CA2209729C - Method of controlling power on forward link in a cellular cdma system - Google Patents

Method of controlling power on forward link in a cellular cdma system Download PDF

Info

Publication number
CA2209729C
CA2209729C CA 2209729 CA2209729A CA2209729C CA 2209729 C CA2209729 C CA 2209729C CA 2209729 CA2209729 CA 2209729 CA 2209729 A CA2209729 A CA 2209729A CA 2209729 C CA2209729 C CA 2209729C
Authority
CA
Canada
Prior art keywords
base station
power
control coefficient
mobile unit
power control
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CA 2209729
Other languages
French (fr)
Other versions
CA2209729A1 (en
Inventor
Kojiro Hamabe
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Publication of CA2209729A1 publication Critical patent/CA2209729A1/en
Application granted granted Critical
Publication of CA2209729C publication Critical patent/CA2209729C/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/30TPC using constraints in the total amount of available transmission power
    • H04W52/34TPC management, i.e. sharing limited amount of power among users or channels or data types, e.g. cell loading
    • H04W52/346TPC management, i.e. sharing limited amount of power among users or channels or data types, e.g. cell loading distributing total power among users or channels
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/30TPC using constraints in the total amount of available transmission power
    • H04W52/34TPC management, i.e. sharing limited amount of power among users or channels or data types, e.g. cell loading
    • H04W52/343TPC management, i.e. sharing limited amount of power among users or channels or data types, e.g. cell loading taking into account loading or congestion level
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/38TPC being performed in particular situations
    • H04W52/40TPC being performed in particular situations during macro-diversity or soft handoff

Abstract

A method of controlling transmission power of a plurality of base stations associated with a mobile unit in a CDMA (code division multiple access) cellular system, is disclosed. The mobile unit communicates with one base station among the plurality of base stations. According to the present invention, power of each of pilot signals respectively transmitted from the plurality of base stations is measured at the mobile unit. Following this, information about a measured power value of each of the pilot signals is transmitted to the one base station. Thereafter, a first power control coefficient is determined at the one base station. The coefficient is a ratio of total pilot power values of the plurality of base stations, other than the main base station, to a pilot power value of the one base station. Subsequently, the transmission power of each of the plurality of base stations using the first power control coefficient is controlled.

