CA2182905C - Procede d'alignement de macromolecules par passage d'un menisque et applications - Google Patents

Procede d'alignement de macromolecules par passage d'un menisque et applications Download PDF

Info

Publication number
CA2182905C
CA2182905C CA2182905A CA2182905A CA2182905C CA 2182905 C CA2182905 C CA 2182905C CA 2182905 A CA2182905 A CA 2182905A CA 2182905 A CA2182905 A CA 2182905A CA 2182905 C CA2182905 C CA 2182905C
Authority
CA
Canada
Prior art keywords
dna
macromolecule
gene
molecule
meniscus
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
CA2182905A
Other languages
English (en)
Other versions
CA2182905A1 (fr
Inventor
David Bensimon
Aaron Bensimon
Francois Heslot
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Centre National de la Recherche Scientifique CNRS
Institut Pasteur de Lille
Original Assignee
Centre National de la Recherche Scientifique CNRS
Institut Pasteur de Lille
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=26230948&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=CA2182905(C) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Priority claimed from FR9401574A external-priority patent/FR2716206B1/fr
Application filed by Centre National de la Recherche Scientifique CNRS, Institut Pasteur de Lille filed Critical Centre National de la Recherche Scientifique CNRS
Publication of CA2182905A1 publication Critical patent/CA2182905A1/fr
Application granted granted Critical
Publication of CA2182905C publication Critical patent/CA2182905C/fr
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/68Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving proteins, peptides or amino acids
    • G01N33/6803General methods of protein analysis not limited to specific proteins or families of proteins
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6813Hybridisation assays
    • C12Q1/6816Hybridisation assays characterised by the detection means
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6813Hybridisation assays
    • C12Q1/6816Hybridisation assays characterised by the detection means
    • C12Q1/682Signal amplification
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6813Hybridisation assays
    • C12Q1/6834Enzymatic or biochemical coupling of nucleic acids to a solid phase
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00274Sequential or parallel reactions; Apparatus and devices for combinatorial chemistry or for making arrays; Chemical library technology
    • B01J2219/00277Apparatus
    • B01J2219/00351Means for dispensing and evacuation of reagents
    • B01J2219/00387Applications using probes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00274Sequential or parallel reactions; Apparatus and devices for combinatorial chemistry or for making arrays; Chemical library technology
    • B01J2219/00277Apparatus
    • B01J2219/00497Features relating to the solid phase supports
    • B01J2219/00527Sheets
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00274Sequential or parallel reactions; Apparatus and devices for combinatorial chemistry or for making arrays; Chemical library technology
    • B01J2219/00277Apparatus
    • B01J2219/0054Means for coding or tagging the apparatus or the reagents
    • B01J2219/00572Chemical means
    • B01J2219/00576Chemical means fluorophore
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00274Sequential or parallel reactions; Apparatus and devices for combinatorial chemistry or for making arrays; Chemical library technology
    • B01J2219/00583Features relative to the processes being carried out
    • B01J2219/00596Solid-phase processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00274Sequential or parallel reactions; Apparatus and devices for combinatorial chemistry or for making arrays; Chemical library technology
    • B01J2219/00583Features relative to the processes being carried out
    • B01J2219/00603Making arrays on substantially continuous surfaces
    • B01J2219/00605Making arrays on substantially continuous surfaces the compounds being directly bound or immobilised to solid supports
    • B01J2219/00608DNA chips
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00274Sequential or parallel reactions; Apparatus and devices for combinatorial chemistry or for making arrays; Chemical library technology
    • B01J2219/00583Features relative to the processes being carried out
    • B01J2219/00603Making arrays on substantially continuous surfaces
    • B01J2219/00605Making arrays on substantially continuous surfaces the compounds being directly bound or immobilised to solid supports
    • B01J2219/0061The surface being organic
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00274Sequential or parallel reactions; Apparatus and devices for combinatorial chemistry or for making arrays; Chemical library technology
    • B01J2219/00583Features relative to the processes being carried out
    • B01J2219/00603Making arrays on substantially continuous surfaces
    • B01J2219/00605Making arrays on substantially continuous surfaces the compounds being directly bound or immobilised to solid supports
    • B01J2219/00612Making arrays on substantially continuous surfaces the compounds being directly bound or immobilised to solid supports the surface being inorganic
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00274Sequential or parallel reactions; Apparatus and devices for combinatorial chemistry or for making arrays; Chemical library technology
    • B01J2219/00583Features relative to the processes being carried out
    • B01J2219/00603Making arrays on substantially continuous surfaces
    • B01J2219/00605Making arrays on substantially continuous surfaces the compounds being directly bound or immobilised to solid supports
    • B01J2219/00623Immobilisation or binding
    • B01J2219/00626Covalent
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00274Sequential or parallel reactions; Apparatus and devices for combinatorial chemistry or for making arrays; Chemical library technology
    • B01J2219/00583Features relative to the processes being carried out
    • B01J2219/00603Making arrays on substantially continuous surfaces
    • B01J2219/00605Making arrays on substantially continuous surfaces the compounds being directly bound or immobilised to solid supports
    • B01J2219/00623Immobilisation or binding
    • B01J2219/00628Ionic
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00274Sequential or parallel reactions; Apparatus and devices for combinatorial chemistry or for making arrays; Chemical library technology
    • B01J2219/00583Features relative to the processes being carried out
    • B01J2219/00603Making arrays on substantially continuous surfaces
    • B01J2219/00605Making arrays on substantially continuous surfaces the compounds being directly bound or immobilised to solid supports
    • B01J2219/00623Immobilisation or binding
    • B01J2219/0063Other, e.g. van der Waals forces, hydrogen bonding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00274Sequential or parallel reactions; Apparatus and devices for combinatorial chemistry or for making arrays; Chemical library technology
    • B01J2219/00583Features relative to the processes being carried out
    • B01J2219/00603Making arrays on substantially continuous surfaces
    • B01J2219/00605Making arrays on substantially continuous surfaces the compounds being directly bound or immobilised to solid supports
    • B01J2219/00632Introduction of reactive groups to the surface
    • B01J2219/00637Introduction of reactive groups to the surface by coating it with another layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00274Sequential or parallel reactions; Apparatus and devices for combinatorial chemistry or for making arrays; Chemical library technology
    • B01J2219/00583Features relative to the processes being carried out
    • B01J2219/00603Making arrays on substantially continuous surfaces
    • B01J2219/00659Two-dimensional arrays
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00274Sequential or parallel reactions; Apparatus and devices for combinatorial chemistry or for making arrays; Chemical library technology
    • B01J2219/00583Features relative to the processes being carried out
    • B01J2219/00603Making arrays on substantially continuous surfaces
    • B01J2219/00677Ex-situ synthesis followed by deposition on the substrate
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00274Sequential or parallel reactions; Apparatus and devices for combinatorial chemistry or for making arrays; Chemical library technology
    • B01J2219/00718Type of compounds synthesised
    • B01J2219/0072Organic compounds
    • B01J2219/00722Nucleotides
    • CCHEMISTRY; METALLURGY
    • C40COMBINATORIAL TECHNOLOGY
    • C40BCOMBINATORIAL CHEMISTRY; LIBRARIES, e.g. CHEMICAL LIBRARIES
    • C40B40/00Libraries per se, e.g. arrays, mixtures
    • C40B40/04Libraries containing only organic compounds
    • C40B40/06Libraries containing nucleotides or polynucleotides, or derivatives thereof
    • CCHEMISTRY; METALLURGY
    • C40COMBINATORIAL TECHNOLOGY
    • C40BCOMBINATORIAL CHEMISTRY; LIBRARIES, e.g. CHEMICAL LIBRARIES
    • C40B60/00Apparatus specially adapted for use in combinatorial chemistry or with libraries
    • C40B60/14Apparatus specially adapted for use in combinatorial chemistry or with libraries for creating libraries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S435/00Chemistry: molecular biology and microbiology
    • Y10S435/969Multiple layering of reactants
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S435/00Chemistry: molecular biology and microbiology
    • Y10S435/97Test strip or test slide
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S530/00Chemistry: natural resins or derivatives; peptides or proteins; lignins or reaction products thereof
    • Y10S530/81Carrier - bound or immobilized peptides or proteins and the preparation thereof, e.g. biological cell or cell fragment as carrier
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S530/00Chemistry: natural resins or derivatives; peptides or proteins; lignins or reaction products thereof
    • Y10S530/81Carrier - bound or immobilized peptides or proteins and the preparation thereof, e.g. biological cell or cell fragment as carrier
    • Y10S530/811Peptides or proteins is immobilized on, or in, an inorganic carrier
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T436/00Chemistry: analytical and immunological testing
    • Y10T436/14Heterocyclic carbon compound [i.e., O, S, N, Se, Te, as only ring hetero atom]
    • Y10T436/142222Hetero-O [e.g., ascorbic acid, etc.]
    • Y10T436/143333Saccharide [e.g., DNA, etc.]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T436/00Chemistry: analytical and immunological testing
    • Y10T436/14Heterocyclic carbon compound [i.e., O, S, N, Se, Te, as only ring hetero atom]
    • Y10T436/145555Hetero-N

Abstract

La présente invention a pour objet un procédé d'alignement de macromolécule(s) sur la surface (S) d'un support, caractérisé en ce que l'on fait se déplacer sur ladite surface (S) la ligne triple S/A/B (ménisque) résultant du contact d'un solvant (A) avec la surface (S) et un milieu (B), lesdites macromolécules ayant une partie, notamment une extrémité, ancrée sur la surface (S), l'autre partie, notamment l'autre extrémité, étant en solution dansle solvant (A). La présente invention a également pour objet un procédé de mise en évidence, de mesure de distance intra-moléculaire, de séparation et/ou dosage d'une macromolécule dans un échantillon dans lequel on met en oeuvre un procédé d'alignement selon l'invention.

Description

2182q~5 Wo 95/21939 ~ r~. 165 PROCEDE D'ALIGNEMENT DE MACROMOLECULES PAR PASSAGE D'UN
MENISQUE ET APPLICATIONS
La présente invention concerne une méthode d'~ nf~m~ont 5 de macromolécules telles que des polymères ou des macromolécules à
activité biologique, notamment de l'ADN, ou des protéines. La présente invention concerne également l'application de cette méthode dans des procédés de mise en évidence, de mesure de distance intra mol~c~ ire, de séparation et/ou de dosage d~une macromolécule dans un é~h~ntill- n Controler la conformation de macromolécules représente un enjeu industriel important, par exemple dans la fabrication de capteurs ou d'assemblages moléculaires contrôlés ou encore dans les problèmes de détection et d'analyse. Il peut être intéressant d'avoir une conformation moléculaire allongée. A titre d'exemple, dans le cas où des polymères sont greffés sur un substrat, il a été proposé de les étendre par l'action d'un champ électrique, d'un écoulement ou à l'aide de pinces optiques. En particulier, en biologie, I'alignement de l'ADN - par électrophorèse (Zimmerman et Cox Nucl. Acid Res. 22, p ~92, 1994), écoulement libre (Parra et Windle, Nature Genetics, 5, p 17, 1993 et WO 93/22463) ou dans un gel (Sch~vartz et al. Science 262, p 110, i993 et USP 33531) ou à l'aide de pinces optiques (Perl;ins et al., Science 26~1 p 819, 1994 et aussi USP
5079169) - ouvre de nombreuses possibilités en cartographie, ou dans la détection de pathogènes.
Ces méthodes ne permettent en général qu'un alignement imparfait, ou encore transitoire - c'est-à-dire qu'on a relaxation de la molécule, une fois la contrainte disparue. Dans le cas des pinces optiques, la méthode est lourde, limitée à une seule molécule à la fois, et délicate à
mettre en oeuvre par des personnels non qualifiés.
Il a été proposé (1. Parra et B. Windle et WO 93/22463) une tcchnique particulière d'alignement de l'ADN par écoulement après Iyse dc cellule, puis séchage. L~alignement obtenu est très imparfait et inhomogène et de nombreux amas non alignés sont observés.
La présente invention a pour objet une méthode origin:-le et simple pour aligner des macromolécules sur la surface S d'un support caractérisée en ce que l'on fait se déplacer sur ladite surface S la ligne 21 ~2q(~
WO95/21939 r~,l/rl~5 16'i triple S/A/B (ménisque) résultant du contact d'un solvant A avec la surface S et un milieu B, lesdites macromolécules ayant une partie, notamment une extrémité, ancrée sur la surface S, I'au~re partie, no~ rll~ I'autre extrémité, étant en solution dans le solvant A.
On a observé selon la présente invention, que le seul passage d'un ménisque sur des molécules dont une partie est ancrée sur un substrat, le reste de la molecule étant librement en solution permet de les aligner uniformément perp~nriif~ rement au ménisque en mouvement les laissant adsorbées sur la surface derriere le ménisque. Ce ph~nomi~ne est appelé ici "peignage moléculairen.
Plus p~ r~lt~ I'étirement de la partie libre de la molécule se fait par le passage de la ligne triple S/A/B, con~titl~nt le ménisque entre la surface S, le solvant A et un milieu B qui peut etre un gaz (en général de l'air) ou un autre solvant.
Dans un mode de réalisation particulier, le ménisque est un ménisque eau-air, c'est-à-dire que le solvant A est une solution aqueuse et le milieu B est de l'air.
De plus 11 est possible d'étendre le ménlsque air/eau utilisé
ici aiin d'étirer la molécule à d'autres systèmes tels que huile/eau ou 20 eau/surfactant/air, notamment.
Le déplacement du ménisque pcut se faire par tout moyen de déplacement relatlf des fluides A et B par rapport à la surface S. Dans un mode de réallsation, la surface S peut etre retirée du solvant A ou inversement, le solvant A peut etre retlré de la surface S.
En particulier le ménisque peut être déplacé à l'aide d'un moyen mécanique, pneumatique nf~t~mm~nt en aspirant ou soufflant un gaz, ou hydraulique notamment en poussant ou en aspirant ie solvant A ou le milieu B.
Ainsi le déplacement du ménisque peut se faire par évaporation progressive du solvant A.
Lorsque le déplacement du ménisque se fait par voie mecanique, il peut se faire soit par translation de l'interface A/B, soit par translation de la surface S.
Dans un modc de réalisation particulier, le solvant est placé
entre deux supports dont un au moins correspond audit support de surface S et le ménisque est déplacé par exempie par évaporation.
.. _ .. , . .. ,,, . , . , . , ..... , _ , _ , , _ _, _ _ _ ,, _ _ .

~W095/21939 21 ~9~ r~l~r~5~ 6s On entend ici par ~support", tout substrat dont la cohésion est suffisante pour résister au passage du ménisque.
Le support peut etre constitué au moins en surface, par un polymère organique ou inorganique, un métal notamment de l'or, un 5 oxyde ou sulfure de métal, un élément semi-conducteur ou un oxyde d'élément semi-conducteur, tel qu'un oxyde de silicium ou une comhin~ic-m de ceux-ci, telle que du verre ou une céramique.
On cite plus particulièrement le ~erre, le silicium o,Yydé en surface, le graphite, le mica et le sulfure de molybdène.
A titre de "support~, on peut utiliser un support unique tel qu'une lame, des billes, notamment de polymère, mais aussi des formes quelconques telles que barre, Rbre ou support structuré, et également des particules, qu'il s'agisse de poudres, notamment de poudres de silice, lesquelles peuvent d'ailleurs être rendues magnetiques fluorescentes ou colorées comme cela est connu dans les différentes n~( hnolo~ie.c de dosage.
Le support est avantageusement sous forme de plaques. De préférence, le support ne présente que peu ou pas de fiuorescence.
Des macromolécules, telles que polymères quelconques, ou polymères biologiques tels que ADN, ARN ou Protéines, peuvent être ancrés par des méthodes 4uelcull4u.~ sur un support.
La macromolécule à aligner peut être choisie parmi les macromolécules biologiques telles que les proteines, notamment les al1ticorps, antigènes, ligands ou leurs récepteurs, les acides nucléiques, ADN, ARN ou PNA, les lipides, les polysaccharides et leurs dérivés.
On a observé selon la présente invention, que la force d'étirement agit localement au voisinage immédiat du ménisque. Elle est indépendante de la longueur de la molécule, du nombre de molécules ancrées, et dans une large gamme, de la vitesse du ménisque. Ces caractéristiques sont particulièrement intéressantes pour aligner les molécules de fason homogène et reproductible.
On peut, selon la présente invention, ajouter des éléments tensio-actifs dans le sol~ant A et/ou ie milieu B, qui viennent modifier les propriétés des interfaces. Selon la présente invention l'étirement peut en crrct etre controlé par l'addition de tensio-actifs, ou par un traitement de 3~ surrace adéquat.

