenching of the fingers and flexing of the wrist, an action unavoidable when carrying these devices.
Second, for intensive data ~rqllicitir~n applications, size once again is a .~ . The amount of secondary memory required for impl.~...~.,l ~l;...l makes this option impractical for portable ~ulll~u~.a in rigid rectilinear packaging. On-board memory ~ Uil~Ul~ Ls have been sidestepped by including wireless data links to a host computer for down-loading data. However, these options are very costly, up to the cost of the computer itself, and increase the volume of the devices by as much as a factor of two. Furthermore, wireless rl~mmllnir~irln is presently a very slow data transfer process.
Third, field service research for Rockwell International has mr~n~tr~tPd that user compliance of rigid rectilinear hand-carried and hand-held ~ U~ is low, and gets lower as the size of the device - wo 95121408 . ~ o 21 82 7gg .
., -J i ' `:
increases. Field service personnel expressed 1~7n~:~1Pr~hle ~ with having to lug a "brick" around during the execution of their task. Most notably it restricted the use of their hands by virtue of one, or both being used to carry the computer.
Wearable Portables There has been innovation and invention to harness rigid rectilinear ~UIII~UI~lD on various parts of the body. Reddy Tnfnrm~ti-~n Systems, Inc. has produced a computer called Red Figure 1 that has a head 10 mounted output device (A) from Rl~fl-~ti--n Technologies called the Private Eye, and a belt-mounted rigid rectilinear-packaged computer and input device (B) secured by a belt harness (C) (New York Times, March 29, 1992). Infogrip Inc. and Select Tech Inc. have combined tf~fhnnl~ c to produce the Hip Pc m a similar ~
There are two main disadvantages to this approach. First, h~rn~cSin~ a rigid rectilinear-packaged computer ii~nywhere on the body creates an uneven load on the spirle. Prolonged wearing of such devices creates strain in the supporting muscles opposite the place where the computer is hArn~ccl~i. Second, these ~ ri~ . do not allow the human body to ~ull~full~ly contact a firm surface. The rigid rectilinear computer on a harness or belt is literally a lump on the surface of the body.
Lastly, rigid rectilinear designs are inherently limited in l:Alu~uld~ility. To increase ~-u~?il-g power, hardware size must be increased. There is a volume limit beyond which the computer is no longer portable.
There has been iUUlUVO~iUII and invention to make ~Ulll,UUL~l~ more ~u .~ul~dblc to wear. Hideji Takemasa of NEC Corp. has created a variety of rigid curvilinear-packaged computer models that conform to various parts of the body (Figure 2) (Fortune, January 13, 1992). These devices include a processor and CD-ROM reader (D), and a fold out input/output device (E, F). Although :lPcth~ti~:llly more appealing than the rigid rectilinear lumps of the Red and Hip PC models, the NEC models nnnf~thPlf~cc suffer the same disadvantages. The NEC curvilinear designs wossm40s . r~
218~7g9 are rigid and dynamically n~ ",-,."~ and subject the spine to uneven loading. They also do not allow comfortable conhct of the human body with firm surfaces. r~Ll~ .v.~, these rigid, curvilinear designs must be made in many sizes smce it is technically i~l~yv:, ,;bl~ to make one of these 5 designs fit all human morphologies. They are also inherently limited in Pxr~nrl~hilify just as the rigid rectilinear designs.
SUMM~RY OF INV~NTION
The present invention exemplifies a new and unobvious art of a 10 flexible wearable computer. Briefly and generally, the flexible wearable computer u.l.~l;ses a microprocessor, memory, an input/output controller, and a power supply operably Acco~i~h~d with one another through a flexible signal relaying means. The assembly is supported by a tensile load bearing means and protected by a U111~I-..J;V~ load bearing 15 means. The microprocessor, memory, input/output controller, and power supply are m~rh~nit:~lly 7cco~ Ptl in a module assembly such that the flexible wearable computer can bend in an infinite number of planes without failure of operation.
20 Objects and Advamtages An important advantage of the flexible wearable computer is that it will always provide greater utility than rigid designs for those users that must carry their computer around while processing large amoumts of data, regardless of the state of the art of i~ "- and ",i"; l,.,;,..l;",. That is, regardless of how much computer power can be delivered in a given rigid package, providing a flexible wearable computer allows more of that computer power to be Lulll~ulL~Ibly carried by the user. For example, even if a Cray aU~ u",~uL~l can be reduced to the size of a wli~w~ L~II, the interlsive computer user will find more utility in a flexible computer that 30 is an array of the mi~lV~u~ ul:~ in the wl;d~w~L~Irsized Cray that is fashioned for instance as a ~ulllrulldBlc vest.

wossm40s 21 82 7~ 0 This rl~lAti~nqhip can be ~ AIly demonstrated with a common market model adapted for computer power demand. Refer now to equation (1) Q=c-aP+bS (1) 5 where, Q = total amount of computers APmAn~Pd m a specified context;
P = the price of ~UllllJULCl~- sold in the marketplace for that context;
S = the service level provided by computers in that context.
The service level of a computer for any specified context is related to 10 the number of useful operations per second (UOPS). This value is driven by several factors including the elegamce of the program, memory size and access time, and raw processing speed. Service level is also related to volume. Volume is less critical when a user does not need to carry the computer. It becomes a major ~l,,l.""i"~,.l when a user must be 15 ambulatory while usmg a computer.
Service level can be defmed as S= I~ F (2) VH person 20 where, F = min {VH, Vl};
VH = volume of the hardware;
UQPS = power density and is roughly constant. .
VH That is, the greater the UOPS, the larger the volume of the hardware.
Vl = the ~ ~, .~1, .,i. ,.o.1 volume of user interface, that is, the largest hardware volume the user can employ to accomplish a specific computmg task;
erson = the number of individuals that must use the hardware.
For the majority of computing applications volume is irrelevant.
Equations (1) and (2) m~ ." ~li.,,lly describe this C~Scl~aLiull. In these wo 95121408 218 2 7 9 9 ~ L ~ ~n contexts, the user is ul~ulla~lailled by the volume of the hardware, and V
is infinity making F equal to VH. Volume hence has no influence on the service level (5) and therefore no influence on the quantity (2) of ~Ulll~)U~la APm:\nA,o~1 However, for users that desire to or must carry a computer around, the volume of the hardware becomes critical. Equations (1) and (2) ,.._ll,.~...~li~ally describe this obs~lvlll;vll also. There exists for any rigid form factor a m~imllm volume (Vl) beyond which the user cannot carry a computer. (F) is then equal to (Vl). Hence, mcreasing the power density 10 is the only means to increase service level and therefore quantity A~mslnA~
Now it is clear from equation (2) that if Vl can be increased, VH can also be increased thus increasing the UOPS ol~L~Iillabl~. This can be done without ill~l~d~lllg power density. The flexible wearable computer directly 15 increases Vl compared to rigid park~in~ schemes because it allows hardware to be shaped like articles of clothing allowing the more comfortable placement of larger volumes of hardware on various areas of the body. It obviates the need to carry the entire hardware in one or both hands. It also ..li".;.. l.~c the un-ulllrull~le nature of strapping a rigid device onto one aspect of the body. It also eliminates the need to make a variety of sizes such as the rigid curvilinear designs require.
Another advantage of the flexible wearable form factor is that by implf~mPntin~ a computer as many small rigid elements instead of one large rigid element, the bending moment across each element is smaller since the area of each element is decreased. The bending moment is caused when a rigid element is worn against the body and the body comes into contact with any firm surface. Distributed or ~tn~ntrat~ loads are applied normal to the surface of the element. An example would be when a wearer sat down m a chair. The firm elements of the chair would exert 30 forces against the rigid elements.
Further objects and advantages of the present invention include:

WO 95/21408 ~ o 2l8?799,, '-(a) To provide a flexible wearable computer that can be shaped into a limitless variety of shapes and sizes.
(b) To provide a flexible wearable computer that can ~ f~ a wide variety of human lllol,vl ol~iès.
5 (c) To provide a flexible wearable computer that allows comfortable hands-free portability.
(d) To provide a flexible wearable computer that symmetrically distributes its volume and therefore evenly loads the spme.
(e) To provide a flexible wearable computer that eliminates flexi carpi ulnaris tLanflf nitic (f) To provide a flexible wearable computer that is ~v l~ ble to wear while the humam body is against a firm surface.
(g) To provide a flexible wearable computer that increases the compliance of field service users by allowmg hands-free portability without carrifi~in~ comfort.
(h) To provide a flexible wearable computer whereby the computer can be more comfortably carried and operated than an il~Ley,~ ed computer of l:v~ v~u~lbl~ processing power m a rigid rectilmear or curvilinear packages.
20 (i) To provide a flexible wearable computer with data transfer rates that are faster than wireless l fll~ systems.
(j) To provide a flexible wearable computer that can more easily and comfortably be expanded than rigid package designs.
(k) To mcrease the ~ugjjeLllleDD of a wearable computer by decreasing the size and thus the bending moment across any rigid elements.
Other objects and advantages of the present invention and a full ~mdf~rctandin~ thereof may be had by referring to the followmg detailed description and claims taken together with the accompanying ill,.~l,,.li...~c The i~ are described below in which like parts are 30 given like reference numerals in each of the drawmgs.
-WO95/21408 , r~ o ~ 7,18'~799 Drawing Figures Figure 1 is a p~lD~e~liv~ view of the prior art of a wearable portablecomputer system produced by Reddy T,.r... ,..~I;.... Systems called Red.
Figure 2 is a p..D~e~Lv~ view of the prior art of a wearable portable 5 computer system by Takemasa of NEC l~nrrnr~tinn Figure 3 is a view of a user wearing the preferred .~ bo.lil,l~ of the flexible wearable computer system which by definition mcludes an mput/output device.
Figure 4 is a view of a user wearing the flexible wearable computer system with the outer sheath ghosted.
Figure 5 is a p~lD~e.Livl: view of a preferred embodiment of the flexible wearable computer which by definition does not include the input/output device.
Figure 6 is a p~lD~e~Liv~ view of the flexible wearable computer showing the surface that contacts the body with the outer sheath partially removed.
Figure 7 is a p~ ue~live view of the flexible wearable computer with the outer sheath completely removed.
Figure 8 is a perspective exploded assembly view of a 20 Illi.lU~l~Dul module.
Figure 9 is an orthographic cross sectional view of the '.Ui~lU~JlU~éDDUl module.
Figure 10 is a p~lD~ ~liVt: exploded assembly view of the RAM-I/O
module.
Figure 11 is a p~lD~liV~ exploded assembly view of the mass memory module.
Figure 12 is a p~lDlue~liv~ exploded assembly view of the battery module.
Figure 13 is an exploded assembly view of the bus l~ ",;, module.
Figure 14 is a pt:lD~e.livl: view of an alternative ~mho-1imf~nt of the flexible wearable computer in the form of a vest.

WO 95i21408 ~ 30 21~7gg . X O

Figure 15 is a p~:lD~e.~iv~ view of the alternative embodiment in the form of a vest with the outer sheath ghosted.
Figure 16 is a rear ~el,~e.~ivt: view of the alternative embodiment in the form of a vest with the outer sheath ghosted.
Figure 17 is a schematic ~ e~iv~ view of the user wearing the flexible wearable computer system in the form of a vest with a touch sensitive flexible LCD output device worn wrapped around the forearm.
Figure 18 is a schematic p~lD~e.~iv~ view of the user wearing the flexible wearable computer system in the form of a belt with a hand-mounted free-space pointer input device.
Figure 19 is a schematic p~ e~iv~ view of the user wearing the flexible wearable computer system in the form of a belt with a tethered infra-red L~ s-~i~.. worn cln the shoulder.
Figure 20 is a schematic p~.a~,e.liv~ view of the user wearing the flexible wearable computer system in the form of a belt with a wireless infra-red ~lallS~iv~ mmtlnir~fion link between the belt and a hand held pen based display device.
Figure 21 is a schematic perspective view of the user wearing the flexible wearable computer system in the form of a vest with a wireless infra-red ~lallS~ . . nmmllni~-~ti.~n link between the vest and a heads-up display.
Figure æ is a schematic p~:l~e.~iv~ view of the user wearing the flexible wearable computer system in the form of a vest with a projection display mounted to it.
Figure 23 is a schematic p~l",e.~ivt: view of the user wearing the flexible wearable computer âystem im the form of a headband with a heads-up display motmted to it.
Figure 24 is a schematic p~ e.~iv~ view of the user wearmg the flexible wearable computer system in the form of a belt with a split QWERTY keyboard mput device mounted to it.

