CA2198111C - Method and antenna for providing an omnidirectional pattern - Google Patents

Method and antenna for providing an omnidirectional pattern Download PDF

Info

Publication number
CA2198111C
CA2198111C CA002198111A CA2198111A CA2198111C CA 2198111 C CA2198111 C CA 2198111C CA 002198111 A CA002198111 A CA 002198111A CA 2198111 A CA2198111 A CA 2198111A CA 2198111 C CA2198111 C CA 2198111C
Authority
CA
Canada
Prior art keywords
input
loop
conductive
antenna
balun
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
CA002198111A
Other languages
French (fr)
Other versions
CA2198111A1 (en
Inventor
James Patrick Phillips
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Google Technology Holdings LLC
Original Assignee
Motorola Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Motorola Inc filed Critical Motorola Inc
Publication of CA2198111A1 publication Critical patent/CA2198111A1/en
Application granted granted Critical
Publication of CA2198111C publication Critical patent/CA2198111C/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q7/00Loop antennas with a substantially uniform current distribution around the loop and having a directional radiation pattern in a plane perpendicular to the plane of the loop
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q11/00Electrically-long antennas having dimensions more than twice the shortest operating wavelength and consisting of conductive active radiating elements
    • H01Q11/12Resonant antennas
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • H01Q21/24Combinations of antenna units polarised in different directions for transmitting or receiving circularly and elliptically polarised waves or waves linearly polarised in any direction
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • H01Q21/29Combinations of different interacting antenna units for giving a desired directional characteristic
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q9/00Electrically-short antennas having dimensions not more than twice the operating wavelength and consisting of conductive active radiating elements
    • H01Q9/04Resonant antennas
    • H01Q9/16Resonant antennas with feed intermediate between the extremities of the antenna, e.g. centre-fed dipole
    • H01Q9/18Vertical disposition of the antenna

Abstract

The present invention provides a method (400) and antenna (100) for providing an omnidirectional pattern. The antenna (100) is smaller than prior art omnidirectional antennas with the same bandwidth. The smaller size is made possible by the use of at least one capacitive element (104) at a discontinuity in the loop (102). The pattern is balanced and therefore the omnidirectionality is maintained by the current maximum (110 and 112) that are created by the capacitive element (104).

Description

WO 97101197 ~ ~ q 8 ~ ,."41 .
I

METHOD AND ANTENNA FOR PROVIDING AN OMNIDIRECTIONAL
PATrERN
J

Field of the invention The present invention relates generally to antennas and more particularly to omnidirectional antennas.

Background of the Invention O" ,ni.li,~.;liunal loop antennas in prior art are small with regard to the operating wavelength and therefore have a 15 narrow frequency bdnd.~id~h of operation and are not well suited for many communication systems. To increase the operating bandwk~ll, the size of the loop is increased. As the loop is made larger the current distribution around the loop is no longer uniform and the radiation pattern is not 20 o""l;di,e.;lional but has dilt:uli~lldlily. As the band~;dlll is increased the size of the antenna increases and the O"",id;,tl,;lional pattern may be affected. This can be e~ ssed in the form of a table of different size loops e~ ssed in terms of the wavelength of the center frequency 25 of the operating band as shown below. As the loop varies from a circumference of 0.2 wavelengths to 0.5 wavelengths the unusable bdlldv~idlll as exl-rt,ssed as a percentage of the center frequency varies from 0.14% to 9.0~/O. However the uniformity of the pattern degrades . If the maximum response is 30 compared to the minimum response in the azimuth plane this can be expressed in decibels and shown in the table below.

WO9?/01197 2 1 98 t 1 I P~,lll .' /41 .

GrclJ~Irt:r~nce Radiation Bandwidth in Azimuth Max. to in Wavelengths Resistance Percentage Minimum in dB
0.2 0.32 Ohms 0.14 YO 1.0 dB
0.3 1.5 Ohms 0.56 % 2.0 dB
0.4 5.18 Ohms 2.33% 4.0 dB
0.5 12.3 Ohms 6.45 %. 6.0 dB

When the loop is made large enough for the b~rld..;dLII to be great enough to be usable in typical communication systems, typically greater than 5.0Yo, then the azimuth pattern becomes 5 non-uniform with peaks and nulls. These nulls produce degraded pe,ru;rlldnce when they are in the direction of the site of the other antenna in the RF communication link.