21 82~5 ~ r~ l65 wo 95121939 Une trop grande attraction surface-macromolécule (par exemple un niveau trop élevé d'adsorption) peut gerler l'alignement des molécules par le ménisque, celles-ci restant adsorbées à la su}face dans un état pas néc~ di~ ..t étiré. De préférence, la surface présente un faible S taux d'adsorption de ladite macromolécule, de sorte que seules les molécules ancrées seront alignées, les autres étant entrainées par le ménisque.
C.-rf~n-l~nt, on peut jouer sur les différences d'adsorption entre une partie de la macromolécule rll~t~mm~nt ses extrémités et ses 10 autres parties (en particulier pour de longues molécuies, telles l'ADN ou le collagène) pour ancrer par adsorption les molécules par une partie notamment leur(s) extrémité(s) seulement, le reste de la molécule étant librement en solution, sur une très grande variété de surfaces et les aligner par passage du ménisque comme décrit précédemment.
L'adsorption d'une macromolécule sur une surface peut se contr61er aisément à l'aide du pH ou de la teneur du milieu ionique du milieu ou d'une tension électrique appliquée sur la surface. On change ainsi les charges surfaciques et les interactions électrostatiques (répulsives ou attractives) entre la surface et 1~ molécule, ce qui permet de passer d'un état d'adsorp~ion complet de la molécule sur 1~ surface à une absence totale d'adsorption. Entre ces deux cas extremes, il exdste une plage des paramètres de controle ou l'adsorption se fait préférentiellement par l'extrémité des molécules et que l'on utilisera donc, avec avantage, pour les ancrer à la surface, puis les aligner par le 25 passage du ménisque.
Les molécules, une fois alignées, adhèrent fortement à la suriace. Dans le cas de l'ADN, elles ont pu etre observées par fiuorescence, plusieurs mois après leur alignement.
La présente invention est donc très différente de la méthode 30 proposée par Parra et Windle, car selon la présente invention, les molécules sont ancrées à la suriace puis uniformément alignées par le passage du ménisque, alors que dans la méthode de Parra et Windle un écoulement hydrodynamique est utilisé pour étirer de facon inhomogène Ic~ molécules q~ ~on~ s'ads~r~er n~n ~péci'quemen~ ~ ~a ~urface.

~Wo95J21939 ~1 82~0~ /r~ i6~
D'autres techniques peuvent aussi conduire à l'étirement et ipneml~nt de molécules. Ainsi une orientation dynamique de molécules en solution ancrées à une extrémité, peut etre obtenue par électrophorèse ou par un écoulement hydraulique.Toutefois, les résultats observés 5 montrent que ces techniques, sont beaucoup moins performantes que I'utili~:~rion du ménisque.
Par "ancrage~ de la macromolécule sur la surface il faut entendre une fixation résultant d'une réactivité chimique aussi bien par un lien covalent que par un lien non covalent tel qu'une liaison résultant 10 d'interactions physico-chimiques, tel l'adsorption comme décrit ci-dessus.
Cet ancrage de la macromolécule peut se faire directement sur (ou avec) la surface, ou indi~ e~ ..t, c'est-à-dire par l'intermédiaire d'un lien tel qu'une autre molécule, notamment une autre molécuie à
activité biologique. Lorsque l'ancrage se fait de maniere indirecte, la 15 macromolécule peut etre greffée chimiquement sur ledit lien, ou interagir de manière physico-chimique avec ledit lien, en p~rticulier lorsque ledit lien in~ c.iiai~ est une molecule à activité biologique l~ n~ t et interagissant avec ladite macrnmol~cl~le Dans un mode de réalisation, la macromolécule et ledit lien 20 sont toutes deux des molécules à activité biologique qui interagissent telles qu'antigène et anticorps respectivement, acides nucléiques complémentaires ou lipides. Dans ces cas, la fixation non covalente de la macromolécule consiste en une liaison de type antigène-anticorps, ligand-récepteur, hybridation entre fragments d'acides nucléiques 25 complémentaires ou interaction hydrophobe ou hydrophile entre lipides.
On met ainsi à profit la très grande specificité et la très grande sélectivité de certaines réactions biologiques, notamment les réactions antigènes/anticorps, les réactions d'hybridation d'ADN ou d 'ARN, les réactions interprotéines ou de type 30 avidine/streptavidine/biotine, de même que les réactions des ligands et de ~eurs réCepteurS.
Ainsi, pour réaliser l'ancrage direct ou indirect de la macromolécule sur la surface S on peut utiliser une surface solide présentant certaines spécificités. Il est en particulier possible d'utiliser wogsl21939 ~1 82~05 ~ r~a~ l65 certaines surfaces p~ C~.s pe~ cult de ftxer certaines protéines ou de l'ADN, qu'il ait été ou non modifié.
De telles surfaces sont commercialement disponibles (Covalink, Costar, Estapor, Bangs, Dynal par exemple) sous différentes 5 formes ~ ul~ à leur suface des ~ tC COOH, NH2 ou OH par exemple.
On peut alors fonctionnaliser l'ADN avec un groupement réactif, amine par exemple, et procéder à une réaction avec ces surfaces.
Ces méthodes nécessitent cependant une fonctionnalisation particulière 10 de l'ADN à fixer.
On a P~alPnnPnt décrit une technique permettant l'ancrage sans traitement préalable de l'ADN. Ce procédé consiste à faire réagir un phosphate libre de l'extrémité 5' de la molécule d'ADN avec une amine secondaire de la surface (surface NH Covalink).
L'ancrage par adsorption peut se faire par adsorption de l'extrémité de la molécule en contr61ant la charge surfacique à l'aide du pH, de la teneur ionique du milieu ou de l'application d'une tension électrique sur la surface compte-tenu des différences d'adsorption entre les e~ s de la molécule et sa partie inte~ . Selon la présente 20 Invention, on a ainsi ancré à titre d'exemple des molécules d'ADN non foncti-lnn~lic~P~ sur des surfaces recouvertes de molécules terminées par un groupe vinyl ou amine telles que des molécules de polylysine ou des surfaces diverses telles que du verre, recouvertes de molécules du type silane terminées par des ~l VU~ lts vinyl ou amine ou encore des 25 lamelles de verre préalablement nettoyées dans un bain d'acide. Dans ce dernier cas, la surface du verre présente en fait des groupes SiOH.
Dans tous ces cas, la plage de pH où l'ADN est ancré est choisie pour etre entre un état d'adsorption complet et une absence d'adsorption, cette dernière se situant à pH plus basique. Il est entendu que cette 30 technique est très générale et peut être étendue par l'homme de l'art à de très nombreux types de surfaces.
On peut aussi fonctionnaliser l'ADN avec un premier groupement réactif ou une protéine P0 pour la faire réagir avec une surface recouverte d'un deuxième ~ u~elll,.lt réactif ou d'une protéine 35 Pl, susceptibies de réagir spécifiquement entre eux (ou elles) respectivement, c'est-à-dire par exemple, Pl avec P0. Le couple Po/PI peut ~W095/21939 21829~ r~l/r~a 165 être un couple de type biotine/streptavidine (Zimmermann et Cox) ou digoxdgénine/anticorps dirigé contre la digoxigénine (anti-DiG), par exemple (Smith et al., Science ;~, 1122 (1992)).
De préference, les surfaces d'ancrage présenteront un bas S taux de nu~ ce pour ne pas gener ia détection des molécules après leur ~ nPmPrlt, en particulier si celle-ci se fait par f uorescence.
Selon la présente invention, on utilisera de préférence un support solide présentant dans les conditions de réaction une surface ayant une affinité pour une partie de la macromolécule sP~IlPmPnt~ le reste 10 de celle-ci restant librement en solution.
Dans.un mode de réalisation, on utilise un support solide présentant en surface au moins une couche d'un composé organique ~ S~ dll~, à l'extérieur de la couche, un groupement exposé ayant une affinité pour un type de molecule à activité biologique qui peut être ladite 15 macromolécule elle-même ou une molécule reconnaissant et/ou interagissant avec elle.
Le support peut donc présenter une surface recouverte d'un groupement réactif ou d'une molécule à activité biologique.
Par ~affinite", il faut entendre ici aussi bien une réactivité
20 chimique qu'une adsorption d'un type quelconque, ceci dans les conditions éventuelles de fixation des molécules sur le groupement exposé
modifié ou non.
Dans un mode de réalisation, la surface est essentiellement compacte, c'est-à-dire qu'elle limite l'accès de la macromolécule à activité
25 biologique au,Y couches inférieures et/ou au support, ceci afin de minimiser les interactions non-spécifiques.
On peut aussi utiliser des surfaces recouvertes d'un groupement exposé réactif (par exemple NH2, COOH, OH, CHO) ou d'une macromolécule à activite biologique (par exemple: des proteines, telles la 30 streptavidine ou des anticorps, des acides nucléiques tels des oligonucléotides, des lipides des polysaccharides et leurs dérivés) capable de fixer une partie éventuellement modifiée de la molécule.
Ainsi des surfaces recouvertes de streptavidine ou d'un anticorps suivant des procédés connus ("Chemistry of l'rotein Conlugation 35 and Cross-linking~, S.C. Wong, CRC Press (1991)) sont capables de fixer une macromolécule présentant en un site particulier une biotine ou un antigène.

21 8~90~i WO gS/21939 r~,llrr~ l65 ~

De meme des surfaces traitées de manière a présenter des oligonucléotides simple-brin peuvent servir pour y ancrer des ADN/ARN
possédant une séquence ~u~ e.
Parmi les surfacês ~u~u,uul L~ul~ un ~. u~ t réactif exposé, S on cite celles sur lesquelles le ~IOu,u..ll~.lt exposé est un groupement -COOH, -CHO, NH2, -OH, ûU un ~IUUIJ..ll~.l~ vinyl .UIIIUUII~t une double liaison-CH=CH2 utilisée telle quelle ou qui peut etre activée pour donner nùl .,.,.. ,1 les groupes -CHO, -COOH, -NH2 ou OH.
Les supports à surfaces hautement spécifiques selon la 10 présente invention peuvent etre obtenues par la mise en oeuvre de divers procédés. On peut citer à titre d'exemple:
(A) une couche de polymère carboné, éventuellement branché, d'au moins 1 nm d'épaisseur présentant des ~IOU,u.. L~ réactifs tels que définis ci-après et 15 (B) des surfaces obtenues par dépot ou ancrage sur un support solide d'une ou plusieurs couches moléculaires, celles-ci peuvent etre obtenues par la formation de couches successives fixées par liaisons non-covalentes, a type d'exemple non limitatif, les films de Langmuir-Blodgett, ou par auto-~cc~mhl~e moléculaire, ceci permettant la formation d'une couche fixée par liaison covalente.
Dans le premier cas, la surface peut etre obtenue par polymérisation d'au moins un monomère générant en surface du polymère ledit ~;IUU,U~:lll..lt exposé, ou bien par dépolymérisation partielle de la surface d'un polymère pour générer ledit groupement exposé, ou Z5 encore par dépot de polymère.
Dans ce procédé, le polymère formé présente des liaisons vyniles tel un dérivé polyenlque, notamment des surfaces de type caoutchouc synthétique, tel que le polybutadièn~, le polyisoprène ou le caoutchouc naturel.
Dans le deuxième cas, la surface h~utement spécifique comporte - sur un support, une couche sensiblement monomoléculaire d'un compos~ organique de structure allongée ayant au moins:
un groupement de fixation présentant une affinité pour le support, et .

~ WO95121939 21 829155 r llrl 16~

un groupement exposé n'ayant pas ou peu d'affinité pour ledit support et ledit groupement de fixation dans les conditions de fixation, mais présentant éventuellement, après une modification chimique suivant la fixation, une affinité pour un type de molécule biologique.
La fixation peut etre tout d'abord de type non-covalent, notamment de type hydrophile/hydrophile et hydrophobe/hydrophobe, comme dans les films de Langmuir-Blodgett (K.B. Blodgett, J. Am. Chem.
Soc 57, 1007 (1935).
Dans ce cas, le ~1uu~ t exposé ou le groupement de fixation seront, soit hydrophiles, soit hydrophobes, notamment des groupements alkyles ou halogénoalkyles tels que CH3, CF3, CHF3, CH~F, I'autre groupement étant hydrophile.
La fixation peut etre également de type covalent, le groupement de fixation va alors réagir chimiquement sur le support.
Certaines surfaces de structure approchante ont déjà été
mentionnées dans le domaine électronique, notamment lorsque les fixations sont covalentes, L Netzer et ~. Sagiv, J. Am. Chem. Soc. 105, 674 (1983) et US-A-4 539 061.
Parmi les groupements de fixation, il faut citer plus particulièrement les groupements de type alkoxyde de métal ou de semiconducteur, par exemple silane, notamment chlorosilane, silanol, méthoxy et éthoxysilane, silazane, ainsi que les groupements phosphate, hydroxy, hydrazide, hydrazine, amine, amide, diazonium, pyridine, sulfate, sulfonique, carboxylique, boronique, halogène, halogénure d~acide, aldéhyde.
Tout particulierement, comme groupement de fixation on préfèrera utiliser des groupements susceptibles de réagir transversalement avec un groupe équivalent, voisin, pour fournir les liaisons transversales, par exemple il s'agira de dérivés de type alkoxyde de métal ou de semiconducteur, par exemple silane, notamment dichlorosilane, trichlorosilane, diméthoxysilane ou diéthoxysilane et trimétho.~y ou triéthoxysilane.
Le choix du groupement de fixation dépendra évidemment de la nature du support, les ~luu~ ts de type silane sont bien adaptés pour la fixation covalente sur le verre et la silice.

