CA2213769A1 - Retractable safety penetrating instrument with safety probe - Google Patents

Retractable safety penetrating instrument with safety probe

Info

Publication number
CA2213769A1
CA2213769A1 CA002213769A CA2213769A CA2213769A1 CA 2213769 A1 CA2213769 A1 CA 2213769A1 CA 002213769 A CA002213769 A CA 002213769A CA 2213769 A CA2213769 A CA 2213769A CA 2213769 A1 CA2213769 A1 CA 2213769A1
Authority
CA
Canada
Prior art keywords
penetrating member
penetrating
safety
distally
distal end
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
CA002213769A
Other languages
French (fr)
Inventor
Inbae Yoon
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Publication of CA2213769A1 publication Critical patent/CA2213769A1/en
Abandoned legal-status Critical Current

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/34Trocars; Puncturing needles
    • A61B17/3417Details of tips or shafts, e.g. grooves, expandable, bendable; Multiple coaxial sliding cannulas, e.g. for dilating
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/34Trocars; Puncturing needles
    • A61B17/3494Trocars; Puncturing needles with safety means for protection against accidental cutting or pricking, e.g. limiting insertion depth, pressure sensors
    • A61B17/3496Protecting sleeves or inner probes; Retractable tips
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B2017/00477Coupling
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/34Trocars; Puncturing needles
    • A61B2017/348Means for supporting the trocar against the body or retaining the trocar inside the body
    • A61B2017/3482Means for supporting the trocar against the body or retaining the trocar inside the body inside
    • A61B2017/3484Anchoring means, e.g. spreading-out umbrella-like structure
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/34Trocars; Puncturing needles
    • A61B2017/348Means for supporting the trocar against the body or retaining the trocar inside the body
    • A61B2017/3482Means for supporting the trocar against the body or retaining the trocar inside the body inside
    • A61B2017/349Trocar with thread on outside
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B90/00Instruments, implements or accessories specially adapted for surgery or diagnosis and not covered by any of the groups A61B1/00 - A61B50/00, e.g. for luxation treatment or for protecting wound edges
    • A61B90/08Accessories or related features not otherwise provided for
    • A61B2090/0801Prevention of accidental cutting or pricking
    • A61B2090/08021Prevention of accidental cutting or pricking of the patient or his organs
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M5/00Devices for bringing media into the body in a subcutaneous, intra-vascular or intramuscular way; Accessories therefor, e.g. filling or cleaning devices, arm-rests
    • A61M5/178Syringes
    • A61M5/31Details
    • A61M5/32Needles; Details of needles pertaining to their connection with syringe or hub; Accessories for bringing the needle into, or holding the needle on, the body; Devices for protection of needles
    • A61M5/3205Apparatus for removing or disposing of used needles or syringes, e.g. containers; Means for protection against accidental injuries from used needles
    • A61M5/321Means for protection against accidental injuries by used needles
    • A61M5/3243Means for protection against accidental injuries by used needles being axially-extensible, e.g. protective sleeves coaxially slidable on the syringe barrel

Abstract

A safety penetrating instrument (20) includes a housing (28); a portal sleeve (26) mounted by the housing (28); a penetrating member (36) disposed within the portal sleeve (26) and movable between an extended position where a distal end (60) thereof protrudes from the distal end (30) of the portal sleeve (26) at a proximally spaced retracted position; a distally biased safety probe (42) disposed within the penetrating member (36) and movable between an extended position protecting the penetrating member distal end (60) when the penetrating member (36) is retracted, and a retracted position exposing the penetrating member distal end (60) when the penetrating member (36) is extended; a retracting mechanism (74) for moving the penetrating member (36) from the extended position to the retracted position thereof; a handle (108) for manually moving the penetrating member (36) from the retracted position to the extended position; and a locking and releasing mechanism (78) for locking the penetrating member (36) in the extended position and subsequently releasing the penetrating member (36) permitting such to move proximally to the retracted position responsive to penetration into the anatomical cavity.

Description

CA 02213769 1997-08-2~
WO 96126752 PCT~US96/02374 Retractable Safety Penetrating Instrument With Safety Probe BACKGROUND OF THE INVENTION

Field of thle Invention:
The present invention pertains to safety penetrating instruments and, more particuiarly, to safety penetrating instruments for use in forming portals for -establishing cornmunication with anatomical cavities wherein tissue and organ structures are protecLed from the tips of the penetrating members and to methods of penetrating anatomical cavity walls with safety penetrating instruments.

CA 02213769 1997-08-2~
W 096/26752 PCTrUS96/02374 Discussion of the Prior Art:
Penetrating instruments are wideiy used in medical procedures to gain access to anatomical cavities ranging in size from the abdomen to small blood vessels, such as veins and arteries, epidural, pleural and suL,a, acl " loid spaces, heart ve"lriclas and spinal and synovial cavities. Use of penel, dling instruments has become an extremely popular and important first step in endoscopic, or minimally invasive, surgery to establish an en-Joscopic portal for many various procedures, such as laparoscopic procedures in the abdominal cavity. Such penetrating instruments typically include a cannula or portal sleeve and a ~.enel,dli"g member, such as a trocar, disposed within the cannula and having a sharp tip for penetrating an anatomical cavity wall with the force required to penetrate the cavity wall being dependent upon the type and thickness of the tissue forming the cavity wall. Once the wall is penetrated, it is desirable to protect the sharp tip of the penetrating member from inadvertent contact with or injury to tissue or organ structures in or forming the cavity in that, once penetration is achieved, the lack of tissue resistance can result in the sharp tip traveling too far into the cavity and injuring adjacent tissue or organ structures.
Various safety penetrating instruments have been proposed, generally falling into protruding and retracting categories. In protruding safety penetrating instruments, a safety member is spring-biased to protrude beyond the tip of the penetrating member in response to the reduced force on the distal end of the safety member upon entry into the anatomical cavity. The safety member can be disposed around the penetrating member in which case the safety member is frequently referred to as a shield, or the safety member can be disposed within CA 02213769 1997-08-2~
2 PCTnUS96JD2374 the ~e"elralir,g member in which case the safety member is frequently referred to as a probe. In rettacti,.g safety penel,aLing instruments the penel-aling member is retracted into the cannula upon entry into the analo",ical cavity in respo"se to distal movement of a Col"po"e, ll of the safety penetrating instrument such as thle penetrating member the cannula a probe or a safety member such as a shield or probe.
While rel, acting safety penelra~i"g instruments have been well received there is room for improvement in easing pen~ralio,) and minimizing the likelihood of the penel,dlil,g r.,elnber being retracted before the portal sleeve has entered the andlG",ical cavity.

SUMMARY OF THE INVENTION
A~x~r~3i"yly it is a primary object of the present invention to improve safety penel"3linlg instruments of the type having a portal sleeve a safety probe and a retractable penetrating member.
It is an additional object of the present invention to ease penetration of an anatomia~l cavity wall with a safety penetrating instrument by permitting penetrating cornponents of the safety penetrating instrument such as a portal sleeve safety probe and/or penetrating member to move proximally during penel, alicln of the a"~lor"ical cavity wall and maintaining the movable penelraling co".ponerlts in ~;uL,~I~I ,lially aligned positions such that a smooth distal profile is preserved during penetration of the anatomical cavity wall.
Another object of the present invention is to permit proximal movement of a safety probe and a penetrating member of a retractable safety penetrating CA 02213769 1997-08-2~
W o 96/267S2 PCTrUS96/02374 instrument in response to tissue contact during penetration of an a"2lo",ical cavity wall.
A further object of the present invention is to permit proximal movement of a safety probe and a portal sleeve of a rel, actcible safety penet, dLil Iy instrument in response to tissue contact during penetration of an anator"ical cavity wall.
Yet anoll ,er object of the prese, ll invention is to permit proximal movement of a safety probe portal sleeve and penetrating member of a retractable safety penetraliny instrument in response to tissue cGnlact during penetration of an a"aloi"ical cavity wall.
A further object of the present invention is to trigger retld~ion of a penel,alin~l member of a safety penel,ali"g instrument in response to distally-biased movement of the penetrating member and a safety probe of the safety penelrdliny instrument upon entering an anatomical cavity.
An additional object of the present invention is to trigger retraction of a penetrating member of a safety penetrating instrument in response to distally-biased movement of a safety probe and portal sleeve of the safety penetrating instrument upon entering an anatomicai cavity.
It is yet another object of the present invention to trigger retraction of a penetrating member of a safety penetrating instrument in response to distally-biased movement of the penetrating member and a portal sleeve of the safety penetrating instrument upon entering an anatomical cavity.
Still another object of the present invention is to trigger retraction of a penetrating member of a safety penetrating instrument in response to distally-CA 02213769 1997-08-2~
W O 96/26752 PCTnUS96102374 biased movement of the penetrating member, safety probe and portal sleeve of the safety penetrating instrument upon entering an anatomical cavity.
Solme of the adva, Itdyes of the pr~se, 1l invention over the prior art are that penetration of an a"alo"~ical cavity wall can be achieved using a s",oolh and continuous movement, that safe p~"el,alion of an al ,ator,lical cavity wall can be cGr"me"ced with the portal sleeve and/or safety probe in an extended rest position either shielding or exposing the tip of the penetrating member, and that retraction of the pe, lel(aling member of the safety pe"el,dling instrument can be conditioned on entry into an anatomical cavity of one or more of the penetrating components such that the safety and efficacy of the safety pe"el,aling instrument is enhanced.
The present invention is generally characterized in a safety penetrating instrument for establishing a portal in the wall of an anatomical cavity including a housing, a poltal sleeve fixedly secured to the housing, a penel, aling member disposed within the portal sleeve and movable relative to the portal sleeve between an extended position where a distal end of the penetrating member protrudes distally from a distal end of the portal sleeve and a retracted position proximally spaced from the extended position, a distally-biased safety probe ~I;sposecl ~vithin the penetrating member and movable relative to the portal sleeve between an extended safety probe rest position protecting the penetrating member dlistal end when the penetrating member is retracted and a safety probe retracted position exposing the penet, aling member distal end when the penetrating member is extended, retracting means for moving the penetrating member from the penetrating member extended position to the penetrating CA 02213769 1997-08-2~
W 096/26752 PCTrUS96/02374 "lember retracted position, means for manually moving the penetrating member from the pe"el,dlir,g member retracted position to the penetrating member extended position, locking means for locking the penel,dli,)g member in the penel,ali, 19 member eAlel,ded position while permitting a predetermined amount of proximal movement of the penetrating member during penetration of the anatomical cavity wall, penetrating member bias means for biasing the pe, l~lldlins~ member distally in the locked penetra~i"g member extended position to permit the penel,aling member to move proximally during penetration of the a"alGmical cavity wall and distally upon introduction into the anatomical cavity, and releasing means r esponsive to penetration of the safety penelr~ling instrument into the a"aLo"lical cavity for triggering release of the locking means to permit the r~l, aclir ,9 means to move the penetrating member to the penetrating member retracted position.
Another aspect of the present invention is generally characterized in a safety penetrating instrument for establishing a portal in the wall of an anatomical cavity including a housing, a distally-biased portal sleeve movable relative to the housing between an extended rest position and a proximally spaced retracted position, a penetrating member disposed within the portal sleeve and movable relative to the portal sleeve between an extended position where a distal end of the penetrating member protrudes distally from a distal end of the portal sleeve and a rellacled position proximally spaced from the extended position, a distally-biased safety probe ~isposed within the penel,ali"g member and movable relative to the penetrating member between an extended safety probe rest position protecting the penetrating member distal end when the penetrating member is CA 02213769 1997-08-2~
W O 96/26752 ~CTnUS96JD2374 relrc3~ad and a safety probe retracted position exposing the penetrating member distal end when the penetrating member is extended retracting means for moving the pe,nel~ dlil ,9 member from the penetrating member extended position to the penet,~ling ",e",ber ret~acte,d position means for manually moving the peneL-dlil-g member from the penet,dti"g member relna~ed position to the pe"et, ~ti, 1l9 ,..eml.er extended position locking means for locking the penetrating member in the penetrating member extended position and preventing proximal movement of the ~,e"ett, dtil 19 member during penetration of the ana~or"icai cavity wall and releasing means responsive to penetration of the safety pene,l,aling instrument into the a"dlo",ical cavity for triggering release of the locking means to permit t.he r~L~ d~lil ,y means to move the penetrating member proximally to the penetrating member rel~acled position.
Yet another aspect of the present invention is generally characterized in a safety penetrating instrument for establishing a portal in the wall of an anatomical cavity including a housing a distally-biased portal sleeve movable relative to the housing between an extended rest position and a proximally spaced ret, d~;led position a penetrating member disposed within the portal sleeve and movalble relative to the portal sleeve between an extended position where a distal end of the penetrating member protrudes distally from a distal end of the portal sleeve and a rel,acted position proximally spaced from the extended position a distally-biased safety probe disposed within the penetrating member and movable relative to the penetrating member between an extended safety probe rest po;ition protecting the penetrating member distal end when the penetrating member is retracted and a safety probe retracted position exposing -W 096/26752 PCTrUS9610237 the penetrating member distal end when the penetrating member is extended r~l,a~;ti,)g means for moving the penel,dling member from the penel,dlir,g member extended position to the penetrating member retracted position means for manually moving the penel,ali"g member from the penetrating member rellacted ~osilio" to the ,uen~l, dlil ,9 member extended position locking means for locking the penetrating member in the pe"elraling member extended position while permitting a predeter",ined amount of proximal movement of the penel,aling member during penel, aliG" of the a"alomical cavity wall penetrating member bias means for biasing the penel,dling member distally in the locked penel,ali,lg ",e"~ber exte"ded position to permit the penetrating member to move proximally during penel,dlion of the a"dlomical cavity wall and distally upon introduction into the al,alomical cavity and releasing means responsive to penetration of the safety penetrating instrument into the anatomical cavity for triggering release of the locking means to permit the penelndling member rel, dCtil 19 means to move the penetrating member proximally to the penetrating member retracted position.
A further aspect of the present invention is generally characterized in a safety penel,dliny instrument for establishing a portal in the wall of an anatomical cavity including a housing, a portal sleeve having a proximal end mounted by the housing a hollow penetrating member disposed within the portal sleeve and having a tissue penel,dling distal end with a partially conical configuration having partial threads and a distally-biased safety probe disposed within the penetrating member and having a distal end with a partially conical configuration having partial ll " ~ads such that when the safety probe is in a retracted position relative to the penetrating member the configuration of the safety probe distal end CA 02213769 1997-08-2~