~ WO 95/21408 218 ~ 7 9 9 ~ T ~,./1 ~1631) Figure 25 is a schematic p~ e.live view of the user wearing the flexible wearable computer system in a form that wraps around the forearm.
Figure 26 is a schematic p~la~-Livt: view of the user wearing the 5 flexible wearable computer system in the form of a vest with a headâ-up display mounted in the breast area.
Figure 27 is a schematic p~lal,e.Liv~ view of the user wearing the flexible wearable computer system in the form of a vest with an ear clip speaker and ~ u~l~ul~e input/output device tethered to it.
Figure 28 is a schematic ~e~lb~e~livt: view of the user wearing the flexible wearable computer system in the form of a garment with motion sensors int~ra~ into the garment.
Figure 29 is a schematic p~,~e.Livc~ view showing the computer in a totally hands-free operation.
Drawing Reference Numerals A Reflection T~ .. Private Eye wearable display B Reddy Information Systems 1 ) 05 rigid rectilinear personal computer and RAM card reader 20 C Padded harness D NEC Cu. ~ul~-Liu-,'s personal computer and CD-ROM reader E NEC Corporation's input device F NEC Cul~ul~Liull's output device 002a Flexible circuit 002b Flexible circuit 002c Flexible circuit 002d Flexible circuit 002e Flexible circuit 002f Flexible circuit 30 004 Tensile load strap 005a Belt latch, male 005b Belt latch, female wogsm408 ' ~ t., ~ O
21~ 799~

006 Foam sheath 010 Module recess 011a Eyelet snap 011b Eyelet snap 5 046 Seam surface 0vO Portable input/output device 061 I/O bus 100 Bus ~ module 112 Bus ~ ",i,~li, resistors 10 114 Bus l.~ lillll prmted circuit board 115 Bus ~ module solder pins 116 Bus l "il)~l; plated via holes 200 Microprocessor module 212 Mi~v~u~vvol 15 212a ~iLlvlUlv~vvUl support ~ul-l~v~e-lls 214 Mi~lv~lu~è~vvl printed circuit board 215 Microprocessor printed circuit board solder pins 216 MiLlv,ulv~é~vvl plated via holes 217 Mi~lv,ulv~cvvu~ module top shell 20 218 Microprocessor module bottom shell 219 Mi~lululv~3vo- module boss 219 Mi..u,ulu.~vvo. module bo~s 220 Holes for llli~lU~JlV~tvvUl module assembly 222 Mi~lv~lv~ssv- module retention plate 25 223 Mi~v~u~ u~ module self tappmg screw 300 RAM-I/O module 314 RAM-I/O printed circuit board 317 RAM-I/O module top shell 322 RAM-I/O module retention plate 30 323 RAM-I/O port bezel 324 Random access memory chips 325 RAM-I/O Module orifice -- WO95/21408 I'-_IIL~
~ 21~2i7`9'9~

326 Output device port 327 Input device port 328 {~t~mmllnilAti~ nC port 347 Input/output processor 5 347a Support circuitry ~UIII~Ullelllb 400 Mass memory module 412 Flash memory chip 414 Mass memory circuit board 417 Mass memory module top shell 10 500 Battery module 508 Battery bezel 514 Battery module prmted circuit board 517 Battery module top shell 523 Battery module self tapping screw 15 530 Battery cartridge 531 Battery fixture 533 Voltage rP~ n ~UUI~Ull~ b DE~RIPTION OF l~ ) FM13OD~MF~TS
Referring now to the drawings, with particular attention to Figures 3-4. The method of using the flexible wearable computer is r. ., vvald. The user adjusts the flexible wearable computer to fit comfortably around the waist by varying the .-t)nnP~tion of male and female belt latches 005a, 005b to a flexible tensile load strap 004. An input/output device 060 is a pen based liquid crystal display device that has a clip allowmg easy ..~ l to a flexible ~ull.lul~;v~ Çoam sheath 006 when not in use. The input/output device is ~-r)nnPctP-1 to the processor amd mass memory by an I/O bus 061.
Figure 5 ~1~..,~...~.l,..l ~ the detail of a preferred ~ b~liultllL. The 30 computer is entirely encased in foam sheath 006 injection-molded out of antimicrobial microcellular polyull:Lllalle foam (such as Poron, available from Rogers Corporation), and varies in thickness from 0.140 inches thick .. . ..

wo ssm40s 21~2799 to 0.250 inches thick, and is a~ a~l:ly 15.0 inches long. Flexible ;V~ foam sheath 006 necks lnarrows) down at each end such that the opening in foam sheath 006 is the same width as tensile load strap 004.
Tensile load strap 004 is a belt strap consisting of woven aramid fibers 5 (otherwise known as Kevlar, available from Dupont), but could consist of common nylon strapping or thin steel stranded cables. Tensile load strap 004 is a~lu~dll~al~:ly 2.0 inches x 0.02 inches x 47.0 inches. A port bezel 323 is adhered to foam sheath 006 with adhesive. It allows output device port 326, input device port 327, and rommllnir~ir~n~ port 328 to be exposed 10 through foam sheath 006. A battery bezel 508 is adhered to foam sheath 006. Port bezel 323 and battery bezel 508 are all injection-molded out of ABS plastic.
Figures 4 and 7 .~.".."~l",l~ the structure beneath foam sheath 006 of the preferred embodiment. Five different types of modules 100, 200, 300, 400, 500 are electrically connected to each other by polyamide (Kapton, available from Dupont) flexible circuits 002a, 002b, 002c, 002d, 002e, 002f.
Each computer ~u~ module 100, 200, 300, 400, 500 is affixed to the tensile load strap 004. The two-part belt latch 005a and 005b is connected to each end of tensile load strap 004.
Referring now to Figure 6, the flexible wearable computer is ~1. ,.. ~II,.I~.i with foam sheath 006 partially open }evealing a molded-in module recess 010 which is a~lv~d,llldlc~ly 0.125 inches deep. Each module 100, 200, 300, 400, 500 is seated in a separate module recess 010. Fig. 6 also reveals that fûam sheath 006 is fastened to tensile load strap 004 by a pair of eyelet snaps 011a and OIlb, located at both narrowed ends of foam sheath 006. Seam surfaces 046, which rum the bottom length of foam sheath 006, are fastened to each other with adhesive.
Microprocessor Module Referring to Figure 8, the microprocessor module 200 is demonstrated. Microprocessor 212 and microprocessor support IJlllpoll~l~L:, 212a are of surface mount size, and are soldered to a WO95/21408 218 2 ~ 9 9 T~.l/l D ''`'t microprocessor printed circuit board 214. The ~lim~ncinn.~ of lU~JlU~eDDUl printed circuit board 214 are clululuAill~ ly 2.25 inches x 1.55 inches x 0.06 inches. At each of the long edges of microprocessor printed circuit board 214 are an array of microprocessor printed circuit 5 board solder pins 215 which register with a corresponding array of plated via holes 216 on flexible circuit 002b. Solder pins 215 are soldered into plated via holes 216. Flexible circuit 002b and microprocessor printed circuit board 214 are sandwiched between a mi~lululu~ ul module top shell 217 and mi~lululu~:sDul module bottom shell 218. Flexible circuit 002b is ~luluAi~dl~ly 2.65 inches long x 2.00 inches wide x 0.006 inches thick. Mi.lululu.~DDol module bosses 219 extend from the Illi~lU~lU~D~Ul module top shell 217 through holes 220 in flexible circuit 002b and Illi~lUlUlUC~sDul printed circuit board 214. The ".~. I.,..,i. ,.l l.-~;~l~,.li.", and therefore electrical .. ,.~. I;.. of plated via holes 216 with solder pins 215 15 is held true by bosses 219.
Microprocessor module top shell 217 and bottom shell 218 are shown m cross-section in Figure 9 as having approximately a 0.10 inch radius edge detail curving away from flexible circuit 002b. This feature provides a limit on the radius of curvature e~r~riPn~ Ptl by flexible circuit 20 002b~ Tensile load strap 004 is fastened against mi~lu~lu.~Daul module bottom shell 218 by mi~lU~lU~t:DDUI module retention plate 222 and self-tappmg screws 223. Self-tapping screws 223 fasten the entire assembly together by screwing into bosses 219 on IlliLlululU~DDUl module top shell RAM-I/O and Mass Memory Modules Figure 10 dc:lllullDLI.lL~D RAM-I/O module 300. It has the same basic construction as mi~lV~IU~aDOI module 200 except for two ~liff~r~nr~c First, instead of a microprocessor, random access memory chip 324 and 30 input/output processor 347 and support circuitry ~UIII1UUII~ D 347a, are soldered onto RAM-I/O circuit board 314 Second, output device port 326, input device port 327, and ~ r mm11ni~til-nC port 328 are electrically wo g5/2l408 ~ 7 9 9 T ~ 0 rt~nnPrt~rl to RAM-I/O printed-circuit board 314, and extend through RAM-I/O module orifice 325 in RAM-I/O module top shell 317. Flexible circuit 002c is registered and fastened against RAM-I/O printed-circuit board 314 the same way as with the previously described IlLi~lV~JlV~ aUl 5 module 200. RAM-I/O module 300 is also connected to tensile load shrap 004 in the same way as in previously described mi.lv~Jlu~ vl module 200.
Figure 11 ~rmonctrAtrc mass memory module 400. Multiple mass memory modules are shown in a preferred embodiment and are identical 10 except for their software addresses, and have the same basic ~Ullsl.u~iull as ~ vlUlu~ Ul module 200 except for two .~irf~ First, instead of a .ILi~lU~lU~ Ul, flash memory chips 412 (of which there are four) are soldered to printed-circuit board 414. Flexible circuits 002d, 002e are registered and fastened against printed-circuit board 414 the same way as in 15 lu~viuusly described modules 200. Mass memory modules 400 are also rt7nnrrtP~ to tensile load strap 004 in the same way as in previously described module 200.
Battery and Bus T..,..i.,~l;..., Modules Figure 12 .i~.,.. ,.~l.,.l.~ a battery module 500 rr~ntAinin~ a battery cartridge 530 held by a battery fixture 531, and a battery module top shell 517. Battery fixture 531 is fastened onto a printed-circuit board 514 with a screw 523. Voltage regulation ~:UIII~JVIL~ 533 are of surface mQunt size, and are soldered to printed-circuit board 514. Flexible circuit 002f is 25 registered and fastened against primted-circuit board 514 the same way as in previously described module 200. Module top shell 517 and module bottom shell 518 are fastened the same way as in ~l~YiOusly described module 200. Battery module 500 is also connected to tensile load strap 004 in the same way as m previously described module 200.
A bus l.-,.. i,.~lir"~ module 100 is shown in Figure 13. Bus l~-.,,i..~l;.-., resistors 112 are of surface mount size and soldered to a bus h .I..i..~li..l. circuit board 114. Bus trrtninAhr,n circuit board 114 measures WO 95/21408 ~ ~18 2 7 9 9 r~ 630 ~, . ...

d~ aLely 2.00 inches x 0.30 inches x 0.06 inches. Bus ~
circuit board 114 has an ârray of bus 1~ module solder pins 115 along one long edge which register with bus l~, .. ~i, . ~l .. , plated via holes 116 on flexible circuit 002f. Flexible circuits 002a and 002f measure 5 approximately 1.5 inches long x 2.00 inches wide x 0.006 inches. Bus l~,.--;,-~l;~-" module 100 is connected to tensile load strap 004 in the same way as im ~ viuu~l~/ described module 200.
Summary, l?~mifil~ti~mc and Scope A~ dill~ly, the reader will see that the flexible computer has the advantage of in. r.~qin~ the service level of portable computer hardware while also i.,...:dDi.,g the comfort of using the hardware. In addition, the flexible wearable computer has the advantages of:
?~ mmf)~*n~ a wide variety of human morphologies;
. allowing hands-free carrying and operation;
allowmg the user to comfortably sit or lie while wearing the device;
allowing the weight of the computer to be ~y~ Lli~dlly ,li L~ uLell on thebody;
f~ the muscle and tendon strain ~cco~ with carrying rigid rectilinear ~ uLel l, increasing the compliance of field service personnel that must use a computer;
allowing qi~nifir~ntly larger amounts of secondary flash memory to be comfortably carried by the useri allowing ~l-r~nqion more easily and comfortably than rigid designs; and mcreasing the r-l~ . of a mobile wearable computer by decreasmg the area of the rigid elements, thereby decreasing the bending moment across each element.
Although the description above contains many ~,e~iL.iLies, these should not be construed as limitmg the scope of the invention, but merely WO 95/21408 , . ~ ~0 21g2~'9~`"''`' V