~1 829~5 W0 9S12193g ~ rl ''C 16 Pour ce qui concerne les gro-lrf-m.-nt.~ eAposés, et quelle que soit la surface, ils seront choisis de préférence parmi les ~ lUUp~ S
éthyléniques, acétyléniques ou des radicaux aromatiques, les amines primaires, tertiaires ou se.ulldcu.~O, les esters, les nitriles, les aldéhydes, 5 les halogènes. Mais il pourra s'agir tout particulièrement du groupement vinyl; en effet, celui-ci peut etre soit modifié chimiquement après fiAation pour conduire, par exemple, à un groupement carboxylique ou des dérivés de ~;luu~ l..ltS carboAyliques tels que des ~ luul,.,--..l~ alcools, aldéhydes, cétones, acides, amines primaires, secondaires ou tertiaires, soit 10 conduire à un ancrage direct pH dépendant des macromolécules biologiques telles que acides nucléiques et protéines sans modification chimique de la surface ou des macromolécules.
De préférence, les chaines reliant le groupement eAposé au 1 ~ UU,U..Il..lt de fixation sont des chaines co...pu. ~UIt au moins 1 atome de 15 carbone, de préférence plus de 6 et en général de 3 à 30 atomes de carbone.
Pour ce qui concerne le support lui-même, on préfère utiliser de facon générale, du verre, du silicium oYydé en surface, un polymère ou de l'or avec ou sans prétraitement de la surface.
On peut a~ r~ "t utiliser, dans le cas du verre ou de æ la silice, les techniques connues de fonctionnalisation de surface utilisant des derivés silanes, par exemple: Si-OH + Cl3-Si-R-CH=CH2 donne Si-O-Si-R-CH=CHz, R consistant par exemple en (CH 2)-~- Une telle réaction est connue dans la littérature, avec utilisation de solvant ultra-purs. ia réaction conduit à un tapis de molécules présentant leur extrémité C=C à la surface 25 exposée à l'eAterieur.
Dans le cas de l'or, celui-ci étant éventuellement sous la forme d'une couche mince sur un substrat, les techniques connues de fonctionnalisation de surface utilisent des dérivés thiols, par exemple: Au + HS-R-CH=CH2 donne Au-S-R-CH=CH2, R consistant par exemple en (CH2)~.
30 Une telle réaction est décrite en milieu liquide et conduit, de même que la réaction précédente trichlorosilane-silice, à un tapis de molécules présentant leur eAtrémité C=C à la surFace exposée à l'extérieur.

~WO95121939 ~ i r~llrl~ 6s Bien entendu la terminologie de "support" englobe aussi bien une surface unique telle qu'une lame, mais ~ mPnt des particules qu'il s'agisse de poudre de silice ou de billes de polymère, et aussi des formes quelconques telles que barre, fibre ou support structure, lesquelles 5 peuvent d'ailleurs être rendues magnétiques, fiuorescentes ou colorées, cornme cela est connu dans dir~ es tl~hnrllrlgi~c de dosage.
De l,l.r~.~..ce, le support sera choisi pour être pas ou peu lluuL.O.elll lorsque la détection sera effectuée par fiuorescence.
Les surfaces obtenues selon les modes (A) ou (B) ci-dessus présentent:
(i) un très faible taux de fiuorescence intrinseque, lorsque cela est requis, un bruit de fond de fiuorescence (d'une aire typique de 100 x 100 llm) plus faible que le signal de fluorescence d'une seule molécule à détecter;
15 (ii) la possibilité de détecter des molécules isolées avec un rapport S/N
indépendant du nombre de molécules, qui est possible grace à
différentes techniques à grand rapport S/N décrites plus bas et basées sur l'identification de la présence d'un marqueur macroscopique presentant une faible interaction non-spécifique avec la surface.
Les surfaces ainsi obtenues sont, de préfcrence, revêtues d'une macromolécule à activité biologique choisie parmi:
- les protéines, - les acides nucléiques, 25 - les lipides, - les polysaccharides et leurs dérivés.
Parmi les protéines, il faut citer les antigènes et les anticorps, les ligands, les lé~el.L~ul~, mais également des produits de type avidine ou streptavidine ainsi que les dérivés de ces composés.
Parmi les ARN et les ADN, il faut egalement citer les dérivés ~, f, ~insi que les dérivés thio et les composés mixtes tels que les PNA.
On peut également flxer des composés mixtes tels que les glycopeptides et les lipopolysaccharides par exemple, ou bien d'autres éléments tels que virus, cellules notamment, ou composés chimiques tels que la biotine.

21 8~9Q5 wogs/21s3s ~ r~t~l6 La fixation des macromolécules biologiques peut etre covalente ou non-covalente, par exemple par adsorption, liaisons hydrogènes, ~ .ls h~ ilopllobes, ioniques, par exemple, auquel cas on pourra procéder avantageusement à un pontage (Ucross-linking'') S entre les molécules greffées par les méthodes connues (Chemistry of Protein Conjugation and Cross-linking", S.C. Wong, CRC Press (1991)) et ceci afin de renforcer leur cohésion.
Comme cela a été mentionné précédemment, il est possible d'avoir un ~IOU~ ,.t exposé qui permet la réaction directe avec les 10 molécules à activité biologique, mais il est égaiement possible de prévoir que le ~ u~ lL exposé est traité, après fixation, pour etre ~ rO.I..~, comme cela a eté indiqué précédemment, en un radical hydroxy, amine, alcool, aldéhyde, cétone, COOH ou dérivé de ces groupements avant la fixation de la molécule biologique.
iorsque de tels y,lOUI.)~III~III:> ont été exposés, les techniques de fixation des protéines et/ou de l'ADN, par exemple, sont connues, il s'agit en effet de réactions mises en oeuvre pour des surfaces qui sont déjà
utilisées dans ie cadre des analyses biologiques, notamment pour les surfaces Costar et les surfaces Nunc ou des microbilles telles qu'Estapor, 20 Bang et Dynai par exemple, sur lesquelles on ancre des molécules d'intéret biologique, ADN, ARN, PNA, protéines ou anticorps par exemple.
Dans le cas où le groupement exposé est un radicai -CH=CH2 qui est nommé ci-après ~surface C=C~ ou "surface à liaison éthylénique~, il n'existe pas de document m~ntionn~nt l'ancrage direct, en particulier de 25 I'ADN ou des protéines.
Dans le cadre de la présente invention, il a été démontré que ces surfaces présentent une réactivité fortement pH dépendante. Cette particularité permet d'ancrer les acides nucléiques ou les protéines en utilisant des zones de pH et souvent avec une vitesse de réaction qui peut 30 ~tre controlée par le pH.
On peut réaliser l'ancrage de l'ADN par son eAtrémité sur une surface préserltant des ~roupements a double liaison éthylénique en mettant l'ADN en présence de la surface à un pH inferieur à 8.
i-n particulier la réaction est conduite à un pH compris entre 35 5 et ~ puis est stoppée à pH 8.

Wo95/21939 21 8~9~ /r~ 165 Ainsi, pour l'ADN à pH 5,5, la réaction d'ancrage est totale en une heure (si pas limitée par la diffusion) et se produit par les t:,.Llénli~t~.A pH 8, par contre, I'd~ , est très faible (vitesse de réaction de 5 à 6 ordres de grandeur plus faibles). Cet effet d'accrochage pH ~l~r~nfl~nt et 5 spécifique des ~l élld~és, présente une amélioration par rapport aux autres surfaces qui nécessitent une fonctionn~lic?tior~ de l'ADN (biotine, DIG, NHS, ...) ou des réactifs spécifiques tcarbodiimide, diméthyle pimélidate) qui réalisent une liaison peptidique ou phosphorimide entre -NHt et -COOH ou -POOH.
On peut aussi realiser l'ancrage d'ADN par adsorption de ses extrémités seulement sur une surface recouverte de polylysine ou d'un ou~ silane terminé par un groupe amine.
Pour réaliser l'ancrage de l'ADN par son extrémité sur une surface recouverte par un ~.~,u},~ .lt amine on met l'ADN en présence de la surface à pH entre 8 et 10.
De meme on peut réaliser l'ancrage d'ADN par son extrémité
sur une surface de verre traité auparavant dans un bain d'acide, en mettant l'ADN en présence de ladite surface à pH entre 5 et 8.
Il va de soi que la présente invention implique, dans le même esprit, I'accrochage éventuellement pH dépendant de toutes macromolécules d'intéret biologique.
De meme ces surfaces peuvent ancrer des protéines dil~ llt (protéine A, anti-DlG, anticorps, streptavidine, etc.). Il a été
observé que (i) I'activité de la molécule peut etre préservée et (ii) que la réactivité de la surface préparée (initialement C-C) est totalement occultée pour faire place à la seule réactivité de la molécule d'intéret. Il est donc possible, à partir d'une réactivité initiale relativement large, de passer à
une surface possédant une réactivité très hautement spécifique, par exemple celle de sites spécifiques sur une protéine.
En ancrant un anticorps spécifique sur la surface (par exemple anti-DlG), on crée une surface dont la réactivité est limitée à
l'antigène (par exemple le groupement DIG). Ceci indique que les groupements chimiques initiaux ont tous été occultés par les anticorps greffés.
2 1 82q~5 ~ 16S
Wo 95/21939 P~l/r On peut aussi greffer sur les surfaces réactives (chimiquement ou biochimiquement) d'autres molécules à activité
biologique, nvL;-.~ .lt des virus ou d'autres composants: membranes, léce~utt:u.... , membranaires, polysaccharides, PNA, not:lmm~nt S 11 est IS~ Pmrnt possible de fixer le produit d'une réaction d'intéret biologique (par exemple la PCR) sur les surfaces préparées.
Le procédé selon la présente invention permet la mise en évidence et/ou la u...- .t;li.~linn de molécules biologiques, mais également la mesure de distance intramoléculaire, la séparation de certaines molécules biologiques, l1u~ .lt un prélèvement par mise en oeuvre des techniques de couplage antigène/anticorps et/ou ADN/ARN.
En particulier, la présente invention a pour obje~ un procédé
de mise en évidence d'une macromolécule consistant en une séquence d'ADN ou d'une protéine dans un échantillon, selon la présente invention, caractérisé en ce que:
- on met l'échantillon ~ul~OI,o.~dant ~tu solvant A, dans lequel ladite macromolécule est en solution, en contact avec la surface du support dans des conditions de formation d'un hybride ADN~ADN, ADN/ARN ou de formation du produit de reaction protéine/proteine, 20 - I'hybride ou une macromolécule de marquage de l'hybride ou du produit de réaction étant ancré en une partie, le reste étant libre en solution, on l'étire par deplacement du ménisque créé par le contact du solvant avec la surface pour orienter les hybrides ou lesdites macromolécules de marquage et on effectue la mesure ou I'observation des hybrides ou desdites macromolécules de marquage ainsi orientés.
Avantageusement, I'ADN fixé et l'ADN de l'échantillon sont colorés de façon différente et après étirement on mesure la position de la séquence complémentaire par rapport à l'extrémité de l'ADN de 1 'échantillon.
De façon appropriee on peut utiliscr les méthodes de détection ELISA ou FISH.
L'~h~ntillon d'ADN peut être le produit ou le substrat d'une amplification enzymatique d'ADN telle que la PCR, c'est-à-dire qu'on peut réaliser l'amplification de l'ADN une fois celui-ci ancré et aligné selon le procédé de l'invention ou avant son ancrage et son ~ nempnt~
. , . .. .. . _ . ..... .. . _ _ _ ~ W095/21939 21 8~9~ rr~ 5 Le passage du ménisque, en étirant linéairement les molécules, sous forme de bâtonnets, les rend plus f~rilr-nnr-nt d~t~C~hlP~ si elles sont marquées. Par ailleurs, ces molécules allongées sont stables à
l'air libre et peuvent etre observées meme après plusieurs mois, sans 5 présenter de dégradation apparente.
Lors d'une réhydratation, les molécules d'ADN peuvent rester adsorbées et allongées. De plus, il est possible de procéder à une hybridation sur la molécule allongée.
De plus, présentant un signal corrélé et d'orientation 10 uniforme de par leur étirement, ces molécules sont distinctes du bruit environnant. Il est donc facile d'ignorer les poussières, les inhomogénéites, qui ne présentent pas de corrélation spatiale particuliere. L'alignement est aussi intéressant car en solution, les molécules en pelote fluctuent thermiquement, ce qui entraine des 15 variations tres importantes de leur signal de fluorescence recueilli de préférence avec une faible profondeur de champs et limite leur observation. La présente invention permet donc l'observation de molécules isolées avec un très grand rapport signal sur bruit. (S/N).
Il est remarquable que ce rapport soit indépendant du 20 nombre de molécules ancrées. Le rapport S/N posé par la détection d'une molécule est le meme que pour 10 000. De plus cette techniquc d'étirement permet de discriminer aisément entre des molécules de longueurs variées.
On peut a~d..~p~ procéder aux étapes suivantes pour améliorer encore le rapport S/N:
- La molécule étant immobile, on peut intégrer son signal de fluorescence.
- L'observation au microscope présente un champ réduit (typiquement 100 ~m x 100 ~m avec un objectif x 100 à immersion, N.A. = 1.25). Pour un rrh~ntillon de 1 cm2 on peut soit procéder à un balayage, soit envisager l'utilisation d'objectifs d'agr~nrli~r-Tn~nts moindres (x 10 ou x 20) mais d'ouverture numérique élevée.
- Les batonnets étant toujours parallèles, on peut envisager une méthode de filtrage spatial optique pour augmenter encore le rapport S/N.

wo g5121939 D ~l/r~ .65 - D'autres méthodes de fluorescence globale sont envisageables telles que celles décrites dans la demande de brevet européen EP 103426.
- La linéarisation des molécules s'observe aussi bien dans le cadre d'un ancrage physico-chimique que dans le cas de liaisons de type imml1nrllrlgique (DlG/anti-DlG).
- Une fois la surface à l'air libre, les molécules d'ADN sont stables (restent intègres, meme après plusieurs semaines) et fh~
On peut avantageusement utiliser cette propriété pour différer l'étape d'ancrage de l'étape de repérage/comptage des mol.6c~ c ancrées, si cette détection se fait par exemple, mais sans s'y limiter, par ~ o~;e à lluule~ ce. Une telle utilisation est couverte par ia présente invention.
- Une technique de double (ou multi) fluorescence peut év~ntl..ollPm~n~ serv~r à améliorer le rapport S/N ou à détecter une double fonctionnalité.
Les molécules étirées peuvent etre révélées par différentes méthodes enzymologiques ou autres, telles la fluorescence ou l'utilisation de sondes chaudes ou froides. Leur détection peut se faire par mesure d'un signal global (par exemple la fluorescence) ou par l'observation individuelle des molécules par Illi.l usco~,ie optique à flu~ e~ce~
ie électronique, méthodes à sondes locales (SlM, AFM, etc.).
Ainsi de facon générale, la présente invention permet la mise en évidence, la séparation et/ou le dosage d'une molécule dans un Prh~ntill~n, par un procédé ~al,~ .isé en ce qu'on utilise une surface capable de fixer spécifiquement ladite molécule, et en ce que la mise en évidence, la séparation ou le dosage sont effectués grace à un réactif fluorescent ou non détectant la présence de la molécule fixée.
Parmi les réactifs on distingue les réactifs fluorescents et les réactifs non-fluorescents.
Les réactifs fluorescents contiennent des molécules flu~JIescellle;~, choisies avec avantage pour être des molécules longues de taille superieure à 0,1 ~m et réagissant de manière spéciflque directement ou indirectemerlt avec les surfaces prétraitées. Par exemple, mais sans pour autant s'y limiter, une molécule d'ADN double brin teintée à l'aide de wogsnl93g 21 8~9~5 I~l/r~ 6~

sondes flU~ C~AAt~ s (ethidium bromide, YOY0, nucléotides fluorescents, etc.) pouvant s'ancrer di~ lt par une ou plusieurs eA~ és sur une surface ~,l;..~.lldllL éventuellement un groupement de type vinyl, amine ou autre. ~ f.,l par un choix judicieux du pH ou de la teneur 5 ionique du milieu ou par application d'une tension électrique sur la surface.
Il est f ~qlf~mf nt possible d'utiliser une fonctinnnqli~qtion particulière de la molécule (DIG, biotine etc...) pour l'ancrer en un ou plusieurs points sur une surface présentant des sites complémentaires 10 (anti-DlG, streptavidine, etc).
Les réactifs non-fluorescents permettant la détection de molécules pr~qlqhl~mf^nt alignées selon la présente invention, peuvent consister notamment en des billes ou microparticules ancrées par l'intermédiaire d'une autre molécule fixée de manière spécifique directement ou indirectement à la molécule alignée et ne présentant qu'une faible interaction non-spécifique avec la surface.
Par exemple, on peut citer des billes Dynal recouvertes de streptavidine permettant l'ancrage sur ADN biotynilé, aligne selon la présente invention.
Selon que la molécule recherchée est détectée directement par fluorescence ou indi. ~L~.ll.llt à l'aide des réactifs ci-dessus, on parlera de "détection directe~ ou par drapeau~.
Afin de limiter les problèmes associés à des temps de réaction trop lents, on peut avantageusement réduire les temps de diffusion des réactifs vers la surface en utilisant de petits volumes de réaction. Par exemple, mais sans s'y limiter, en conduisant la réaction dans un volume de quelques microlitres déterminé par l'espacement entre deux surfaces dont l'une est traitée pour présenter des sites réactifs et l'autre est inerte ou traitée pour ne pas présenter de sites réactifs, dans les conditions de la réaction.
La détection du nombre de molécules alignées peut elre réalisée sur un petit nombre de molécules (typiquement 1 à 1 000), par un test physique macroscopique faible bruit ne nécessitant ni microscope électronique ni radioactivité ni néc~di~ lent la PCR