cooper~les with the configuration of the penel, ~ling member distal end to produce a S!~l ~sl~nlially complete geometric cone configuration with external ll ,reads.
Other objects and advantages of the present invention will become appar~nt frorn the following description of the preferred embodiments taken in conjunction with the acco""~anying drawings wherein, unless specified otherwise, like parts or parts that p~, ror"~ like functions are identified in each of the several figures by the same r~rer~"ce numeral or by reference numerals sharing the same lasl two digits.

BRIEF DESCRIPTION OF THE DRAWINGS
Fi~a. 1 is a broken side view, partly in section, of a safety penelrali,lg instrument according to the present invention.
Fig. 2 is a broken side view, partly in section, of the safety penetrating instrument of Fig. 1 during penetration of a wall of an anatomical cavity.
Fig. 3 is a broken side view, partly in section, of the safety penetrating instrument of Fig. 1 following penetration into the anatomical cavity.
Fi~. 4 is a broken side view, partly in section, of a modification of a safety penelraling instrument according to the present invention Fi~. 5 is a fragmentary side view, partly in section, of the distal end of the safety penelr~ ,y instnument of Fig. 4 during penetration of an anatomical cavity wall.
Fig. 6 is a broken side view, partly in section, of another modified safety - penetrating instrument according to the present invention.

CA 02213769 1997-08-2~

Fig. 7 is a broken side view, partly in section, of still another modified safety penetrating instrument according to the present invention.
Fig. 8 is a r~y,,,e,,la,y side view, partly in section, of the distal end of the safety ~,er,elrali"g instrument of Fig. 7 during penetration of an anatomical cavity wall. 4 Fig. 9 is a r,dy,~lentary side view of a modified distal end configuration for a safety penetrating instrument according to the present invention.

DESCRIPTION OF THE PREFERRED EMBODIMENTS
A safety penel,~li"y instrument 20 accordi"g to the present invention, as shown in Fig. 1, includes a portal unit 22 and a penel,dlir,g unit 24. The portal unit 22 includes an elongate portal sleeve 26 and a housing 28 mounting a proxi",al end of portal sleeve 26. Portal sleeve 26 terminates distally at a distal end 30 and proximally at a flange 32 disposed between a front wall 34 and an inner wall or partition 33 of the housing 28. The portal sleeve 26 can have any desirable cross-sectional configuration, including cylindrical or tubular configurations, in accordance with the procedure to be performed and the anatomical cavity to be penetrated. Preferably, portal sleeve 26 is made of a substantially cylindrical length of rigid or flexible and transparent or opaque material, such as stainless steel or other medically acceptable plastic or metal material, and has a tubular configuration defining a lumen between the distal and prw~i",al portal sleeve ends for receiving a penetrating member 36 of penetraliny unit 24. A bias member 37 is connected between inner wall 33 and flange 32 to bias the portal sleeve in a distal direction. Bias member 37 is shown as a helical _ CA 02213769 1997-08-2~
W O 96/26752 PCTnUS96102374 coil sprin~ osed around the penetrating member 36 and held in cor"~ression t)etween ilnner wall 33 and portal sleeve flange 32; however, bias member 37 can include various other types of springs as well as other types of bias devices including ,co" ,~ressio, . sp, i, .gs, te. .sion s,~rings, torsion springs, pan springs, leaf s~. i, .gs, rubber, plastic or magnets, for example.
Housing 28 can be made of any desi(able material and can have any c~esir~ble configuration to Pcilil~le grasping by a surgeon and includes a rear wall 38 having an opening therein aligned with an opening in the housing front wall 34 to allow p~-ss~ge therelhrough by the penetrating member 36. The housing 28 is preferably constructed to sealingly engage instruments passing therelhrough and to include a valve biased to a closed state when no instrument passes through lhe portal sleeve. A flapper valve 40 is shown; however, any suitable valve construction can be utilized, including trumpet or nipple valves.
Pe!netraliing unit 24 includes an elongate, hollow penetrating member 36 in the forrn of a tubular needle, a safety probe 42 and a hub 44 mounting proximal ends of the pe,letr~,li,lg member and the safety probe. Hub 44 includes longitudinally sp~r~l front and rear walls 46 and 48 and laterally spaced top and bottom walls 50 and 52. Hub front wall 46 has a configuration to mate with the rear wall 38 of the housing; and, when the hub is mated with the housing as shown, penetralting member 36 is disposed within portal sleeve 26. Penetrating member :36 has an elongate tubular body 53 telescopically fitted over safety probe 42 which is, in turn, telescopically fitted over a guide tube 54 extending distally ~ from hub rear wall 48. The penetrating member terminates proximally at a transverse flange 56 mounted by a rail member 58 in hub 44 and has a beveled CA 02213769 1997-08-2~
W 096/26752 PCTrUS96/02374 distal end 60 that e,.le".ls from a transverse dimensional transition or junction 62 to define a sharp tissue-penel, ~ling distal tip 64.
Rail member 58 is generally U-shaped including a forward wall 66 disposed transverse or perpendicular to a longitudinal axis of the penelrdling instrument a rearward wall 68 in configuration parallel to forward wall 66 and a side wall 70 transversely joining the forward and rearward rail ",enlber walls.
Flange 56 is disposed between the rail member forward and rearward walls with the rail member forward wall 66 having an opening therein allowing passage theretl,rough by the penetrating member 36. The rail member forward and rearward walls are disposed parallel or substantially parallel to flange 56 and a bias member 72 is co"nectecl between penel,~ti"g member flange 56 and the rail member rearward wall 68 to bias the penel,aling member distally. As shown bias ",er"ber 72 includes a helical coil spring ~isposed around the safety probe 42 and mounted in compression between flange 56 and the rail member rearward wall 68 to bias the penetrating member 36 distally to cause flange 56 to abut the rail member forward wall 66. However bias member 72 can include various other types of springs as well as other types of bias devices including compression springs tension spri"gs torsion springs pan springs leaf springs rubber plastic or magnets for example.
A rel, a~;ting member 74 is mounted between rail member rearward wall 68 and the front wall 46 of hub 44 to bias the penetrating member 36 in a proximal direction to a retracted position where the sharp distal tip 64 of the penetrating member is disposed proximally of the portal sleeve distal end 30 and the safety probe distal end 76 as will be explained further below. The retracting member 74 _ CA 02213769 1997-08-2~
W O 96/26752 PCTnUS96102374 includes ;3 helical coil spring disposed around a guide rod 75 and mounted in co",~.ressio" be~ween the rail rllember rearward wall 68 and the hub front wall 46 to bias the rail member 58 and, therefore, the penetrating member 36, in a proximal direction to the retracted position where the distal end 60 of the ~"~t,~i"g rne"~ber is ~lisposed proxi",ally of the distal end 76 of the safety probe 42 and the portal sleeve distal end 30.
A k~cking and ~,lea~i"~ .oecl~al ,is"~ 78 for locking the penel, aling member in an exle. ,Jed position, shown in Fig. 1, and for releasing the rail member 58 to allow the ~,e, l~ Ig member 36 to move to the ~ll ac~ed posilion includes a latch or locking spring 80, made of a strip of resilient material, formed to have a sl 1l ,sl~- ,lially flat base 82 secured to the bottom wall 52 of hub 44 and a bend 84 joining the proximal end of the base 82 with an upwardly angled arm 86 spaced from the Ibase. Arm 86 carries or forms a latch 88 having a proximal angled latching siurface 90 joining a distal latching surface 92 disposed substantially transverse to the longitudinal axis of the safety penetrating instrument and substantially parallel to the rail member rearward wall 68. Arm 86 has an extensio,) 94 positioned distally of latch 88, and a releasing member or trigger 96 is jl nctarosed with extension 94. The trigger 96 is pivotally mounted in the hub on a pin 98 siecured to a wall or walls of the hub or structure supported in the hub, and the trigger is generally L-shaped with a leg 100 overlying extension 94 and a leg 102 extending transversely from leg 100 but at a slight angle toward the proximal end of the safety penetrating instrument. A torsion spring (not shown) is coiled around pin 98 and fixed to trigger 96 to bias the trigger counterclockwise, looking a~ Fig. 1, such that leg 100 is biased toward extension 94.