providing illllctr~til7n of some of the presently preferred embodiments of this invention. The flexible wearable computer could be imrlPmPntPrl in many different ways. For example, each module could be potted with a solid thermoset plastic rather than have a two part shell. The flexible 5 tensile load bearing means could consist of individually twisted aramid fibers encased in the potting compound. The flexible tensile load bearing means could be fibers woven into cloth or even a homogeneous thin layer of material. The flexible signal relaying means could be glued or otherwise p~ ly attached to the tensile load bea}ing means.
('.. ".1,.. ,.. -,.1~. and support circuitry need not be surface mount size and soldered. The ~UIII~UIIt~ S may be affixed to the circuit board with conductive epoxy. The computer may be made even thinner and more flexible by implPmPntin~ it using chip-on-board manufacturing technology. Each int~ratP~l circuit would be bonded directly to a small 15 printed circuit board and the terminals would be electrically connected to the board. Each IC would be covered with an epoxy dab. Each discrete circuit board module could be as small as a 0.5 square inch.
The computer could be implemented as one long multi-layer polyamide flexible, or rigid-flex, circuit board. As an entirely flexible 20 board, the module shells would rigidify the areas populated with electronic l.~ Ull~ . As a rigid-flex design, the sections with electronic would be laminated with rigid fiberglass board stiffeners.
The flexible signal relaying means, the length of which between any two computing elements is greater than the length of the wearable 25 member between any two computing elements, could be discrete wires or discrete non metallic filaments. It could be produced with ink traces or any type of non-metallic, flexible conductive material. The computer could be implemented as a fiber optic device. The flexible circuit could be optical fiber filaments instead of metallic or non-metallic conductors.
30 Also, the flexible signal relaying means could be an easily detachable and re-attachable bus that is disposable.
2 1 8 2 7 9 9 ~ o Furthermore, the ~:ul.ri~;ulaLivl. of the flexible wearable computer need not be m a belt. The module and bus assembly can be fashioned in a vâriety of ways. Figure -14 ~ an alternative t~UlBOIIilllclll of the flexible wearable computer in the shape of a vest for increasmg the 5 number of elements for computing. Figure 15 shows the foam sheath of the vest removed revealing an increased number of modules. Figure lG
~ mnngtratf~c the bus .~ ;c~ l-l to A~ / nmmn~lAtf~ the mcreased number of modules thereby greatly f~yp~n~lin~ the memory and lUlU~c~billg capacity of the flexible wearable computer.
Referring now to Figure 17, the computer is shown there in the form of a vest. The output device is a touch sensitive flexible LCD 534 worn on the forearm. The wearer controls the computer by touching virtual graphical elements on the LCD with the right hand. There is an infra-red wireless data link between the computer and the LCD via infra-red ll~llb~c;~ 535 and 536.
Figure 18 r1~mnnctrAtf~c a ullri~ul~llioll with the computer in the form of a belt, a free-space pointer input device 537 and a Private Eye heads-up display 538 as the output device. A free-space pointer, such as a GyroPoimt, translates relative three-~ motion of the hand into digital pulses which are ~ul~ilv-cd by the computer. Software drivers translate the digital pulses into nf)rr~crnnrlin~ IllVVClllclllb of the cursor in the virtual screen gnerated by the heads-up display. Both the free-space pointer 537 and the heads-up display 538 are functionally connected to the computer via tethers 539 and 540.
Figure 19 shows a method of wirelessly rnnnf~tin~ the comput~r, in the form of a belt, to a Local Area Network (LAN). An infra-red eivcl 541, such as a Photor~ics Infra-red Transceiver, is functionally ronn~l~te~1 to the computer via a tether 542. The transceiver t nmmllni,~Atf.c via infra-red pulses with a plurality of infra-red repeaters 543 mounted overhead in the ~IIVilUIIlllCllt Wireless ~omm1lnil Atinn could also be of radio-frequency type m which case the computer receiver would be included as a ~ nl~ module as shown m Figure 15.

WO 9~/21408 . . ' ; ' 1 ~
.21g2799 In Figure 20, the .. t;~,".,.I;~,.. is the same as Figure 3, but instead of a 1~ d r/~nn~ortir~n, both the computer and pen-based display device 60 have wireless infra-red pulse Ll~llD~:iV~lD 544 and 545. The pen-based display 60 sends pen location data to the computer and the computer sends 5 ..,ll..,~ ldillg graphical ;..r..,..,~i.... to the pen-based device 60.
Figure 21 r~ LI,.lP~ a wireless mfra-red rrlmmllnir~tit~n link between a Private Eye heads-up display 538 and the computer. An infra-red receiver 546 is located on the heads-up display. An infra-red L1~1D~iV~I 547 is located m the shoulder area of the computer.
In Figure 22, an LCD projection display 548 is moumted on the front abdominal area of the computer, which is in the form of a vest. This device works by projecting a strong light through an LCD that is controlled by a computer, and then through a focusing lens. The LCD projection display 548 projects a computer generated image of any reflective, flat 15 surface, such as a reflection pad 548' hanging from the user's waist, or the user's palm. To view the computer's output, the user would hold up the reflection pad 548' or the palm in the path of the image that is being projected. The image is reflected and thus readable to the user.
Figure 23 shows the wearable computer system in the form of a 20 headband 549 with an attached heads-up display 538.
Figure 24 shows the computer in the form of a belt with a split QWERTY keyboard 550 attached to the computer so that it hangs downward in front of the user and can be easily reached. The user types in , ,.I."" .".l'. just as he would at a desk top keyboard.
Figure 25 shows the computer implemented as a flexible form that wraps around the forearm. The user mterface consists of a keypad 551 and speech l~ . .;l ;. ., . and speech synthesis capability. A microphone 552 and speaker 553 are included m the computer.
Figure 26 shows the computer in the form of a vest with a Private Eye heads-up display 554 mounted on the left breast. To access the graphical output of the computer, the user looks down and to the left into the heads-up display 554.

- WO 95121408 2 18 2 7 9 9 ~ s -~n ~ .

Figure 27 shows the computer in the form of a vest with an ear clip microphone/speaker device 555. The method of controlling the computer is speech .~-..,~,.;l;l-" The output from the computer to the wearer is speech synthesis. This ~ullri~LllAliU~ allows only the wearer to hear the 5 ouhput from the computer, and to speak at low volumes when inputting 8rmm~n~1~
Figure 28 shows the computer in the form of a garment with motion sensors 556a, 556b, 556c, 556d, 556e and 556f. The computer continually polls ~ese sensors. The data from these sensors is used by the 10 computer as input to drive software that would interpret the data from the sensors as certain gestures. These gestures can be used to control the computer. For example, the user may be able to switch the computer into a mode where it is listening for the wearer's voice mput simply by making a circular motion with the left arm. A circular motion in the opposite 15 direction would switch off the listen mode.
Figure 29 illushrates the invention in a totally hands-free operation.
The computer is in vest form and in~ulluulAl~ a speech rect-gniti- n and/or speech synthesis interface including a microphone 557 and a speaker 558. In this . .",ri~".,~.li~.,~, the need for rigid interface hardware 20 such as keyboards or liquid crystal displays is obviated.
Many of the various interface peripherals can be used in combination with each other. For example, the arm mounted flexible LCD
shown in Figure 17 could be used as the output device and voice ~ U~lliliull could be used as the input device. Or, referring to Figure 25, 25 the flexible wearable computer wom on the forearm could be controlled with voice rf~-~ngnih-m.
Thus the scope of the invention should be ~ t~rmin~cl by the appended claims and their legal equivalents, rather than by the examples given.
30 I CLAIM:

Claims (20)

22
1. A portable computer comprising; in combination, elements for computing comprising:
input means for inputting data;
output means for outputting data, and a plurality of computing components;
a flexible non-stretchable human wearable member;
means for rigidly mounting said computing elements on said wearable member; and flexible signal relaying means electrically connecting said computing elements, the length of said relaying means between any two of said computing elements being greater than the length of said wearable member between said any two computing elements.
2. The computer of claim 1 including certain elements in the form of a belt.
3. The computer of claim 1 including certain elements in the form of a sleeve.
4. The computer of claim 1 including certain elements in the form of a headband.
5. The computer of claim 1 including means for forming a free space pointer.
6. The computer of claim 1 including a heads-up display device.
7. The computer of claim 1 including a wireless communication link between said computing elements and one or more of said input means and said output means.
8. The computer of claim 1, wherein the output means comprises a touch-sensitive flexible LCD adapted to be worn on a user's forearm.
9. The computer of claim 6, further comprising a free space pointer linked to the heads-up display device.
10. The computer of claim 1, including connecting means for connecting the computer to a Local Area Network.
11. The computer of claim 10, wherein the connecting means comprises an infra-red transceiver for communicating with at least one infra-red repeater of the Local Area Network.
12. The computer of claim 1, wherein at least one of the input means and the output means includes a pen-based display device, the computer further comprising a wireless communication link between the display device and the computing elements.
13. The computer of claim 6, further comprising a wireless communication link between the heads-up display device and the computing elements.
14. The computer of claim 1, further comprising an LCD projection display linked to the computing elements, and a reflection pad positioned to reflect output of the display so as to be readable by a user of the computer.
15. The computer of claim 6, further comprising a headband coupled with the heads-up display device to support the heads-up display device on the head of a user of the computer.
16. The computer of claim 1, wherein the input means comprises a split keyboard.
17. The computer of claim 1, wherein the computer is adapted to be supported on the forearm of a user, the computer further comprising a microphone, a speaker, and a user interface with speech recognition and speech synthesis capability.
18. The computer of claim 6, further comprising a vest supporting the heads-up display device below the head of an operator of the computer.
19. The computer of claim 1, further comprising a microphone/speaker device for speech input and output.
20. The computer of claim 1, further comprising a garment with motion sensors coupled with the computing elements to input data to the computer.
CA002182799A 1994-02-07 1995-02-07 Flexible wearable computer Abandoned CA2182799A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US08/192,636 1994-02-07
US08/192,636 US5491651A (en) 1992-05-15 1994-02-07 Flexible wearable computer

Publications (1)

Publication Number Publication Date
CA2182799A1 true CA2182799A1 (en) 1995-08-10

Family

ID=22710454

Family Applications (1)

Application Number Title Priority Date Filing Date
CA002182799A Abandoned CA2182799A1 (en) 1994-02-07 1995-02-07 Flexible wearable computer

Country Status (5)

Country Link
US (4) US5491651A (en)
EP (1) EP0748473A4 (en)
JP (1) JPH10502468A (en)
CA (1) CA2182799A1 (en)
WO (1) WO1995021408A1 (en)