O""~idile~Lional, vertically polarized antennas, usually 10 called electric dipoles, are well known and often used in communication systems. In land mobile, cellular and other base-to-mobile communication systems, the signal is reflected from many surrounding objects and these, erle~ Lions combine in constructive and destructive ways. When the combination is 15 destructive, the signal is canceled and communication is impossible. If however, a second antenna using holi~ur,lal polarization was available, an alternate or diversity communication path would be available. For this second path to be effective the second antenna has to be isolated and 20 decorrelated from the first. A very effective way of ac- u~ hil)g this is to have the pola, i~a~ions of the antennas to be orthogonal. Because the first antennas are usually vertically polarized, the second antenna should be horizontally polarized.

WO97/01197 21 q~ 7 ~ ~ PCTIUS96105741 There exists, therefore, a need for a method and antenna for providing o,l",i.li,t~ ional pattern, wherein the antenna is smaller than prior art with co~ ,a,dl)le bandwidth.

Brief Des~ lions of the Drawings FIG. 1 is a diagram of one embodiment of an antenna for providing an or"" ' ~,Liooal polarized pattern in dccolddnce with 10 the present invention.

FIG. 2 is a diagram of a second embodiment of an antenna for providing an or"nidi~ io,ldl polarized pattem in a~;~onid"ce with the present invention.
FIG. 3 is a graphical l~ r~sellldlion of retum loss of the loop antenna in accordance with the present invention.

FIG. 4 is a flow diagram of one embodiment of step for 20 implementing a method for providing an omnidirectional pattern in accordance with the present invention.

Detailed Description of the Preferred Elllbodi"lt:"l~
Generally, the present invention provides a method and antenna for providing an omnidirectional pattern with a small structure.

The present invention is more fully described in FlGs 1 - 4.
FIG. 1, numeral 100, is a diagram of one embodiment of an antenna for providing an omnidirectional pattern in accordance W097/~1197 2 ~ 98 1 1 i F~ .,/41 with the present invention. The loop (102) is a discontinuous loop comprising at least a first capacitive element (104), feed point (106) and matching network (108). A discontinuity is introduced to balance the o""~idi,e~ lional llall~lll;SSiu" pattem.
5 By using the capacitive element (104) current maximums (110 and 11 Z) are located on either side of the loop (102) to balance the lldns,,,issio,1 pattern. At 800 MHz, the capacitors are about 0.7 pico-Farads.

FIG. 2, numeral 200, is a diagram of a second embodiment of an antenna for providing an omnidirectional pattern in accordance with the present invention. The antenna (200) ~o",~lises an electric dipole (202) and a loop (204).

The electric dipole (202) receives a first input (206). The loop (204) receives a second input (208). The electric dipole (202) utilizes a dipoie integral "bazooka" balun for common mode operation. The loop (204) is shown in greater detail in figure 1.
The loop (204) utilizes an infinite loop balun for common mode 20 operation. the loop balun is achieved by using a twisted pair lldlls,,,ission line with a small diameter for the wires of the ldllSI "ission line.

The antenna may include a hybrid coupler (210) for ~5 inputting one sense circular polarization to the first input (206) and the opposite sense to the second input (208). The second input (208) is equal in amplitude to the first input (206) and the phase of the second input (208) is in quadrature with the phase of the first input (206). The hybrid coupler (210) provides the first 30 input ~206) and the second input (208) with a left hand circular input (214) and a right hand circular input (212).