CA 02213769 1997-08-2~
W 096/26752 PCTrUS96/02374 The raii member rearward wall 68 extends toward the top wall 50 of the hub and a post 104 extends from the penetrating member flange through a longitudinal slot 106 r~, ., .ed in the top wall of the hub to terminate at a handle 108 pose~ within an elongate trough-like recess 109. Handle 108, which can be coupled with the penetrating member directly or via the rail member as shown, can be grasped and manually moved distally along the slot formed in the top wall of the hub to move the penetrating member from the retracted position to the locked extended position as previously explained above.
Safety probe 42 extends from distal end 76 to a proximal flange 110 disposed between the hub rear wall 48 and an inner wall or partition 112 distally spaced from the hub rear wall. A bias member 114 in the form of a helical coil spring is r~isrosed around the guide tube ~4 and held in compression between the safety probe flange 110 and the hub rear wall 48 to bias the safety probe 42 distally toward a rest position where the safety probe flange abuts the hub partition 112. Distal end 76 of the safety probe is relatively blunt and is beveled at substantially the same angle as penelraling member distal end 60 so that when the safety probe is moved pl c,kil "ally relative to the penel, ~lil ,9 member, the distal ends of the probe and the penetrating member can become aligned or flush to form a substantially solid geometric configuration easing penetration.
The portal unit 22 and the penetrating unit 24 can be provided separately or assembled together as shown in Fig. 1, and either or both of the portal and penetrating units can be manufactured in a manner to be disposable for single patient use or to be sterilizable for re-use. The hub 44 can be coupled to the housing 28 by suitable detent or latch mechanisms if desired, and the penetrating CA 02213769 1997-08-2~
W ~96/267~2 PCTnUS96/02374 unit can be withdrawn from the portal unit leaving the portal sleeve 26 in place within an anaton,ical cavity to serve as a portal for the introduction of medical instruments thelrethrough.
In use the safety pe"el, ~lil ,g instrument 20 is preferably provided in the conditiol, illusl,alecl in Fig. 3 with the safety probe 42 in the extended rest position and the p~:"el, ~ling member 42 in the rel, acled position such that the distal end 60 of the penetrating member is proximally sp~ced from the distal end 76 of the safety probe to protect the sharp tip 64 of the penetraling member prior to use.
In order to move! the penetrating member to the extended position shown in Fig.
1 the handle 108 is grasped to move the raii member 58 and thus the pe"elr;dtir,!a ",e",ber 36 distally until the rail member rearward wall 68 rides over latch 88 to be latched in the extended position with the rail member rearward wall 68 locked against distal latching surface 92. The user can feel the rail member rearward wall 68 lock into place in engagement with the latch 88 and can also visually determine that the penel, ~li"g member is in the locked extended position by noting the position of the handle 108 at a distal end of the slot 106.
With the penel,c li"g member 36 locked in the extended position illustrated in Fig.1 the distal end 60 of the penetrating member protrudes distally from the portal sleeve distal end 30 and the safety probe distal end 76 protrudes distally from the distal tip 64 of the penetrating member. Portal sleeve distal end 30 is preferably aligned with junction 62 of the penetrating member 36 to present a smooth distal profile easing penetration; and the portal sleeve 26 penetrating ~ member 36 ancl safety probe 42 can all move proximally in response to forces acting on lheir respective distal ends such as the force from tissue contact during =
CA 02213769 1997-08-2~
W O 96/26752 PCTrUS96/02374 ~nel~ ~lion of an andlum. ~l cavity wall. Proximal movement of the portal sleeve 26 is limited by co""~ression of bias member 37 against housing pa,lilio,l 33 which serves as a stop or abutment. Similarly proximal movement of the penetrating member is limited by cor"pression of bias member 72 againsl the rearward wall 68 of the rail member and safety probe 42 can move pro,~i",ally against the bias of bias member 114 in response to forces acting on the safety probe distal end 76 until bias member 114 is completely compressed against the hub rearwall 48. When penelraliGIl of an anatc,n,ical cavity wall is col,l,nel,ced the force from tissue conlact on the safety probe distal end 76 will cause the safety probe to move ,c rokimally against the bias of bias member 114 so that the beveled distal end 76 of the probe becomes flush with the beveled distal end 60 of the penel,ali"g member to form a substantially solid geometric configuration for penel,dling the anclom.--l cavity wall. Portal sleeve 26 safety probe 42 and ~Jenet(aling member 36 can all move proximally in response to tissue resistance during penetration so the alignment of the safety probe and portal sleeve distal ends with the penetrating member distal end can be substantially maintained in order to ease penelralion. Penetrating member flange 56 will also move past trigger leg 102 but will not cause movement of latch 88 since clockwise rotation of the trigger does not bring trigger leg 100 into contact with arm extension 94;
and since trigger 96 is biased in a counterclockwise direction flange 56 will be positioned proximally of trigger leg 102 as shown in Fig. 2.
Upon entry into the al)alol~ical cavity the counterforce on the safety probe portal sleeve and penet,aling member distal ends caused by tissue contact will be reduced allowing bias members 114 37 and 72 to move the safety probe , CA 02213769 1997-08-2~