Families Citing this family (407)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5491651A (en) * 1992-05-15 1996-02-13 Key, Idea Development Flexible wearable computer
TW282527B (en) * 1994-11-11 1996-08-01 Nintendo Co Ltd
US5969328A (en) * 1995-11-17 1999-10-19 Intermec Ip Corp Portable hand-held data terminal having curvilinear housing and keypad
US6109528A (en) * 1995-12-22 2000-08-29 Intermec Ip Corp. Ergonomic hand-held data terminal and data collection system
US5654701A (en) * 1996-05-09 1997-08-05 Dresser Industries, Inc. Detachable tamper resistant security module
AU3123997A (en) * 1996-05-09 1997-11-26 Via, Inc. Miniature display devices and systems
US5970146A (en) * 1996-05-14 1999-10-19 Dresser Industries, Inc. Data encrypted touchscreen
US6047301A (en) * 1996-05-24 2000-04-04 International Business Machines Corporation Wearable computer
AU720452B2 (en) * 1996-08-15 2000-06-01 Xybernaut Corporation Mobile computer
US5719743A (en) * 1996-08-15 1998-02-17 Xybernaut Corporation Torso worn computer which can stand alone
WO1998009270A1 (en) * 1996-08-28 1998-03-05 Via, Inc. Touch screen systems and methods
US5774338A (en) * 1996-09-20 1998-06-30 Mcdonnell Douglas Corporation Body integral electronics packaging
US6356210B1 (en) * 1996-09-25 2002-03-12 Christ G. Ellis Portable safety mechanism with voice input and voice output
AU731457C (en) * 1996-11-01 2001-12-20 Via, Inc. Flexible wearable computer system
DE19700875A1 (en) * 1997-01-04 1998-07-09 Roland Dr Ing Timmel Portable data processing equipment
US5806993A (en) * 1997-03-18 1998-09-15 Comtec Information Systems, Inc. Portable interactive miniature printer
US6140981A (en) * 1997-03-20 2000-10-31 Kuenster; Gordon B. Body-mountable display system
US6359609B1 (en) 1997-03-20 2002-03-19 Gordon B. Kuenster Body-mountable display system
KR100247389B1 (en) * 1997-03-25 2000-03-15 윤종용 Portable computer
WO1998043145A2 (en) * 1997-03-26 1998-10-01 Via, Inc. Wearable computer packaging configurations
ES2184253T3 (en) * 1997-04-15 2003-04-01 Michael T Perkins SUPPORT BELT SYSTEM THAT INTEGRATES COMPUTERS, INTERFACES AND OTHER DEVICES.
US6057966A (en) * 1997-05-09 2000-05-02 Via, Inc. Body-carryable display devices and systems using E.G. coherent fiber optic conduit
KR20010013951A (en) 1997-06-20 2001-02-26 데이비드 윌리엄 캐롤 Long-lasting flexible circuitry
US5991086A (en) * 1997-06-26 1999-11-23 Via, Inc. Inflatable optical housing
US6353313B1 (en) 1997-09-11 2002-03-05 Comsonics, Inc. Remote, wireless electrical signal measurement device
US6384591B1 (en) * 1997-09-11 2002-05-07 Comsonics, Inc. Hands-free signal level meter
US6285757B1 (en) 1997-11-07 2001-09-04 Via, Inc. Interactive devices and methods
AU708668B2 (en) * 1997-11-21 1999-08-12 Xybernaut Corporation A computer structure for accommodating a PC card
USD414928S (en) * 1998-02-17 1999-10-12 Via, Inc. Wearable computer
US6911969B1 (en) * 1998-05-01 2005-06-28 Honeywell International Inc. Handheld computer apparatus
AU3777599A (en) * 1998-05-01 1999-11-23 Honeywell Inc. Hand-held computer apparatus with three button interface and methods regarding same
US6610917B2 (en) * 1998-05-15 2003-08-26 Lester F. Ludwig Activity indication, external source, and processing loop provisions for driven vibrating-element environments
US6307751B1 (en) * 1998-06-01 2001-10-23 Wearlogic, Inc. Flexible circuit assembly
US7854684B1 (en) * 1998-06-24 2010-12-21 Samsung Electronics Co., Ltd. Wearable device
US5931764A (en) * 1998-06-24 1999-08-03 Viztec, Inc. Wearable device with flexible display
DE19834720C2 (en) * 1998-07-31 2000-09-14 Siemens Ag Sensor device for the detection of biometric features
CA2261900A1 (en) * 1998-09-11 2000-03-11 Xybernaut Corporation Convertible wearable computer
US6650305B1 (en) 1998-10-02 2003-11-18 Honeywell Inc. Wireless electronic display
US6597346B1 (en) 1998-10-02 2003-07-22 Honeywell Inc. Hand held computer with see-through display
JP2000194726A (en) * 1998-10-19 2000-07-14 Sony Corp Device, method and system for processing information and providing medium
FR2786899B1 (en) * 1998-12-03 2006-09-29 Jean Bonnard MOVEMENT INDICATOR FOR SOFTWARE
US7080322B2 (en) * 1998-12-18 2006-07-18 Tangis Corporation Thematic response to a computer user's context, such as by a wearable personal computer
US7779015B2 (en) * 1998-12-18 2010-08-17 Microsoft Corporation Logging and analyzing context attributes
US6920616B1 (en) 1998-12-18 2005-07-19 Tangis Corporation Interface for exchanging context data
US8181113B2 (en) 1998-12-18 2012-05-15 Microsoft Corporation Mediating conflicts in computer users context data
US7231439B1 (en) 2000-04-02 2007-06-12 Tangis Corporation Dynamically swapping modules for determining a computer user's context
US7107539B2 (en) * 1998-12-18 2006-09-12 Tangis Corporation Thematic response to a computer user's context, such as by a wearable personal computer
US6747675B1 (en) * 1998-12-18 2004-06-08 Tangis Corporation Mediating conflicts in computer user's context data
US7076737B2 (en) * 1998-12-18 2006-07-11 Tangis Corporation Thematic response to a computer user's context, such as by a wearable personal computer
US7055101B2 (en) * 1998-12-18 2006-05-30 Tangis Corporation Thematic response to a computer user's context, such as by a wearable personal computer
US7046263B1 (en) * 1998-12-18 2006-05-16 Tangis Corporation Requesting computer user's context data
US6791580B1 (en) 1998-12-18 2004-09-14 Tangis Corporation Supplying notifications related to supply and consumption of user context data
US6513046B1 (en) 1999-12-15 2003-01-28 Tangis Corporation Storing and recalling information to augment human memories
US7225229B1 (en) * 1998-12-18 2007-05-29 Tangis Corporation Automated pushing of computer user's context data to clients
US6812937B1 (en) * 1998-12-18 2004-11-02 Tangis Corporation Supplying enhanced computer user's context data
US7073129B1 (en) 1998-12-18 2006-07-04 Tangis Corporation Automated selection of appropriate information based on a computer user's context
US6466232B1 (en) 1998-12-18 2002-10-15 Tangis Corporation Method and system for controlling presentation of information to a user based on the user's condition
US9183306B2 (en) 1998-12-18 2015-11-10 Microsoft Technology Licensing, Llc Automated selection of appropriate information based on a computer user's context
US6801223B1 (en) * 1998-12-18 2004-10-05 Tangis Corporation Managing interactions between computer users' context models
US8225214B2 (en) 1998-12-18 2012-07-17 Microsoft Corporation Supplying enhanced computer user's context data
US6842877B2 (en) 1998-12-18 2005-01-11 Tangis Corporation Contextual responses based on automated learning techniques
US6806847B2 (en) * 1999-02-12 2004-10-19 Fisher-Rosemount Systems Inc. Portable computer in a process control environment
US7230582B1 (en) * 1999-02-12 2007-06-12 Fisher-Rosemount Systems, Inc. Wearable computer in a process control environment
US7640007B2 (en) * 1999-02-12 2009-12-29 Fisher-Rosemount Systems, Inc. Wireless handheld communicator in a process control environment
JP3330558B2 (en) * 1999-02-25 2002-09-30 インターナショナル・ビジネス・マシーンズ・コーポレーション Cable and heat radiator
US6697894B1 (en) 1999-03-29 2004-02-24 Siemens Dematic Postal Automation, L.P. System, apparatus and method for providing maintenance instructions to a user at a remote location
US6574672B1 (en) 1999-03-29 2003-06-03 Siemens Dematic Postal Automation, L.P. System, apparatus and method for providing a portable customizable maintenance support computer communications system
EP1192521A4 (en) * 1999-03-29 2002-08-07 Siemens Electrocom Lp System, apparatus and method for providing a portable customizable maintenance support instruction system
US6356437B1 (en) 1999-03-29 2002-03-12 Siemens Dematic Postal Automation, L.P. System, apparatus and method for providing a portable customizable maintenance support instruction system
US20030124200A1 (en) * 1999-06-22 2003-07-03 Stone Kevin R. Cartilage enhancing food supplements with sucralose and methods of preparing the same
US6470587B1 (en) * 1999-07-09 2002-10-29 Vought Aircraft Industries, Inc. Method and system for part measurement and verification
AU6237800A (en) * 1999-07-26 2001-02-13 Viztec, Inc. Wearable device
KR20010019354A (en) * 1999-08-26 2001-03-15 박성현 Wireless intergrated operation terminal device
JP4168221B2 (en) * 1999-09-06 2008-10-22 株式会社島津製作所 Body-mounted display system
US6527711B1 (en) * 1999-10-18 2003-03-04 Bodymedia, Inc. Wearable human physiological data sensors and reporting system therefor
FI111998B (en) * 1999-12-08 2003-10-15 Nokia Corp User interface
US6899539B1 (en) 2000-02-17 2005-05-31 Exponent, Inc. Infantry wearable information and weapon system
GB0004496D0 (en) 2000-02-26 2000-04-19 Koninkl Philips Electronics Nv Sliding switch
GB0004494D0 (en) 2000-02-26 2000-04-19 Koninkl Philips Electronics Nv Control device for wearable electronics
US6167413A (en) * 2000-03-09 2000-12-26 Daley, Iii; Charles A. Wearable computer apparatus
US6243870B1 (en) * 2000-03-14 2001-06-12 Pod Development, Inc. Personal computer network infrastructure of an article of clothing
US7464153B1 (en) 2000-04-02 2008-12-09 Microsoft Corporation Generating and supplying user context data
AU2001249768A1 (en) 2000-04-02 2001-10-15 Tangis Corporation Soliciting information based on a computer user's context
US7150526B2 (en) 2000-06-02 2006-12-19 Oakley, Inc. Wireless interactive headset
US8482488B2 (en) 2004-12-22 2013-07-09 Oakley, Inc. Data input management system for wearable electronically enabled interface
US6325507B1 (en) 2000-06-02 2001-12-04 Oakley, Inc. Eyewear retention system extending across the top of a wearer's head
US20120105740A1 (en) 2000-06-02 2012-05-03 Oakley, Inc. Eyewear with detachable adjustable electronics module
US7461936B2 (en) 2000-06-02 2008-12-09 Oakley, Inc. Eyeglasses with detachable adjustable electronics module
US7261690B2 (en) 2000-06-16 2007-08-28 Bodymedia, Inc. Apparatus for monitoring health, wellness and fitness
US20060122474A1 (en) * 2000-06-16 2006-06-08 Bodymedia, Inc. Apparatus for monitoring health, wellness and fitness
US6605038B1 (en) 2000-06-16 2003-08-12 Bodymedia, Inc. System for monitoring health, wellness and fitness
US7689437B1 (en) 2000-06-16 2010-03-30 Bodymedia, Inc. System for monitoring health, wellness and fitness
MXPA06002836A (en) 2000-06-16 2006-06-14 Bodymedia Inc System for monitoring and managing body weight and other physiological conditions including iterative and personalized planning, intervention and reporting capability.
MXPA02012643A (en) * 2000-06-23 2004-09-10 Bodymedia Inc System for monitoring health, wellness and fitness.
JP3886898B2 (en) * 2000-06-30 2007-02-28 シャープ株式会社 Display device and display system
US6895261B1 (en) * 2000-07-13 2005-05-17 Thomas R. Palamides Portable, wireless communication apparatus integrated with garment
US20020087265A1 (en) * 2000-07-19 2002-07-04 Thacker William E. Tightly coupled remote location device utilizing flexible circuitry
AU3510801A (en) * 2000-08-17 2002-02-21 Xybernaut Corporation Computer system absent a parallel system bus
US20020054130A1 (en) 2000-10-16 2002-05-09 Abbott Kenneth H. Dynamically displaying current status of tasks
US6443347B1 (en) 2000-10-19 2002-09-03 International Business Machines Corporation Streamlined personal harness for supporting a wearable computer and associated equipment on the body of a user
US6611244B1 (en) * 2000-10-30 2003-08-26 Steven P. W. Guritz Illuminated, decorative led-display wearable safety device with different modes of motion and color
JP2002142331A (en) * 2000-10-31 2002-05-17 Yazaki Corp Flexible circuit body demountable structure
US20070003536A1 (en) * 2000-11-21 2007-01-04 Zimmerman Amy C Topical skin compositions, their preparation, and their use
DE20021064U1 (en) * 2000-12-13 2001-02-22 Imelauer Heinz Transportable data transmission device
GB2370445A (en) * 2000-12-22 2002-06-26 Ubinetics Ltd Electronic module
US6561845B2 (en) * 2000-12-27 2003-05-13 International Business Machines Corporation Distributed connector system for wearable computers
US6359777B1 (en) * 2000-12-27 2002-03-19 Xybernaut Corporation Removable component structure for a mobile computer
US6798391B2 (en) 2001-01-02 2004-09-28 Xybernaut Corporation Wearable computer system
FR2819371B1 (en) * 2001-01-10 2004-04-02 Medialux COMPUTER OR TELEPHONE INTEGRATED IN A GARMENT
CN1528104A (en) * 2001-01-29 2004-09-08 西门子公司 Electroacoustic conversion of audio signals, especially voice signals
US20040201695A1 (en) * 2001-02-15 2004-10-14 Rei Inasaka System for delivering news
US8452259B2 (en) 2001-02-20 2013-05-28 Adidas Ag Modular personal network systems and methods
AU2002255568B8 (en) 2001-02-20 2014-01-09 Adidas Ag Modular personal network systems and methods
US6595929B2 (en) 2001-03-30 2003-07-22 Bodymedia, Inc. System for monitoring health, wellness and fitness having a method and apparatus for improved measurement of heat flow
US6507486B2 (en) 2001-04-10 2003-01-14 Xybernaut Corporation Wearable computer and garment system
JP2004529567A (en) * 2001-04-26 2004-09-24 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ Wearable touch pad device
US7266429B2 (en) * 2001-04-30 2007-09-04 General Electric Company Digitization of field engineering work processes at a gas turbine power plant through the use of portable computing devices operable in an on-site wireless local area network
US6734842B2 (en) * 2001-05-01 2004-05-11 General Electric Company Portable and wearable data entry apparatus
US6552899B2 (en) 2001-05-08 2003-04-22 Xybernaut Corp. Mobile computer
US6563424B1 (en) * 2001-05-22 2003-05-13 Nokia Corporation Smart garment system, method and apparatus involved for integrating electronic devices into garments
US6958905B2 (en) * 2001-06-12 2005-10-25 Xybernaut Corporation Mobile body-supported computer with battery
US7013009B2 (en) 2001-06-21 2006-03-14 Oakley, Inc. Eyeglasses with wireless communication features
US7508946B2 (en) 2001-06-27 2009-03-24 Sony Corporation Integrated circuit device, information processing apparatus, memory management method for information storage device, mobile terminal apparatus, semiconductor integrated circuit device, and communication method using mobile terminal apparatus
US6529372B1 (en) 2001-08-17 2003-03-04 Xybernaut Corp. Wearable computer-battery system
US20030090437A1 (en) * 2001-11-12 2003-05-15 Adams Michael Dewayne Display system
KR20030040822A (en) * 2001-11-16 2003-05-23 김도균 Trousers
KR20030040820A (en) * 2001-11-16 2003-05-23 김도균 Trousers
US20030125110A1 (en) * 2001-12-27 2003-07-03 Lalley Timothy J. Games utilizing electronic display strips and methods of making display strips
WO2003079141A2 (en) * 2002-03-12 2003-09-25 Senseboard, Inc. Data input device
US6970157B2 (en) * 2002-04-23 2005-11-29 Quadtri Technologies, Llc Wearable computing, input, and display device
US7052799B2 (en) * 2002-06-27 2006-05-30 Vocollect, Inc. Wearable terminal with a battery latch mechanism
US6910911B2 (en) * 2002-06-27 2005-06-28 Vocollect, Inc. Break-away electrical connector
BR0312909A (en) 2002-07-26 2005-07-12 Oakley Inc Portable, wireless audio interfaces, audio interface systems, eyeglasses, eyepieces and interactive audio devices and methods of receiving telephone calls, signal handling in a wireless network and menu navigation
US7020508B2 (en) 2002-08-22 2006-03-28 Bodymedia, Inc. Apparatus for detecting human physiological and contextual information
US20040116969A1 (en) 2002-08-26 2004-06-17 Owen James M. Pulse detection using patient physiological signals
US20090177068A1 (en) * 2002-10-09 2009-07-09 Stivoric John M Method and apparatus for providing derived glucose information utilizing physiological and/or contextual parameters
CA2501732C (en) 2002-10-09 2013-07-30 Bodymedia, Inc. Method and apparatus for auto journaling of continuous or discrete body states utilizing physiological and/or contextual parameters
DE10302922A1 (en) * 2003-01-24 2004-07-29 Conti Temic Microelectronic Gmbh Electronic component group e.g. for controls for processing measuring signals and/or for controlling certain functions or components etc., containing printed circuit board
US7307620B2 (en) * 2003-04-19 2007-12-11 Siddeeq Shakoor N One-handed thumb-supported mobile keyboard
US7182738B2 (en) 2003-04-23 2007-02-27 Marctec, Llc Patient monitoring apparatus and method for orthosis and other devices
US7023320B2 (en) 2003-06-26 2006-04-04 Motorola, Inc. System and method for preventing unauthorized use of a device