WO 97/01197 I ~,l/u, ~ .14l 27~8! 1 1 The electric dipole (20Z) consists of two conductive cylinders d,up~ux~ aLely one quarter wavelength and equal in size and located collinear with each other. These are made of brass but any highly conductive metal could be used. The length of each 5 cylinder is slightly shorter that one quarter of a wavelength at the center frequency the center of the operating band of frequencies. The diameter of the cylinders is about one tenth of the length. Connection to the dipole is made across a gap between the two cylinders with the coaxial cable running coaxially with 10 the lower cylinder. The lower cylinder forms the balun in addition to being one section of the dipole. The loop is made from copper tubing about one two-hundredth of a wavelength in diameter. The diameter of the loop is one seventh of a wavelength. The loop is discontinuous at two points and 15 Udl aui~o,S are connected across the discontinuities. The value of the capacitors is selected to cause It:sulldllce at the center frequency of operation. At 800 MHz, the capacitors are about 0.7 pico-Farads. Because the circumference of the loop is nearly one half wavelength, the current distribution is non uniform around 20 the loop. Without the capacitors a single current maximum occurs which is therefore offset from the center of the loop. The hybrid couplers ~210) are co",r"eluially available FIG. 3, numeral 300, is a graphical representation of retum 25 loss in accordance with the present invention. The return loss (302) is a function of frequency (304). The retum losses of the electric dipole (308) and the loop (312) are centered a center frequency fO (306). The return loss of prior art loops (310) has a substantially narrower bandwidth than the retum loss of the loop 30 in the present invention (312).
2 1 q 8 1 1 I PCT/US96/05741 "Q" is defined in the art to be ratio of two pi times the energy stored by a reactive element to the energy dissipated over one cycle in a resonant circuit. Q is therefore equal to the ratio of the reactance of the loop to the radiation It:si~d"ce of the 5 loop as shown below.

Q= Xl/Rr Where: Xl = the inductive reactance of the loop, and Rr = the 10 radiation ~esi~Ldnce of the loop.

"Q" is also a measure of how much usable frequency bandwidth an antenna provides. It is equal to the center frequency of operation divided by the half-power bandwidth as 15 shown below.

Q = Fcenter~(Fmax - Fmin) Where Fmax is the maximum frequency of operation, Fmin is the 20 minimum frequency of operation, and Fcenter is the center frequency of operation.

To obtain the usable bandwidths of 5~/0, which are typical of many communication systems, the Q should be less that Z0. This 25 requires that the reactance "Xl" be no more than 20 times the radiation rr-si~ldnce~ "Rr" of equation 1.

For electrically small loops, the radiation r~ ld"ce is very small but it increases as the fourth power of the diameter 30 of the loop. The reactance is much larger than the resistance but it increases only linearly with diameter. Therefore, an WO97/01197 2 ~ 9 8 1 ~ 1 1~,IIIJ.. ,1 ~.~141 .

i"ri"ilesi"~al'y small loop has an infinite "Q" and it decreases rapidly as the loop is made larger.

FIG. 4, numeral 400, is a flow diagram of one embodiment of 5 steps for implementing a method for providing both ho, i~onlally and vertically polarized omnidi,eLlional patterns in accordance with the present invention. A first input is received by an electric dipole (402), and a second input is received by a loop ~404). The loop is a discontinuous loop ~o",~,lis;"g at least a 10 first capacitive element at a discontinuity to balance the 011 In;.lil ~Llional ll dl ISI l ,ission pattern.

The electric dipole utilizes a coaxial or "bazooka" dipole balun to allow connection coaxially to the dipole. The loop 15 utilizes a separate balun for operation co-located with the dipole. The loop balun is achieved by a coaxial or "bazooka" balun or by using a twisted-pair l,d"s",;ssion line with a small diameter wires for each conductor. The transmission line connecting to the loop is decoupled from the antenna structure by 20 using the same coaxial or "bazooka" balun used by the electric dipole . The separate coaxial feedlines may be located in parallel while passing through the lower tube which forms the lower arm of the dipole and the balun for the electric dipole.

Circular polarization may be provided by the co-located electric dipole and loop by LonlleLlil,g them to a common RF
signal source with equal RF signal magnitude and with a phase quadrature relationship between them . The first input for the electric dipole and the second input for the loop antenna, by a hybrid coupler (406). The second input is equal in amplitude to the first input and the phase of the second input is in quadrature with the phase of the first input. A hybrid combiner provides two WO97/01197 21 9i~t 1 t 1 r ~ 41 .

isolated inputs with oi ll,ogonal quadrature relationships. The hybrid can thus provide both left-hand and right-hand circularly polarized signals simultaneously and independently.