portal sl~eve and penel(dli, lg member distally. Distal movement of the pe"~l, dlil 19 mernber causes flange 56 to operatively engage trigger leg 102 and to pivot th~e trigger counterclockwise looking at Fig. 2 causing leg 100 to e, ~yaye arm e)~le"sion 94. The engager"~nl of leg 100 with arm extension 94 ~ ~ses arm 86 to mo~e toward base 82 moving the latch 88 out of ~ngager"e"l with the rail rn~n Iber r/3arward wall 68 thereby allowing the rel, ading member 74 to cause the p~"elr~ling mennber to move proximally to the relldclLed position wherein the rail ",e"lber r~3arward wall 68 abuts the hub partition 112 and the penetrating member distal end 60 is proximally spaced from the safety probe distal end 76 and the portal sleeve distal end 30 to protect the sharp tip 64 of the penetrating member as shown in Fig.3. The pe"el, dli"g unit 24 including the penetrating member 36 and the probe 42 can then be withdrawn from the portal unit 22 leaving the portal sleeve 213 in place within the anatomical cavity wall to serve as a portal for introducing medical instruments therethrough.
Thle safety penel,alir,g instrument of the present invention can be modified as shown in Fig. 4 at 120 to permit proximal movement of the penetrating member 136 and probe 142 of the safety penetrating instrument during penetration of an analolllical cavi~y wall and to trigger movement of the penetrating member 136 to the r~l, dclLed position in respo"se to distally-biased movement of the safety probe 142 caused by a reduction in force from tissue co"lacl upon entry into the anatomical cavity. The modified safety penetrating instrument 120 includes a penetrating unit 124 similar to penetrating unit 24 for safety penetrating ~ instrument 20 but with a modified locking and releasing mechanism 178 and a hollow penetrating member 136 having a partial geometric configuration of a CA 022l3769 l997-08-2~
W 096/267S2 PCTrUS96/02374 pyramid at a distal end 160 with sides or facets tapering to a sharp tip 164 while openings at the distal end defined by a peripheral edge terminate at a sharp tip 164. Locking and releasi"g ,oe~)a"ism 178 includes a locking spring 180 having a flat base 182 secured to a bottom wall 152 of the hub and a bend 184 joining a distal end of the base with an upwardly angled arm 186. Arm 186 turns upward, toward a longitudinal axis of the instrument, to form a latch 188 having a transverse latching surface 192 in configuration parallel to the rail member rearward wall 168. An angled proximal latching surface 190 extends downward from latching surface 192 to connect with a hori~ lal arm extension 194 extending parallel to the longitudinal axis of the instrument. A trigger 196, similar to trigger 96 for safety per,~lrali"g instrument 20, is ju~ctarosed with arm extension 194 but is spaced proximally from hub partition 112 for being engaged by safety probe flange 210. Trigger 196 is pivotally mounted on a pin 198 secured to a wall or walls of the hub between arm extension 194 and the safety probe flange 210.
Trigger 196 is generally L-shaped with a leg 200 overlying extension 194 and a leg 202 extending transversely from leg 200 and toward the proximal end of the hub to be disposed proximally of the safety probe flange 210 when the safety probe is in the extended rest position shown.
Safety probe 142 is movably disposed concentrically within penetrating member 136 and has an elongate cross-sectional configuration corresponding to that of the hollow penetrating member and a distal end 176 formed of sides or facets 177 tapering to a narrow end 179, the configuration of the distal end cooperating with the configuration of the distal end of the penetrating member, when the safety probe is in the retracted position as illustrated in Fig. 5, to CA 022l3769 l997-08-25 W 096/267S2 PCTnUS96/02374 produce a su6sl~"lially complete geometric pyramid configuration having four sides or facets symmetrically arranged around a sharp point.
Portal unit 122 for safety pen~:lr~ling instrument 120 includes a tubular portal slee~l/e 12~; having a ~ r~xin~al end 132 fixedly secured to the front wall 134 of a housinlg 128. Portal sleeve 126 fits telescopically over p~nel-dlir,g member 136 when the p~t I~Ll dl.in~3 and portal units are assembled as shown in Fig. 4 and a distal end 130 of the portal sleeve is proximally sp~ced from junction 162 of the penel~dli~ ~..e",lber a predete",lined distance x corresponding approximately to the dista"l e bef~ween rail member walls 166 and 168 when the penel,ali.,~
member is in the extended rest position shown.
Use of the safety ~enel~ dlil 1~ instrument 120 for penetrating an anatomical cavity wall proceeds essentially as described above for safety penetrating instrument 20 with the e;l~ceplion that portal sleeve 126 does not move relative to housing 1'28 during penetration and retraction of penetrating member 136 is triggered b~y distally-biased movement of safety probe 142 upon entering the anatomical cavity. Prior to contacting the anatomical cavity wall handle 208iS
grasped and manually moved distally relative to hub 144 to move rail member 158 and thus penetrating member 136 distally to the locked extended position shown in Filg. 4 where distal end 160 of the penelrali"g member protrudes distally from the portal sleeve distal end 130 and distal end 176 of the safety probe protrudes distally from the penetrating member distal end. Upon contacting the ~"dlol"ical ravity wall safety probe 142is moved proximally relative to hub 144 ~ due to the force from tissue co"lac;l until distal end 176 of the safety probe is flush with penetrating member distal end 160 after which the safety probe 142 and CA 02213769 1997-08-2~
W 096/26752 PCTrUS96/02374 pa,I~L,~ 9 member 136 can move together proximally relative to hub 144 while defining a substantially complete geometric pyramid configuration to ease penetration. When bias members 114 and 172 are fully co",pressed against proximal abutment surfaces defined by the rail member and hub rear walls respedively junction 162 of the penel,aling member is ~.referably aligned with portal sleeve distal end 130 to form a smooth distal profile as shown in Fig. 5.
Upon penetrating into the al lalorl ,ical cavity the cou"le, rorce on the distal ends of the penelrali"g member and safety probe are reduced allowing the respective bias members to move the penetrating member and safety probe distally. As shown distally-biased movement of the safety probe causes safety probe flange 210 to operatively e,lgage leg 202 of trigger 196 thereby rotating the trigger counter-clockwise and triggering release of the penetrating member from the locked extended position so that the penetrating member can be moved proximally to a relrac;led position shown by phantom line in Fig. ~ where the distal end of the penetrating member is proximally spaced from both the portal sleeve and safety probe distal ends.
Still another mGdiricalion of the safety penetrating instrument according to the present invention is illustrated in Fig. 6 at 220. The modified safety penel,~li"g instrument 220 is similar to safety penetrating instrument 20 with the exception that the penetrating member does not move when locked in the extended position and movement of the penetrating member from the extended posilion to the retracted position is triggered by distally-biased movement of the portal sleeve in response to a reduction in the force from tissue contact following entry into the anatomical cavity. Safety penetrating instrument 220 includes a CA 02213769 1997-08-2~
WO 96/Z67!!i2 PCT~IIS96/02374 portal unit 222 and a penetrating unit 224 having a penetrating member 236 a safety probe 242 and a hub 244 mounting proximal ends of the penet(~li"~
" ,eri ,ber and the~ safety probe. Penelrdling member 236 is similar to penel, dlin9 member 36 and includes a beveled distal end 260 and a proxi",al end 256 fixedly - secured to the forward wall 266 of a rail member 258. Safety probe 242 is similar to safety probe 42 and is telescopically fitted within penel~ali"y member 236;
however llange 310 at the pr~i",al end of safety probe 242 is mounted between forward arld rearward walls 266 and 268 of rail member 258 and a bias member 272 is ~ posed around the guide tube 254 and held in compression between the safety probe fl~lnge 310 and the rearward wall of rail member 258 to bias the safety probe di ;tally to a rest position where the safety probe flange abuts the forward wall of the rail member. A retracting member 274 similar to rel,dcling member 74 is held in compression between the forward wall 246 of the hub and the rearward wall 268 of the rail member to bias the rail member and thus the penel,dli,)g member and safety probe in a proximal direction toward a rel, acled position.
Raiil member 258 is locked in the extended position shown in Fig. 6 by a longitudinal latch arm 265 disposed within the guide tube 254 and having a proximal end pivotally mounted on a pin 267 secured to the rear wall 248 of the hub. Latch arm 265 carries a latching protrusion 269 in opposed relation to a slot 271 forme!d in the guide tube 254. Protrusion 269 is generally triangular with a transverse latching surface 273 configured to extend through slot 271 and to engage the rail member rearward wall 268. A leaf spring 275 is connected between the latch arm 265 and an inner surface of the guide tube 254 to bias the CA 02213769 1997-08-2~
W O 96/26752 PCTrUS96/02374 arm 265 in a counterclockwise direction looking at Fig. 6 toward an engaged ~Josition where latching protrusion 269 exte"ds through the slot 271 formed in the guide tube. A ll igge, ing protrusion 277 is formed at a distal end of the latch arm 265 and includes a distal edge 279 that protrudes through aligned slots 281 and 283 formed in the safety probe 242 and the penetrating member 236 distally of slot 271 to communicate into housing 228. Slots 281 and 283 are sufficiently long to allow back and forth movement of the safety probe and penelralins~ ",e",ber between extended and retracted positions within the hub.
Portal unit 222 is similar to portal unit 22 for safety penetrating instrument 20 and in addition includes a finger 285 extending perpendicularly from the portal sleeve flange 232 in a proximal direction to terminate proximally at an enlarged head 287. A lever 289 having axially opposed ends 291 and 293 is pivotally mounted on a pin 295 secured to head 287. A peg 297 extends from head 287 and is proximally spaced from lower end 293 of lever 289 to serve as a stop limiting clockwise rotation of the lever beyond a position where upper end 291 extends transversely from finger 285 in a manner to engage triggering protrusion 277 when finger 285 is moved. A torsion spring (not shown) is mounted between the lever and the head to normally bias the lever into abutting relation with peg 297. Also shown in Fig. 6 is a tapered control button 299 in the form of a wedge that extends transversely alongside latch arm 265 for manually disengaging the latch arm from the rail member by rotating the latch arm clockwise when depressed or driven through the hub.
Use of the safety penetrating instrument 220 is similar to that described above with respect to safety penetrating instrument 20 in that when the user CA 02213769 1997-08-2~

desires to pe"el, ale into an analo"~ical cavity the safety penetrating instrument will normally be provided with the penetrating member 236 in the rel,acted ,c,ositio" wllere the distal end 260 of the ,c,enelrdlil)y member is ,uroxi",ally sp~Ged from the Iportal sleeve distal end 230 and the safety probe distal end 276.
Adc3ilio"ally, the portal sleeve 226 and safety probe 242 will be provided in rest ,~,osi~ions where the portal sleeve flange 232 abuts the housing front wall 234 and the safety probe flange 310 abuts the rail ",e"lber forward wall 266. Furthermore Iatching protrusion 269 of latch arm 265 will be disposed distally of the rail member rearward wall 268 and upper end 291 of lever 289 will be disposed distally of latchi~g protrusion 277. The penetrating member 236 is biased to the ret,dcled positic)n by rel,acling member 274 with handle 308 being disposed at a ~.ruxil"al end of slot 306 in hub 244.
Prior to a~mmencing penet, alion of an anatomical cavity wall, handle 308 is yl asped and rnanually moved distally to move penetrating member 236 distally ay~-L~sl the bias of r~L, acLil)g ",er,~ber 274 until the rail member rearward wall 268 rides over the latching protrusion 269 by engaging an angled proximal surface of the latching protrusion 269 to move the latch arm 265 clockwise looking at Fig.
6. When rail me!mber rearward wall 268 moves distally past latching surface 273 latch arm 265 springs back in a counter-clockwise direction to lock the rail member 258 and penetrating member 236 mounted thereby in the extended posiLio" shown. As previously noted the user can feel the rail member lock into place in engagement with latch arm 265 and can also visually determine that the penetrating member is in the locked extended position by noting the position of the handle 308 at a distal end of the slot. With the penetrating member 236 CA 02213769 1997-08-2~
W 096/26752 PCTrUS96/02374 locked in the extended posilion safety probe flange 310 will be distally biased by bias member 272 into abutting relation with the rail member forward wall 266 such that the safety probe distal end 276 is axially spaced from penel,dling member distal end 260 a predele~ ined disla"ce x approximately equal to the spacing between rail member walls 266 and 268. Also the portal sleeve flange 232 will be distally biased by bias member 237 into abutment with housing forward wall 234 such that the distal end 230 of the portal sleeve will be distally sp~ced from the per ,al"aling member junction 262 a predetermined distance y appn~xir"alely equal to the clislance between the housing front wall 234 and partition 233.
With the safety penetrating instrument 220 in the position illusll dled in Fig.
6 penetration of the a"alor,~ical cavity wall is commenced and the force from tissue conlact on the portal sleeve and safety probe distal ends 230 and 276 will cause the portal sleeve and safety probe to move together proximally against the bias of springs 237 and 272 respectively. Proximal movement of the portal sleeve 226 also causes upper end 291 of lever 289 to contact and move past triggering protrusion 277 by ,olali, ,y counter-clockwise underneath the protrusion.
When lever upper end 291 clears protrusion 277 lever 289 rotates in a clockwise direction; and accordingly lever upper end 291 will then be positioned proximally of triggering protrusion 277. Upon entry into the anatomical cavity the cou"la~ror;e on the distal end of the portal sleeve will be reduced allowing spring 237 to move the portal sleeve distally causing lever upper end 291 to engage triggering protrusion 277 and thereby to pivot the lever 289 clockwise causing lever lower end 293 to engage peg 297 preventing further clockwise rotation of lever 289. The engagement of lever 287 with triggering protrusion 277 causes CA 02213769 1997-08-2~
W O 96/26752 PCTnUS96102374 latch arm 2l65 to rotate cloc~wise looking at Fig.6 moving the latching protrusion 269 out oF engagement with rail member rearward wall 268 thereby allowing r~:t, a~i"g mer, Iber 274 to cause the penelri3ling member to move proximally to the retracted positic)n shown by phantom line in Fig. 6 wherein the penel,aling ",e",ber distal end 260 is proximally sp~ced from the distal end 230 of the portal sleeve 226 to protect the sharp tip 264 of the penetrating member. The penel~ ali, 19 unit 224 c an then be withdrawn from the portal unit 222 leaving the portal sle!eve 226 in place for ~he introduction of medical instruments thereli ,rough.
Another modification of the safety penetrating instrument of the present invention is arrived at by combining the locking and releasing mechanisms of safety penel, dlil lg instruments 20 and 220 to permit movement of the penetrating memberto the rel,d~;ted ~osilio" in response to distally-biased movement of both the portal sleeve and the safety probe. The modification involves mounting a locking and releasing mechanism such as locking and releasing mechanism 78 for engagillg the rail member 258 in hub 244 of safety penetrating instrument 220 as shown in phiantom at 278 in Fig. 6. Use of the modified safety penetrating instrument is similar to that described above in connection with safety penetrating instruments 20 alnd 220 with the exceplion that safety probe flange 310 serves as an operating mlember for engaging trigger 296 of the locking and releasing mechanism 278 and both the latch spring 280 and latch arm 265 must be disengaged in order for the penetrating member 236 to be moved proximally to ~ the retracted position.