Description

TITLE OF THE INVENTION
Method of Controlling Power on Forward Link in a Cellular CDMA system BACKGROUND OF THE INVENTION
1. Field of the Invention The present invention relates generally to techniques in transmission power control of base stations in a CDMA (code division multiple access) cellular system using spread spectrum techniques. More specifically, the present invention relates to a power control method on forward links (viz. base station to mobile unit links) in a CDMA cellular system in order to increase capacity of the overall system.
2. Description of the Related Art As is well known in the art, in a CDMA system, all users transmit simultaneously and at the same frequency. The transmitted signals occupy the entire system bandwidth, and code sequences, which are orthogonal, are used to separate one user from another. That is, each user is assigned a unique code sequence. The use of the same frequency in the overall system indicates that no "handoff" from one frequency to another is needed as in FDMA (frequency division multiple access) and TDMA (time division multiple access) systems. This is called a soft handoff that is disclosed in United States Patent No. 5,101,501 by way of example.
In a CDMA system, there is no distinct limit on the number of users. The system performance for all users degrades gradually as the number of active users increases. More specifically, mobile units in the CDMA system transmit independently (viz.,asynchronously) from each other. The means that their signals arrive randomly at the base station and therefore, the crosscorrelation between these randomly arrived signals is not zero and thus causes interference.
The major difficulty with CDMA is a so-called "near-far effect", which occurs when a weak signal received at the base station from a distant mobile unit is overpowered by a strong signal from a nearby interferer. To reduce the near-far effect, power control on reverse links (viz., mobile unit to base station links) is necessary.
Additionally, the system capacity is expanded by power control on the forward links (viz., base station to mobile unit links). One example of such power control on the forward link is disclosed in Japanese Laid-open Patent Application No. 7-38496. According to this conventional technique, each of the mobile units in a given cell receives a pilot signal from the cell's base station, measures a signal-to-noise (S/N) ratio using the pilot signal received, and then informs the base station of the measurement results. The base station responds to the measurement results and controls the transmission power on the forward link of each mobile unit.
Thus, the S/N ratios at the mobile units within the cell are improved and approach a predetermined level (viz., roughly equalised). As a result, a low level of interference is achieved at each mobile unit.
This conventional technique, however, has suffered from a drawback. That is, when a S/N ratio at a given mobile unit is lowered due to increase in the number of the active users in the cell, the base station is responsive to the reduced S/N ratio and raises the power on the forward link to the given mobile unit. This in turn undesirably lowers the S/N
ratio at each of other mobile units, with the result that the S/N ratio of the first base station again is lowered. This cycle is repeated and eventually the power of each forward link '71024-271 of many mobile units undesirably is raised to the maximum value.
Further, it takes a relatively long time until the lowering of interference is carried out after the measurement of the S/N ratio. Therefore, during the long feedback time, the S/N ratio measured had undesirably changed. In such a case, a precise control is no longer expected.
SUMMARY OF THE INVENTION
It is therefore an object of the present invention to provide a method of achieving a low level of interference, especially in the vicinity of a cell boundary, even if the number of active users increases, whereby it is possible to keep constant the system performance for all users.
One aspect of the present invention resides in a method of controlling transmission power of a plurality of base stations associated with a mobile unit in a CDMA (code division multiple access) cellular system, the mobile unit communicating with one base station among the plurality of base stations, the method comprising the steps of: (a) measuring, at the mobile unit, power of each of pilot signals respectively transmitted from the plurality of base stations; (b) advising the one base station of information about a measured power value of each of the pilot signals; (c) determining at the one base station, a first power control coefficient which is a ratio of total pilot power values of the plurality of base stations, other than the main base station, to a pilot power value of the one base station; and (d) controlling the transmission power of each of the plurality of base stations using the first power control coefficient.
In accordance one aspect of the invention a method of controlling transmission power of at least one base station among a plurality of base stations associated with a mobile unit in a CDMA (code division multiple access) cellular system, said mobile unit communicating with said at least one base station, said method comprising the steps of: (a) measuring, at said mobile unit, a power value of each of a plurality of pilot signals respectively transmitted from said plurality of base stations; (b) determining a first power control coefficient which is a ratio of total pilot power values of said plurality of base stations, other than said at least one base station, to a pilot power value of said at least one base station; and (c) controlling the transmission power of said at least one base station by using said first power control coefficient.
In accordance with an another aspect of the invention there is provided a method of controlling transmission power of at least one base station of a plurality of base stations associated with a mobile unit in a CDMA cellular system, said mobile unit communicating with said at least one base station, said method comprising the steps of: (a) measuring, at said mobile unit, a first power value of a pilot signal transmitted from said at least one base station and a plurality of second power values each transmitted from said plurality of base stations other than said at least one base station; (b) advising said at least one base station of said first and second power values; (c) determining, at said at least one base station, a power control coefficient using said first and second power values; and (d) controlling the transmission power of said at least one base station using said power control coefficient.
In accordance with another aspect of the invention there is provided a method of controlling transmission power of at least one base station among a plurality of base stations associated with a mobile unit in a CDMA cellular system, said mobile unit communicating with said at least one base station, said method comprising the steps of: (a) measuring, at said mobile unit, a first power value of a pilot signal transmitted from said at least one base station and a plurality of second 5 power values each transmitted from said plurality of base stations other than said at least one base station; (b) determining, at said mobile unit, a power control coefficient using said first and second power values; (c) advising said at least one base station of said power control coefficient; and (d) controlling the transmission power of said at least one base station using said power control coefficient.
BRIEF DESCRIPTION OF THE DRAWINGS
The features and advantages of the present invention will become more clearly appreciated from the following description taken in conjunction with the accompanying drawings in which like elements are denoted by like reference numerals and in which:
Fig. 1 is a sketch schematically showing a plurality of cells, base stations, etc. provided in a CDMA cellular system;
Fig. 2 is a time slot format of one frame for acquiring pilot signal power on forward links of base stations;
Figs. 3, 4A and 4B are each flow charts which shows steps which characterize a first embodiment of the present invention;
Figs. 5A and 5B are each flow charts which show steps which characterize a second embodiment of the present invention;
Fig. 6 is a flow chart which shows steps which characterize a third embodiment of the present invention;
Figs. 7A, 7B and 8 are each flow charts which shows steps which characterize a fourth embodiment of the present invention; and Figs. 9A and 9B are each flow charts which shows steps which characterize a fifth embodiment of the present invention.
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS
Referring to Fig. l, there are shown only three cells 10, 12, and 14 which respectively include base stations BS1, BS2, and BS3. Further, as shown another three base stations BS4-BS6 are respectively assigned to the other three cells (not shown). As is well known in the art, all the base stations in the system, including BS1-BS6, are coupled to a MTSO (mobile telephone switching office) 16, which supervises the overall operation of the system and which is in turn coupled to a public switched telephone network. Still further, two mobile units 18 and 20 are shown in Fig. 1. The mobile unit 18 is located in the vicinity of the boundary between the cells 10 and 12 and simultaneously communicates with two base stations BS1 and BS2 in order to attain the above mentioned soft handoff. However, it is to be noted that the mobile unit 18 in fact establishes a speech channel with either BS1 or BS2. It is assumed that the other mobile unit 20 is not located in the vicinity of a cell boundary and thus keeps communication only with the base station BS1.
The present invention is not directly concerned with a handoff operation but directed to effectively achieve a low level of interference in the vicinity of a cell boundary.
Therefore, the system capacity can markedly be increased (viz., the number of active users can be increased without inducing degradation of signal quality).
Each of the base stations in the system constantly transmits a pilot signal the transmission power of which may vary depending on the cell size. However, in the instant disclosure, it is assumed that each base station radiates the corresponding pilot signal with a predetermined (constant) power for the sake of simplifying the description. Each pilot signal is assigned a unique code and thus, it is possible for the mobile unit to discriminate which base station generates the pilot signal.
On the other hand, each mobile unit is provided with a device for measuring the strength of each of the pilot signals arriving at the mobile unit. More specifically, the mobile unit selectively acquires a predetermined number of pilot signals using codes which are applied thereto from a currently communicating base station.
Fig. 2 is a diagram showing a pilot signal acquiring (or measuring) frame which consists of six time slots 1-6 in this instance. Each mobile unit acquires one pilot signal during one time slot and thus, is able to cyclically receive a total of six different pilot signals on a frame-by-frame basis in this particular case. The mobile unit typically measures the power (viz., signal strength) of one pilot signal during one time slot. If more than six pilot signals should be received at the mobile unit, the frame length can be expanded to meet the requirement. The instantaneous power of the pilot signal typically varies drastically and thus, it is a current practice to average the power over a sufficiently long time.
Throughout the instant disclosure, the power of a pilot signal means an average value.
It is assumed that a mobile unit has already established a speech channel with a given base station (sometimes referred to as a current base station). In this case, the mobile unit receives, from the current base station, information indicating a set of neighboring base stations.
Based on this information, the mobile unit measures the power of each of the pilot signals transmitted from the neighboring base stations. In addition to the power of the pilot signal from the current base station.
A first embodiment of the present invention will be described with reference to Figs. 3, 4A and 4B.
In Fig. 3, at step 22, the mobile unit checks to determine if the current base station should be changed (viz., handoff). The instruction of changing the current base station (denoted by BSo) is advised from the current base station itself. If the current base station should be changed, the routine goes to step 24 whereat a new base station is advised together with a new set of neighboring base stations BSi (i=1, 2, ..., n)(n is five in the case shown in Fig. 1 for example). On the other hand, if the answer is negative at step 22, the routine proceeds to step 26. At this step 26, the power of each of the pilot signals on the forward link (viz., inbound link or base station to mobile unit link) in connection with the base stations BSo and BSi are measured. Following this, at step 28, each of the measured pilot signal's power values is compared with a predetermined value (T1) so as to select the values exceeding T1. The power values thus selected are denoted by Bo and Bi (i=1, 2, ..., m(m <n) ) wherein Bo is the power value of BSo and Bi are power values of BSi. Thereafter, at step 30, the power values Bo and Bi are transmitted to the current base station BSo.
Figs. 4A and 4B show the steps which are implemented at the current base station. At step 32, the base station receives the power values Bo and Bi from the mobile unit.
Thereafter, at steps 34 and 36, a check is made to determine if the current base station should be changed based on the power values Bo and Bi received at step 32. If a change of the base station is to be implemented, the data indicating the new base station (denoted by BS'o) is stored in the current base station.
If a change of the current base station is not required, the routine directly goes to step 38 at which a handoff indicator Gh is calculated as follows. In this case, Bi are rewritten by Q 1. .
Gh = (Q1 + Q2+ ... +Qm) /Bo ( 1 ) Following this, at step 40, the power values Bo and Qi, exceeding a second predetermined value (T2), are selected. The selected power values are denoted by Bo and Qi (i=1, 2, ..., k (k<m)). It is to be noted that the value Bo is selected in that this value is the largest one. Following this, a power control coefficient R is calculated as follows at step 42.
R = (Qi+Qz+ ... +QK) /Gh ~ Bo ( 2 ) Therefore, R can be rewritten using equation (1) as follows.
R = (Q1 +Q2+ ... +QK) / (Q1 + Q2+ ... +Qm) (3) Thereafter, the routine goes to the steps of Fig. 4B
wherein if the current base station should not be changed (determined at step 43a) the routine go through steps 43b and 44 to step 32 (Fig. 4A). On the other hand, if the current station should be changed, the routine goes through steps 46, 48 and 50 and is terminated. More specifically as shown in Fig. 4B, at step 43b, the base station advises the MTSO of the power control coefficient R, and at step 44, the base station changes the transmission power thereof to R ~ Po (Po is a reference transmission power). On the other hand, if an answer is positive at step 43a, the routine goes to step 46 at which the base station advises the MTSO of the new station.
Thereafter, at step 48, the base station receives a new set of neighboring base stations associated with the new base station.