Thus, the present invention provides a method and antenna for providing an electrically small or"n;.li,~lional horizontally polarized pattern. The antenna element may be co-located and i"dep~"dt:"lly ~o~",e._~ed with an electric dipole. With such a structure, a multiplicity of wave poldri~d~iolls are available for diversity to improve the reliability of a communications system.
In-door, RF, data communication systems are improved by using circular polarization. A small antenna of this type will have dlJpt ~ lioll in cordless phone and micro cellular base stations.
The advantages are the antenna is a smaller size than prior art of the same bandwidth due to being integrated and collocated with the dipole, a receiving antenna such as a hand held antenna can be in any orientation, and the antenna can be low cost with baluns.

Although exemplary embodiments are described above it will be obvious to those skilled in the art that many alterations and modiri~:dlions may be made without departing from the invention. Accordingly it is intended that all such dllerdli~,"s and modiricdlions be included within the spirit and scope of the invention as defined in the appended claims.

Claims (4)

THE EMBODIMENT OF THE INVENTION IN WHICH AN EXCLUSIVE PROPERTY
OR PRIVILEGE IS CLAIMED ARE DEFINED AS FOLLOWS:
1. A method for providing an improved omnidirectional pattern, the method comprising:
receiving a first input by an electric dipole; and receiving a second input by a conductive loop, wherein the conductive loop is a discontinuous loop comprising at least a first capacitive element at a discontinuity to balance the omnidirectional transmission pattern, further comprising an initial step of inputting circular polarization to the first input and the second input by a hybrid coupler, and the antenna further comprises a hybrid coupler for inputting circular polarization, wherein the second input is equal in amplitude to the first input and the phase of the second input is in quadrature with the phase of the first input, wherein the electric dipole includes two conductive cylinders, each having a length of approximately one quarter of a wavelength of a center frequency of an operating band of frequencies and the conductive cylinders are equal in size, located collinear with each other and have a diameter of substantially one-tenth of the length, wherein a diameter of the conductive loop is substantially one-seventh of the wavelength of the center frequency of the operating band of frequencies, and wherein uniformity of omnidirectionality is obtained within 0.2 dB.
2. An antenna for providing an omnidirectional pattern, the antenna comprising:
a conductive loop oriented in a horizontal plane for receiving a first input to provide a current distribution, the loop contains at least a first discontinuity and is larger than 0.5 wavelengths in circumference; and at least a first capacitive element at the discontinuities to modify the current distribution on the conductive loop and thus provide the omnidirectional pattern, further comprising an electric dipole, operably coupled to the conductive loop, passing through a center of the conductive loop and perpendicular to the horizontal plane of the conductive loop, for receiving a second input, and wherein the antenna further comprises a hybrid coupler for inputting circular polarization, wherein the second input is equal in amplitude to the first input and the phase of the second input is in quadrature with the phase of the first input, wherein the electric dipole includes two collinear conductive cylinders, one on each side of the horizontal plane of the conductive loop, each conductive cylinder having a length of approximately one quarter of a wavelength of a center frequency of an operating band of frequencies, the conductive cylinders being equal in size and each conductive cylinder having a diameter of substantially one-tenth of the length of the conductive cylinder, wherein a diameter of the conductive loop is substantially one-seventh of the wavelength of the center frequency of the operating band of frequencies, and wherein uniformity of omnidirectionality is obtained within 0.2 dB.
3. The antenna of claim 2 wherein the conductive loop utilizes a loop balun that is one of a coaxial balun and a balun for common mode operation.
4. The antenna of claim 2, wherein the electric dipole utilizes a dipole balun that is one of a coaxial balun and a balun for common mode operation.
CA002198111A 1995-06-21 1996-04-26 Method and antenna for providing an omnidirectional pattern Expired - Lifetime CA2198111C (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US49303995A 1995-06-21 1995-06-21
US08/493,039 1995-06-21
PCT/US1996/005741 WO1997001197A1 (en) 1995-06-21 1996-04-26 Method and antenna for providing an omnidirectional pattern