WO2005001678A2 (en) * 2003-06-30 2005-01-06 Koninklijke Philips Electronics, N.V. A touch sensitive interface
US20040264174A1 (en) * 2003-06-30 2004-12-30 Tetsushiro Tsuchiya Light having a minus-ion generator
US20050108366A1 (en) * 2003-07-02 2005-05-19 International Business Machines Corporation Administering devices with domain state objects
CA2538710A1 (en) * 2003-09-12 2005-03-31 Bodymedia, Inc. Method and apparatus for measuring heart related parameters
WO2005031511A2 (en) * 2003-09-22 2005-04-07 Skryba Llc Portable keyboard
US7265970B2 (en) * 2003-10-01 2007-09-04 Adwalker (Ip) Limited Apparatus
US20050160176A1 (en) * 2004-01-21 2005-07-21 Seales W. B. System and method for remote data processing and storage
CA2560323C (en) * 2004-03-22 2014-01-07 Bodymedia, Inc. Non-invasive temperature monitoring device
GB2415602A (en) * 2004-07-02 2006-01-04 Thales Uk Plc Armour
US20070299325A1 (en) * 2004-08-20 2007-12-27 Brian Farrell Physiological status monitoring system
US7933554B2 (en) * 2004-11-04 2011-04-26 The United States Of America As Represented By The Secretary Of The Army Systems and methods for short range wireless communication
GB2420195A (en) * 2004-11-16 2006-05-17 Carl Leonard Wallin Wearable multifunctional modular computing device
US7257374B1 (en) 2004-12-10 2007-08-14 Cingular Wireless Ii, Llc Automatic security locking method and system for wireless-enabled devices
JP4678199B2 (en) * 2005-02-10 2011-04-27 パナソニック電工株式会社 Electric tool
US20060204675A1 (en) * 2005-03-08 2006-09-14 Eastman Kodak Company Display device with improved flexibility
US20060206011A1 (en) * 2005-03-08 2006-09-14 Higgins Michael S System and method for remote monitoring of multiple healthcare patients
US7532977B2 (en) * 2005-03-30 2009-05-12 Yu-Yu Chen Portable personal positioner
KR100735395B1 (en) * 2005-05-10 2007-07-04 삼성전자주식회사 Routing method for intergrated circuit using printed circuit board
KR100689534B1 (en) * 2005-05-18 2007-03-02 삼성전자주식회사 Mobile phone
US7462035B2 (en) * 2005-07-27 2008-12-09 Physical Optics Corporation Electrical connector configured as a fastening element
US7256347B2 (en) * 2005-12-14 2007-08-14 Sony Ericsson Mobile Communications Ab Cord control and accessories having cord control for use with portable electronic devices
US8417185B2 (en) 2005-12-16 2013-04-09 Vocollect, Inc. Wireless headset and method for robust voice data communication
US8099794B2 (en) 2005-12-19 2012-01-24 Rusl, Llc Body conforming textile holder for electronic device
US7291034B2 (en) * 2005-12-30 2007-11-06 Hon Hai Precision Ind. Co., Ltd. Cable connector assembly with internal printed circuit board
US7885419B2 (en) 2006-02-06 2011-02-08 Vocollect, Inc. Headset terminal with speech functionality
WO2007092532A2 (en) * 2006-02-06 2007-08-16 Portable Media Concepts, Inc. Digital video and music player belt buckles
US7773767B2 (en) * 2006-02-06 2010-08-10 Vocollect, Inc. Headset terminal with rear stability strap
US20070208289A1 (en) * 2006-03-03 2007-09-06 Jay Walther Systems and methods for providing light therapy traction
US20070208396A1 (en) * 2006-03-03 2007-09-06 Gary Whatcott Systems and methods for providing a dynamic light pad
US20070243457A1 (en) * 2006-04-12 2007-10-18 Andres Viduya Electronic device with multiple battery contacts
US20080043416A1 (en) * 2006-08-15 2008-02-21 Shankar Narayan Method and apparatus for hands free wearable computer
US20080119267A1 (en) * 2006-11-10 2008-05-22 Christine Denlay Plastic roll up gaming tablet
EP2095178B1 (en) 2006-12-14 2015-08-12 Oakley, Inc. Wearable high resolution audio visual interface
DE112008000168T5 (en) 2007-01-12 2009-12-03 Kopin Corporation, Taunton Head mounted monocular display
US9217868B2 (en) 2007-01-12 2015-12-22 Kopin Corporation Monocular display device
US20090006457A1 (en) * 2007-02-16 2009-01-01 Stivoric John M Lifeotypes
US7764488B2 (en) * 2007-04-23 2010-07-27 Symbol Technologies, Inc. Wearable component with a memory arrangement
US8855719B2 (en) 2009-05-08 2014-10-07 Kopin Corporation Wireless hands-free computing headset with detachable accessories controllable by motion, body gesture and/or vocal commands
CN101755299A (en) 2007-05-14 2010-06-23 寇平公司 Mobile wireless display for accessing data from a host and method for controlling
US8825468B2 (en) * 2007-07-31 2014-09-02 Kopin Corporation Mobile wireless display providing speech to speech translation and avatar simulating human attributes
US8355671B2 (en) 2008-01-04 2013-01-15 Kopin Corporation Method and apparatus for transporting video signal over Bluetooth wireless interface
US8290638B2 (en) * 2008-02-04 2012-10-16 Lockheed Martin Corporation Apparatus, program product, and methods for updating data on embedded control systems
USD626949S1 (en) 2008-02-20 2010-11-09 Vocollect Healthcare Systems, Inc. Body-worn mobile device
US20090216534A1 (en) * 2008-02-22 2009-08-27 Prakash Somasundaram Voice-activated emergency medical services communication and documentation system
US7643305B2 (en) * 2008-03-07 2010-01-05 Qualcomm Mems Technologies, Inc. System and method of preventing damage to metal traces of flexible printed circuits
US8341762B2 (en) * 2008-03-21 2013-01-01 Alfiero Balzano Safety vest assembly including a high reliability communication system
CN102016975A (en) 2008-03-28 2011-04-13 寇平公司 Handheld wireless display device having high-resolution display suitable for use as a mobile internet device
EP2138965A1 (en) * 2008-06-23 2009-12-30 YDREAMS - Informática, S.A. Integrated system for multichannel monitoring and communication in the management of rescue teams
US9026315B2 (en) 2010-10-13 2015-05-05 Deere & Company Apparatus for machine coordination which maintains line-of-site contact
US8195358B2 (en) 2008-09-11 2012-06-05 Deere & Company Multi-vehicle high integrity perception
US8478493B2 (en) * 2008-09-11 2013-07-02 Deere & Company High integrity perception program
US8392065B2 (en) * 2008-09-11 2013-03-05 Deere & Company Leader-follower semi-autonomous vehicle with operator on side
US20100063652A1 (en) * 2008-09-11 2010-03-11 Noel Wayne Anderson Garment for Use Near Autonomous Machines
US8818567B2 (en) * 2008-09-11 2014-08-26 Deere & Company High integrity perception for machine localization and safeguarding
US8224500B2 (en) 2008-09-11 2012-07-17 Deere & Company Distributed knowledge base program for vehicular localization and work-site management
US9235214B2 (en) * 2008-09-11 2016-01-12 Deere & Company Distributed knowledge base method for vehicular localization and work-site management
US9188980B2 (en) 2008-09-11 2015-11-17 Deere & Company Vehicle with high integrity perception system
US8989972B2 (en) 2008-09-11 2015-03-24 Deere & Company Leader-follower fully-autonomous vehicle with operator on side
JP5287079B2 (en) * 2008-09-22 2013-09-11 オムロンヘルスケア株式会社 Visceral fat measuring device
USD605629S1 (en) 2008-09-29 2009-12-08 Vocollect, Inc. Headset
US8389862B2 (en) 2008-10-07 2013-03-05 Mc10, Inc. Extremely stretchable electronics
EP2349440B1 (en) 2008-10-07 2019-08-21 Mc10, Inc. Catheter balloon having stretchable integrated circuitry and sensor array
US8097926B2 (en) 2008-10-07 2012-01-17 Mc10, Inc. Systems, methods, and devices having stretchable integrated circuitry for sensing and delivering therapy
US9123614B2 (en) 2008-10-07 2015-09-01 Mc10, Inc. Methods and applications of non-planar imaging arrays
US20100105230A1 (en) * 2008-10-23 2010-04-29 Sony Ericsson Mobile Communications Ab Connector
US8386261B2 (en) 2008-11-14 2013-02-26 Vocollect Healthcare Systems, Inc. Training/coaching system for a voice-enabled work environment
US8228666B2 (en) * 2009-03-17 2012-07-24 Timothy Garett Rickard Retrofit control system and power supply for a tattoo gun
EP2427812A4 (en) 2009-05-08 2016-06-08 Kopin Corp Remote control of host application using motion and voice commands
US8160287B2 (en) 2009-05-22 2012-04-17 Vocollect, Inc. Headset with adjustable headband
US8553919B2 (en) * 2009-06-25 2013-10-08 Jerry Leigh Of California, Inc. Garment with built-in audio source wiring
US8107653B2 (en) 2009-06-25 2012-01-31 Jerry Leigh Of California, Inc. Garment with built-in audio source wiring
US8687834B2 (en) * 2009-06-25 2014-04-01 Jerry Leigh Of California, Inc. Garment with built-in audio source wiring
US20120331201A1 (en) * 2009-07-28 2012-12-27 Stephen Albert Rondel Strap-based computing device
US9723122B2 (en) 2009-10-01 2017-08-01 Mc10, Inc. Protective cases with integrated electronics
US8438659B2 (en) 2009-11-05 2013-05-07 Vocollect, Inc. Portable computing device and headset interface
US8665177B2 (en) 2010-02-05 2014-03-04 Kopin Corporation Touch sensor for controlling eyewear
CN102236368A (en) * 2010-04-22 2011-11-09 中国人民解放军总后勤部军需装备研究所 Modular computer for clothing
US9211085B2 (en) 2010-05-03 2015-12-15 Foster-Miller, Inc. Respiration sensing system
US8659397B2 (en) 2010-07-22 2014-02-25 Vocollect, Inc. Method and system for correctly identifying specific RFID tags
US9028404B2 (en) 2010-07-28 2015-05-12 Foster-Miller, Inc. Physiological status monitoring system
USD643400S1 (en) 2010-08-19 2011-08-16 Vocollect Healthcare Systems, Inc. Body-worn mobile device
USD643013S1 (en) 2010-08-20 2011-08-09 Vocollect Healthcare Systems, Inc. Body-worn mobile device
US8736516B2 (en) 2010-09-20 2014-05-27 Kopin Corporation Bluetooth or other wireless interface with power management for head mounted display
US9316827B2 (en) 2010-09-20 2016-04-19 Kopin Corporation LifeBoard—series of home pages for head mounted displays (HMD) that respond to head tracking
US10013976B2 (en) 2010-09-20 2018-07-03 Kopin Corporation Context sensitive overlays in voice controlled headset computer displays
US8706170B2 (en) 2010-09-20 2014-04-22 Kopin Corporation Miniature communications gateway for head mounted display
US9377862B2 (en) 2010-09-20 2016-06-28 Kopin Corporation Searchlight navigation using headtracker to reveal hidden or extra document data
US8862186B2 (en) 2010-09-21 2014-10-14 Kopin Corporation Lapel microphone micro-display system incorporating mobile information access system
US8585606B2 (en) 2010-09-23 2013-11-19 QinetiQ North America, Inc. Physiological status monitoring system
US8896992B2 (en) * 2010-11-17 2014-11-25 Solatido Inc. Wearable computer system
KR20120083804A (en) * 2011-01-18 2012-07-26 주식회사 팬택 Portable terminal transformable into the form of a bracelet
US9237858B2 (en) 2011-02-09 2016-01-19 West Affum Holdings Corp. Detecting loss of full skin contact in patient electrodes
US9317729B2 (en) 2011-02-09 2016-04-19 West Affum Holdings Corp. RFID-based sensing of changed condition
US8687351B2 (en) * 2011-03-31 2014-04-01 Patientsafe Solutions, Inc. Scanning jacket for a handheld device
CN103620527B (en) 2011-05-10 2018-08-17 寇平公司 The Wearing-on-head type computer of presentation of information and remote equipment is controlled using action and voice command
EP2712491B1 (en) 2011-05-27 2019-12-04 Mc10, Inc. Flexible electronic structure
JP6320920B2 (en) 2011-08-05 2018-05-09 エムシーテン、インコーポレイテッド Balloon catheter device and sensing method using sensing element
WO2013058716A1 (en) * 2011-10-21 2013-04-25 National University Of Singapore An array of elements forming a human-computer interface device
US9864211B2 (en) 2012-02-17 2018-01-09 Oakley, Inc. Systems and methods for removably coupling an electronic device to eyewear
US8929954B2 (en) 2012-04-25 2015-01-06 Kopin Corporation Headset computer (HSC) as auxiliary display with ASR and HT input
US9442290B2 (en) 2012-05-10 2016-09-13 Kopin Corporation Headset computer operation using vehicle sensor feedback for remote control vehicle
US9378028B2 (en) 2012-05-31 2016-06-28 Kopin Corporation Headset computer (HSC) with docking station and dual personality
US9226402B2 (en) 2012-06-11 2015-12-29 Mc10, Inc. Strain isolation structures for stretchable electronics
US9042596B2 (en) 2012-06-14 2015-05-26 Medibotics Llc Willpower watch (TM)—a wearable food consumption monitor
US9536449B2 (en) 2013-05-23 2017-01-03 Medibotics Llc Smart watch and food utensil for monitoring food consumption
US9254099B2 (en) 2013-05-23 2016-02-09 Medibotics Llc Smart watch and food-imaging member for monitoring food consumption
US9442100B2 (en) 2013-12-18 2016-09-13 Medibotics Llc Caloric intake measuring system using spectroscopic and 3D imaging analysis
US10314492B2 (en) 2013-05-23 2019-06-11 Medibotics Llc Wearable spectroscopic sensor to measure food consumption based on interaction between light and the human body
US9295842B2 (en) 2012-07-05 2016-03-29 Mc10, Inc. Catheter or guidewire device including flow sensing and use thereof
KR20150031324A (en) 2012-07-05 2015-03-23 엠씨10, 인크 Catheter device including flow sensing
US8838235B2 (en) 2012-08-10 2014-09-16 Physio-Control. Inc. Wearable defibrillator system communicating via mobile communication device
US10155110B2 (en) 2012-08-10 2018-12-18 West Affum Holdings Corp. Controlling functions of wearable cardiac defibrillation system
US8945328B2 (en) 2012-09-11 2015-02-03 L.I.F.E. Corporation S.A. Methods of making garments having stretchable and conductive ink
US10462898B2 (en) 2012-09-11 2019-10-29 L.I.F.E. Corporation S.A. Physiological monitoring garments
US8948839B1 (en) 2013-08-06 2015-02-03 L.I.F.E. Corporation S.A. Compression garments having stretchable and conductive ink
US10159440B2 (en) 2014-03-10 2018-12-25 L.I.F.E. Corporation S.A. Physiological monitoring garments
US11246213B2 (en) 2012-09-11 2022-02-08 L.I.F.E. Corporation S.A. Physiological monitoring garments
US9817440B2 (en) 2012-09-11 2017-11-14 L.I.F.E. Corporation S.A. Garments having stretchable and conductive ink
US9282893B2 (en) 2012-09-11 2016-03-15 L.I.F.E. Corporation S.A. Wearable communication platform
US10201310B2 (en) 2012-09-11 2019-02-12 L.I.F.E. Corporation S.A. Calibration packaging apparatuses for physiological monitoring garments
US9155903B2 (en) 2012-09-24 2015-10-13 West Affum Holdings Corp. Wearable cardiac defibrillator receiving inputs by being deliberately tapped and methods
WO2014058473A1 (en) 2012-10-09 2014-04-17 Mc10, Inc. Conformal electronics integrated with apparel
US9171794B2 (en) 2012-10-09 2015-10-27 Mc10, Inc. Embedding thin chips in polymer
US9604070B2 (en) 2012-10-10 2017-03-28 West Affum Holdings Corp. External defibrillation with automatic post-shock anti-tachycardia (APSAT) pacing
US9087402B2 (en) 2013-03-13 2015-07-21 Microsoft Technology Licensing, Llc Augmenting images with higher resolution data
USD713406S1 (en) 2012-11-30 2014-09-16 Kopin Corporation Headset computer with reversible display
EP2743786B1 (en) * 2012-12-17 2018-10-31 The Swatch Group Research and Development Ltd. Portable electronic device and method for manufacturing such a device
US9160064B2 (en) 2012-12-28 2015-10-13 Kopin Corporation Spatially diverse antennas for a headset computer
US9134793B2 (en) 2013-01-04 2015-09-15 Kopin Corporation Headset computer with head tracking input used for inertial control
CN105009202B (en) 2013-01-04 2019-05-07 寇平公司 It is divided into two-part speech recognition
US9332580B2 (en) 2013-01-04 2016-05-03 Kopin Corporation Methods and apparatus for forming ad-hoc networks among headset computers sharing an identifier
US9895548B2 (en) 2013-01-23 2018-02-20 West Affum Holdings Corp. Wearable cardiac defibrillator (WCD) system controlling conductive fluid deployment per impedance settling at terminal value
US9345898B2 (en) 2013-01-23 2016-05-24 West Affum Holdings Corp. Wearable cardiac defibrillator system controlling conductive fluid deployment
US9301085B2 (en) 2013-02-20 2016-03-29 Kopin Corporation Computer headset with detachable 4G radio
US9592403B2 (en) 2013-02-25 2017-03-14 West Affum Holdings Corp. Wearable cardioverter defibrillator (WCD) system making shock/no shock determinations from multiple patient parameters
US10543377B2 (en) 2013-02-25 2020-01-28 West Affum Holdings Corp. Wearable cardioverter defibrillator (WCD) system making shock/no shock determinations by aggregating aspects of patient parameters
US10500403B2 (en) 2013-02-25 2019-12-10 West Affum Holdings Corp. WCD system validating detected cardiac arrhythmias thoroughly so as to not sound loudly due to some quickly self-terminating cardiac arrhythmias
US20150328472A1 (en) 2014-05-13 2015-11-19 Physio-Control, Inc. Wearable cardioverter defibrillator components discarding ecg signals prior to making shock/no shock determination
US9757579B2 (en) 2013-02-25 2017-09-12 West Affum Holdings Corp. Wearable cardioverter defibrillator (WCD) system informing patient that it is validating just-detected cardiac arrhythmia