Subsequently, at step 50, the base station advises the mobile unit of the new base station and the new neighboring base stations.
A second embodiment of the present invention will be 5 described with reference to Figs. 5A and 5B.
As shown in Fig. 5A, steps 32' to 40' are identical to step 32 to 40 and hence further descriptions thereof are omitted for brevity. The second embodiment features that the power control coefficient R is derived using total transmission 10 power values (Pi) of the base stations and the corresponding power values Qi. In Fig. 5A, Pmax indicates the maximum allowable power value of each base station. More specifically, at step 52, the base station receives, from the MTSO, a total transmission power value of each of the base stations associated with Qi (the total transmission power values are denoted by Pi). Thereafter, the routine goes to step 54 where the power control coefficient R is calculated as follows:
R = ( ( P1 ' Q1 + PZ ' QZ + ... + PkQk) /Gh ~ Pmax ' Bo ) .
On the otherhand, the power control coefficient R should be in a range between previously determined minimum and maximum values (Rmin and Rmax). The manner of defining the coefficient R between Rmin and Rmax is shown in Fig. 5B. As shown in Fig.
5B, at step 56, a check is made to determine if R>Rmax. If the answer at step 56 is affirmative, the routine goes to step 58 where R is replaced with Rmax, after which the routine proceeds to the flow chart of Fig. 4B. On the contrary, if the answer at step 56 is negative, the routine goes to step 60 where a further check is made to determine if R<Rmin. If the answer at step 60 is affirmative, the routine goes to step 62 where R is replaced with Rmin, after which the routine proceeds to the flow chart of Fig. 4B. On the contrary, if the answer at step 60 is negative, the routine directly goes to the flow chart of Fig. 4B. After implementing either step 62 or step 58, the routine goes to the program which is exactly identical to that shown in Fig. 4B.
A third embodiment of the present invention will be described with reference to Fig. 6.
As shown in Fig. 6, steps 32' to 38' are identical to steps 32 to 38 and hence further descriptions thereof are omitted for brevity. The third embodiment features that the number of pilot signals (m in this case) is checked for whether or not the number exceeds the previously determined maximum number of pilot signals (Nmax). If m>Nmax at step 70, steps 72 and 74 are implemented and the routine proceeds to step 76.
Otherwise, the routine implements steps 78 and 80 and then goes to step 76. After carrying out step 76, the routine goes to the program which is exactly identical to that shown in Fig.
4B.
A fourth embodiment of the present invention will be described with reference to Figs. 7A, 7B and 8. This embodiment is to carry out, at the mobile unit, steps which are executed in the current base station in the first embodiment.
Therefore, the burden on the base station can be reduced.
As shown in Fig. 7A, steps 22' to 26' are identical to step 22 to 26 of Fig. 3, while as shown in Fig. 7B, steps 34' to 42' are identical to steps 34 to 42 shown in Fig. 4A.
At step 90 (Fig. 7B), if the current base station should be changed, data indicating the new base station (depicted by BSo') is informed to the current base station together with the power control coefficient R. Otherwise, only the coefficient R is transmitted to the current base station BSo. After step 90, the routine returns to step 22' of Fig. 7A in order to repeat the operations. On the other hand, as shown in Fig. 8, at step 92, the current base station receives the information (viz., BSo' (if any) and R) which the mobile unit transmitted at step 90.
Following this, steps 40' to 50' are implemented which are respectively identical to steps 40 to 50 of Fig. 4B.
A fifth embodiment of the present invention will be described with reference to Figs. 9A and 9B. The instant embodiment features a calculated power control coefficient (denoted by R' in step 42') which is checked to determine if R' is within a predetermined range where the current base station should not be changed. For this purpose, the power control coefficient R is initialized at step 100 (viz., R is set to one (1)). The following steps 22' to 40' are exactly identical to steps 22 to 40 shown in Figs. 7A and 7B, step 42' of Fig. 9B is similar to the counterpart of Fig. 7B. At step 102, a check is made to determine if the current base station should be changed. If the answer is negative at this step, the routine goes to step 104 at which the calculated power control coefficient R' is checked if R' is within the predetermined range as mentioned above. If the answer at step 104 is N0, the calculated coefficient R' is adopted and then advised to the base station BSo at steps 106 and 108. On the other hand, if the answer at step 104 is YES, the routine proceeds to step 22' of Fig. 9A.
It will be understood that the above disclosure is representative of five possible embodiments of the present invention and that the concept on which the invention is based is not specifically limited thereto.