Publications (2)

Publication Number Publication Date
CA2198111A1 CA2198111A1 (en) 1997-01-09
CA2198111C true CA2198111C (en) 2000-01-11

Family

ID=23958656

Family Applications (1)

Application Number Title Priority Date Filing Date
CA002198111A Expired - Lifetime CA2198111C (en) 1995-06-21 1996-04-26 Method and antenna for providing an omnidirectional pattern

Country Status (6)

Country Link
US (1) US5751252A (en)
EP (1) EP0776530A4 (en)
CN (1) CN1081836C (en)
AU (1) AU691111B2 (en)
CA (1) CA2198111C (en)
WO (1) WO1997001197A1 (en)

Families Citing this family (52)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2315602B (en) * 1996-07-23 2000-11-29 Motorola Inc Loop antenna
US5914613A (en) 1996-08-08 1999-06-22 Cascade Microtech, Inc. Membrane probing system with local contact scrub
US6256882B1 (en) 1998-07-14 2001-07-10 Cascade Microtech, Inc. Membrane probing system
SE514773C2 (en) * 1998-09-28 2001-04-23 Allgon Ab Radio communication unit and antenna system
NL1010457C2 (en) * 1998-11-03 2000-05-04 Nedap Nv Large loop antennas.
US6359594B1 (en) 1999-12-01 2002-03-19 Logitech Europe S.A. Loop antenna parasitics reduction technique
US6960984B1 (en) 1999-12-08 2005-11-01 University Of North Carolina Methods and systems for reactively compensating magnetic current loops
US6480158B2 (en) 2000-05-31 2002-11-12 Bae Systems Information And Electronic Systems Integration Inc. Narrow-band, crossed-element, offset-tuned dual band, dual mode meander line loaded antenna
US6914423B2 (en) 2000-09-05 2005-07-05 Cascade Microtech, Inc. Probe station
US6965226B2 (en) 2000-09-05 2005-11-15 Cascade Microtech, Inc. Chuck for holding a device under test
DE10143173A1 (en) 2000-12-04 2002-06-06 Cascade Microtech Inc Wafer probe has contact finger array with impedance matching network suitable for wide band
US6515632B1 (en) 2001-06-06 2003-02-04 Tdk Rf Solutions Multiply-fed loop antenna
GB0115023D0 (en) * 2001-06-20 2001-08-08 Univ Belfast Improvements relating to antennas
WO2003052435A1 (en) 2001-08-21 2003-06-26 Cascade Microtech, Inc. Membrane probing system
US6608602B2 (en) * 2001-11-06 2003-08-19 Intel Corporation Method and apparatus for a high isolation dual port antenna system
US7057404B2 (en) 2003-05-23 2006-06-06 Sharp Laboratories Of America, Inc. Shielded probe for testing a device under test
US7492172B2 (en) 2003-05-23 2009-02-17 Cascade Microtech, Inc. Chuck for holding a device under test
US7250626B2 (en) 2003-10-22 2007-07-31 Cascade Microtech, Inc. Probe testing structure
GB2425844B (en) 2003-12-24 2007-07-11 Cascade Microtech Inc Active wafer probe
US7187188B2 (en) 2003-12-24 2007-03-06 Cascade Microtech, Inc. Chuck with integrated wafer support
US7420381B2 (en) 2004-09-13 2008-09-02 Cascade Microtech, Inc. Double sided probing structures
ES2821832T3 (en) * 2004-11-12 2021-04-27 Bayer Healthcare Llc Site-directed modification of FVIII
US7535247B2 (en) 2005-01-31 2009-05-19 Cascade Microtech, Inc. Interface for testing semiconductors
US7656172B2 (en) 2005-01-31 2010-02-02 Cascade Microtech, Inc. System for testing semiconductors