21 8290~
woss/2ls3s r~llr~-l-i6s Les procédés d'~ n~m~nt et de détection selon la présente invention sont susceptibles d'etre mis en oeuvre par des personnes n'ayant qu'une expérience de laboratoire réduite.
La spécificité de certaines réactions biologiques peut etre S limitée. Ainsi, dans le cadre de l'hybridation, les hybrides peuvent être alra.ilO (réactions avec d'autres sites) tout en présentant un nombre réduit d'appariement et donc une qualité de liaison moindre. La présente invention couvre ~g,~l..l.~.ll I'utilisation possible d'une étape de test de la qualité des liaisons obtenues. Ce test permet de dissocier les produits 10 appariés de faSon non-spécifique hible, par adsorption, forces hybrophobes, liaisons hydrogènes imparfaites, hybridation i,.lpa. rdile, nr,t~mm~nt C'est pourquoi, I'invention concerne également dans un procédé de mise en évidence ou de dosage tel que décrit pr~6r~ mmrnt, un 15 procédee où l'on soumet le produit de réaction entre la molécule à activité
biologique et la molécule de l'échantillon à une contrainte afin de détruire les mauvais ;I~IJdl i.. ts avant la détection.
Ce procédé offre, outre la possibilité de détruire les couples s, la possibilité d'orienter les produits du couplage, ce qui 20 facilite les mesures ou les observations.
On peut ainsi appliquer aux surfaces, apres fixation des éléments ~ taires, une contrainte qui peut etre constituée par l'utilisation simple ou combinée de:
- centrifugation, 2S - gradient de champ magnétique appliqué aux réactiFs non-fiuorescents pris alors pour inclure des microbilles m~nétic~hles ou magnétiques, - agitation, - écoulement liquide, 30 - passage de ménisque, - électrophorèse - variation de température, et/ou gradient de temperature.
On détermine alors par les techniques de détection faible bruit décrites ci-dessus le nombre de systèmes étant restés intègres ou 35 s'étan~ détruits.
-~WO95/21939 ~1 ~29~5 r~llr~ 6~

Les techniques d'alignement et de détection décrits selon la présente invention peuvent etre utilisés pour de nombreuses applicationsparmi lesquelles, mais sans s'y restreindre:
- I'identification d'un ou plusieurs élémènts de séquence d'ADN ou d'ARN que l'on peut utiliser avec avantage pour le diagnostic de pathogènes ou la cartographie physique d'un génome. En particulier, les techniques décrites ci-dessus permettent l'obtention d'une cd-~uK.dphie physique directe sur ADN génomique, sans passer par une étape de clonage. Il est entendu que la molécule peignee étant étirée par rapport à sa longeur crystallographique, on procède à des mesure relatives. Il est ainsi possible de mesurer la taille de fragments d'ADN et la distance entre fragments avec une résolution de l'ordre de 200 nm pour des méthodes optiques ou de l'ordre de 1 nm par l'utilisation de méthodes de champs proche telles que AFM ou STM pour visualiser et mesurer la distance entre sondes sur de l'ADN aligné.
Ceci conduit naturellement à:
1) la détection de délétions, additions ou translocations de séquences ~0 Kenomiques, en particulier dans le diagnostic de maladies génétiques (par exemple la myopathie de Duchesne);
2) I'identification de promoteurs de différents gènes par la mesure de la distance entre les séquences régulatrices et celle e ;primées;
3) la localisation de protéines régulatrices par l'identification de leur position le long de l'ADN ou de la position de leur séquence cible;
1) le séquencage partiel ou total par mesure de la distance à l'aide de microscopies à champs proche (par e~;emple AFM ou ST~I) entre des sondes hybridées ap~al le.la~lt à une base d'oligonucléotides de longueur donnée.
- L'amplification enzymatique in situ sur des ADN alignés.
- I'amélioratioll de la sensibilité des techniques d'ELlSA avec 1 possibilité de détecter un faible nombre (éventuellement infcrieur à 1 000) de réactions immunologiques.

WO95/21939 ~1 829~5 l~llr~ 16s Ainsi, on peut procéder à une cartographie physique directement sur un ADN génomique sans passer par une étape de clonage.
L'ADN génomique est extrait, purifié, éventuellement coupé par un ou plusieurs enzymes de restriction puis peigné sur des surfaces selon le 5 procédé de la présente invention.
La position et la taille du gène reche}ché sur l'ADN
génomique sont alors déterminées par hybridation avec des sondes spécifiques dudit gène, notamment extraites de parties de l'ADN
complémentaire (cDNA) du produit dudit gène reche}ché.
De faSon similaire en hybridant un ADN génomique peigné, puis dénaturé avec du cDNA total marqué par fluorescence ou tout autre marqueur p~ llt de localiser l'hybride, on identi~le la position, la taille et le nombre des exons du gène en question, d'où l'on déduit sa taille et son or~nic~tk-n génétique (exons, introns, séquences régulatrices).
La position du gène étant déterminée comme décrit ci-dessus, ou connue, il est alors possible d'identifier par hybridation les séquences flanquantes du gène. Pour cela, on procèdeFa, avec avantage, par hybridation avec des sondes marquées, provenant par e,Yemple d'une librairie d'oligo-~ucl~otides, pour identifier deux ou plusieurs sondes qui 20 s'hybrident de part et d'autre du gène.
A partir de cette déte}mination, il est alors possible par les techniques d'amplification enzymatique, par exemple la PCR in situ (Nuovo G.J. PCR in situ hybridization: ~n.~l~.ul~ and applications, Raven Press (lg9 )) d'amplifier le fragment délimité par les sondes flanquantes 25 qui peuvent servir d'amorces à la réaction, rragment qui peut contenir le gène recherché avec ses régions régulatrices qui peuvent etre tissu ou développement spécifique et qu'on peut alors isoler et purifier.
On peut aussi proceder par polymérisation in situ sur des amorces extraites du cDNA du gène en question pour extraire des 30 fragments d'ADN complémentaires des régions flanquantes du gène comme mentionné par Mortimer et al. (Yeast 5, 3~1 1989). Ces fragments peuvent alors servir dans la préparation d'amorc~s pour un proccdé
d' tmp~ii~ication enz~matique du g~ne et de ses séquences nanquantes.

~WO95121939 ~ 9~5 r~llr~c~-l6~
On peut aussi utiliser les méthodes citée par A. Thierry et B.
Dujon (Nucl. Acid Research 20 5625 (1992)) pour insérer par recomhin~icon homologue ou alé~loi~ cnt des sites spécifiques connus d'endonucléase dans un ADN génomique ou un fragment d'ADN
génomique. Le peignage de cet ADN permet l'identification du gène d'intérêt et des sites spécifiques insérés, par les méthodes d'hybridation in situ décrites ci-dessus. A partir de cette identification et préférablement si les sites d'intéret sont des régions d'intérêt proches du gène, on les utilisera comme amorce d'une réaction d'amplification enzymatique (in situ ou autre) du gène en question et de ses séquences flanquantes.
L'amplification du gène recherché procède alors par les techniques d'ampilfication enzymatique connues telles que PCR sur le Fragment amplifié comme décrit ci-dessus en utilisant des amorces accessibles par les exons constituant le cDNA, ou des amorces correspondant à des séquences flanquantes.
Par le peignage d'ADN génomique ou autre, il est aussi possible de déterminer par hybridation la présence ou l'absence de séquences régulatrices d'un gène particulier proximal, à partir desquelles on déterminera les familles possibles de protéines régulatrices de ce gène (par exemple: helix-loop-helix, zinc-finger, leucine-zipper).
Les réactions spécifiques entre séquences particulières d'ADN/ARN/PNA et une autre molécule (ADN, ARN, protéine) peuvent se faire avant ou après alignement des molécules selon la présente invention.
Ainsi, dans le cadre du diagnostic génétique et de la cartographie physique, on utilise avec avantage les méthodes connues de FISII (Pinl;el et al., Proc. Nat. Acad. Sci. USA ~, 293 1 ( 1986)) pour hybriderdes oligonucléotides simple-brin marqués à de l'ADN d'abord aligné, puis dénaturé. La révélation des hybrides se fera par les techniques connues 30 (fluorescences, microbilles etc) avec une résolution dans la mesure des distances allant de 0,2 llm (en optique) à Inm (en microscopie a champ proche; AFM, STM etc...).
Alternativement, on peut d'abord hybrid~r des ADN
marqueurs fiuorescents à de l'ADN simple-brin en solution, puis aligner 35 cette construction par l'action du ménisque après l'avoir transformé en ADN double-brin et ancré à une surface adéquate.

~ 1 8~9Q5 WO 95/21939 ~ rn7."'~ ~16S

On peut aussi utiliser la présente invention pour la détection de la présence d'un pdlllG~,_.Ie. A titre d'exemple, on pourra procéder de deux manières différentes selon que la réaction de ~o~ nre (hybridation, ,.~ ..t de protéine) ait lieu avant ou après ~ nFmFnt par le ménisque.
Ainsi, à titre d~exemple, un ou plusieurs oligonurl~otiFlF~c sondes sont ancrées 3. une ou plusieurs régions d'une surface.
L'hybridation de l'ADN po~ iFIl~ "Fnt pathogénique est effectuée in situ dans des conditions stringentes de facon à n'ancrer que les molécules hybridées. Leur détection et ~IUdll~iri~d~iOn s'eFfectuent après ~ nF~mF~nt par le ménisque selon la présente invention.
Alternativement, I'ADN potentiellement pathogénique est d'abord aligné, puis dénature et hybridé avec un oli~ ol~u~léotide sonde dans des rr~nflitir~nc ~llillhF~ La détection de l'hybride s'effectue alors par les méthodes connues notamment de FISH, comme décrit ci-dessus.
D1une manière similaire, on peut détecter la présence (ou l'absence) d'un petlt nombre de mr~ c, telles des protéines, des lipides, des sucres ou des antigènes. On procèdera avec avantage, à une mr,~lifir:?ticn mlneure des techniques d'ELlSA, la méthode de détection habituelle étant remplacee par la détection d~une molécule fluorescente alignée selon la présente invention et couplée à l'un des réactifs de la réaction d'ELlSA.
Par ailleurs, comme mentionné par K.R. Allan et al. (US
84 114), La cartographie génétique peut procéder par une mesure de la taille de rld~ d~ADN. Or les techniques originales d'étirement des molécules décrites plus haut (I'étirement par le ménisque) permet une mesure de la longueur des molécules étirées et cela sur un très petit échantillon (quelques milliers de molécules).
On peut, par exemple, mais sans sy restreindre, procéder de la manière suivante:
Un échantillon d'ADN est fragmenté (à l'aide d'enzymes de restriction), teinté avec un fluorophore puis ancré sur une surface. Les molécules sont ensuite étirées par le ménisque et la taille des fragments étirés déterminée par microscopie optique à fluorescence avec une resolution et une taille limite de l'ordre de 1 000 bp (0,3 ~m).

WO95121939 21 ~Q5 r~llr~5/c-l6s .

Dans ce but, mais aussi si l'on veut aligner des molécules très longues (2 lO~,lm) on utillsera avec avantage des techniques connues pour limiter la dégradation de longues macromolécules lors de leur manipulation (par cisaillement hydrodynamique).
Ainsi comme mentionné par D.C. Schwartz, on procèdera avec avantage, à une condensation des molécules à l'aide d'un agent condensateur (par exemple la spermine ou un alcool) lors de leur manipulation. Eventuellement, leur décondeDsation s'effectuera lors du contact du solvant A avec la surface d'ancrage S.
Afin de réduire la dégradation des macromolécules lors de l'étirement par le ménisque, on utilisera des techniques de translation du ménisque qui ~ lls-llt le fi~ rnl~nt hydrodynamique. Par exemple, mais sans pour autant s'y restreindre, en retirant très lentement (s200 ~/sec) la surface S, d'un volume ffn~f~ nt (2 100~1) du solvant A.
La présente invention a également pour objet une surface présentant un ou plusieurs types de macromolecules alignées obtenues selon la présente invention. En particulier, on peut obtenir une surface ou un empilement de surfaces présentant des propriétés électriques ou optiques anis~lo~c~.
La présente invention a aussi pour objet un procédé
d~alignement et de mise en évidence de l'ADN dans lequel l'ADN est étiré
par un procédé d'alignement selon l'invention, puis dénaturé puis hybridé avec des sondes spécifiques pour déterminer la position ou la taille d'une ou plusieurs séquences spéciflques.
La présente invention a également pour objet un procédé de cartographie physique d'un gène sur un ADN génomique dans lequel l'ADN est aiigné ou mis en évidence selon un procéde de l'invention.
En particulier, la position et la taille du gène recherché sur l~ADN génomique, sont déterminées par hybridation avec des sondes specifiques dudit gène à cartographier.
La présente invention a égalemcnt pour objet -un coffret utilc pour la mise en oeuvre d'un procédé de cartographie selon l'invention, constituc p~r de l'ADN
génomique total d'un hôte de référence, Wo95/21939 ~1 8~9~5 r~llr~llol6s ~4 - un support présentant une surface permettant l'ancrage et l'ali~m~m~nl de l'ADN du patient conformément au procédé
de l'invention - des sondes spécifiques du ou des gène(s) à cartographier et des réactifs pour l'hybridation et la détection de l'ADN.
La présente invention a également pour objet un procédé
d'alignement et de mise en évidence de l'ADN dans lequel l'ADN est étiré
puis dénaturé puis hybridé avec des sondes spécifiques pour déterminer la présence ou l'absence d'une ou plusieurs séquences d'ADN dans ledit ADN
10 aligné.
La présente irlvention permet la mise en oeuvre d'un procédé de diagnostic d'une pathologie liée à la présence ou l'absence d'une séquence d'ADN spécifique de la pathologie dans lequel on utilise un procédé d'alignement selon l'invention.
La présente invention a également pour objet un coffret utile pour la mise en oeuvre d'un procédé de diagnostic selon l'invention caractérisé en ce qu'il comporte un support dont la surface permet l'ancrage et l'alignement de l'ADN du patient selon un procéde de l'invention, des sondes spécifiques du gène impliqué dans la pathologie recherchée et des réactifs pour l'hybridation et la detection de l'ADN.
La présente invention a également pour objet un coffret utile pour la mise en oeuvre d'un procédé de diagnostic selon l'invention caractérisé en ce qu'il comporte un support dont la surface présente des sondes spécifiques du gène impliqué dans une pathologie, en particulier 25 de l'ADN pathogène éventuellement marqué, alignées selon le procédé de la présente invention et éventuellement dénaturées; les réacti~s pour préparer et marquer l'ADN du patient en ~ue de son hybridation (par e~;emple la photobiotine, I;it de ~nicl;-translalion" ou de "random priming") et des réactifs pour l'hybridation et la détection de l'ADN
30 suivant les techniques d'hybridation in situ commc décrites ci-dessus.
Il est entendu que des sondes peignées rclatives à des ~athogènes différents peuvent être présentes sur di~Férents supports ou sur le meme support. L'identification du pathogènc correspondant pcut se Faire apres hybridation, soil spacialement (les différentes sondes sont ~W095/21939 21 8~9~ r~Jlr~co~;l6~
séparées Sp~ri~PmPnt par exemple par ancrage photochimique a~ant leur peignage) soit par une difference du spectre de fluo}escence des différents hybrides, résultant d'un marquage différentiel préalable des sondes.
S Enfin, ~a présente invention a pour objet un procédé de préparation d'un gène dans lequel on identifie la position dudit gène syr de l'ADN génomique aligné par le procédé selon l'invention à l'aide d'une sonde spécifique dudit gène on amplifie par amplification enzymatique, notamment, PCR in situ la séquence dudit gène et éventuellement ses séquences flanquantes.
La présente invention permet donc de mettre en oeuvre un procédé de remplacement d'un gène dans le génome d'une cellule eucaryote par l'insertion ciblée d'un gène étranger à l'aide d'un vecteur contenant ledit gène étranger préparé selon le procédé de préparation de gène ci-dessus.
L'insertion ciblée peut être effectuée selon les techniques décrites dans WO90/11354 en transfectant des cellules eucaryotes avec un vecteur contenant ledit ADN étranger à insérer flanqué de deux séquences génomiques qui jouxtent le site d'insertion souhaité dans le gène receveur. L'ADN d'insertion peut comporter soit une séquence codante, soit une séquence régulatrice. Les séquences flanquantes sont choisies afin de permettre par recombinaison homologue, selon le cas, soit l'eYpression de la séquence codante de l'ADN d'insertion sous le contrôle des séquences régulatrices du gène receveur, soit l'expression d'une ~5 séquence codante du gène receveur sous le contrôle de séquence régulatrice de l'ADN d'insertion.
Les gènes génomiques et les cDNA obtenus en utilisant le procédé de localisation de gènes selon l'invention peuvent être insérés dalls des vecteurs d'e~pression capables de s'insérer dans une cellule hôte procaryote, eucaryote ou virale. Les protéines polypeptides et peptides dérivés sont inclus dans la présente invention.
La description qui va suivrc, est faite en se référant aux figures annexées sur lesqucllcs:
- la figure 1 schcmatise la détection d'un pathogène dans une molécule d'ADN fluorescente par hybridation avec une molécule ancre;