Claims (14)

CLAIMS:
1. A method of controlling transmission power of at least one base station among a plurality of base stations associated with a mobile unit in a CDMA (code division multiple access) cellular system, said mobile unit communicating with said at least one base station, said method comprising the steps of:
(a) measuring, at said mobile unit, a power value of each of a plurality of pilot signals respectively transmitted from said plurality of base stations;
(b) determining a first power control coefficient which is a ratio of total pilot power values of said plurality of base stations, other than said at least one base station, to a pilot power value of said at least one base station; and (c) controlling the transmission power of said at least one base station by using said first power control coefficient.
2. A method as claimed in claim 1, wherein the power of each of the pilot signals is compared, at said mobile unit, with a predetermined value after step (a), a power exceeding the predetermined value being selected, and the values of selected power being sent to said at least one base station and being used to determine said first power control coefficient in step (b), said first power control coefficient being sent to said at least one base station and being used to control the transmission power in step (c).
3. A method as claimed in claim 1, further comprising the steps of:
receiving, at said at least one base station, total transmission power of each of said plurality of base stations from a MTSO (mobile telephone switching office) which is provided in said CDMA cellular system to supervise overall operations of the system;
determining, at said at least one base station, a second power control coefficient which is a ratio of (P1Q1+P2Q2+...+PkQK) to (Gh~Pm~B0) where Pi(i=1,2,...k) is the total transmission power of an i-th base station, Qi(i=1,2,...k) is the power value of the pilot signal of an I-the base station other than said at least one base station. Pm is a maximum transmission power of each of the base stations, and B0 is the power value of pilot signal of said at least one base station;
and controlling the transmission power of said at least one base station using said second power control coefficient instead of said first power control coefficient.
4. A method as claimed in claim 1, wherein the power of each of the pilot signals is compared, at said mobile unit, with a first predetermined value after step (a), a power exceeding the first predetermined value being selected, and the values of selected power being sent to said at least one base station.
5. A method as claimed in claim 4, wherein each of the values of selected power is compared, at said at least one base station, with a second predetermined value in step (c), and the power values each exceeding said second predetermined value being used to determine said power control coefficient.
6. A method as claimed in claim 5, further comprising the steps of:
Receiving, at said at least one base station, total transmission power of each of said plurality of base stations from a MTSO (mobile telepone switching office) which is provided in said CDMA cellular system to supervise overall operations of the system;
determining, at said at least one base station, a second power control coefficient which is a ratio of (P1Q1+P2Q2+...+PkQK)to (Gh~Pm~B0) where Pi(i=1,2,...k) is the total transmission power of i-th base station, Qi(i=1,2,...k) is the power value of pilot signal of i-th base station other than said at least one base station, Pm is a maximum transmission power of each of the base stations, and B0 is the power value of pilot signal of said at least one base station; and controlling the transmission power of said at least one base station using said second power control coefficient instead of said first power control coefficient.
7. A method of controlling transmission power of at least one base station of a plurality of base stations associated with a mobile unit in a CDMA cellular system, said mobile unit communicating with said at least one base station, said method comprising the steps of:
(a) measuring, at said mobile unit, a first power value of a pilot signal transmitted from said at least one base station and a plurality of second power values each transmitted from said plurality of base stations other than said at least one base station;
(b) advising said at least one base station of said first and second power values;
(c) determining, at said at least one base station, a power control coefficient using said first and second power values; and (d) controlling the transmission power of said at least one base station using said power control coefficient.
8. A method as claimed in claim 7, wherein said power control coefficient is a ratio of said first and second power values.
9. A method as claimed in claim 7, wherein each of said first and second values is compared, at said mobile unit, with a first predetermined value after step (a), the power value exceeding said first predetermined value being selected and being sent to said at least one base station.
10. A method as claimed in claim 7, wherein each of said first and second values is compared, at said at least one base station, with a second predetermined value in step (c), and the power values each exceeding said second predetermined value being used to determine said power control coefficient.
11. A method as claimed in claim 7, further comprising the steps of:

receiving, at said at least one base station, total transmission power of each of said plurality of base stations, from MTSO which is provided in said CDMA cellular system to supervise overall operations of the system;
determining, at said at least one base station, another power control coefficient which is a ratio of (P1Q1+P2Q2+...+PkQk) to (Gh~ Pm~ B0) , where Pi (i=1, 2,...k) is total transmission power of i-th base station, Qi(i=1,2,...k) is the power value of the pilot signal of i-th base station, Pm is a maximum transmission power of each of the base stations, and B0 is the power value of pilot signal of said at least one base station; and controlling the transmission power of said at least one base station using said another power control coefficient instead of the first-mentioned power control coefficient.
12. A method of controlling transmission power of at least one base station among a plurality of base stations associated with a mobile unit in a CDMA cellular system, said mobile unit communicating with said at least one base station, said method comprising the steps of:
(a) measuring, at said mobile unit, a first power value of a pilot signal transmitted from said at least one base station and a plurality of second power values each transmitted from said plurality of base stations other than said at least one base station;
(b) determining, at said mobile unit, a power control coefficient using said first and second power values;

(c) advising said at least one base station of said power control coefficient; and (d) controlling the transmission power of said at least one base station using said power control coefficient.
13. A method as claimed in claim 12, wherein said power control coefficient is a ratio of said first and second power values.
14. A method as claimed in claim 12, wherein each of said first and second values is compared, at said mobile unit, with a predetermined value after step (a), a power exceeding said predetermined value being selected, and the values of selected power being used to determine said power control coefficient in step (b).
CA 2209729 1996-07-05 1997-07-07 Method of controlling power on forward link in a cellular cdma system Expired - Fee Related CA2209729C (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP17675496A JP2839014B2 (en) 1996-07-05 1996-07-05 Transmission power control method for code division multiplexing cellular system
JP8-176754 1996-07-05

Publications (2)

Publication Number Publication Date
CA2209729A1 CA2209729A1 (en) 1998-01-05
CA2209729C true CA2209729C (en) 2001-05-01

Family

ID=16019233

Family Applications (1)

Application Number Title Priority Date Filing Date
CA 2209729 Expired - Fee Related CA2209729C (en) 1996-07-05 1997-07-07 Method of controlling power on forward link in a cellular cdma system

Country Status (7)

Country Link
US (1) US6026081A (en)
EP (1) EP0817400B1 (en)
JP (1) JP2839014B2 (en)
KR (1) KR100308219B1 (en)
AU (1) AU716425B2 (en)
CA (1) CA2209729C (en)
DE (1) DE69731332T2 (en)