WO2014149631A2 (en) 2013-03-15 2014-09-25 Oakley, Inc. Electronic ornamentation for eyewear
US20140288676A1 (en) * 2013-03-18 2014-09-25 Sivatharan Natkunanathan Computer, phone, and mobile communication, and production, of touch
US10016613B2 (en) 2013-04-02 2018-07-10 West Affum Holdings Corp. Wearable cardiac defibrillator system long-term monitoring alternating patient parameters other than ECG
US9827431B2 (en) 2013-04-02 2017-11-28 West Affum Holdings Corp. Wearable defibrillator with no long-term ECG monitoring
US9706647B2 (en) 2013-05-14 2017-07-11 Mc10, Inc. Conformal electronics including nested serpentine interconnects
US9529385B2 (en) 2013-05-23 2016-12-27 Medibotics Llc Smart watch and human-to-computer interface for monitoring food consumption
CN205691887U (en) 2013-06-12 2016-11-16 奥克利有限公司 Modular communication system and glasses communication system
US8976965B2 (en) 2013-07-30 2015-03-10 Google Inc. Mobile computing device and wearable computing device having automatic access mode control
JP2016527649A (en) 2013-08-05 2016-09-08 エムシー10 インコーポレイテッドMc10,Inc. Flexible temperature sensor including compatible electronics
CN105705093A (en) 2013-10-07 2016-06-22 Mc10股份有限公司 Conformal sensor systems for sensing and analysis
US9986655B1 (en) * 2013-11-13 2018-05-29 VCE IP Holding Company LLC Converged infrastructure strap
WO2015077559A1 (en) 2013-11-22 2015-05-28 Mc10, Inc. Conformal sensor systems for sensing and analysis of cardiac activity
ES2699674T3 (en) 2014-01-06 2019-02-12 Systems and methods to automatically determine the fit of a garment
KR102396850B1 (en) 2014-01-06 2022-05-11 메디데이타 솔루션즈, 인코포레이티드 Encapsulated conformal electronic systems and devices, and methods of making and using the same
CA3027407A1 (en) 2014-02-18 2015-08-27 Merge Labs, Inc. Head mounted display goggles for use with mobile computing devices
US10485118B2 (en) 2014-03-04 2019-11-19 Mc10, Inc. Multi-part flexible encapsulation housing for electronic devices and methods of making the same
US9757576B2 (en) 2014-03-18 2017-09-12 West Affum Holdings Corp. Reliable readiness indication for a wearable defibrillator
US9352166B2 (en) 2014-03-19 2016-05-31 West Affum Holdings Corp. Wearable cardiac defibrillator system sounding to bystanders in patient's own voice
US9393437B2 (en) 2014-04-02 2016-07-19 West Affum Holdings Corp. Pressure resistant conductive fluid containment
US9402988B2 (en) 2014-05-06 2016-08-02 West Affum Holdings Corp. Wearable medical system with stretch-cable assembly
US10449370B2 (en) 2014-05-13 2019-10-22 West Affum Holdings Corp. Network-accessible data about patient with wearable cardiac defibrillator system
USD764670S1 (en) 2014-12-22 2016-08-23 West Affum Holdings Corp. Portable defibrillator
US9899330B2 (en) 2014-10-03 2018-02-20 Mc10, Inc. Flexible electronic circuits with embedded integrated circuit die
US10297572B2 (en) 2014-10-06 2019-05-21 Mc10, Inc. Discrete flexible interconnects for modules of integrated circuits
USD781270S1 (en) 2014-10-15 2017-03-14 Mc10, Inc. Electronic device having antenna
US11540762B2 (en) 2014-10-30 2023-01-03 West Affum Holdings Dac Wearable cardioverter defibrtillator with improved ECG electrodes
US9833607B2 (en) 2014-10-30 2017-12-05 West Affum Holdings Corp. Wearable cardiac defibrillation system with flexible electrodes
US9720376B2 (en) 2014-11-18 2017-08-01 Sony Corporation Band type electronic device and substrate arrangement method
WO2016080182A1 (en) * 2014-11-18 2016-05-26 ソニー株式会社 Wearable device
US9775041B2 (en) * 2014-12-12 2017-09-26 9S Llc System and method for tethering to a mobile communication device
US10477354B2 (en) 2015-02-20 2019-11-12 Mc10, Inc. Automated detection and configuration of wearable devices based on on-body status, location, and/or orientation
CN104615206B (en) * 2015-02-27 2018-09-14 京东方科技集团股份有限公司 A kind of Wearable
US10398343B2 (en) 2015-03-02 2019-09-03 Mc10, Inc. Perspiration sensor
US9901741B2 (en) 2015-05-11 2018-02-27 Physio-Control, Inc. Wearable cardioverter defibrillator (WCD) system using sensor modules with reassurance code for confirmation before shock
US10079793B2 (en) 2015-07-09 2018-09-18 Waveworks Inc. Wireless charging smart-gem jewelry system and associated cloud server
US10653332B2 (en) 2015-07-17 2020-05-19 Mc10, Inc. Conductive stiffener, method of making a conductive stiffener, and conductive adhesive and encapsulation layers
JP6937299B2 (en) 2015-07-20 2021-09-22 エル.アイ.エフ.イー. コーポレーション エス.エー.L.I.F.E. Corporation S.A. Flexible woven ribbon connector for clothing with sensors and electronics
WO2017031129A1 (en) 2015-08-19 2017-02-23 Mc10, Inc. Wearable heat flux devices and methods of use
US10398377B2 (en) * 2015-09-04 2019-09-03 Japan Science And Technology Agency Connector substrate, sensor system, and wearable sensor system
EP4079383A3 (en) 2015-10-01 2023-02-22 Medidata Solutions, Inc. Method and system for interacting with a virtual environment
EP3359031A4 (en) 2015-10-05 2019-05-22 Mc10, Inc. Method and system for neuromodulation and stimulation
US10105547B2 (en) 2015-11-02 2018-10-23 West Affum Holdings Corp. Wearable cardioverter defibrillator (WCD) causing patient's QRS width to be plotted against the heart rate
US10179246B2 (en) 2015-12-04 2019-01-15 West Affum Holdings Corp. Wearable cardioverter defibrillator (WCD) system using security NFC tag for uploading configuration data
US10322291B2 (en) 2015-12-04 2019-06-18 West Affum Holdings Corp. Wearable cardioverter defibrillator (WCD) system with isolated patient parameter component
TWM522387U (en) * 2016-02-04 2016-05-21 廣達電腦股份有限公司 Wearable electronic device
US9810422B2 (en) * 2016-02-04 2017-11-07 Dell Products L.P. Floating apparatus for fixing membrane cable for fan module lighting
US10277386B2 (en) 2016-02-22 2019-04-30 Mc10, Inc. System, devices, and method for on-body data and power transmission
CN108781313B (en) 2016-02-22 2022-04-08 美谛达解决方案公司 System, apparatus and method for a coupled hub and sensor node to obtain sensor information on-body
WO2017164727A1 (en) * 2016-03-22 2017-09-28 Motorola Solutions, Inc. Portable, wearable radio comprising a modular harness
EP3445230B1 (en) 2016-04-19 2024-03-13 Medidata Solutions, Inc. Method and system for measuring perspiration
US20170363934A1 (en) * 2016-06-16 2017-12-21 Debra Stack Instant photo system
CN109640820A (en) 2016-07-01 2019-04-16 立芙公司 The living things feature recognition carried out by the clothes with multiple sensors
CN107635427A (en) * 2016-07-19 2018-01-26 深圳市柔宇科技有限公司 Flexible apparatus
US10447347B2 (en) 2016-08-12 2019-10-15 Mc10, Inc. Wireless charger and high speed data off-loader
DE102016215132A1 (en) * 2016-08-15 2018-02-15 Robert Bosch Gmbh connector
US11077310B1 (en) 2016-10-04 2021-08-03 West Affum Holdings Corp. Wearable cardioverter defibrillator (WCD) system detecting QRS complexes in ECG signal by matched difference filter
US10940323B2 (en) 2016-10-04 2021-03-09 West Affum Holdings Corp. Wearable cardioverter defibrillator (WCD) with power-saving function
US10198029B2 (en) 2016-11-03 2019-02-05 Smolding Bv Wearable computer case and wearable computer
US11052241B2 (en) 2016-11-03 2021-07-06 West Affum Holdings Corp. Wearable cardioverter defibrillator (WCD) system measuring patient's respiration
US11938333B2 (en) 2017-01-05 2024-03-26 West Affum Holdings Dac Detecting walking in a wearable cardioverter defibrillator system
US11400303B2 (en) 2018-01-05 2022-08-02 West Affum Holdings Corp. Detecting walking in a wearable cardioverter defibrillator system
US11083906B2 (en) 2017-01-05 2021-08-10 West Affum Holdings Corp. Wearable cardioverter defibrillator having adjustable alarm time
US11154230B2 (en) 2017-01-05 2021-10-26 West Affum Holdings Corp. Wearable cardioverter defibrillator having reduced noise prompts
US10926080B2 (en) 2017-01-07 2021-02-23 West Affum Holdings Corp. Wearable cardioverter defibrillator with breast support
US11235143B2 (en) 2017-02-03 2022-02-01 West Affum Holdings Corp. Wearable cardiac defibrillator systems and methods and software for contacting non-witnessing responders
US10967193B2 (en) 2017-02-03 2021-04-06 West Affum Holdings Corp. WCD with pacing analgesia
CN206863338U (en) * 2017-02-24 2018-01-09 深圳市大疆创新科技有限公司 Video eyeglasses headband and video eyeglasses
US10960220B2 (en) 2017-03-16 2021-03-30 West Affum Holdings Corp. Wearable cardioverter defibrillator (WCD) system evaluating its ECG signals for noise according to tall peak counts
US10589109B2 (en) 2017-04-10 2020-03-17 West Affum Holdings Corp. Wearable cardioverter defibrillator (WCD) system computing patient heart rate by multiplying ECG signals from different channels
US10940324B2 (en) 2017-05-03 2021-03-09 West Affum Holdings Corp. Wearable cardioverter defibrillator (WCD) system computing heart rate from noisy ECG signal
US10946207B2 (en) 2017-05-27 2021-03-16 West Affum Holdings Corp. Defibrillation waveforms for a wearable cardiac defibrillator
WO2019017946A1 (en) * 2017-07-20 2019-01-24 Hewlett-Packard Development Company, L.P. Retaining apparatuses comprising connectors
US10737104B2 (en) 2017-07-28 2020-08-11 West Affum Holdings Corp. WCD system outputting human-visible indication and proximate programming device with screen reproducing the human-visible indication in real time
US11103717B2 (en) 2017-07-28 2021-08-31 West Affum Holdings Corp. Wearable cardioverter defibrillator (WCD) system reacting to high-frequency ECG noise
US11364387B2 (en) 2017-07-28 2022-06-21 West Affum Holdings Corp. Heart rate calculator with reduced overcounting
US10918879B2 (en) 2017-07-28 2021-02-16 West Affum Holdings Corp. Wearable cardioverter defibrillator (WCD) system reacting to high-amplitude ECG noise
US10061352B1 (en) * 2017-08-14 2018-08-28 Oculus Vr, Llc Distributed augmented reality system
US11763665B2 (en) * 2017-09-11 2023-09-19 Muralidharan Gopalakrishnan Non-invasive multifunctional telemetry apparatus and real-time system for monitoring clinical signals and health parameters
US11207538B2 (en) 2017-09-12 2021-12-28 West Affum Holdings Corp. Wearable cardioverter defibrillator (WCD) system warning ambulatory patient by weak alerting shock
US10264678B1 (en) 2017-10-03 2019-04-16 Rfmicron, Inc. Integrated and flexible battery securing apparatus
US11844954B2 (en) 2017-11-09 2023-12-19 West Affum Holdings Dac WCD monitor supporting serviceability and reprocessing
US11260237B1 (en) 2017-11-09 2022-03-01 West Affum Holdings Corp. Wearable defibrillator with output stage having diverting resistance
US11065463B2 (en) 2017-11-10 2021-07-20 West Affum Holdings Corp. Wearable cardioverter defibrillator (WCD) system having WCD mode and also AED mode
US11058885B2 (en) 2017-11-29 2021-07-13 West Affum Holdings Corp. Wearable cardioverter defibrillator (WCD) system detecting ventricular tachycardia and/or ventricular fibrillation using variable heart rate decision threshold
US11278730B2 (en) 2017-12-04 2022-03-22 West Affum Holdings Corp. Wearable cardioverter defibrillator (WCD) system making shock/no shock determinations from patient's rotational motion
US11188122B2 (en) 2017-12-21 2021-11-30 Datalogic Usa Inc. Low-profile wearable scanning device
KR102607016B1 (en) * 2018-01-31 2023-11-29 삼성메디슨 주식회사 Ultrasonic probe
US11865354B1 (en) 2018-02-14 2024-01-09 West Affum Holdings Dac Methods and systems for distinguishing VT from VF
US11160990B1 (en) 2018-02-14 2021-11-02 West Affum Holdings Corp. Wearable cardioverter defibrillator (WCD) alarms
US11471693B1 (en) 2018-02-14 2022-10-18 West Affum Holdings Dac Wearable cardioverter defibrillator (WCD) system choosing to consider ECG signals from different channels per QRS complex widths of the ECG signals
US11724116B2 (en) 2018-02-15 2023-08-15 West Affum Holdings Dac Wearable cardioverter defibrillator latching connector
US20190247671A1 (en) 2018-02-15 2019-08-15 West Affum Holdings Corp. Wearable cardioverter defibrillator latching connector
US11040214B2 (en) 2018-03-01 2021-06-22 West Affum Holdings Corp. Wearable cardioverter defibrillator (WCD) system having main UI that conveys message and peripheral device that amplifies the message
DE102018105578B4 (en) * 2018-03-12 2020-06-04 Workaround Gmbh Garment and portable computer system with a garment
US11000691B2 (en) 2018-04-24 2021-05-11 West Affum Holdings Corp. Substantially-median-based determination of long-term heart rates from ECG data of wearable cardioverter defibrillator (WCD) system
US11298556B2 (en) 2018-04-25 2022-04-12 West Affum Holdings Corp. WCD user interface response to a change in device orientation
US11331508B1 (en) 2018-04-25 2022-05-17 West Affum Holdings Corp. Wearable cardioverter defibrillator with a non-invasive blood pressure monitor
US11260238B2 (en) 2018-04-26 2022-03-01 West Affum Holdings Corp. Wearable medical device (WMD) implementing adaptive techniques to save power
US11058884B2 (en) 2018-04-26 2021-07-13 West Affum Holding Corp Wearable medical (WM) system monitoring ECG signal of ambulatory patient for heart condition
US11324960B2 (en) 2018-04-26 2022-05-10 West Affum Holdings Corp. Permission-based control of interfacing components with a medical device
US11534615B2 (en) 2018-04-26 2022-12-27 West Affum Holdings Dac Wearable Cardioverter Defibrillator (WCD) system logging events and broadcasting state changes and system status information to external clients
US11198015B2 (en) 2018-04-26 2021-12-14 West Affum Holdings Corp. Multi-sensory alarm for a wearable cardiac defibrillator
US11833360B2 (en) 2018-05-29 2023-12-05 West Affum Holdings Dac Carry pack for a wearable cardioverter defibrillator
US11247041B2 (en) 2018-08-10 2022-02-15 West Affum Holdings Corp. Wearable cardioverter defibrillator (WCD) with ECG preamp having active input capacitance balancing
US11334826B2 (en) 2019-01-18 2022-05-17 West Affum Holdings Corp. WCD system prioritization of alerts based on severity and/or required timeliness of user response
US11063378B2 (en) 2019-03-07 2021-07-13 West Affum Holdings Corp. Printed circuit board cable clip for signal sensitive applications
US11191971B2 (en) 2019-03-07 2021-12-07 West Affum Holdings Corp. Wearable cardioverter defibrillator (WCD) system with active ECG cable shielding
CN109874279A (en) * 2019-03-29 2019-06-11 联想(北京)有限公司 Electronic equipment
US11672996B2 (en) 2019-06-24 2023-06-13 West Affum Holdings Dac Wearable cardioverter defibrillator with AI-based features
US11793440B2 (en) 2019-08-09 2023-10-24 West Affum Holdings Dac Method to detect noise in a wearable cardioverter defibrillator
US10957453B2 (en) 2019-08-15 2021-03-23 West Affum Holdings Corp. WCD system alert issuance and resolution
US11484271B2 (en) 2019-08-20 2022-11-01 West Affum Holdings Dac Alert presentation based on ancillary device conditions
US11771360B2 (en) 2019-08-22 2023-10-03 West Affum Holdings Dac Cardiac monitoring system with normally conducted QRS complex identification
US11730418B2 (en) 2019-08-22 2023-08-22 West Affum Holdings Dac Cardiac monitoring system with supraventricular tachycardia (SVT) classifications
US11344718B2 (en) 2019-12-12 2022-05-31 West Affum Holdings Corp. Multichannel posture dependent template based rhythm discrimination in a wearable cardioverter defibrillator
US11717687B2 (en) 2020-01-06 2023-08-08 West Affum Holdings Dac Asystole and complete heart block detection
US20210204951A1 (en) * 2020-01-08 2021-07-08 Covidien Lp Surgical apparatus
CN111240414B (en) * 2020-01-23 2021-03-09 福州贝园网络科技有限公司 Glasses waistband type computer device
US11904176B1 (en) 2020-01-27 2024-02-20 West Affum Holdings Dac Wearable defibrillator system forwarding patient information based on recipient profile and/or event type
US11679253B2 (en) 2020-02-16 2023-06-20 West Affum Holdings Dac Wearable medical device with integrated blood oxygen saturation level device
US11819704B2 (en) 2020-08-21 2023-11-21 West Affum Holdings Dac Positive system alerts
US11819703B2 (en) 2020-09-17 2023-11-21 West Affum Holdings Dac Electrocardiogram (ECG) electrode with deposited ink resistive element
US11698385B2 (en) 2020-11-11 2023-07-11 West Affum Holdings Dac Walking intensity detection and trending in a wearable cardioverter defibrillator
US11793469B2 (en) 2020-11-17 2023-10-24 West Affum Holdings Dac Identifying reliable vectors
US11950174B2 (en) 2020-12-02 2024-04-02 West Affum Holdings Dac Detailed alarm messages and support
US11730968B2 (en) 2020-12-14 2023-08-22 West Affum Holdings Dac Wearable medical device with temperature managed electrodes
US11712573B2 (en) 2020-12-16 2023-08-01 West Affum Holdings Dac Managing alerts in a WCD system