21 829Q~
Wo 95/21939 A ~,I/r~ . 165 ~6 - la figure ~ hl~m~tic.o la cartographie génétique par extension de l'ADN et l'utilisation d'un ADN marqueur;
- la figure 3 c~-hrm~ticr la détection d'une ré~ction immunologique (ELISA) à l'aide d'une molécule "drapeau": un ADN fluorescent 5 utilisé comme marqueur de réaction;
- la figure ~ est une microphotographie de fluorescence montrant l'extension d'ADN de phage A par l'avancée du ménisque, à gauche on aperçoit des molécules d'ADN en solution étirées par l'ecoulement d'évaporation parallèle au ménisque, à droite des molécules d'ADN à l'air libre après leur étiremerlt perpendiculairement au ménisque;
- les figures 5(a) et 5(b) sont des microphotographies de fluorescence montrant, respectivement, un ADN marqué à la digogixénine (DIG) sur une surface recouverte d'anti-DlG et étiré par le ménisque, et, en contrôle, un ADN non marqué sur une surface anti-DlG, on remarquera la très grande spécificité des surfaces et l'absence d'ancrage non-spécifique;
- la figure 6 représente le schéma de l'étalement de l'ADN par passage du ménisque. L'ADN en solution est ancré sur une surface traitée. La solution d'ADN est recouverte d'une lamelle ronde non-traitée;
- la figure 7 represente des histogrammes de la longueur des molécules d'ADN ~ peignées sur des surfaces de verre:
a) recouvertes de molecules silanes terminées par un groupement ~5 amine, b)recouvertes de polylysine, c~ nettoyées dans un mélange eau ox~génee/acide sulfurique.
- la figure 8 représente des molécules d'ADN peignées sur des surfaces de verre recouvertes de pol~lSsine. On remarque que les molécules attachées par leurs deux e~trémités forment des boucles.
- la figure 9 représente des YACs peignés par retrait d'une lamelle traitée d'une solution de ces molécules.
- la figure L0 montre l'identification de la présence e~ de la taille d'un cosmide sur un YAC par hybridation in situ.

~ W095121939 21 ~d?q@,5 1~,1/r~ 165 Dans le mode "diagnostic~, les sondes (les ancresn) possèdent un ~ U~ réactif (DIG, biotine, etc.) capable de s'ancre} de - manière spécifique à une surface selon la présente invention (ayant par exemple comme site d'ancrage un anticorps anti-DlG ou la streptavidine).
La détection de la réaction d'ancrage peut se faire directement par détection de la llu~les;~ de la molécule d'ADN teintée par des molécules flUul~ (ethidium bromide, YOYO, nllc~ ti~ fluorescents) (figure 1). Elle peut aussi se faire ill~ par détection d'une "molécule drapeau: un réactif capable de se fixer sur la molécule d'ADN/ARN (par exemple par hybridation, interaction protéine-ADN, etc.), mais ne présentant pas d'affinité pour les sites d'ancrage de la sonde.
Dans le mode 'icartographie~ on peut utiliser les techniques d'hybridation in situ (FISH). Il est aussi possible d'envisager d'autres techniques, par exemple en hybridant en solution de l'ADN avec des sondes présentant des réactifs fluorescents selon la présente invention. La détection de la position des sondes se fait après l'~ n~m~nt de la molécule selon la présente Invention.

Maténels et méthodes L'ADN-~ et l'anticorps monoclonal (Anti-DlG) proviennent de Boehringer-Mannheim. Les trichlorosilanes proviennent de Roth-Sochiel. Les sondes nucleiques fluorescentes (YOYO1, YOY03 et POPO1) proviennent de Molecular Probes. Les lamelles de verre ultrapropres proviennent de Erie Scientiflc (Lamelles (ESCO). Les particules magnétiques proviennent de Dynal. Le microscope est un microscope inversé Diaphot de NIKKON, équipé d'une lampe Xenon pour l'épi-iluorescence et d'une caméra CCD intensifiée Hamamatsu pour la visualisation.
Trai~f~ment de surface Des lamelles de verre sont nettoyées pendant une heure par irradiation UV sous atmosphère d'oxygène (par formation d'ozone). Elles sont ensuite imm~ t~m~nt déposées dans un dessicateur préalablement purgé de traces d'eau par un courant d'argon Un volume d'environ 100 à
500 ~LI du trichlorosilane approprié (H2C=CH-(CH2)N-SiCI3 est introduit dans .

-WO95/21939 ~ 829~5 i~I~r~ c.65 ~, le d~si~rel-r, d'où les surfaces sont retirées après environ 12 heures (n = 6) ou 1 heure (n = 1). Au sortir les surfaces sont nettes et non-mouillantes.
Les groupes fonctionnels de ces surfaces double liaison S (H2C=CH-) peuvent etre transformés en ~;IVU~ tS carboxyles (-COOH) en trempant les larnelles traitées, comme décrit précédemment, pendant une dizaine de minutes dans une solution de 25 mg KMnO4, 750 mg NalO4 dans 1 I d'eau, puis en les rincant trois fois dans de l'eau ultrapure.
Les lamelles ainsi fonctionnalisées peuvent réagir avec des protéines. Un volume de 300 1ll d'une solution aqueuse (20 ~g/ml) de protéines (protéine A, streptavidine, etc.) est déposé sur une lamelle fonctionnalisée en groupement (H2C=CH-). Cette lamelle est incubée environ deux heures à température ambiante, puis rincée trois fois dans de l'eau ultrapure. Les surfaces ainsi traitées sont nettes et mouillantes.
Les surFaces traitées à la protéine A peuvent ensuite réagir avec un anticorps, par exemple anti-DlG, par incubation dans une solution de 20 g/ml d'anticorps.
Par ailleurs, sur les surfaces presentant des groupements carbo~les, on peut greffer des uligolluclévvides présentant une extrémité
amine (-NH2), 20rv`~ll d'une solution de MES (50 mM, pH 55), Carbodiimide (lmg/ml) et 5il1 d'oligo-aminé (10 pmole/140 ~11) sont déposés sur une surface carboxylée et incubés environ 8 heures à température ambiante.
La lamelle est fin~ rnf~nt rincée trois fois dans NaOH (0.4 M) puis quatre fois dans de l'eau ultrapure. Les lamelles ainsi préparées peuvent 25 hybrider des ADN complémentaires de l'oiigonucléotide ancré.
~ncras~e d'ADN natif sur surface double liaison Une goutte de ~ ~11 d~une solution d'A[)N-~ marqué par Quorescence (YOYOl, POPOl ou YOYO3, mais sans tcrminaison particulière) de concentration variable et dans différents tampons (nombre total de 30 molécules < 107) est déposé sur une lamelle prétraitée (C=C) et recouverte d'une lamelle de verre non traitée (diamètre 18 mm). 1~ préparation est incubée environ l heure à température ambiante dans une atmosphère saturée ell vapeur d'eau. Dans un tampon de 0,0~ ~1 MES (pH = 5,5), on obser~e un ancrage quasi-général des molécules d'ADN. Par contre dans WO9SJ21939 ~1 829~5 ~ r~55.1 165 un tampon de 0,01 M Tris (pH = 8) il n'y a p~ u~ducune molécule d'ancrée (rapport > 106). Cette dépendance peut permettre le controle de I'activation/désactivation des surhces (vis-à-vis de l'ADN) par l'intermédiaire du pH.
L'action du ménisque sur la molécule est limitée au voisinage immédiat de celui-ci. La partie de la molécule en solution devant le ménisque fluctue librement et la partie laissée collée à la surface derrière le ménisque est insensible à un ~ I''"&f "f .,t de direction du ménisque. Le taux d'extension de la molécule est donc uniforme et inf~pf~nf~nt de sa taille.
Alicnement et détection de l'ancra~e Par l'action du ménisaue En transférant la préparation précédente dans une almosphère sèche, la solution en s'évaporant va étirer les molécules d'ADN, ancrées à la surface, perpendlculairement au mf nicqu~ La force capillaire sur la molécule d'ADN (quelques dizaines de picoNewtons) est en effet suffisante pour étirer f r~mrl~tf-mf~nt la molécule (plus grande que les forces d'élasticité entropique), mais trop faible pour briser la liaison entre l'extrémité de la molécule et la surface traitée. L'ADN étant marqué
par fluorescence, on observe indivi~ m~nt et aisément les molécules étirées (longueur totale environ 22 llm). L'ancrage entre la surface et l'ADN étant limité aux extrémités, on a pu aussi bien étirer des ADN de phage ~, de YAC ou de E coli (longueur totale supérieure à 400 ~m). Cette préparation d'ADN étirés, lluo~D~cllts et à l'air libre est stable pendant plusieurs jours et peut etre observée de facon non destructive, par épifluorescence (microscope inversé Nikkon Diaphot avec objectif xlO0, O.N.: 1.25).
Ancra~e et détection sPécifiques En traitant les surfaces comme décrit précf ~mm~nt avec un anticorps monoclonal spécifique, on peut contrôler très précisément leur spécificité. Ainsi, on a testé la spécificité de surfaces traitées anti-DlG vis-à-vis d'ADN-~ hybridés avec un oligonucléotide complémentaire d'une des extrémites Cos et possédant un groupement digoxigénine (DIG) et vis-à-vis d'ADN non hybridés. Dans le premier cas, on a observé une extension, par action du ménisque, quasi-générale des molécules ancrées. Dans le second 21 829~5 W0 95121939 P~ r~.~A-16~i cas, on n'a observé que quelques molécules d'ADN (< 10) ancrées dans tout l'échantillon. On estlme donc que la spécificité de la méthode selon l'invention est meilleure 4ue 106.
Des ADN-~ ont aussi été hybridés avec des olif/~n~rl~tides 5 complémentaires d'une des extrémités COS et fixés sur des surfaces carboxylées, comme décrit ci-dessus. Les c~nrliti~nc d'hybridation (eau pure à 40C) n'étaient pas ~L~ lt~o~ car dans des ~)nriition~ LCo thaute salinité) la fluorescence des sondes YOYO1 disparait et les ADN
hybridés ne peuvent etre vus. Les ADN ainsi hybridés ont aussi pu etre 10 alignés par passage du ménisque.
Sensibilité de la dé~ection Afin de déterminer la sensibilité de la méthode de détection p~r extension du ménisque, on a déposé sur des surfaces double liaison des gouttes de 2,5 1ll d'une solution d'ADN-~ dans 0,05 M MES (pH = 5,5) contenant un total de 105,10~ et 1000 molecules. L~ancrage et l'~lifinl~m~nt s'effectuent comme décrit précédemment. Les lamelles sont ensuite observées en microscopie par epifluorescence, pour déterminer la densite de molécules peignées. Celle-ci correspond bien à celle estimée: environ
4-6 molécules d'ADN par champ de vision (100 ~lm x 100 I-m) pour un total de 105 molécules d'ADN. Pour la plus faible concentration, on a pu observer une dizaine de molecules étendues par action du ménisque. Ce nombre est essentiellement limité par le grand nombre de champs de vision n~CcOO.~ O à couvrir tout l'échantillon (environ 25 000), ce qui rend une recherche manuelle difficile, mais peut etre avantageusement effectuée a~lt~matiquement ou aussi avec un objectif plus faible, mais à
plus grand champ. En conclusion, la sensibilité de la méthode selon l'inventlon permet une détection et un comptage individuel de moins de 1 000 molécules d'ADN.
Dét~endance de l'étirement sur le traitement de surface L'histogramme des longueurs d'ADN-i~, greffés sur des surfaces différentes, puis alignés par passage du ménisque montre un pic bien défini, m^ais différent pour les différentes surfaces. Ainsi sur des surFaces recouvertes d'un silane se terminant par un groupement vinyl l'ADN est étiré jusqu'à environ 22 ~,-m (voir ci-dessus) pour des surfaces ~wo 95~21939 21 82 905 J ~I/r~' ~ l6~

siianisées avec un ~IUU~ IC~It amine (-NH2), I'histogramme présente un pic à 21 ,~-m (Fig. 7 (a)) et sur du verre propre à environ 18.5 llm (hg.
7(c)).
L'étirement dépend donc du traitement de surface.
S E~ pr ~ 2 pf~iPn~re de molécules d'ADI~ sur dl~.~ . sutfaces On a observé le peignage moléc~ ire de l'ADN sur des surfaces de verre traitées de différentes facons. On joue sur la différence d'adsorption entre les e.~ , de la molécule et le reste de celle-ci. En 10 adsorbant des polymères chargés positivement sur une surface de verre on hvorise une adsorption des molécules d'ADN chargées négativement, '`"rlon'l~nt lorsque cette charge est grande la molécule d'ADN est collée sur toute sa longueur et le peignage est impossible. Mais il est possible de modifier la charge des polymères adsorbés sur le verre en modifiant les 15 conditions de pH, en effet, les charges positives sont portées par exemple par des groupes NH2 qui passent à l'état protonné NH~ pour un pH
inférieur au pK de la base correspondante. En pH basique les charges disparaissent et la surface n'attire plus l'ADN. En controlant flnement le pH on a observé que les molécules d'ADN en solution passaient d'un état où
20 elles sont c~ llcllt collées à la surface à une ph~se intLI ulédi~ où
elles ne sont ancrées que par leurs extrémités puis à une phase où la surface ne présente plus d7affinité pour l'ADN. Dans la phase intermédiaire le peignage mnl~c~ ire est réalisable.
On a étudié des surfaces recouvertes d'un silane terminé par 25 un ~ I~U~ t N~2 pour lesquelles on observe un collage total à pH < 8, un peignage pour 8.5 < pH < 9.5. Le nombre de molécules peignées est maximum à pH = 8.5 il est divisé par 2 à pH = 9 el par 4 à pH = 9.S. On a aussi déterminé l'extension relative sur cette surface qui correspond à 1.26 comme on peut le voir sur l'histogramme 2 de la figure 7 qui représente 30 des histogrammes de la longueur des molécules d'ADN A peignées sur des surfaces de verre:
a) recouvertes de silane terminés par un groupement amine, b)recouvertes de polylysine, c) nettoyées dans un mélange eau oxygénée/acide sulfurique.