CA 02213769 1997-08-2~
W 096/26752 PCTrUS96/02374 Fig. 7 illusl, dles a further modification of the safety penetrating instrument of the present invention wherein the portal sleeve 326 penetrating member 336 and safety probe 342 of the modified safety penetrating instrument 320 are movable in a proximal direction during penetration and movement of the penel,dling member from the extended position to the retracted position is ll iygered by distally-biased movement of one or both of the penetrating member and safety probe upon entering the a"alG",ical cavity. Safety penet,ali,)y instrument 320 includes a portal unit 322 identical to portal unit 22 and a pe"et,dling unit 324 including a hub 344 a modified rail member 358 mounting prt,~i",al ends of penel,dling member 336 and safety probe 342 and a modified locking and releasing mechanism 378. Penetrating member 336 is hollow and a distal end 360 of penel,aling member 336 has a partially conical configuration terminating at a sharp tissue penetrating tip 364. Safety probe 342 has an elongate circular configuration in cross-section corresponding to the tubular configuration of the penetrating member and a distal end 376 having a partially conical configuration corresponding to the configuration of the distal end 360 of penetrating member 336 such that when the safety probe is in the retracted position illustrated in Fig. 8 the configuration of the safety probe distal end cooperates with the configuration of the distal end of the penetrating member to produce a substantially complete geometric cone configuration.
Rail member 358 is similar to rail member 58 except that side wall 370 of rail member 358 extel ,ds proximally beyond rearward wall 368 to connect with an additional wall 359 having a configuration parallel to walls 366 and 368.
Pel ,el, ~ling member flange 356 is disposed between the rail member forward and CA 02213769 1997-08-2~
W O 96/267S2 PCTrUS96J02374 rearward walls with the rail member forward wall 366 having an opening therein allowing passa~le therethrough by the penetrating member 36. Safety probe flange 41C) is ~.1i;5posed between rail member walls 368 and 359 with wall 368 having an opening ~o",.ed therein allowing p~ss~ge of the safety probe ll ,erel~"-~ulgh anld wall 359 having an opening formed therein allowing p~ss~e of guide hlbe 3';4. The rail member forward and rearward walls are ~isposed parallel or 5l~hst~ntially parallel to penetrating member flange 356 and a bias member 372 is c:~"nec~ed between penetrating member flange 356 and the rail " ,ember rearward wall 368 to bias the peneLraling member distally. Similarly, rail " ,eml,er walls 368 and 359 are disposed parallel or substantially parallel to safety probe flange 410, and a bias member 414 is connected between safety probe flange 410 and the additional wall 359 to bias the safety probe distally.
Rell a~;li"g member 374 is mounted between rail member rearward wall 368 and the front wcall 346 of hub 344 to bias the rail member 358 and thus the penel,ali"g member 336 and safety probe 342 in a proximal direction to a retracted position where the sharp distal tip 64 of the penetrating member is ~~icposed proximcllly of the portal sleeve distal end 330 as shown by phantom line in Fig. 8. Lockin~ and releasiny mec:l ,a"is",378 for safety penetrating instrument 320 is similar to locking and releasing mechanism 78 but with latch 388 engaging the addilior,c31 wall 359 to lock the rail member in the extended position shown in Fig. 7 and a pair of spaced triggers 396 and 396' juxtaposed with arm extension 394. Trig~er 396 is identical to trigger 396 and includes a leg 400 overlying ~ extension 394 and a leg 402 extending transversely from leg 400 toward the pro,~i",al end of the instrument to be disposed proximally of penetrating member CA 02213769 1997-08-2~
W 096/26752 PCTrUS96/02374 flange 356 when the penetrating member flange abuts the rail member forward wall 366 Trigger 396' is similar to trigger 396 but is proximally spaced so that a leg 400' overlies extension 394 and a leg 402' extends transversely from leg 400' toward the proximal end of the instrument to be disposed proximally of safety probe flange 410 when the safety probe flange abuts the rail member rearward wall 368 Safety peneltdling instrument 320 operates similar to safety penetrating instrument 20 with the exception of both pe, lel,ali"g member and safety probe nanges serving as operdling ",er"l,er~ for operalively engaging triggers overlying the arm extension Ther~3rore once the safety penel, dlil lg instrument has entered an analo,nical cavity distally-biased movement of either or both the penet, alin~a ",er"ber and the safety probe can trigger release of the penetrating member to be moved proximally to the retracted position Another modification of the safety penetrating instrument of the present invention is arrived at by combining the locking and releasing mechanisms of safety penetrating instruments 320 and 220 to permit movement of the penetrating member to the retracted position in response to distally-biased movement of the portal sleeve 326 and one or both of the penetrating member 336 and safety probe 342 The modification shown by phantom line in Fig 7 involves ,~,osilioning a latch arm 365 similar to latch arm 265 inside guide tube 354 of hub 344 for engaging the addilional wall 259 of rail member 258 of safety penetrating instrument 320 to lock the rail member in the extended position and mounting a finger 385 with an enlarged head 387 and a lever 389 on portal sleeve flange 332 for operatively engaging a ll iggering protrusion 377 of the latch arm to release the CA 02213769 1997-08-2~
W 096/267~2 ~CTnUS96J02374 rail member in res~G"se to distally-biased movement of the portal sleeve. Use of the modlfied safety penelr~ ,g instrument is similar to that described above in connection with safety ~"elrdling instruments 320 and 220 with the exception that both thle latch spring 380 and lateh arm 365 must be disengaged in order for the penetrating member 236 to be moved proximally to the retracted position.
Frorn thè above it will be appreri~ted that multiple penetrating components of the safety penelrali,~g instrument of the present invention are movable pr~i",ally during penel,dlio,) of an analc""i-~l cavity wall and are biased to move distally upon entering the anatomical cavity. By penelrali"g co,l,po"ents is meant those elenlellls of the safety penel~aling instrument that enter an anatomical cavity such as the portal sleeve safety probe and penetrating member of the safety penetrating instrument; and retraction of the penetrating me" Iber to a position where the distal end of the penetrating member is protected can be conditioned upon distally-biased movement of one or more of the penelraling components such as the portal sleeve the safety probe and/or the penel,ali"g member depending on the type and number of locking and releasing mechanisms provided. Furthermore distal ends of the portal sleeve the safety probe and/or the penetrating member can be aligned prior to penetration to define a s~bsPntially complete solid geometric configuration having a smooth distal profile for penetrating ~"ator"ical tissue and the distal configuration can be sl ~1 ~sl~nlially maintained during penetration by permitting proximal movement of the penetrating member portal sleeve and/or safety probe. Alternatively the - distal ends of tlhe portal sleeve and/or the safety probe can be distally or proximally spaced from the penetrating member distal end such that movement CA 02213769 1997-08-2~
W 096/267S2 PCTrUS96/02374 of the portal sleeve, safety probe and/or pen~LI ~ g member in response to tissue cGnlacl will cause the distal ends of the portal sleeve, safety probe and penetrating member to become aligned and to define a suL,slanlially complete solid yeo" ,~l, ic configuration. If the portal sleeve and/or safety probe distal ends are distally sp~ced from the penetrating member distal end in the extended rest position, the portal sleeve and/or safety probe will also function as safety members to protect the penetrating member distal end in the event that the penelraling member is not retracted.
The components of the safety penetrating instrument of the present invention can be made of any suitable, medical grade materials to permit slerili~dlion for re-use or for single patient use. The components can be made of multiple parts of various configurations and materials to reduce cost. The portal unit and/or penetrating unit can have various valves, stop cocks and seals mounted thereon to control fluid flow therethrough, and conventional detent ,llechanis,))s can be used to connect or latch the hub with the housing when the portal unit and the penetrating unit are assembled. The distal end of the portal sleeve can be chamfered or blunt, smooth or roughened, or have any other configuration depending on the need for ease of penetration or increased resistance. Also, the strength of the bias members biasing the portal sleeve, safety probe and/or pe, lel,ali,ly member can be chosen according to differences in the resistant forces acting on the portal sleeve, safety probe and penetrating member in order to maintain a smooth distal profile during penetration.
Any of the penetrating members shown and described herein can include a viewing port, like the viewing port shown in phantom at 401 in Fig. 7, for CA 02213769 1997-08-2~