Family Cites Families (79)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2156504A (en) * 1938-07-19 1939-05-02 Bess S Liss Acoustic device supporter
US3588359A (en) * 1968-12-11 1971-06-28 Nasa Protective suit having an audio transceiver
US3744025A (en) * 1971-02-25 1973-07-03 I Bilgutay Optical character reading system and bar code font therefor
US3876863A (en) * 1973-02-12 1975-04-08 Jack M Boone Inventory taking utilizing tone generation
US4104728A (en) * 1973-06-06 1978-08-01 Sharp Kabushiki Kaisha Electronic apparatus equipped on a flexible substratum
US3956740A (en) * 1974-11-29 1976-05-11 Telxon Corporation Portable data entry apparatus
US4096577A (en) * 1975-03-03 1978-06-20 Ferber Leon A Thin flexible electronic calculator
US4087864A (en) * 1976-12-30 1978-05-09 Larry D. LaBove Dispensing vest for patients receiving hyperalimentation treatment
JPS53132245A (en) * 1977-04-25 1978-11-17 Hitachi Ltd Subminiature computer
US4254451A (en) * 1978-10-27 1981-03-03 Cochran James A Jun Sequential flashing device for personal ornamentation
JPS5674765A (en) * 1979-11-21 1981-06-20 Canon Inc Wrist watch type calculator
FR2494465B1 (en) * 1980-11-14 1987-02-13 Epd Engineering Projectdevelop POCKET COMPUTER
US4633881A (en) * 1982-07-01 1987-01-06 The General Hospital Corporation Ambulatory ventricular function monitor
US4533188A (en) * 1983-02-15 1985-08-06 Motorola, Inc. Header and housing assembly for electronic circuit modules
US4607156A (en) * 1984-03-26 1986-08-19 Symbol Technologies, Inc. Shock-resistant support structure for use in portable laser scanning heads
JPS60204056A (en) * 1984-03-27 1985-10-15 Citizen Watch Co Ltd Wrist information apparatus
GB2173349B (en) * 1985-03-29 1988-12-07 Gec Avionics Electric circuit module arrangement
NL8502959A (en) * 1985-08-26 1987-03-16 Lely Nv C Van Der ELECTRONIC DEVICE RESPONDING TO SOUND.
US5220488A (en) * 1985-09-04 1993-06-15 Ufe Incorporated Injection molded printed circuits
US4949224A (en) * 1985-09-20 1990-08-14 Sharp Kabushiki Kaisha Structure for mounting a semiconductor device
US4690653A (en) * 1985-10-03 1987-09-01 Mel Goldberg Noise making mask
US5007427A (en) * 1987-05-07 1991-04-16 Capintec, Inc. Ambulatory physiological evaluation system including cardiac monitoring
US4756940A (en) * 1986-03-25 1988-07-12 Tektronix, Inc. Flexible circuit strain relief
US4885430A (en) * 1986-05-29 1989-12-05 Hewlett-Packard Company Flexible printed circuit assembly with torsionly rotated conductors
EP0251643A3 (en) * 1986-06-25 1988-03-23 CUFFE, Michael Arm-rest keyboard
GB8619187D0 (en) * 1986-08-06 1986-09-17 Control Systems Ltd Ticket issuing machines
DE3783315T2 (en) * 1986-10-24 1993-05-13 Sumitomo Electric Industries DEVICE FOR SCANING AN OPTICAL CODE.
US4719462A (en) * 1986-11-17 1988-01-12 Hawkins David E Radar detection helmet
US4858071A (en) * 1987-02-24 1989-08-15 Nissan Motor Co., Ltd. Electronic circuit apparatus
WO1988007659A1 (en) * 1987-03-24 1988-10-06 Vpl Research, Inc. Motion sensor
US4825471A (en) * 1987-06-29 1989-05-02 Oliver Jennings Garment useful for listening to audio signals
US4768971A (en) * 1987-07-02 1988-09-06 Rogers Corporation Connector arrangement
US5003300A (en) * 1987-07-27 1991-03-26 Reflection Technology, Inc. Head mounted display for miniature video display system
JPS6466990A (en) * 1987-09-08 1989-03-13 Furukawa Electric Co Ltd Molded circuit board
US4899039A (en) * 1988-02-11 1990-02-06 Loral Electro-Optical Systems Inc. Photodetector array for soft hat mounting using a loop antenna
US5078134A (en) * 1988-04-25 1992-01-07 Lifecor, Inc. Portable device for sensing cardiac function and automatically delivering electrical therapy
US5144120A (en) * 1988-05-11 1992-09-01 Symbol Technologies, Inc. Mirrorless scanners with movable laser, optical and sensor components
US4827534A (en) * 1988-05-26 1989-05-09 Haugen Alvin E Sun-powered vest
US4916441A (en) * 1988-09-19 1990-04-10 Clinicom Incorporated Portable handheld terminal
JP2548348B2 (en) * 1988-12-27 1996-10-30 松下電器産業株式会社 Portable computer case
US5305181A (en) * 1989-05-15 1994-04-19 Norand Corporation Arm or wrist mounted terminal with a flexible housing
US5105067A (en) * 1989-09-08 1992-04-14 Environwear, Inc. Electronic control system and method for cold weather garment
US5267181A (en) * 1989-11-03 1993-11-30 Handykey Corporation Cybernetic interface for a computer that uses a hand held chord keyboard
US5024360A (en) * 1990-01-05 1991-06-18 Norton Rodriguez Vest or like article of clothing for carrying rechargeable batteries
US5170326A (en) * 1990-02-05 1992-12-08 Motorola, Inc. Electronic module assembly
US5029260A (en) * 1990-03-19 1991-07-02 The Board Of Supervisors Of Louisiana State University Keyboard having convex curved surface
US5123850A (en) * 1990-04-06 1992-06-23 Texas Instruments Incorporated Non-destructive burn-in test socket for integrated circuit die
US5035242A (en) * 1990-04-16 1991-07-30 David Franklin Method and apparatus for sound responsive tactile stimulation of deaf individuals
US5272324A (en) * 1990-08-10 1993-12-21 Interlink Technologies, Inc. Portable scanner system with transceiver for two-way radio frequency communication
US5181181A (en) * 1990-09-27 1993-01-19 Triton Technologies, Inc. Computer apparatus input device for three-dimensional information
US5051366A (en) * 1990-10-01 1991-09-24 International Business Machines Corporation Electrical connector
US5067907A (en) * 1990-10-12 1991-11-26 Shotey Michael J Cover and sheath for electrical outlets
JP2700837B2 (en) * 1990-10-19 1998-01-21 株式会社 グラフィコ Board connection device for radiation type parallel system bus
KR930005874Y1 (en) * 1991-01-31 1993-09-01 삼성전자 주식회사 Compressor
US5208449A (en) * 1991-09-09 1993-05-04 Psc, Inc. Portable transaction terminal
CA2089435C (en) * 1992-02-14 1997-12-09 Kenzi Kobayashi Semiconductor device
US5158039A (en) * 1992-03-18 1992-10-27 Clark Brian L Electrically chargeable garment
US5305244B2 (en) * 1992-04-06 1997-09-23 Computer Products & Services I Hands-free user-supported portable computer
US5285398A (en) * 1992-05-15 1994-02-08 Mobila Technology Inc. Flexible wearable computer
US5491651A (en) * 1992-05-15 1996-02-13 Key, Idea Development Flexible wearable computer
EP0648404B1 (en) * 1992-06-29 1998-11-25 Elonex Technologies, Inc. Modular notebook computer
US5261593A (en) * 1992-08-19 1993-11-16 Sheldahl, Inc. Direct application of unpackaged integrated circuit to flexible printed circuit
US5329106A (en) * 1992-10-02 1994-07-12 Psc, Inc. Handle-less bar code scanning system
US5402077A (en) * 1992-11-20 1995-03-28 Micromodule Systems, Inc. Bare die carrier
CA2120468A1 (en) * 1993-04-05 1994-10-06 Kenneth Alan Salisbury Electronic module containing an internally ribbed, integral heat sink and bonded, flexible printed wiring board with two-sided component population
JP3212177B2 (en) * 1993-04-13 2001-09-25 オリンパス光学工業株式会社 Flexible printed circuit board connection structure
US5306162A (en) * 1993-04-14 1994-04-26 Compaq Computer Corporation Clamp connector apparatus for removably coupling a flexible ribbon cable to a printed circuit board
US5422514A (en) * 1993-05-11 1995-06-06 Micromodule Systems, Inc. Packaging and interconnect system for integrated circuits
US5416310A (en) * 1993-05-28 1995-05-16 Symbol Technologies, Inc. Computer and/or scanner system incorporated into a garment
US5373421A (en) * 1993-06-02 1994-12-13 Digital Equipment Corporation Fiber optic transceiver mounting bracket
US5416730A (en) * 1993-11-19 1995-05-16 Appcon Technologies, Inc. Arm mounted computer
US5555490A (en) * 1993-12-13 1996-09-10 Key Idea Development, L.L.C. Wearable personal computer system
WO1996007143A1 (en) * 1994-08-30 1996-03-07 Micromodule Systems Dual-microprocessor module having two microprocessors each capable of operating in independent mode and cooperative mode
WO1996007924A1 (en) * 1994-09-09 1996-03-14 Micromodule Systems Membrane probing of circuits
EP0779987A4 (en) * 1994-09-09 1998-01-07 Micromodule Systems Inc Membrane probing of circuits
US5719743A (en) * 1996-08-15 1998-02-17 Xybernaut Corporation Torso worn computer which can stand alone
US5774338A (en) * 1996-09-20 1998-06-30 Mcdonnell Douglas Corporation Body integral electronics packaging
US5764164A (en) * 1997-02-07 1998-06-09 Reality Quest Corp. Ergonomic hand-attachable controller
US5931764A (en) * 1998-06-24 1999-08-03 Viztec, Inc. Wearable device with flexible display