Families Citing this family (87)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6304562B1 (en) * 1997-06-26 2001-10-16 Samsung Electronics Co., Ltd. Asymmetric forward power control in a CDMA communication
JP3019061B2 (en) * 1997-06-27 2000-03-13 日本電気株式会社 Mobile communication system and radio channel control method therefor
EP0942615A4 (en) * 1997-08-08 2006-03-22 Mitsubishi Electric Corp Mobile communication system
US9118387B2 (en) 1997-11-03 2015-08-25 Qualcomm Incorporated Pilot reference transmission for a wireless communication system
US7184426B2 (en) * 2002-12-12 2007-02-27 Qualcomm, Incorporated Method and apparatus for burst pilot for a time division multiplex system
GB9724046D0 (en) * 1997-11-14 1998-01-14 Northern Telecom Ltd Up link power for fixed wireless access
JP3295369B2 (en) * 1998-03-10 2002-06-24 松下電器産業株式会社 Wireless communication system and base station device
FI114060B (en) 1998-04-03 2004-07-30 Nokia Corp Method and apparatus for power control in a mobile communication system
DE19827912C2 (en) * 1998-06-23 2001-09-06 Siemens Ag Method for controlling a cell size and base station
KR100306286B1 (en) 1998-08-04 2001-09-29 윤종용 Channel communication apparatus and method of cdma communication system
JP3031346B2 (en) 1998-08-19 2000-04-10 日本電気株式会社 CDMA base station transmitting apparatus and serial signal transmitting method in CDMA base station transmitting apparatus
KR100557127B1 (en) * 1998-09-15 2006-06-29 삼성전자주식회사 Power Management and Call Control Methods for Cellular Systems
KR100300352B1 (en) * 1998-11-03 2001-09-07 윤종용 Method for minimizing a overlapping area among sites for two-way paging system
US6269239B1 (en) 1998-12-11 2001-07-31 Nortel Networks Corporation System and method to combine power control commands during soft handoff in DS/CDMA cellular systems
KR100366799B1 (en) * 1998-12-26 2003-04-07 엘지전자 주식회사 Transmission power control method of mobile communication system
DE60040137D1 (en) 1999-03-12 2008-10-16 Qualcomm Inc METHOD AND DEVICE FOR PERFORMANCE ALLOCATION TO A REVERSE POWER CONTROL OF A COMMUNICATION SYSTEM
US6606341B1 (en) 1999-03-22 2003-08-12 Golden Bridge Technology, Inc. Common packet channel with firm handoff
US6169759B1 (en) 1999-03-22 2001-01-02 Golden Bridge Technology Common packet channel
US6574267B1 (en) * 1999-03-22 2003-06-03 Golden Bridge Technology, Inc. Rach ramp-up acknowledgement
US6609007B1 (en) * 1999-09-14 2003-08-19 Lucent Technologies Inc. Apparatus and method for controlling the transmission power of the forward link of a wireless communication system
US6643318B1 (en) 1999-10-26 2003-11-04 Golden Bridge Technology Incorporated Hybrid DSMA/CDMA (digital sense multiple access/code division multiple access) method with collision resolution for packet communications
US7206580B2 (en) 1999-11-04 2007-04-17 Qualcomm Incorporated Method and apparatus for performing handoff in a high speed communication system
WO2001039452A1 (en) 1999-11-29 2001-05-31 Golden Bridge Technology, Inc. Closed loop power control for common downlink transport channels
US6757319B1 (en) 1999-11-29 2004-06-29 Golden Bridge Technology Inc. Closed loop power control for common downlink transport channels
WO2001045277A2 (en) * 1999-12-17 2001-06-21 Philips Semiconductors, Inc. Method and apparatus for managing assigned fingers
KR20010094863A (en) * 2000-04-07 2001-11-03 윤종용 Method for controlling power in wireless communication system
WO2001099452A1 (en) * 2000-06-22 2001-12-27 Matsushita Electric Industrial Co., Ltd. Base station device and channel assigning method
JP3723417B2 (en) * 2000-06-29 2005-12-07 株式会社エヌ・ティ・ティ・ドコモ Transmission power control method and mobile communication system
US7068683B1 (en) 2000-10-25 2006-06-27 Qualcomm, Incorporated Method and apparatus for high rate packet data and low delay data transmissions
US6973098B1 (en) * 2000-10-25 2005-12-06 Qualcomm, Incorporated Method and apparatus for determining a data rate in a high rate packet data wireless communications system
JP3551937B2 (en) 2001-02-28 2004-08-11 日本電気株式会社 Communication control method in mobile communication system and base station used therefor
KR100619223B1 (en) * 2001-07-24 2006-09-07 가부시키가이샤 엔티티 도코모 Transmission power control apparatus and method in a mobile communication system, mobile station, and communication apparatus
KR100407337B1 (en) * 2001-08-08 2003-11-28 삼성전자주식회사 Method and apparatus for allocating the power gains of reverse power control channels in mobile communication system
US9544860B2 (en) 2003-02-24 2017-01-10 Qualcomm Incorporated Pilot signals for use in multi-sector cells
US9661519B2 (en) 2003-02-24 2017-05-23 Qualcomm Incorporated Efficient reporting of information in a wireless communication system
US8811348B2 (en) * 2003-02-24 2014-08-19 Qualcomm Incorporated Methods and apparatus for generating, communicating, and/or using information relating to self-noise
US7218948B2 (en) 2003-02-24 2007-05-15 Qualcomm Incorporated Method of transmitting pilot tones in a multi-sector cell, including null pilot tones, for generating channel quality indicators
EP1648100A4 (en) * 2003-07-18 2012-01-18 Nec Corp Mobile communication system with improved trackability of transmission power control
AU2005295580A1 (en) * 2004-10-14 2006-04-27 Qualcomm Incorporated Methods and apparatus for determining, communicating and using information which can be used for interference control purposes
US20060092881A1 (en) * 2004-10-14 2006-05-04 Rajiv Laroia Methods and apparatus for determining, communicating and using information which can be used for interference control purposes
US8503938B2 (en) * 2004-10-14 2013-08-06 Qualcomm Incorporated Methods and apparatus for determining, communicating and using information including loading factors which can be used for interference control purposes
US8989084B2 (en) 2005-10-14 2015-03-24 Qualcomm Incorporated Methods and apparatus for broadcasting loading information corresponding to neighboring base stations
US9191840B2 (en) 2005-10-14 2015-11-17 Qualcomm Incorporated Methods and apparatus for determining, communicating and using information which can be used for interference control
KR100654032B1 (en) * 2005-11-02 2006-12-05 주식회사 팬택앤큐리텔 Wireless telecommunication terminal and method for controlling output of access probe using neighbor set list
US9119220B2 (en) 2005-12-22 2015-08-25 Qualcomm Incorporated Methods and apparatus for communicating backlog related information
US8514771B2 (en) * 2005-12-22 2013-08-20 Qualcomm Incorporated Methods and apparatus for communicating and/or using transmission power information
US9137072B2 (en) 2005-12-22 2015-09-15 Qualcomm Incorporated Methods and apparatus for communicating control information
US20070253449A1 (en) * 2005-12-22 2007-11-01 Arnab Das Methods and apparatus related to determining, communicating, and/or using delay information
US9473265B2 (en) 2005-12-22 2016-10-18 Qualcomm Incorporated Methods and apparatus for communicating information utilizing a plurality of dictionaries
US20070149132A1 (en) 2005-12-22 2007-06-28 Junyl Li Methods and apparatus related to selecting control channel reporting formats
US8437251B2 (en) 2005-12-22 2013-05-07 Qualcomm Incorporated Methods and apparatus for communicating transmission backlog information
US9148795B2 (en) 2005-12-22 2015-09-29 Qualcomm Incorporated Methods and apparatus for flexible reporting of control information
US9125093B2 (en) 2005-12-22 2015-09-01 Qualcomm Incorporated Methods and apparatus related to custom control channel reporting formats
US9125092B2 (en) 2005-12-22 2015-09-01 Qualcomm Incorporated Methods and apparatus for reporting and/or using control information
US9338767B2 (en) 2005-12-22 2016-05-10 Qualcomm Incorporated Methods and apparatus of implementing and/or using a dedicated control channel
US9572179B2 (en) 2005-12-22 2017-02-14 Qualcomm Incorporated Methods and apparatus for communicating transmission backlog information
US9451491B2 (en) 2005-12-22 2016-09-20 Qualcomm Incorporated Methods and apparatus relating to generating and transmitting initial and additional control information report sets in a wireless system
JP4555220B2 (en) * 2005-12-26 2010-09-29 株式会社日立製作所 Handover control method and base station control apparatus
US20070243882A1 (en) * 2006-04-12 2007-10-18 Qualcomm Incorporated Method and apparatus for locating a wireless local area network associated with a wireless wide area network
JP2010507284A (en) * 2006-10-13 2010-03-04 クゥアルコム・インコーポレイテッド Method and apparatus for determining, communicating and using information that can be used for interference control purposes
GB2481331B (en) * 2007-02-02 2012-03-14 Ubiquisys Ltd Access point power control
GB2447439B (en) 2007-02-02 2012-01-25 Ubiquisys Ltd Access point power control
GB2471681B (en) 2009-07-07 2011-11-02 Ubiquisys Ltd Interference mitigation in a femtocell access point
GB2472597B (en) 2009-08-11 2012-05-16 Ubiquisys Ltd Power setting
US8811200B2 (en) * 2009-09-22 2014-08-19 Qualcomm Incorporated Physical layer metrics to support adaptive station-dependent channel state information feedback rate in multi-user communication systems
WO2011151857A1 (en) * 2010-05-31 2011-12-08 富士通株式会社 Communication device, service area adjustment method, and mobile communication system
US8767862B2 (en) 2012-05-29 2014-07-01 Magnolia Broadband Inc. Beamformer phase optimization for a multi-layer MIMO system augmented by radio distribution network
US8797969B1 (en) 2013-02-08 2014-08-05 Magnolia Broadband Inc. Implementing multi user multiple input multiple output (MU MIMO) base station using single-user (SU) MIMO co-located base stations
US9343808B2 (en) 2013-02-08 2016-05-17 Magnotod Llc Multi-beam MIMO time division duplex base station using subset of radios
US9155110B2 (en) 2013-03-27 2015-10-06 Magnolia Broadband Inc. System and method for co-located and co-channel Wi-Fi access points
US20140226740A1 (en) 2013-02-13 2014-08-14 Magnolia Broadband Inc. Multi-beam co-channel wi-fi access point
US8989103B2 (en) 2013-02-13 2015-03-24 Magnolia Broadband Inc. Method and system for selective attenuation of preamble reception in co-located WI FI access points
US9100968B2 (en) 2013-05-09 2015-08-04 Magnolia Broadband Inc. Method and system for digital cancellation scheme with multi-beam
US9425882B2 (en) 2013-06-28 2016-08-23 Magnolia Broadband Inc. Wi-Fi radio distribution network stations and method of operating Wi-Fi RDN stations
US8995416B2 (en) 2013-07-10 2015-03-31 Magnolia Broadband Inc. System and method for simultaneous co-channel access of neighboring access points
US9497781B2 (en) 2013-08-13 2016-11-15 Magnolia Broadband Inc. System and method for co-located and co-channel Wi-Fi access points
US9088898B2 (en) * 2013-09-12 2015-07-21 Magnolia Broadband Inc. System and method for cooperative scheduling for co-located access points
US9060362B2 (en) 2013-09-12 2015-06-16 Magnolia Broadband Inc. Method and system for accessing an occupied Wi-Fi channel by a client using a nulling scheme
US9172454B2 (en) 2013-11-01 2015-10-27 Magnolia Broadband Inc. Method and system for calibrating a transceiver array
US8891598B1 (en) 2013-11-19 2014-11-18 Magnolia Broadband Inc. Transmitter and receiver calibration for obtaining the channel reciprocity for time division duplex MIMO systems
US8942134B1 (en) 2013-11-20 2015-01-27 Magnolia Broadband Inc. System and method for selective registration in a multi-beam system
US9294177B2 (en) 2013-11-26 2016-03-22 Magnolia Broadband Inc. System and method for transmit and receive antenna patterns calibration for time division duplex (TDD) systems
US9014066B1 (en) 2013-11-26 2015-04-21 Magnolia Broadband Inc. System and method for transmit and receive antenna patterns calibration for time division duplex (TDD) systems
US9042276B1 (en) 2013-12-05 2015-05-26 Magnolia Broadband Inc. Multiple co-located multi-user-MIMO access points
US9100154B1 (en) 2014-03-19 2015-08-04 Magnolia Broadband Inc. Method and system for explicit AP-to-AP sounding in an 802.11 network
US9172446B2 (en) 2014-03-19 2015-10-27 Magnolia Broadband Inc. Method and system for supporting sparse explicit sounding by implicit data
US9271176B2 (en) 2014-03-28 2016-02-23 Magnolia Broadband Inc. System and method for backhaul based sounding feedback