US20070069968A1 (en) * 2005-09-29 2007-03-29 Moller Paul J High frequency omni-directional loop antenna including three or more radiating dipoles
US7839351B2 (en) * 2006-04-14 2010-11-23 Spx Corporation Antenna system and method to transmit cross-polarized signals from a common radiator with low mutual coupling
US7723999B2 (en) 2006-06-12 2010-05-25 Cascade Microtech, Inc. Calibration structures for differential signal probing
US7764072B2 (en) 2006-06-12 2010-07-27 Cascade Microtech, Inc. Differential signal probing system
US7403028B2 (en) 2006-06-12 2008-07-22 Cascade Microtech, Inc. Test structure and probe for differential signals
US8081699B2 (en) * 2006-07-15 2011-12-20 Kazimierz Siwiak Wireless communication system and method with elliptically polarized radio frequency signals
US7876114B2 (en) 2007-08-08 2011-01-25 Cascade Microtech, Inc. Differential waveguide probe
DE102008003532A1 (en) * 2007-09-06 2009-03-12 Lindenmeier, Heinz, Prof. Dr. Ing. Antenna for satellite reception
EP2034557B1 (en) 2007-09-06 2012-02-01 Delphi Delco Electronics Europe GmbH Antenna for satellite reception
US8164528B2 (en) * 2008-03-26 2012-04-24 Dockon Ag Self-contained counterpoise compound loop antenna
GB0805393D0 (en) * 2008-03-26 2008-04-30 Dockon Ltd Improvements in and relating to antennas
US8462061B2 (en) * 2008-03-26 2013-06-11 Dockon Ag Printed compound loop antenna
DE102008002587A1 (en) * 2008-06-23 2009-12-24 Biotronik Crm Patent Ag Patient device with an antenna arrangement with polarization diversity
US7888957B2 (en) 2008-10-06 2011-02-15 Cascade Microtech, Inc. Probing apparatus with impedance optimized interface
US8410806B2 (en) 2008-11-21 2013-04-02 Cascade Microtech, Inc. Replaceable coupon for a probing apparatus
US8319503B2 (en) 2008-11-24 2012-11-27 Cascade Microtech, Inc. Test apparatus for measuring a characteristic of a device under test
DE102009011542A1 (en) * 2009-03-03 2010-09-09 Heinz Prof. Dr.-Ing. Lindenmeier Antenna for receiving circularly in a direction of rotation of the polarization of broadcast satellite radio signals
US8164537B2 (en) * 2009-05-07 2012-04-24 Mororola Mobility, Inc. Multiband folded dipole transmission line antenna
CN101777704B (en) * 2010-02-21 2013-02-06 摩比天线技术(深圳)有限公司 Indoor omnidirectional antenna
US8164532B1 (en) 2011-01-18 2012-04-24 Dockon Ag Circular polarized compound loop antenna
US8654022B2 (en) 2011-09-02 2014-02-18 Dockon Ag Multi-layered multi-band antenna
WO2013064910A2 (en) 2011-11-04 2013-05-10 Dockon Ag Capacitively coupled compound loop antenna
US9324020B2 (en) * 2012-08-30 2016-04-26 Nxp B.V. Antenna structures and methods for omni directional radiation patterns
US20140313093A1 (en) 2013-04-17 2014-10-23 Telefonaktiebolaget L M Ericsson Horizontally polarized omni-directional antenna apparatus and method
JP2015070587A (en) * 2013-10-01 2015-04-13 セイコーエプソン株式会社 Antenna and electronic device
US9419347B2 (en) * 2014-05-27 2016-08-16 City University Of Hong Kong Circularly polarized antenna
TWI533522B (en) * 2014-08-08 2016-05-11 啟碁科技股份有限公司 Miniature antenna and antenna module thereof
CN110635224A (en) * 2018-06-21 2019-12-31 湘南学院 Broadband antenna based on fire sprinkler head