,, Zl ~29~5 Wog~/21939 r~llrl~ s, :i6s ~
-On a aussi regardé des surfaces recouvertes de polylysine qui présentent des caractéristiques d'accrochages similaires en pH: domaine de peignage 8.5 et présentent une extension relative plus faible: 1.08. On peut avoir un exemple typique sur la figure 8 qui represente des molécules d'ADN peignées sur des surfaces de verre recouvertes de polylysine. On remarque que les molécules attachées par leurs deux extrémités forment des boucles.
Finalement, on a retrouvé le même comportement sur des surfaces de verre fraîchement nettoyées dans un mélange eau ox,vgenée /
acide sulfurique concentré. Ces surfaces sont très moulllantes et se polluent rapidemenr, cependant, on a observé un domaine de peignage entre 5.5 c pH < 7.4 tandis que le domaine d'adsorption forte se situe à
pH = 4.5 L'extension relative des molécules correspond à 1.12.
E~PL~
Ali~nement uniforme et directionel de YAC
lllg de YAC préalablement teint dans son bloc d'agarose à
l'aide d'une sonde fluorescente YOYO1 est chauffé à 68C, agarasé, puis dilué dans 10 ml de MES (50m~f pH S.5). Deux Iamelles silanisées (surfaces C=C) sont incubées pendant -I,Sh dans cette solution puis retirees à
environ 170 ~ m/sec. Les molécules de YAC sont toutes alignees parallèlement à la direction du retrait des lamelles (Fig. 9). L'intégrité des molécules ainsi alignées est meilleure que par évaporation après déposition entre deux lamelles.
~Ivbridation d'un cosmide sur un YAC t~ei~né
Un YAC teinté comme décrit précédemment est ancré sur une surface C=C (e3;~tre deux lamelles) puis aligne par le ménisque, lors de l'évaporation de la solution. Les sondes (cosmides) sont marquées par inco}poration d'un nucléotide biotynilé par la technique de "randon priming~. Les sondes marquées (100 ng) et 5 ~g d'ADN de sperme de saumon soniqu~ (.=500 bps) sont purifiees par precipitation dans Na-acétate et éthanol, puis dénaturees dans du formamidc.
Les YAC peignés sont dénaturés entr~ deux lamelles avec 1~0 ,d do solu~Qq dén~ur~n~e (f~rm~mide 70 i, ~ ~ SSC) sur une pl~que wos5l2l939 21 829Q~i P~llr~ ~-165 chauffante à 80C pendant 3 minutes. Les sondes (20 ng) prr~l~hl~m~nt dénaturées sont déposées sur la lamelle dans une solution d'hybridation (formamide 55 %, 2 x SSC, 10 % dextran sulfate) recouvertes d'une lamelle qui est scellée avec du caoutchouc liquide (rubber cement). L'hybridation
5 est réalisée une nuit à 37C en chambre humide.
La révélation des hybrides se fait suivant les protocoles connus pour les hybridations in situ sur chrrlmos~mr-c drrrnfll~c~c (D.
Pinkel et al., PNAS USA 83, Z931 (1986) et PNAS USA~, 9138 (1988)).
En microscopie, en fluorescence on observe alors des 10 segments hybridés tels celui montré dans la Fig. 10. Cet exemple démontre la possibilité de détecter la présence d'un gène sur une molécule d'ADN, qui peut être utilisé à des fins de diagnostic ou de cartographie physique du génome.
.

Claims (49)

REVENDICATION
1. Procédé d'alignement de macromolécule(s) sur la surface S
d'un support, caractérisé en ce que l'on fait se déplacer sur ladite surface S la ligne triple S/A/B/ (ménisque) résultant du contact d'un solvant A
avec la surface S et un milieu B, lesdites macromolécules ayant une partie, notamment une extrémité, ancrée sur la surface S, l'autre partie, notamment l'autre extrémité, étant en solution dans le solvant A.
2. Procédé selon la revendication 1, caractérisé en ce que le déplacement du ménisque se fait par évaporation du solvant A.
3. Procédé selon la revendication 1, caractérisé en ce que le déplacement du ménisque se fait par déplacement relatif de l'interface A/B par rapport à la surface S.
4. Procédé selon la revendication 3, caractérisé en ce que pour déplacer le ménisque, la surface S est retirée du solvant A ou le Solvant A
est retiré de la surface S.
5. Procédé selon l'une des revendications 1 à 4, caractérisé en ce que le ménisque est un ménisque eau-air.
6. Procédé selon l'une des revendications 1 à 5 caractérisé en ce que le support est constitué au moins en surface par un polymère organique ou inorganique, un métal, un oxyde ou un sulfure de métal, un élément semi-conducteur tel que le silicium ou un oxyde d'élément semi-conducteur, ou une de leurs combinaisons.
7. Procédé selon l'une des revendications 1 à 6, caractérisé en ce que le support est constitué au moins en surface par du verre, du silicium oxydé en surface, de l'or, du graphite, du sulfure de molybdène ou du mica.
8. Procédé selon l'une des revendications 1 à 7, caractérisé en ce que le support est sous forme de plaque, de bille, de fibre ou de particules.
9. Procédé selon l'une des revendications 1 à 8, caractérisé en ce que le solvant A dans lequel les macromolécules à aligner sont en solution est placé entre deux supports, dont un au moins correspond audit support de surface S, et le ménisque est déplacé par évaporation.
10. Procédé selon l'une des revendications 1 à 9 caractérisé en ce que l'ancrage de la macromolécule se fait par interaction physicochimique, notamment adsorption ou par lien covalent, soit l entre la surface et la macromolécule, soit indirectement entre la surface et une autre molécule reconnaissant et/ou interagissant avec ladite macromolécule.
11. Procédé selon l'une des revendications 1 à 10, caractérisé en ce qu'on utilise un support présentant en surface un groupement réactif exposé ayant une affinité pour ladite macromolécule ou une molécule à
activité biologique capable de reconnaître ladite macromolécule.
12. Procédé selon l'une des revendications 1 à 11, caractérisé en ce que la surface est recouverte d'un groupe choisi parmi les groupes vinyle, amine, carboxyle, aldéhyde ou hydroxyle.
13. Procédé selon l'une des revendications 10 ou 12, caractérisé
en ce que la surface comporte:
- sur un support une couche sensiblement monomoléculaire d'un composé organique de structure allongée ayant au moins:
- un groupement de fixation présentant une affinité pour le support, et - un groupement exposé n'ayant pas ou peu d'affinité pour ledit support et ledit groupement de fixation dans les conditions de fixation, mais présentant éventuellement, après une modification chimique suivant la fixation, une affinité pour ladite macromolécule ou molécule à activité
biologique.
14. Procédé selon l'une des revendications 1 à 13 caractérisé en ce que l'on réalise l'ancrage d'une partie d'une macromolécule par adsorption sur une surface, en mettant ladite macromolécule en présence de ladite surface dans une zone de pH ou de teneur ionique du milieu déterminée ou en appliquant une tension électrique déterminée sur la surface d'ancrage.
15. Procédé selon les revendications 1 à 14 caractérisé en ce que le pH pour réaliser l'ancrage est choisi dans une plage comprise entre un pH favorisant un état d'adsorption complet et un pH favorisant une absence d'adsorption.
16. Procédé selon l'une des revendications 1 à 15 dans lequel on réalise l'ancrage d'un acide nucléique ou d'une protéine par adsorption sur une surface présentant des groupes comportant des doubles liaisons éthyléniques ou des groupes amines, en mettant l'acide nucléique ou la protéine en présence de la surface dans une zone de pH ou de teneur ionique du milieu, déterminée.
17. Procédé selon la revendication 16 caractérisé en ce qu'on réalise l'ancrage d'ADN non fonctionnalisée par adsorption sur des surfaces recouvertes de molécules terminées par un groupement vinyl ou amine.
18. Procédé selon la revendication 17 dans lequel on réalise l'ancrage de l'ADN par son extrémité sur une surface présentant des groupements à double liaison éthylénique, en mettant l'ADN en présence de la surface à un pH inférieur à 8.
19. Procédé selon la revendication 18, caractérisé en ce que la réaction est conduite à un pH compris entre 5 et 6 puis est stoppée à pH 8.
20. Procédé selon la revendication 17, caractérisé en ce qu'on réalise l'ancrage d'ADN par son extrémité sur une surface recouverte de polylysine ou d'un groupement silane terminé par un groupe amine.
21. Procédé selon la revendication 17, caractérisé en ce qu'on réalise l'ancrage de l'ADN par son extrémité sur une surface recouverte par un groupement amine en mettant l'ADN en présence de la surface à
pH entre 8 et 10.
22. Procédé selon la revendication 17, caractérisé en ce qu'on réalise l'ancrage d'ADN par son extrémité sur une surface de verre traité
auparavant dans un bain d'acide, en mettant l'ADN en présence de ladite surface à pH entre 5 et 8.
23. Surface avec macromolécule(s) alignée(s) obtenue par le procédé selon l'une des revendications 1 à 22.
24. Procédé de mise en évidence, de séparation et/ou de dosage d'une macromolécule dans un échantillon, caractérisé en ce qu'on utilise un procédé d'alignement selon l'une des revendications 1 à 23 dans lequel se trouve fixée sur la surface S une molécule à activité biologique capable de reconnaître ladite macromolécule de l'échantillon et en ce que la mise en évidence, la séparation ou le dosage sont effectués grâce à un réactif fluorescent ou non détectant la présence de la molécule fixée ou ladite macromolécule.
25. Procédé selon l'une des revendications 1 à 24, caractérisé en ce que lesdites macromolécule et molécule à activité biologique sont choisies parmi les protéines, les acides nucléiques, les lipides, les polysaccharides et leurs dérivés.
26. Procédé selon la revendication 24, caractérisé en ce que lesdites macromolécule et molécule à activité biologique sont choisies parmi, les anticorps, les antigènes, les ADN et ARN, les ligands ou leurs récepteurs ainsi que leurs dérivés.
27. Procédé selon les revendications 24 à 26, caractérisé en ce que l'ADN fixé comporte la séquence complémentaire d'une séquence d'ADN à isoler d'un échantillon.
28. Procédé selon les revendications 24 à 26, caractérisé en ce que la protéine fixée est capable de reconnaître et fixer spécifiquement une protéine à isoler d'un échantillon.
29. Procédé selon les revendications 24 à 26, caractérisé en ce que ladite molécule à activité biologique est choisie parmi la biotine, l'avidine, la streptavidine, leurs dérivés ou un système antigène-anticorps.
30. Procédé selon les revendications 24 à 26, caractérisée en ce que la surface est à faible fluorescence et en ce que le réactif est fluorescent.
31. Procédé selon les revendications 24 à 26, caractérisée en ce que le réactif est constitué par des billes.
32. Procédé selon l'une des revendications 24 à 26, caractérisé en ce que la détection est faite par microscopie optique ou à champs proche.
33. Procédé selon l'une des revendications 24 à 26, caractérisé en ce qu'on soumet le produit de réaction entre la molécule à activité
biologique et la macromolécule de l'échantillon à une contrainte afin de détruire les mauvais appariements avant la détection.
34. Procédé de mise en évidence d'une macromolécule consistant en une séquence d'ADN ou d'une protéine dans un échantillon, selon l'une des revendications 24 à 33, caractérisé en ce que:
- on met l'échantillon correspondant au solvant A, dans lequel ladite macromolécule est en solution, en contact avec la surface du support dans des conditions de formation d'un hybride ADN/ADN, ADN/ARN ou de formation du produit de réaction protéine/protéine, l'hybride ou une macromolécule de marquage de l'hybride ou du produit de réaction étant ancré en une partie, le reste étant en solution, on l'étire par déplacement du ménisque créé par le contact du solvant avec la surface pour orienter les hybrides ou lesdites macromolécules de marquage et on effectue la mesure ou l'observation des hybrides ou desdites macromolécules de marquage ainsi orientés.
35. Procédé selon l'une des revendications 24 à 34, caractérisé en ce que l'ADN fixé et l'ADN de l'échantillon sont "colorés" de façon différente et, après étirement, on mesure la position de la séquence par rapport à l'extrémité de l'ADN de l'échantillon.
36. Procédé selon l'une des revendications 24 à 35, caractérisé
en ce qu'on utilise une méthode de détection ELISA ou FISH.
37. Procédé selon l'une des revendications 24 à 36, caractérisé en ce que l'échantillon est le produit ou le substrat d'une amplification enzymatique d'acide nucléique.
38. Procédé selon l'une des revendications 24 à 37, caractérisé en ce que l'ADN est étiré, puis dénaturé puis hybridé avec des sondes spécifiques pour déterminer la position ou la taille d'une ou plusieurs séquences d'ADN déterminées.
39. Procédé de cartographie physique d'un gène sur un ADN
génomique dans lequel l'ADN est aligné et/ou mis en évidence selon un procédé d'une des revendications 1 à 38.
40. Procédé selon la revendication 39, caractérisé en ce que la position et la taille du gène recherché sur l'ADN génomique sont déterminées par hybridation avec des sondes spécifiques dudit gène à
cartographier.
41. Coffret utile pour la mise en oeuvre d'un procédé selon l'une des revendications 39 ou 40 comprenant:

- de l'ADN génomique total d'un hôte de référence, - un support présentant une surface permettant l'ancrage et l'alignement de l'ADN, - des sondes spécifiques du gène à cartographier, et - des réactifs pour l'hybridation et la détection de l'ADN.
42. Procédé selon l'une des revendications 34 à 37, caractérisé en ce que l'ADN est étiré, puis dénaturé puis hybridé avec des sondes spécifiques pour déterminer la présence ou l'absence d'une ou plusieurs séquences d'ADN données.
43. Procédé de diagnostic d'une pathologie lié à la présence ou à
l'absence d'une séquence d'ADN donnée spécifique de ladite pathologie dans lequel on utilise un procédé selon la revendication 42.
44. Coffret utile pour la mise en oeuvre d'un procédé de diagnostic selon la revendication 43 caractérisé en ce qu'il comporte:
- un support dont la surface permet l'ancrage et l'alignement de l'ADN du patient, - des sondes spécifiques du gène impliqué dans la pathologie recherchée, et - des réactifs pour l'hybridation et la détection de l'ADN.
45. Coffret utile pour la mise en oeuvre d'un procédé de diagnostic selon la revendication 43 caractérisé en ce qu'il comporte:
- un support dont la surface présente des sondes spécifiques du gène impliqué dans la pathologie recherchée, lesdites sondes étant ancrées et alignées sur la surface;
- des réactifs pour le marquage de l'ADN, notamment de l'ADN
du patient;
- des réactifs pour l'hybridation et la détection de l'ADN.
46. Procédé de préparation d'un gène à partir d'ADN génomique caractérisé en ce que l'on identifie la position dudit gène sur l'ADN
génomique aligné par le procédé de l'une des revendications 1 à 37 à l'aide d'une sonde spécifique dudit gène et on procède à l'amplification enzymatique de la séquence dudit gène et/ou de ses séquences flanquantes et on isole le produit amplifié.
47. Construction d'ADN contenant un gène préparé par le procédé de la revendication 46 éventuellement associé à une séquence régulatrice homologue ou hétérologue.
48. Utilisation d'un gène obtenu par un procédé selon la revendication 46 pour préparer une construction d'ADN utile dans un procédé de remplacement d'un gène dans le génome d'une cellule eucaryote par insertion ciblée d'un gène étranger, ledit gène étranger étant obtenu par le procédé de la revendication 46.
49. Vecteur utile dans un procédé de remplacement d'un gène dans le génome d'une cellule eucaryote par insertion ciblée dudit gène étranger, caractérisé en ce que ledit gène étranger est préparé selon le procédé de la revendication 46.
CA2182905A 1994-02-11 1995-02-10 Procede d'alignement de macromolecules par passage d'un menisque et applications Expired - Lifetime CA2182905C (fr)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
FR94/01574 1994-02-11
FR9401574A FR2716206B1 (fr) 1994-02-11 1994-02-11 Surfaces hautement spécifiques pour réactions biologiques, procédé pour leur préparation et procédé de dosage d'une molécule utilisant ces surfaces.
FR94/07444 1994-06-17
FR9407444A FR2716263B1 (fr) 1994-02-11 1994-06-17 Procédé d'alignement de macromolécules par passage d'un ménisque et applications dans un procédé de mise en évidence, séparation et/ou dosage d'une macromolécule dans un échantillon.
PCT/FR1995/000165 WO1995021939A1 (fr) 1994-02-11 1995-02-10 Procede d'alignement de macromolecules par passage d'un menisque et applications