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5056109A (en) * 1989-11-07 1991-10-08 Qualcomm, Inc. Method and apparatus for controlling transmission power in a cdma cellular mobile telephone system
US5345598A (en) * 1992-04-10 1994-09-06 Ericsson-Ge Mobile Communications Holding, Inc. Duplex power control system in a communication network
JP3457357B2 (en) * 1993-07-23 2003-10-14 株式会社日立製作所 Spread spectrum communication system, transmission power control method, mobile terminal device, and base station
FI110043B (en) * 1993-09-20 2002-11-15 Nokia Corp Method for performing transmission in CDMA cellular radio system and mobile station
IT1261365B (en) * 1993-12-02 1996-05-20 Cselt Centro Studi Lab Telecom PROCEDURE AND DEVICE FOR THE POWER CONTROL IN THE MOBILE BASE-HALF STATION ROUTE OF A RADIO-MOBILE SYSTEM WITH ACCESS TO CODE DIVISION
FI941268A (en) * 1994-03-17 1995-09-18 Nokia Telecommunications Oy A method for evaluating the received power and a receiver
JP2904335B2 (en) * 1994-04-27 1999-06-14 エヌ・ティ・ティ移動通信網株式会社 Transmission power control method and mobile station device
US5475870A (en) * 1994-09-12 1995-12-12 Qualcomm Incorporated Apparatus and method for adding and removing a base station from a cellular communications system
JP2966296B2 (en) * 1994-10-14 1999-10-25 エヌ・ティ・ティ移動通信網株式会社 Transmission power control method
JPH08256102A (en) * 1995-01-19 1996-10-01 Sony Corp Cellular system
JPH10173594A (en) * 1996-12-06 1998-06-26 Hitachi Ltd Code division multiple access communication system and sending power control method
US6396867B1 (en) * 1997-04-25 2002-05-28 Qualcomm Incorporated Method and apparatus for forward link power control