acc~,~""oclalir)g conve,ltional optical viewing systems such as those utilizing fiber optics so that tissue can be visualized during penetration.
In any safety pe"et, dling instrument having a penel, ali- ,g member that can move while lock;ed in the extended position the safety probe distal end can be configurecl to normally protrude distally from the penelrali"g member distal end as shown or to line up or coo~ erdle with the distal end of the ,l~e~ dlil ly " ,e" lL,er to define a sl~hst~ntially complete solid geometric configuration suitable for ldli~ analon,ical tissue. In the latter case the safety probe will preferably protrude clistally from the penetrating member when the penetrating member is r~l, ac~ed so that the tip of the penetrating member is protected when the unit is removed from the portal unit.
The penelrali,,y member and safety probe of the safety penetrating instrument can have any distal configuration to define a substantially complete geometric configuration when aligned such as for example the distal configurations shown and described in my copending patent application Serial No. 08/178 1~3I filed January 6 1994 the disclosure of which is incorporated herein by reference. Fig. 9 shows another distal end configuration wherein the modified penetrating member 436 has a distal end 460 with a partially conical configuration and partially helical ll " edds 461. Safety probe 442 has an elongate portion of circular configuration in cross-section to fit within the penetrating member and a distal end 476 having a partially conical configuration with partially helical threads 463 cor,esponding to the configuration of distal end 460 of pe"el, dlil 1~3 member 436. As shown by phantom line in Fig. 9 safety probe 442 can be biased such that distal end 476 of the safety probe protrudes distally from CA 02213769 1997-08-2~
W 096126752 PCTrUS96/02374 penetrating member distal end 460 when the safety probe and penetrating member are in extended rest posilio. ,s. Alternatively safety probe distal end 476 can be l ,o, mally aligned with penel, 2l~ 3 member distal end 460 when the safety probe and ,c,e"el, dling member are in extended rest positions. If safety probe 442 is distally-biased to protrude from penet~aling member 436 contact with anatomical tissue will cause the safety probe to move proxi",ally relative to the penetrating member until a shoulder 465 formed at the junction of the partially conical and elongate safety probe portions abuts a peripheral edge 467 of an opening formed at the penetrating member distal end through which the safety probe protrudes. When safety probe 442 is in the rel,acted position shown by solid line in Fig. 9 the configuration of the safety probe distal end cooperates with the configuration of the pe"el,dling member distal end to produce a sub:,lanlially complete geometric cone configuration with external threads such that penetration of an a"alo",ical cavitywall can be accomplished by screwing the tip of the safety penetrating instrument through the wall with a minimum of pushing to provide an added element of safety. Upon penetrating into the anatomical cavity the safety probe can be distally-biased to protrude and/or the penetrating member can be retracted to protect the tissue penetrating tip 464 of the penetrating member.
The rail member can have various configurations to engage the latch and be rele~sed by the trigger. Preferably the rail member will have a configuration to serve as a stop or abutment for the penetrating member and/or safety probe as exemplified herein by a U-shaped rail member. The locking and releasing mechanisms require only a latch for locking the penetrating member in the CA 02213769 1997-08-2~
W 096/26752 PCTnUS96J02374 extended Iposition and a trigger for releasing the latch in response to distal movement of an operating member such as a flange carried by the penetrating member, safety probe and/or portal sleeve; and, thus, it will be appreciated that various mechanisms can be employed to produce the locking and releasing functions such as, for example, multiple movably or pivotally mounted cams or pawls. It \r~ill be a,c~r3ci~'ed that the locking and releasing mechanism can be designed and dl I ~JI ,~3ec3 in the housing or the hub in various ways to minimize the length of the housing or the hub and, therefore, the overall length of the housing and hub. Various locking and releasing mechanisms that can be simply modified for use in the safety pa,lelr~li"g instrument of the present invention are disclosed in U.S. Patents No. 5,330,432; 5,324,268; 5,320,610; 5,336,176; and 5,360,405 to Yoon anld penlding applications Serial No. 07/848,838, filed March 10, 1992;
Serial No. 07/845,177, filed September 15, 1992; Serial No. 07/945,177, filed September 15, 11992; Serial No. 08/079,586, filed June 22, 1993; Serial No.
08/195,512, filed February 14, 1994; Serial No. 08/196,029, filed February 14, 1994; Seriall No. 08/196,027, filed February 14,1994; Serial No. 08/195,178, filed February 14, 1994; Serial No. 08/237,734, filed May 4, 1994; Serial No.
08/247,205, filed May 20, 1994; Serial No. 08/254,007, filed June 3, 1994; and Serial No. Cl8/260,439, filed June 15,1994. The disclosures of the above-listed issued pat~3nts and pending patent applications are incorporated herein by reference. The issued patents and pending applications listed above also ~I;~clQse various bias a~dnyements useful with the safety penetrating instrument - of the present invention. Other locking and releasing mechanisms that can be used in the safety penetrating instrument of the present invention are disclosed CA 02213769 1997-08-2~
W 096t26752 PCTrUS96102374 in Applical -l's pendi. ,y applications Serial Nos. 081279,170 and 08/279,172, filed July 22, 1994, the disclosures of which are incor~ oraled herein by reference.
Latch arms, such as latch arms 265 and 365, and fingers, such as fingers 285 and 385, can be incor,uoraled in any safety penetrating instrument having a movable portal sleeve to condition ret,action of the penetrating member on distally-biased movement of the portal sleeve for added safety. For example, safety penet,dling instrument 20 can be modified by positioning a latch arm within guide tube 54 and mounting a finger on portal sleeve 32 so that retraction of penetrating member 36 is conditioned on distally-biased movement of both the portal sleeve and the penetrating member upon entering an anatomical cavity.
Similarly, penel,ialing unit 124 of safety penetrating instrument 120 can be modified to carry a latch arm and can be mated with a portal unit like portal unit 222 so that rellaction of the penetrating member 136 is conditioned on distally-biased movement of the portal sleeve and the safety probe. When a latch arm, such as latch arm 265, is disposed within a hollow portion of a safety probe andlor a guide tube for e"gag;,)g the rail member of a safety penetrating instrument, the latch arm can be pivotally mounted at a proximal end to the hub as shown or mounted within the guide tube for pivotal movement about a center of the arm or about any other portion of the arm. In addilio", such a latch arm can be embodied in a spring strip held in cG~pression within the guide tube and configured to form or carry latching and triggering protrusions. Furthermore, when latch arms are disposed within the safety probe or a guide tube, operating members can be carried by the penetrating member, safety probe and/or portal sleeve on inside surfaces thereof for engaging triggering portions of the latch arms within the CA 02213769 1997-08-2~
W O 96/26752 PCTnUS96102374 penetrating members to release latching portions of the latch arms holding the penetrating members in their extended positions. Latch arms having such features are shown and desc~ ed in my copending applications Serial Nos.
08/279,171~ and 08/279,172, filed July 22, 1994.
One or more control buttons, such as control button 299 or any button des~ibec~ in my cope,.d;ng patent application, Serial No. 08/083,220, filed June 24,1993, c an be mounted next to any latch for manually dise"gagi. .g the latch to prevent loc;~ ,9 of the ~,e. ~el~ dlir19 11 ,er,~ber in the extended position. Further"~ore, ac~ditional latches can be provided or existing latches modified to carry pawls or form latching surFaces for locking a penetrating member in the retracted position and/or a safety tnember in an extended position for added safety.
It will also be appreci~ted that after penetration of the safety penetrating instrument into the anatomical cavity, the distally-biased portal sleeve and/or safety probe can act as a shock absorber upon inadvertent contact with tissue.
The distal bias ~or the triggering member (i.e., the portal sleeve, safety probe and/or penetrating member) of the safety penetrating instrument need only be strong enough to allow slight movement of the member during penetration such that the force-to--pe"el, ale can be minimized.
The! features of the various embodiments described above can be combined iin any manner desired dependent upon the operational requirements and complexity of the safety penel, dlin9 instrument. For example, portal unit 122 can be coupled with penel(aling units 24 and 324 when movement of the portal - sleeve relative to the housing is co, ~ i"dicated, and portal unit 22 or 322 can be W 096/26752 PCTrUS96/02374 coupled with penetrating unit 124 when movement of the portal sleeve relative to the housing is desired.
Inasmuch as the present invention is subject to many variations, n,o.liricalions and cl ,anyes in detail, it is i. Ilended that all subject matter ~isc~lssed above or shown in the accor"panying drawings be inter~re~ed as illustrative only and not be taken in a limiting sense.

Claims (42)

What Is Claimed Is:
1. A safety penetrating instrument for establishing a portal in the wall of an anatomical cavity comprising a housing;
an elongate portal sleeve having a proximal end fixedly secured to said housing and a distal end for introduction in the anatomical cavity;
a hollow penetrating member disposed within said portal sleeve and having a distal end for penetrating the anatomical cavity wall, said penetrating member being movable relative to said portal sleeve between an extended position where said distal end of said penetrating member protrudes distally from said distal end of said portal sleeve and a retracted position proximally spaced from said extended position;
a safety probe disposed within said penetrating member, said safety probe being movable relative to said portal sleeve between an extended safety probe rest position protecting said penetrating member distal end when said penetrating member is retracted and a safety probe retracted position exposing said penetrating member distal end when said penetrating member is extended;
safety probe bias means for biasing said safety probe distally toward said safety probe rest position;
retracting means for moving said penetrating member from said penetrating member extended position to said penetrating member retracted position;
means for manually moving said penetrating member from said penetrating member retracted position to said penetrating member extended position;

locking means for locking said penetrating member in said penetrating member extended position while permitting a predetermined amount of proximal movement of said penetrating member during penetration of the anatomical cavity wall;
penetrating member bias means for biasing said penetrating member distally in said locked penetrating member extended position to permit said penetrating member to move proximally during penetration of the anatomical cavity wall and distally upon introduction into the anatomical cavity;
and releasing means responsive to penetration of said safety penetrating instrument into the anatomical cavity for triggering release of said locking means to permit said retracting means to move said penetrating member to said penetrating member retracted position.
2. A safety penetrating instrument as recited in claim 1 wherein said releasing means is responsive to distally-biased movement of said penetrating member upon penetrating into the anatomical cavity.
3. A safety penetrating instrument as recited in claim 1 wherein said releasing means is responsive to distally-biased movement of said safety probe upon penetrating into the anatomical cavity.
4. A safety penetrating instrument as recited in claim 1 wherein said releasing means is responsive to distally-biased movement of said safety probe and said penetrating member upon penetrating into the anatomical cavity.
5. A safety penetrating instrument as recited in claim 1 wherein said penetrating member distal end extends distally from a junction where a transverse dimension of said penetrating member changes and wherein said portal sleeve distal end is proximally spaced from said junction when said penetrating member is at rest in said locked penetrating member extended position.
6. A safety penetrating instrument as recited in claim 1 wherein said safety probe distal end is located distally of said penetrating member distal end when said safety probe is in said rest position and said penetrating member is at rest in said locked penetrating member extended position.
7. A safety penetrating instrument as recited in claim 2 and further comprising a rail member mounting a proximal end of said penetrating member wherein said proximal end of said penetrating member includes a flange movable within said rail member and said locking and releasing mechanism includes a latch spring engaging said rail member to lock said penetrating member in said extended position and a trigger responsive to distally-biased movement of said penetrating member flange for releasing said latch spring.
8. A safety penetrating instrument as recited in claim 3 and further comprising a rail member mounting a proximal end of said penetrating member wherein said proximal end of said penetrating member includes a flange movable within said rail member and said locking and releasing mechanism includes a latch spring engaging said rail member to lock said penetrating member in said extended position and a trigger responsive to distally-biased movement of said safety probe for releasing said latch spring.
9. A safety penetrating instrument as recited in claim 4 and further comprising a rail member mounting a proximal end of said penetrating member wherein said proximal end of said penetrating member includes a flange movable within said rail member and said locking and releasing mechanism includes a latch spring engaging said rail member to lock said penetrating member in said extended position and a trigger responsive to distally-biased movement of said penetrating member flange and said safety probe for releasing said latch spring.
10. A safety penetrating instrument for establishing a portal in the wall of an anatomical cavity comprising a housing;
an elongate portal sleeve having a proximal end mounted by said housing and a distal end for introduction in the anatomical cavity said portal sleeve being movable relative to said housing between an extended rest position and a proximally spaced retracted position;