Publications (2)

Publication Number Publication Date
CA2182905A1 CA2182905A1 (fr) 1995-08-17
CA2182905C true CA2182905C (fr) 2010-08-17

Family

ID=26230948

Family Applications (2)

Application Number Title Priority Date Filing Date
CA002182906A Expired - Lifetime CA2182906C (fr) 1994-02-11 1995-02-10 Surfaces hautement specifiques pour reactions biologiques, procede pour leur preparation et procede pour leur utilisation
CA2182905A Expired - Lifetime CA2182905C (fr) 1994-02-11 1995-02-10 Procede d'alignement de macromolecules par passage d'un menisque et applications

Family Applications Before (1)

Application Number Title Priority Date Filing Date
CA002182906A Expired - Lifetime CA2182906C (fr) 1994-02-11 1995-02-10 Surfaces hautement specifiques pour reactions biologiques, procede pour leur preparation et procede pour leur utilisation

Country Status (15)

Country Link
US (11) US6303296B1 (fr)
EP (3) EP0744028B1 (fr)
JP (2) JP3741718B2 (fr)
KR (2) KR100424939B1 (fr)
CN (2) CN1125342C (fr)
AT (2) ATE249045T1 (fr)
AU (2) AU699136B2 (fr)
CA (2) CA2182906C (fr)
DE (2) DE69531666T2 (fr)
DK (2) DK0743988T3 (fr)
ES (2) ES2206493T3 (fr)
FR (1) FR2716263B1 (fr)
NZ (2) NZ281255A (fr)
PT (2) PT744028E (fr)
WO (2) WO1995021939A1 (fr)

Families Citing this family (121)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2716263B1 (fr) * 1994-02-11 1997-01-17 Pasteur Institut Procédé d'alignement de macromolécules par passage d'un ménisque et applications dans un procédé de mise en évidence, séparation et/ou dosage d'une macromolécule dans un échantillon.
US8142708B2 (en) * 1995-04-03 2012-03-27 Wisconsin Alumni Research Foundation Micro fluidic system for single molecule imaging
US7775368B2 (en) * 1995-04-03 2010-08-17 Wisconsin Alumni Research Foundation Micro-channel long molecule manipulation system
FR2737574B1 (fr) * 1995-08-03 1997-10-24 Pasteur Institut Appareillage d'alignement parallele de macromolecules et utilisation
WO1997006278A1 (fr) * 1995-08-09 1997-02-20 Simon Adam J Procede moleculaire pour peigner des macromolecules par l'action d'un menisque sur des surfaces hautement specifiques
NZ320546A (en) * 1995-11-13 1999-01-28 Pasteur Institut Ultrahigh resolution comparative nucleic acid hybridization to combed dna fibers
FR2755147B1 (fr) * 1996-10-30 1999-01-15 Pasteur Institut Procede de diagnostic de maladies genetiques par peignage moleculaire et coffret de diagnostic
FR2755149B1 (fr) 1996-10-30 1999-01-15 Pasteur Institut Procede de diagnostic de maladies genetiques par peignage moleculaire et coffret de diagnostic
US5830665A (en) * 1997-03-03 1998-11-03 Exact Laboratories, Inc. Contiguous genomic sequence scanning
WO1998041651A1 (fr) * 1997-03-18 1998-09-24 Hsc Research & Development Limited Partnership Procede de preparation de chromatine
US6893877B2 (en) 1998-01-12 2005-05-17 Massachusetts Institute Of Technology Methods for screening substances in a microwell array
ATE477850T1 (de) * 1998-01-12 2010-09-15 Massachusetts Inst Technology Vorrichtung zur mikrotestdurchführung
US6114466A (en) * 1998-02-06 2000-09-05 Renal Tech International Llc Material for purification of physiological liquids of organism
WO2000006770A1 (fr) * 1998-07-30 2000-02-10 Solexa Ltd. Biomolecules en rangees et leur utilisation dans une procedure de sequençage
US20100130368A1 (en) * 1998-07-30 2010-05-27 Shankar Balasubramanian Method and system for sequencing polynucleotides
US20040106110A1 (en) * 1998-07-30 2004-06-03 Solexa, Ltd. Preparation of polynucleotide arrays
US20030022207A1 (en) * 1998-10-16 2003-01-30 Solexa, Ltd. Arrayed polynucleotides and their use in genome analysis
DE19853640C2 (de) * 1998-11-20 2002-01-31 Molecular Machines & Ind Gmbh Mehrgefäßanordnung mit verbesserter Empfindlichkeit für die optische Analytik, Verfahren zu ihrer Herstellung sowie ihre Verwendung in optischen Analyseverfahren
CN1348396A (zh) 1999-03-19 2002-05-08 金克克国际有限公司 用于高效筛选的多通孔测试板
US20020042081A1 (en) * 2000-10-10 2002-04-11 Eric Henderson Evaluating binding affinities by force stratification and force panning
US20030186311A1 (en) * 1999-05-21 2003-10-02 Bioforce Nanosciences, Inc. Parallel analysis of molecular interactions
US20030073250A1 (en) * 1999-05-21 2003-04-17 Eric Henderson Method and apparatus for solid state molecular analysis
US6573369B2 (en) * 1999-05-21 2003-06-03 Bioforce Nanosciences, Inc. Method and apparatus for solid state molecular analysis
US6248537B1 (en) * 1999-05-28 2001-06-19 Institut Pasteur Use of the combing process for the identification of DNA origins of replication
US6692914B1 (en) 1999-07-02 2004-02-17 Symyx Technologies, Inc. Polymer brushes for immobilizing molecules to a surface or substrate, where the polymers have water-soluble or water-dispersible segments and probes bonded thereto
US6927065B2 (en) 1999-08-13 2005-08-09 U.S. Genomics, Inc. Methods and apparatus for characterization of single polymers
US6696022B1 (en) 1999-08-13 2004-02-24 U.S. Genomics, Inc. Methods and apparatuses for stretching polymers
US6762059B2 (en) * 1999-08-13 2004-07-13 U.S. Genomics, Inc. Methods and apparatuses for characterization of single polymers
US6319674B1 (en) * 1999-09-16 2001-11-20 Agilent Technologies, Inc. Methods for attaching substances to surfaces
US20020151040A1 (en) 2000-02-18 2002-10-17 Matthew O' Keefe Apparatus and methods for parallel processing of microvolume liquid reactions
US20010055765A1 (en) 2000-02-18 2001-12-27 O'keefe Matthew Apparatus and methods for parallel processing of micro-volume liquid reactions
US6897015B2 (en) * 2000-03-07 2005-05-24 Bioforce Nanosciences, Inc. Device and method of use for detection and characterization of pathogens and biological materials
AU2002245009B2 (en) * 2000-08-15 2007-05-17 Bioforce Nanoscience, Inc. Nanoscale molecular arrayer
EP1790736A3 (fr) * 2000-10-06 2007-08-15 The Trustees Of Columbia University In The City Of New York Procédé massivement parallèle pour décoder l'adn et l'arn
US9708358B2 (en) 2000-10-06 2017-07-18 The Trustees Of Columbia University In The City Of New York Massive parallel method for decoding DNA and RNA
AU2002246978A1 (en) * 2001-01-10 2002-07-24 Symyx Technologies, Inc. Polymer brushes for immobilizing molecules to a surface
US6528117B2 (en) 2001-01-19 2003-03-04 Paul Lewis Method for coating a substance on one side of a substrate using a single miniscus
ATE374259T1 (de) 2001-01-30 2007-10-15 Solexa Ltd Herstellung von matrizen aus polynukleotiden
EP2465943A3 (fr) * 2001-03-16 2012-10-03 Kalim Mir Affichage de polymère linéaire
US10272409B2 (en) * 2001-07-11 2019-04-30 Michael E. Hogan Methods and devices based upon a novel form of nucleic acid duplex on a surface
US7297553B2 (en) * 2002-05-28 2007-11-20 Nanosphere, Inc. Method for attachment of silylated molecules to glass surfaces
WO2003006676A2 (fr) 2001-07-13 2003-01-23 Nanosphere, Inc. Methode d'immobilisation de molecules sur des surfaces
WO2005108625A2 (fr) * 2001-07-13 2005-11-17 Nanosphere, Inc. Procede pour la preparation de substrats comportant des molecules immobilisees et substrats
AU2002329606A1 (en) * 2001-07-17 2003-03-03 Bioforce Nanosciences, Inc. Combined molecular blinding detection through force microscopy and mass spectrometry
US20030044798A1 (en) * 2001-08-31 2003-03-06 Lefkowitz Steven M. Methods for generating ligand arrays via deposition of ligands onto olefin displaying substrates, and arrays produced thereby
US6916541B2 (en) 2001-09-07 2005-07-12 Penn State Research Foundation Modified substrates for the attachment of biomolecules
US20030129397A1 (en) * 2001-09-07 2003-07-10 Wilson Daniel A. Coated optical fibers using adhesion promoters, and methods for making and using same
US7042488B2 (en) 2001-09-27 2006-05-09 Fujinon Corporation Electronic endoscope for highlighting blood vessel
US7048963B2 (en) * 2001-11-30 2006-05-23 Cambridge Polymers Group, Inc. Layered aligned polymer structures and methods of making same
US20050019488A1 (en) * 2001-11-30 2005-01-27 Cambridge Polymer Group, Inc., Boston, Ma Layered aligned polymer structures and methods of making same
US20030162181A1 (en) * 2002-02-28 2003-08-28 Eastman Kodak Company DNA sequencing and gene identification
US7094537B2 (en) * 2002-04-30 2006-08-22 Agilent Technologies, Inc. Micro arrays with structured and unstructured probes
JP2005537030A (ja) * 2002-05-09 2005-12-08 ユー.エス. ジェノミクス, インコーポレイテッド 核酸を分析する方法
US20050239193A1 (en) * 2002-05-30 2005-10-27 Bioforce Nanosciences, Inc. Device and method of use for detection and characterization of microorganisms and microparticles
US20040031167A1 (en) * 2002-06-13 2004-02-19 Stein Nathan D. Single wafer method and apparatus for drying semiconductor substrates using an inert gas air-knife
US20030232916A1 (en) * 2002-06-14 2003-12-18 Lorah Dennis Paul Nonaqueous compositions
US6952651B2 (en) * 2002-06-17 2005-10-04 Intel Corporation Methods and apparatus for nucleic acid sequencing by signal stretching and data integration
WO2004007692A2 (fr) * 2002-07-17 2004-01-22 U.S.Genomics, Inc. Procedes et compositions d'analyse de polymeres au moyen de marqueurs chimeres
US8277753B2 (en) 2002-08-23 2012-10-02 Life Technologies Corporation Microfluidic transfer pin
EP1407816B1 (fr) * 2002-09-17 2008-05-21 Kalachev, Alexey Méthode pour mettre en place une molécule de polymère
AU2003278852A1 (en) * 2002-09-20 2004-05-13 Intel Corporation Controlled alignment of nano-barcodes encoding specific information for scanning probe microscopy (spm) reading
US7361821B2 (en) * 2002-09-20 2008-04-22 Intel Corporation Controlled alignment of nanobarcodes encoding specific information for scanning probe microscopy (SPM) reading
US7606403B2 (en) 2002-10-17 2009-10-20 Intel Corporation Model-based fusion of scanning probe microscopic images for detection and identification of molecular structures
AU2003302264A1 (en) 2002-12-20 2004-09-09 Biotrove, Inc. Assay apparatus and method using microfluidic arrays
WO2004060044A2 (fr) * 2003-01-02 2004-07-22 Bioforce Nanosciences, Inc. Methode et appareil pour une analyse moleculaire dans de petits volumes d'echantillon
US6861473B2 (en) * 2003-02-28 2005-03-01 Baxter International Inc. Macromolecular ketoaldehydes
WO2005012575A1 (fr) * 2003-08-01 2005-02-10 U.S. Genomics, Inc. Procedes et compositions lies a l'utilisation d'endonucleases specifiques d'une sequence pour analyser des acides nucleiques dans des conditions de non-clivage
EP1516665A1 (fr) * 2003-09-18 2005-03-23 Sony International (Europe) GmbH Méthode d'immobilisation et d'étirage d'un acide nucléique sur un substrat
US20050064435A1 (en) * 2003-09-24 2005-03-24 Xing Su Programmable molecular barcodes
DE10361075A1 (de) * 2003-12-22 2005-07-28 Pac Tech - Packaging Technologies Gmbh Verfahren und Vorichtung zur Trocknung von Schaltungssubstraten
US20050136413A1 (en) * 2003-12-22 2005-06-23 Briggs Michael W. Reagent systems for biological assays
US20050147976A1 (en) * 2003-12-29 2005-07-07 Xing Su Methods for determining nucleotide sequence information
US20050151126A1 (en) * 2003-12-31 2005-07-14 Intel Corporation Methods of producing carbon nanotubes using peptide or nucleic acid micropatterning
EP1735097B1 (fr) 2004-03-12 2016-11-30 Life Technologies Corporation Chargement d'ensembles d'echantillons de l'ordre du nanolitre
EP1725587A2 (fr) * 2004-03-19 2006-11-29 U.S. Genomics, Inc. Compositions et procede de detection de molecules simples
AU2005275061B2 (en) 2004-07-14 2012-05-24 Zs Genetics, Inc. Systems and methods of analyzing nucleic acid polymers and related components
US20060105453A1 (en) 2004-09-09 2006-05-18 Brenan Colin J Coating process for microfluidic sample arrays
US20060134679A1 (en) * 2004-12-17 2006-06-22 U.S. Genomics, Inc. Methods and compositions for acquiring information from unstretched polymer conformations
US7736818B2 (en) 2004-12-27 2010-06-15 Inphase Technologies, Inc. Holographic recording medium and method of making it
US20060223071A1 (en) * 2005-04-01 2006-10-05 Wisniewski Michele E Methods, compositions, and kits for detecting nucleic acids in a single vessel
US7319762B2 (en) * 2005-08-23 2008-01-15 Andrea Electronics Corporation Headset with flashing light emitting diodes
US8566038B2 (en) * 2005-10-21 2013-10-22 The Regents Of The University Of California Compositions and methods for analyzing immobilized nucleic acids
US20070178503A1 (en) * 2005-12-19 2007-08-02 Feng Jiang In-situ genomic DNA chip for detection of cancer
ES2374788T3 (es) 2005-12-23 2012-02-22 Nanostring Technologies, Inc. Nanoinformadores y métodos para su producción y uso.
US8986926B2 (en) * 2005-12-23 2015-03-24 Nanostring Technologies, Inc. Compositions comprising oriented, immobilized macromolecules and methods for their preparation
US7941279B2 (en) * 2006-05-22 2011-05-10 Nanostring Technologies, Inc. Systems and methods for analyzing nanoreporters
US7858305B2 (en) * 2006-06-30 2010-12-28 The Invention Science Fund I, Llc Method of combing a nucleic acid
JP5167449B2 (ja) * 2006-11-07 2013-03-21 独立行政法人科学技術振興機構 直鎖状核酸分子懸架支持体、直鎖状核酸分子伸長方法および直鎖状核酸分子標本
GB2457402B (en) 2006-12-01 2011-10-19 Univ Columbia Four-color DNA sequencing by synthesis using cleavable fluorescent nucleotide reversible terminators
US8415102B2 (en) * 2007-04-10 2013-04-09 Nanostring Technologies, Inc. Methods and computer systems for identifying target-specific sequences for use in nanoreporters
US8951731B2 (en) * 2007-10-15 2015-02-10 Complete Genomics, Inc. Sequence analysis using decorated nucleic acids
EP2725107B1 (fr) 2007-10-19 2018-08-29 The Trustees of Columbia University in the City of New York Séquençage d'ADN avec des terminateurs nucléotidiques réversibles non fluorescents et des ddNTPs modifiés avec étiquette clivable et des acides nucléiques contenant une inosine modifiée avec des terminateurs réversibles
WO2009051807A1 (fr) 2007-10-19 2009-04-23 The Trustees Of Columbia University In The City Of New York Conception et synthèse de nucléotides fluorescents clivables en tant que terminateurs réversibles pour le séquençage de l'adn par synthèse
JP5578596B2 (ja) * 2008-08-04 2014-08-27 独立行政法人物質・材料研究機構 高分子ナノワイヤの製造方法
EP2175037B1 (fr) 2008-09-26 2017-10-11 Genomic Vision Procédé pour analyser les réseaux de répétitions en tandem du D4Z4 d'un acide nucléique et kit correspondant
US8709717B2 (en) 2009-04-03 2014-04-29 Illumina, Inc. Generation of uniform fragments of nucleic acids using patterned substrates
WO2010144128A2 (fr) * 2009-06-08 2010-12-16 Zs Genetics, Inc. Alignement moléculaire et fixation de molécule d'acide nucléique
JP2013524806A (ja) 2010-04-23 2013-06-20 ゲノミク ビジョン 分子コーミングを用いるゲノムdna及び感染性ウイルスdnaの検出によるウイルス感染の診断
DK2619325T3 (en) 2010-09-24 2016-09-05 Genomic Vision A method for recording, quantification and identification of damage and / or repair of the DNA strands
FR2966844A1 (fr) 2010-11-03 2012-05-04 Vivatech Procede d'analyse genomique
WO2012125547A2 (fr) * 2011-03-11 2012-09-20 Cornell University Systèmes et procédés pour l'imagerie et l'analyse biomoléculaire à haute résolution
US20130084564A1 (en) 2011-06-03 2013-04-04 Genomic Vision Assessment of cancer risk based on rnu2 cnv and interplay between rnu2 cnv and brca1
WO2013087789A1 (fr) 2011-12-13 2013-06-20 Glykos Finland Ltd. Réseaux d'isoformes d'anticorps et procédés associés
US9593375B2 (en) 2011-12-30 2017-03-14 Quest Diagnostics Investments Incorporated Nucleic acid analysis using emulsion PCR
US20150111205A1 (en) * 2012-01-18 2015-04-23 Singular Bio Inc. Methods for Mapping Bar-Coded Molecules for Structural Variation Detection and Sequencing
US9028776B2 (en) 2012-04-18 2015-05-12 Toxic Report Llc Device for stretching a polymer in a fluid sample
WO2014078652A1 (fr) 2012-11-16 2014-05-22 Zs Genetics, Inc. Nucléosides, nucléotides et polymères d'acides nucléiques marqués avec des atomes lourds et leurs utilisations
AU2014215586A1 (en) * 2013-02-05 2015-08-20 Bionano Genomics, Inc. Methods for single-molecule analysis
US10648026B2 (en) 2013-03-15 2020-05-12 The Trustees Of Columbia University In The City Of New York Raman cluster tagged molecules for biological imaging
US10036071B2 (en) 2013-03-15 2018-07-31 Genomic Vision Methods for the detection of sequence amplification in the BRCA1 locus
WO2014140789A1 (fr) 2013-03-15 2014-09-18 Genomic Vision Procédés de détection de points d'interruption dans des séquences génomiques réarrangées
US20140371088A1 (en) 2013-06-14 2014-12-18 Nanostring Technologies, Inc. Multiplexable tag-based reporter system
WO2017075179A1 (fr) 2015-10-27 2017-05-04 Zs Genetics, Inc. Séquençage par déconvolution
EP3541955A1 (fr) 2016-11-15 2019-09-25 Genomic Vision Procédé pour la surveillance d'événements de correction de gènes induite par des nucléases modifiées par peignage moléculaire
WO2018100431A1 (fr) 2016-11-29 2018-06-07 Genomic Vision Procédé de conception d'un ensemble de séquences polynucléotidiques destiné à l'analyse d'événements spécifiques dans une région génétique d'intérêt
KR102077643B1 (ko) * 2018-02-09 2020-04-07 광운대학교 산학협력단 메니스커스 곡면을 갖는 시료 내 입자 분리 장치 및 방법
US20230235379A1 (en) 2020-04-30 2023-07-27 Dimensiongen Devices and methods for macromolecular manipulation
WO2021247394A1 (fr) 2020-06-01 2021-12-09 Dimensiongen Dispositifs et procédés d'analyse génomique
EP4121560A1 (fr) 2020-08-10 2023-01-25 Dimensiongen Dispositifs et procédés d'analyse de génome multidimensionnelle
CN113514297A (zh) * 2021-06-21 2021-10-19 福建农林大学 一种用于单分子dna拉伸的磁控分子梳方法
WO2023055776A1 (fr) 2021-09-29 2023-04-06 Michael David Austin Dispositifs et procédés d'interrogation de macromolécules