Also Published As

Publication number Publication date
KR100308219B1 (en) 2001-11-30
AU2849697A (en) 1998-01-15
US6026081A (en) 2000-02-15
JPH1022975A (en) 1998-01-23
KR980013052A (en) 1998-04-30
AU716425B2 (en) 2000-02-24
CA2209729A1 (en) 1998-01-05
EP0817400A2 (en) 1998-01-07
DE69731332D1 (en) 2004-12-02
EP0817400B1 (en) 2004-10-27
DE69731332T2 (en) 2005-03-17
EP0817400A3 (en) 2003-04-02
JP2839014B2 (en) 1998-12-16

Similar Documents

Publication Publication Date Title
CA2209729C (en) Method of controlling power on forward link in a cellular cdma system
AU711867B2 (en) Method for coverage optimization of multi-frequency assignment system
KR100723106B1 (en) A method for adjusting the transmit power level during soft handoff in wireless communication systems
EP0990315B1 (en) Asymmetric forward power control in a CDMA communication network
CA2266810C (en) Method of controlling transmission power in cellular system and base station apparatus
KR100432565B1 (en) Method and apparatus for balancing the forward link handoff boundary to the reverse link handoff boundary in a cellular communication system
EP0762668B1 (en) Method for controlling transmission power of a radio transmitter
EP1179961B1 (en) A method for optimizing a number of communication links
EP1794900B1 (en) Compensating radio coverage range unbalances by adding noise or interference posterior to the despreading of received signals from a particular user equipment to enhance signal components
EP1094680A1 (en) Base station selection in a cellular mobile communication network
EP0765587B1 (en) Handover in a mobile communication system
KR100699648B1 (en) Synchronization of transmit power level settings for soft-handoff in wireless systems by the use of power level constraints
WO1996008936A1 (en) Apparatus and method for adding and removing a base station from a cellular communications system
US7085559B2 (en) Mobile communication system, radio controller, base station and transmission power controlling method
US20010014607A1 (en) Mobile communications system and connection control method
EP1185124A1 (en) Mobile station apparatus and radio communication method
EP1134911A1 (en) Operating a cellular telecommunication system
KR20020060900A (en) Method for signalling and power control of DSCH in a mobile system
KR19990058815A (en) Optimization of Reverse Link Service Zones for Code Division Multiple Access Networks

Legal Events

Date Code Title Description
EEER Examination request
MKLA Lapsed

Effective date: 20170707

MKLA Lapsed

Effective date: 20170707