Also Published As

Publication number Publication date
EP0748473A1 (en) 1996-12-18
US6108197A (en) 2000-08-22
WO1995021408A1 (en) 1995-08-10
US5491651A (en) 1996-02-13
EP0748473A4 (en) 1997-06-04
US5581492A (en) 1996-12-03
JPH10502468A (en) 1998-03-03
US5798907A (en) 1998-08-25

Similar Documents

Publication Publication Date Title
CA2182799A1 (en) Flexible wearable computer
AU665164B2 (en) Flexible wearable computer
AU717584B1 (en) Modular wearable computer
US5774338A (en) Body integral electronics packaging
US6249427B1 (en) Wearable computer packaging configurations
KR20040000426A (en) Electronic computing device
US5719743A (en) Torso worn computer which can stand alone
CA2270415C (en) Flexible wearable computer system
US20080248838A1 (en) Watch-like cell phone
CN110083200A (en) Wearable device
JP2003076441A (en) Wearable computer system
WO2019059968A1 (en) Vertically stacking circuit board connectors
EP1267250A2 (en) A mobile body-supported computer
US20050078467A1 (en) Power distribution system
AU695631B2 (en) Flexible wearable computer
CN203933612U (en) Intelligence wearing equipment
WO1999048082A1 (en) Wireless, wearable network computer system
JP2000155639A (en) Keyboard device
WO2001044954A9 (en) Flexible wearable computer system

Legal Events

Date Code Title Description
FZDE Discontinued