portal sleeve bias means for biasing said portal sleeve distally toward said portal sleeve rest position;
a hollow penetrating member disposed within said portal sleeve and having a distal end for penetrating the anatomical cavity wall, said penetrating member being movable relative to said portal sleeve between an extended position where said distal end of said penetrating member protrudes distally from said distal end of said portal sleeve and a retracted position proximally spaced from said extended position;
a safety probe disposed within said penetrating member said safety probe being movable relative to said penetrating member between an extended safety probe rest position protecting said penetrating member distal end when said penetrating member is retracted and a safety probe retracted position exposing said penetrating member distal end when said penetrating member is extended;
safety probe bias means for biasing said safety probe distally toward said safety probe rest position;
retracting means for moving said penetrating member from said penetrating member extended position to said penetrating member retracted position;
means for manually moving said penetrating member from said penetrating member retracted position to said penetrating member extended position;
locking means for locking said penetrating member in said penetrating member extended position and preventing proximal movement of said penetrating member during penetration of the anatomical cavity wall; and releasing means responsive to penetration of said safety penetrating instrument into the anatomical cavity for triggering release of said locking means to permit said retracting means to move said penetrating member proximally to said penetrating member retracted position.
11. A safety penetrating instrument as recited in claim 10 wherein said releasing means is responsive to distally-biased movement of said portal sleeve upon penetrating into the anatomical cavity.
12. A safety penetrating instrument as recited in claim 10 wherein said releasing means is responsive to distally-biased movement of said safety probe upon penetrating into the anatomical cavity.
13. A safety penetrating instrument as recited in claim 10 wherein said releasing means is responsive to distally-biased movement of said portal sleeve and said safety probe upon penetrating into the anatomical cavity.
14. A safety penetrating instrument as recited in claim 10 wherein said penetrating member distal end extends distally from a junction where a transverse dimension of said penetrating member changes and wherein said portal sleeve distal end is aligned with said junction when said portal sleeve is in said rest position and said penetrating member is in said locked penetrating member extended position.
15. A safety penetrating instrument as recited in claim 10 wherein said penetrating member distal end extends distally from a junction where a transverse dimension of said penetrating member changes and wherein said portal sleeve distal end is located proximally of said junction when said portal sleeve is in said rest position and said penetrating member is in said locked penetrating member extended position.
16. A safety penetrating instrument as recited in claim 10 wherein said penetrating member distal end extends distally from a junction where a transverse dimension of said penetrating member changes and wherein said portal sleeve distal end is located distally of said junction when said portal sleeve is in said rest position and said penetrating member is in said locked penetrating member extended position.
17. A safety penetrating instrument as recited in claim 10 wherein said safety probe distal end is located distally of said penetrating member distal end when said safety probe is in said rest position and said penetrating member is in said locked penetrating member extended position.
18. A safety penetrating instrument as recited in claim 11 wherein said locking and releasing means includes a latch arm extending through said penetrating member and carrying a proximal latching protrusion for engaging said penetrating member to lock said penetrating member in said extended position and a distal triggering protrusion for being operatively engaged by an operating member carried by said portal sleeve to release said latching protrusion from said penetrating member.
19. A safety penetrating instrument as recited in claim 18 wherein said operating member includes a lever pivotally mounted on a finger extending proximally from said portal sleeve.
20. A safety penetrating instrument as recited in claim 12 and further comprising a rail member mounting a proximal end of said penetrating member, wherein said locking and releasing mechanism includes a latch spring engaging said rail member to lock said penetrating member in said extended position and a trigger responsive to distally-biased movement of said safety probe for releasing said latch spring.
21. A safety penetrating instrument as recited in claim 13 and further comprising a rail member mounting a proximal end of said penetrating member, wherein said locking and releasing mechanism includes a latch spring engaging said rail member to lock said penetrating member in said extended position and a trigger responsive to distally-biased movement of said safety probe for releasing said latch spring, and wherein said locking and releasing means further includes a latch arm extending through said penetrating member and carrying a proximal latching protrusion for engaging said rail member to lock said penetrating member in said extended position and a distal triggering protrusion for being operatively engaged by an operating member carried by said portal sleeve to release said latching protrusion from said penetrating member in response to distally-biased movement of said portal sleeve.
22. A safety penetrating instrument for establishing a portal in the wall of an anatomical cavity comprising a housing;
an elongate portal sleeve having a proximal end mounted by said housing and a distal end for introduction in the anatomical cavity, said portal sleeve being movable relative to said housing between an extended rest position and a proximally spaced retracted position;
portal sleeve bias means for biasing said portal sleeve distally toward said portal sleeve rest position;
a hollow penetrating member disposed within said portal sleeve and having a distal end for penetrating the anatomical cavity wall, said penetrating member being movable relative to said portal sleeve between an extended position where said distal end of said penetrating member protrudes distally from said distal end of said portal sleeve and a retracted position proximally spaced from said extended position;
a safety probe disposed within said penetrating member, said safety probe being movable relative to said penetrating member between an extended safety probe rest position protecting said penetrating member distal end when said penetrating member is retracted and a safety probe retracted position exposing said penetrating member distal end when said penetrating member is extended;
safety probe bias means for biasing said safety probe distally toward said safety probe rest position;
retracting means for moving said penetrating member from said penetrating member extended position to said penetrating member retracted position;

means for manually moving said penetrating member from said penetrating member retracted position to said penetrating member extended position;
locking means for locking said penetrating member in said penetrating member extended position while permitting a predetermined amount of proximal movement of said penetrating member during penetration of the anatomical cavity wall;
penetrating member bias means for biasing said penetrating member distally in said locked penetrating member extended position to permit said penetrating member to move proximally during penetration of the anatomical cavity wall and distally upon introduction into the anatomical cavity; and releasing means responsive to penetration of said safety penetrating instrument into the anatomical cavity for triggering release of said locking means to permit said retracting means to move said penetrating member proximally to said penetrating member retracted position.
23. A safety penetrating instrument as recited in claim 22 wherein said releasing means is responsive to distally-biased movement of said penetrating member upon penetrating into the anatomical cavity.
24. A safety penetrating instrument as recited in claim 22 wherein said releasing means is responsive to distally-biased movement of said safety probe upon penetrating into the anatomical cavity.
25. A safety penetrating instrument as recited in claim 22 wherein said releasing means is responsive to distally-biased movement of said portal sleeve upon penetrating into the anatomical cavity.
26. A safety penetrating instrument as recited in claim 22 wherein said releasing means is responsive to distally-biased movement of said portal sleeve and said penetrating member upon penetrating into the anatomical cavity.
27. A safety penetrating instrument as recited in claim 22 wherein said releasing means is responsive to distally-biased movement of said portal sleeve and said safety probe upon penetrating into the anatomical cavity.
28. A safety penetrating instrument as recited in claim 22 wherein said releasing means is responsive to distally-biased movement of said safety probe and said penetrating member upon penetrating into the anatomical cavity.
29. A safety penetrating instrument as recited in claim 22 wherein said releasing means is responsive to distally-biased movement of said portal sleeve said safety probe and said penetrating member upon penetrating into the anatomical cavity.
30. A safety penetrating instrument as recited in claim 22 wherein said penetrating member distal end extends distally from a junction where a transverse dimension of said penetrating member changes and wherein said portal sleeve distal end is aligned with said junction when said portal sleeve is in said rest position and said penetrating member is in said locked penetrating member extended position.
31. A safety penetrating instrument as recited in claim 22 wherein said penetrating member distal end extends distally from a junction where a transverse dimension of said penetrating member changes and wherein said portal sleeve distal end is located proximally of said junction when said portal sleeve is in said rest position and said penetrating member is in said locked penetrating member extended position.
32. A safety penetrating instrument as recited in claim 22 wherein said penetrating member distal end extends distally from a junction where a transverse dimension of said penetrating member changes and wherein said portal sleeve distal end is located distally of said junction when said portal sleeve is in said rest position and said penetrating member is in said locked penetrating member extended position.
33. A safety penetrating instrument as recited in claim 22 wherein said safety probe distal end is located distally of said penetrating member distal end when said safety probe is in said rest position and said penetrating member is at rest in said locked penetrating member extended position.
34. A safety penetrating instrument as recited in claim 23 and further comprising a rail member mounting a proximal end of said penetrating member wherein said locking and releasing mechanism includes a latch spring engaging said rail member to lock said penetrating member in said extended position and a trigger responsive to distally-biased movement of said penetrating member for releasing said latch spring.
35. A safety penetrating instrument as recited in claim 24 and further comprising a rail member mounting a proximal end of said penetrating member, wherein said locking and releasing mechanism includes a latch spring engaging said rail member to lock said penetrating member in said extended position and a trigger responsive to distally-biased movement of said safety probe for releasing said latch spring.
36. A safety penetrating instrument as recited in claim 25 wherein said locking and releasing means includes a latch arm extending through said penetrating member and carrying a proximal latching protrusion for engaging said penetrating member to lock said penetrating member in said extended position and a distal triggering protrusion for being engaged by an operating member carried by said portal sleeve to release said latching protrusion from said penetrating member.
37. A safety penetrating instrument as recited in claim 36 wherein said operating member includes a lever pivotally mounted on a finger extending proximally from said portal sleeve.
38. A safety penetrating instrument as recited in claim 26 and further comprising a rail member mounting a proximal end of said penetrating member, wherein said locking and releasing mechanism includes a latch spring engaging said rail member to lock said penetrating member in said extended position and a trigger responsive to distally-biased movement of said penetrating member for releasing said latch spring, and wherein said locking and releasing means further includes a latch arm extending through said penetrating member and carrying a proximal latching protrusion for engaging said rail member to lock said penetrating member in said extended position and a distal triggering protrusion for being engaged by an operating member carried by said portal sleeve to release said latching protrusion from said penetrating member in response to distally-biased movement of said portal sleeve.
39. A safety penetrating instrument as recited in claim 27 and further comprising a rail member mounting a proximal end of said penetrating member, wherein said locking and releasing mechanism includes a latch spring engaging said rail member to lock said penetrating member in said extended position and a trigger responsive to distally-biased movement of said safety probe for releasing said latch spring, and wherein said locking and releasing means further includes a latch arm extending through said penetrating member and carrying a proximal latching protrusion for engaging said rail member to lock said penetrating member in said extended position and a distal triggering protrusion for being engaged by an operating member carried by said portal sleeve to release said latching protrusion from said penetrating member in response to distally-biased movement of said portal sleeve.
40. A safety penetrating instrument as recited in claim 28 and further comprising a rail member mounting a proximal end of said penetrating member, wherein said locking and releasing mechanism includes a latch spring engaging said rail member to lock said penetrating member in said extended position and a trigger responsive to distally-biased movement of said penetrating member and said safety probe for releasing said latch spring.
41. A safety penetrating instrument as recited in claim 29 and further comprising a rail member mounting a proximal end of said penetrating member wherein said locking and releasing mechanism includes a latch spring engaging said rail member to lock said penetrating member in said extended position and a trigger responsive to distally-biased movement of said penetrating member and said safety probe for releasing said latch spring and wherein said locking and releasing means further includes a latch arm extending through said penetrating member and carrying a proximal latching protrusion for engaging said rail member to lock said penetrating member in said extended position and a distal triggering protrusion for being engaged by an operating member carried by said portal sleeve to release said latching protrusion from said penetrating member in response to distally-biased movement of said portal sleeve.
42. A safety penetrating instrument for establishing a portal in the wall of an anatomical cavity comprising a housing;
an elongate portal sleeve having a proximal end mounted by said housing and a distal end for introduction into the anatomical cavity;
a hollow penetrating member disposed within said portal sleeve and having a distal end for penetrating the anatomical cavity wall, said penetrating member distal end having a partially conical configuration with partial threads;
a safety probe disposed within said penetrating member and having a distal end, said safety probe being movable relative to said penetrating member between an extended safety probe rest position protecting said penetrating member distal end and a safety probe retracted position exposing said penetrating member distal end, said safety probe distal end having a partially conical configuration with partial threads such that, when the safety probe is in the safety probe retracted position, the configuration of the safety probe distal end cooperates with the configuration of the penetrating member distal end to produce a substantially complete geometric cone configuration with external threads; and safety probe bias means for biasing said safety probe distally toward said safety probe rest position.
CA002213769A 1995-02-28 1996-02-26 Retractable safety penetrating instrument with safety probe Abandoned CA2213769A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US395,609 1995-02-28
US08/395,609 US5573511A (en) 1991-11-27 1995-02-28 Retractable safety penetrating instrument with safety probe