Family Cites Families (38)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4278651A (en) * 1978-09-27 1981-07-14 Becton Dickinson & Company Supported receptor and use thereof in an assay
NL8102178A (nl) * 1981-05-02 1982-12-01 Stichting Centraal Lab Werkwijze voor het aantonen van tegen bepaalde antigenen gerichte antistoffen, alsmede inrichting en reagentia voor het uitvoeren van deze werkwijze.
US4554088A (en) * 1983-05-12 1985-11-19 Advanced Magnetics Inc. Magnetic particles for use in separations
US4698302A (en) * 1983-05-12 1987-10-06 Advanced Magnetics, Inc. Enzymatic reactions using magnetic particles
GB8314523D0 (en) * 1983-05-25 1983-06-29 Lowe C R Diagnostic device
US4539061A (en) * 1983-09-07 1985-09-03 Yeda Research And Development Co., Ltd. Process for the production of built-up films by the stepwise adsorption of individual monolayers
US4724207A (en) * 1984-02-02 1988-02-09 Cuno Incorporated Modified siliceous chromatographic supports
US4794168A (en) * 1984-04-24 1988-12-27 Scripps Clinic And Research Foundation Leukemia-associated virus immunogen, vaccine and assay
US4683202A (en) * 1985-03-28 1987-07-28 Cetus Corporation Process for amplifying nucleic acid sequences
US4803170A (en) * 1985-05-09 1989-02-07 Ultra Diagnostics Corporation Competitive immunoassay method, device and test kit
US4722890A (en) * 1985-08-27 1988-02-02 The United States Of America As Represented By The Department Of Health And Human Services Quantitative assay for human terminal complement cascade activation
US5447841A (en) * 1986-01-16 1995-09-05 The Regents Of The Univ. Of California Methods for chromosome-specific staining
US4709037A (en) * 1987-02-17 1987-11-24 Hoechst Celanese Corporation Biotinylating agents
DE3717210C2 (de) * 1987-05-22 1993-11-25 Diagen Inst Molekularbio Verfahren zur Modifizierung von Nukleinsäuren
US5098977A (en) * 1987-09-23 1992-03-24 Board Of Regents, The University Of Texas System Methods and compositions for providing articles having improved biocompatability characteristics
US4921809A (en) * 1987-09-29 1990-05-01 Findley Adhesives, Inc. Polymer coated solid matrices and use in immunoassays
FR2634023B1 (fr) * 1988-07-08 1994-03-25 Bio Merieux Reactif sous forme de support solide permettant de fixer par covalence un ligand biologique amine, sa preparation et son utilisation
US5102798A (en) * 1988-09-08 1992-04-07 Allage Associates Surface functionalized Langmuir-Blodgett films for immobilization of active moieties
US5237016A (en) * 1989-01-05 1993-08-17 Siska Diagnostics, Inc. End-attachment of oligonucleotides to polyacrylamide solid supports for capture and detection of nucleic acids
JP2910929B2 (ja) * 1989-03-23 1999-06-23 浜松ホトニクス株式会社 磁気粒子よりなる粒子の表面改質方法
EP0391674B1 (fr) * 1989-04-05 1996-03-20 New York University Procédé de caractérisation de particules
US5240846A (en) * 1989-08-22 1993-08-31 The Regents Of The University Of Michigan Gene therapy vector for cystic fibrosis
US5232829A (en) * 1989-09-29 1993-08-03 Hoffmann-La Roche Inc. Detection of chlamydia trachomatis by polymerase chain reaction using biotin labelled lina primers and capture probes
US5215882A (en) * 1989-11-30 1993-06-01 Ortho Diagnostic Systems, Inc. Method of immobilizing nucleic acid on a solid surface for use in nucleic acid hybridization assays
FR2656319B1 (fr) * 1989-12-27 1992-03-20 Rhone Poulenc Chimie Microspheres composites magnetisables a base d'un polymere organosilicie reticule, leur procede de preparation et leur application en biologie.
US5079169A (en) * 1990-05-22 1992-01-07 The Regents Of The Stanford Leland Junior University Method for optically manipulating polymer filaments
US5200315A (en) * 1990-07-25 1993-04-06 Eastman Kodak Company Particulate biologically active reagent containing polyoxyalkylene side chains, analytical element and methods for use of the reagent
US5244796A (en) * 1990-10-12 1993-09-14 Syracuse University Cloned leuconostoc mesenteroides glucose-6-phosphate dehydrogenase genes and method of making glucose-6-phospate dehydrogenase
US5474796A (en) * 1991-09-04 1995-12-12 Protogene Laboratories, Inc. Method and apparatus for conducting an array of chemical reactions on a support surface
CA2135072A1 (fr) * 1992-05-07 1993-11-11 Timothy W. Houseal Methodes de cartographie genetique a haute resolution
CA2098960C (fr) * 1992-07-10 2004-11-02 Richard Barner Surfaces de liaison biospecifique sur support solide et methode de preparation
US5372930A (en) * 1992-09-16 1994-12-13 The United States Of America As Represented By The Secretary Of The Navy Sensor for ultra-low concentration molecular recognition
US5610287A (en) * 1993-12-06 1997-03-11 Molecular Tool, Inc. Method for immobilizing nucleic acid molecules
FR2716263B1 (fr) * 1994-02-11 1997-01-17 Pasteur Institut Procédé d'alignement de macromolécules par passage d'un ménisque et applications dans un procédé de mise en évidence, séparation et/ou dosage d'une macromolécule dans un échantillon.
US5624711A (en) 1995-04-27 1997-04-29 Affymax Technologies, N.V. Derivatization of solid supports and methods for oligomer synthesis
WO1997006278A1 (fr) 1995-08-09 1997-02-20 Simon Adam J Procede moleculaire pour peigner des macromolecules par l'action d'un menisque sur des surfaces hautement specifiques
US5554088A (en) * 1995-09-12 1996-09-10 Zlojutro; Milan Sport training bag and support
US5851769A (en) 1995-09-27 1998-12-22 The Regents Of The University Of California Quantitative DNA fiber mapping

Also Published As

Publication number Publication date
JPH09509057A (ja) 1997-09-16
CN1125342C (zh) 2003-10-22
DE69531667D1 (de) 2003-10-09
EP0744028B1 (fr) 2003-09-03
FR2716263B1 (fr) 1997-01-17
US20020031774A1 (en) 2002-03-14
AU1814595A (en) 1995-08-29
PT743988E (pt) 2004-01-30
US20060257910A1 (en) 2006-11-16
NZ281255A (en) 1998-05-27
KR100395018B1 (ko) 2003-08-19
US5846724A (en) 1998-12-08
CA2182905A1 (fr) 1995-08-17
US5677126A (en) 1997-10-14
CN1144540A (zh) 1997-03-05
DK0744028T3 (da) 2003-12-22
EP1369494A3 (fr) 2003-12-17
ATE249045T1 (de) 2003-09-15
US6265153B1 (en) 2001-07-24
EP1369494A2 (fr) 2003-12-10
JPH09509056A (ja) 1997-09-16
PT744028E (pt) 2004-01-30
US6294324B1 (en) 2001-09-25
ES2206493T3 (es) 2004-05-16
WO1995021939A1 (fr) 1995-08-17
DK0743988T3 (da) 2004-01-05
DE69531666T2 (de) 2004-07-01
EP0743988A1 (fr) 1996-11-27
US20030175779A1 (en) 2003-09-18
FR2716263A1 (fr) 1995-08-18
JP3741719B2 (ja) 2006-02-01
US7122647B2 (en) 2006-10-17
EP0743988B1 (fr) 2003-09-03
US6303296B1 (en) 2001-10-16
KR100424939B1 (ko) 2004-07-27
AU699136B2 (en) 1998-11-26
WO1995022056A1 (fr) 1995-08-17
US6130044A (en) 2000-10-10
JP3741718B2 (ja) 2006-02-01
CA2182906A1 (fr) 1995-08-17
CA2182906C (fr) 2006-08-15
US6054327A (en) 2000-04-25
US5840862A (en) 1998-11-24
DE69531667T2 (de) 2004-06-24
CN1088110C (zh) 2002-07-24
ES2206494T3 (es) 2004-05-16
US7754425B2 (en) 2010-07-13
ATE248927T1 (de) 2003-09-15
DE69531666D1 (de) 2003-10-09
NZ279861A (en) 1998-07-28
CN1144561A (zh) 1997-03-05
EP0744028A1 (fr) 1996-11-27
AU1712095A (en) 1995-08-29
US6548255B2 (en) 2003-04-15

Similar Documents

Publication Publication Date Title
CA2182905C (fr) Procede d&#39;alignement de macromolecules par passage d&#39;un menisque et applications
EP0842411B1 (fr) Appareillage d&#39;alignement parallele de macromolecules et utilisation
FR2801904A1 (fr) Produits comprenant un support sur lequel sont fixes des acides nucleiques et leur utilisation comme puce a adn
EP1525210B1 (fr) Procede de fabrication de puces biologiques
FR2716206A1 (fr) Surfaces hautement spécifiques pour réactions biologiques, procédé pour leur préparation et procédé de dosage d&#39;une molécule utilisant ces surfaces.
US20240077474A1 (en) System and methods for positioning biomaterial on a substrate
CA2406948A1 (fr) Biopuces, preparation et utilisations
AU2384999A (en) Highly specific surfaces for biological reactions, method of preparation and utilization

Legal Events

Date Code Title Description
EEER Examination request
MKEX Expiry

Effective date: 20150210