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1818639A (en) * 1928-01-19 1931-08-11 Drahtlose Telegraphie Gmbh Radio direction finding
GB781216A (en) * 1955-05-04 1957-08-14 Marconi Wireless Telegraph Co Improvements in or relating to receiving aerial systems
US3474452A (en) * 1967-02-16 1969-10-21 Electronics Research Inc Omnidirectional circularly polarized antenna
US4183027A (en) * 1977-10-07 1980-01-08 Ehrenspeck Hermann W Dual frequency band directional antenna system
US4340891A (en) * 1978-04-26 1982-07-20 Motorola, Inc. Dual polarized base station receive antenna
JPS57142002A (en) * 1981-02-27 1982-09-02 Toshiba Corp Small-sized loop antenna
US4801944A (en) * 1987-10-13 1989-01-31 Madnick Peter A Antenna
US4809009A (en) * 1988-01-25 1989-02-28 Grimes Dale M Resonant antenna
US4947180A (en) * 1989-06-14 1990-08-07 Terk Technologies Corporation FM antenna
US5198826A (en) * 1989-09-22 1993-03-30 Nippon Sheet Glass Co., Ltd. Wide-band loop antenna with outer and inner loop conductors
US5038150A (en) * 1990-05-14 1991-08-06 Hughes Aircraft Company Feed network for a dual circular and dual linear polarization antenna
JP3095473B2 (en) * 1991-09-25 2000-10-03 株式会社トキメック Detected device and moving object identification system
US5300936A (en) * 1992-09-30 1994-04-05 Loral Aerospace Corp. Multiple band antenna
US5469180A (en) * 1994-05-02 1995-11-21 Motorola, Inc. Method and apparatus for tuning a loop antenna

Also Published As

Publication number Publication date
WO1997001197A1 (en) 1997-01-09
US5751252A (en) 1998-05-12
EP0776530A1 (en) 1997-06-04
EP0776530A4 (en) 1998-06-10
CA2198111A1 (en) 1997-01-09
CN1081836C (en) 2002-03-27
AU691111B2 (en) 1998-05-07
AU5573596A (en) 1997-01-22
CN1157061A (en) 1997-08-13

Similar Documents

Publication Publication Date Title
CA2198111C (en) Method and antenna for providing an omnidirectional pattern
US7855696B2 (en) Metamaterial antenna arrays with radiation pattern shaping and beam switching
Liu et al. Neutralization line decoupling tri-band multiple-input multiple-output antenna design
US6753826B2 (en) Dual band phased array employing spatial second harmonics
US6281849B1 (en) Printed bi-polarization antenna and corresponding network of antennas
US7292195B2 (en) Energy diversity antenna and system
US20060270368A1 (en) Integrated Front End Antenna
US5189434A (en) Multi-mode antenna system having plural radiators coupled via hybrid circuit modules
CN108091993A (en) A kind of low section dual polarized antenna
CN109119745A (en) 4G LTE F/A/D/E frequency range micro-base station horizontally-polarized antenna
JP3618267B2 (en) Antenna device
CN107834172B (en) Novel four-arm helical antenna
CN107799888A (en) A kind of double frequency high-gain paster antenna
JP3323020B2 (en) Diversity antenna
won Jung et al. A single-arm circular spiral antenna with inner/outer feed circuitry for changing polarization and beam characteristics
Sibille et al. Beam steering circular monopole arrays for wireless applications
CN209675482U (en) Ultra wideband dual polarization antenna
US5870058A (en) Receiver module for receiving extremely high frequency electromagnetic directional radiation fields
CN219350668U (en) Microstrip antenna and electronic equipment
CN112310638B (en) Wearable equipment
Mishra et al. A Compact Dual Band Millimeter-Wave CSRR Loaded MIMO Antenna Array System for 5G Applications
Feng et al. A Miniaturized Coupler Decoupling Network for Two-Element Tightly-Coupled MIMO Antenna Array
CN116137378A (en) Antenna and electronic device
Lu et al. Compact Superdirective Microstrip Antenna Array Using Capacitively Loaded Loops on High Dielectric Substrate
Khan Adaptive vehicular antenna system for extended range cellular access

Legal Events

Date Code Title Description
EEER Examination request
MKEX Expiry

Effective date: 20160426