Publications (1)

Publication Number Publication Date
CA2213769A1 true CA2213769A1 (en) 1996-09-06

Family

ID=23563740

Family Applications (1)

Application Number Title Priority Date Filing Date
CA002213769A Abandoned CA2213769A1 (en) 1995-02-28 1996-02-26 Retractable safety penetrating instrument with safety probe

Country Status (6)

Country Link
US (1) US5573511A (en)
EP (1) EP0902693A1 (en)
JP (1) JP2974785B2 (en)
AU (1) AU707255B2 (en)
CA (1) CA2213769A1 (en)
WO (1) WO1996026752A1 (en)

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6228058B1 (en) * 1997-04-03 2001-05-08 Core Dynamics, Inc. Sleeve trocar with penetration indicator
GB0229932D0 (en) * 2002-12-20 2003-01-29 Smiths Group Plc Medico-surgical apparatus
US7419496B2 (en) 2004-08-03 2008-09-02 Staudner Rupert A Trocar with retractable cutting surface
CA2601475A1 (en) * 2005-03-08 2006-09-14 Vitalitec International, Inc. Safety trocar with lancet feature
US8328836B2 (en) * 2006-05-01 2012-12-11 Ethicon Endo-Surgery, Inc. Flexible endoscopic safety needle
US8795326B2 (en) * 2007-10-05 2014-08-05 Covidien Lp Expanding seal anchor for single incision surgery
US8911463B2 (en) * 2008-06-10 2014-12-16 Covidien Lp Bladed/bladeless obturator for use in a surgical trocar assembly
US8992579B1 (en) 2011-03-08 2015-03-31 Nuvasive, Inc. Lateral fixation constructs and related methods
US9060815B1 (en) 2012-03-08 2015-06-23 Nuvasive, Inc. Systems and methods for performing spine surgery
CN104602625A (en) 2012-03-13 2015-05-06 史密夫和内修有限公司 Surgical needle
US9895165B2 (en) 2013-03-15 2018-02-20 Smith & Nephew, Inc. Surgical needle
US9517089B1 (en) 2013-10-08 2016-12-13 Nuvasive, Inc. Bone anchor with offset rod connector
US11389195B2 (en) * 2014-01-24 2022-07-19 Medtronic, Inc. Implant tools for extra vascular implantation of medical leads
US10499903B2 (en) 2014-10-15 2019-12-10 Smith & Nephew, Inc. Anchor/implant deployment device and tissue repair methods related thereto
US10080583B2 (en) 2014-12-12 2018-09-25 Depuy Mitel, Llc Dilator for accessing a joint space
US10499904B2 (en) 2015-02-17 2019-12-10 Smith & Nephew, Inc. Anchor insertion system and method of use thereof

Family Cites Families (70)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US32922A (en) * 1861-07-30 Samuel nowlan
US1527291A (en) * 1923-07-09 1925-02-24 Zorraquin Guillermo Safety-pressure-indicating needle
US2496111A (en) * 1947-09-26 1950-01-31 Turkel Henry Biopsy needle
US2630803A (en) * 1950-05-12 1953-03-10 Eustachius O Baran Double pneumothoracic needle
US2623521A (en) * 1951-03-12 1952-12-30 Rose Shaw Indicating stylet needle
DE2544262A1 (en) * 1975-10-03 1977-04-14 Max Bernhard Ulrich Catheter for intra:uterine use - has puncturing point and protective and removable hose in longitudinal central channel
GB2048686B (en) * 1979-05-15 1983-03-16 Wolf Gmbh Richard Endoscopc instrumentation apparatus
US4254762A (en) * 1979-10-23 1981-03-10 Inbae Yoon Safety endoscope system
DE3011211A1 (en) * 1980-03-22 1981-10-01 Clinicon Mannheim GmbH, 6800 Mannheim BLOOD PLANT DEVICE FOR TAKING BLOOD FOR DIAGNOSTIC PURPOSES
US4503856A (en) * 1981-06-29 1985-03-12 Sherwood Medical Company Lancet injector
US4535773A (en) * 1982-03-26 1985-08-20 Inbae Yoon Safety puncturing instrument and method
US4488545A (en) * 1982-12-10 1984-12-18 Sherwood Medical Company Catheter placement device
US4601710B1 (en) * 1983-08-24 1998-05-05 United States Surgical Corp Trocar assembly
US4559041A (en) * 1984-06-25 1985-12-17 Razi M Dean Cannula introducers
US4616649A (en) * 1984-09-20 1986-10-14 Becton, Dickinson And Company Lancet
SU1435246A1 (en) * 1984-11-19 1988-11-07 А. И. Тетюхин и В. Д. Сарычев Arrangement for puncture and catheterization
US4670008A (en) * 1985-07-01 1987-06-02 Albertini Beat High flux threaded needle
US4627841A (en) * 1986-02-18 1986-12-09 Dorr Robert T Infusion needle
US4654030A (en) * 1986-02-24 1987-03-31 Endotherapeutics Trocar
GB8618578D0 (en) * 1986-07-30 1986-09-10 Turner R C Lancet device
US5030206A (en) * 1986-10-17 1991-07-09 United States Surgical Corporation Trocar
US4902280A (en) * 1986-10-17 1990-02-20 United States Surgical Corporation Trocar
US4802275A (en) * 1987-03-12 1989-02-07 Saft, S.A. Method of manufacturing an electrochemical cell having an alkaline electrolyte and spiral-wound electrodes
US4900307A (en) * 1987-04-29 1990-02-13 Kulli John C Safety retracting needle for use with syringe
US4747831A (en) * 1987-04-29 1988-05-31 Phase Medical, Inc. Cannula insertion set with safety retracting needle
US4931042A (en) * 1987-10-26 1990-06-05 Endotherapeutics Trocar assembly with improved latch
US5053016A (en) * 1987-12-31 1991-10-01 United States Surgical Corporation Valve seat for an insufflation cannula assembly
US4943280A (en) * 1987-12-31 1990-07-24 United States Surgical Corporaiton Self-seating flapper valve for an insufflation cannula assembly
US5129885A (en) * 1990-02-13 1992-07-14 United States Surgical Corporation Safety device for trocars and surgical instruments therefor
US4869717A (en) * 1988-04-25 1989-09-26 Adair Edwin Lloyd Gas insufflation needle with instrument port
GB8816033D0 (en) * 1988-07-06 1988-08-10 Ethicon Inc Improved safety trocar
US4955870A (en) * 1988-08-23 1990-09-11 Ridderheim Kristen A Hypodermic syringe with retractable needle
US4906236A (en) * 1988-08-29 1990-03-06 Alberts David S Self-sheathing hypodermic needle
US5024665A (en) * 1988-11-14 1991-06-18 Hemedix International, Inc. Composite catheter assembly
US4889117A (en) * 1989-02-17 1989-12-26 Stevens Peter A Disposable lancet
US4966593A (en) * 1989-03-06 1990-10-30 Design Specialties Laboratories Disposable hypodermic syringe with retractable needle
US4946446A (en) * 1989-06-14 1990-08-07 Vadher Dinesh L Retractable needle
US5026388A (en) * 1989-09-26 1991-06-25 Ingalz Thomas J Single-use skin puncture device
US4994042A (en) * 1989-10-02 1991-02-19 Vadher Dinesh L Combined catheter and needle
US5104383A (en) * 1989-10-17 1992-04-14 United States Surgical Corporation Trocar adapter seal and method of use
US4994068A (en) * 1989-11-24 1991-02-19 Unidex, Inc. Combination sterile pad support and lancet containing lancet disposal element
US4973316A (en) * 1990-01-16 1990-11-27 Dysarz Edward D One handed retractable safety syringe
US5127909A (en) * 1990-04-05 1992-07-07 United States Surgical Corporation Flapper valve for an insufflation cannula assembly
US5061251A (en) * 1990-06-12 1991-10-29 Juhasz Paul R Syringe device
US5114407A (en) * 1990-08-30 1992-05-19 Ethicon, Inc. Safety mechanism for trocar
US5318580A (en) * 1990-09-11 1994-06-07 Origin Medsystems, Inc. Retractable trocar
DK0479130T3 (en) * 1990-10-05 1995-02-20 United States Surgical Corp Safety pads
US5116353B1 (en) * 1990-10-05 1996-09-10 Digital Voice Systems Inc Safety trocar
US5350393A (en) * 1992-01-06 1994-09-27 Inbae Yoon Safety trocar penetrating instrument
US5226426A (en) * 1990-12-18 1993-07-13 Inbae Yoon Safety penetrating instrument
US5431635A (en) * 1990-12-18 1995-07-11 Yoon; Inbae Safety penetrating instrument having a triggered safety member for establishing an endoscopic portal in an anatomical cavity wall
AU648135B2 (en) * 1991-01-15 1994-04-14 Ethicon Inc. Knife for surgical trocar
US5104382A (en) * 1991-01-15 1992-04-14 Ethicon, Inc. Trocar
US5152754A (en) * 1991-02-15 1992-10-06 Minnesota Mining And Manufacturing Company Trocar
US5295993A (en) * 1991-04-30 1994-03-22 United States Surgical Corporation Safety trocar
US5290304A (en) * 1991-05-14 1994-03-01 Ingram S. Chodorow Trocar system
US5320610A (en) * 1991-12-16 1994-06-14 Inbae Yoon Automatic retractable trocar with safety shield and method of use
US5330432A (en) * 1991-12-06 1994-07-19 Inbae Yoon Retractable safety penetrating instrument
US5324268A (en) * 1991-12-16 1994-06-28 Inbae Yoon Trocar with safety shield
US5360405A (en) * 1991-11-27 1994-11-01 Inbae Yoon Automatic retractable safety penetrating instrument
US5312354A (en) * 1991-11-04 1994-05-17 American Cyanamid Company Safety trocar instrument having a retractable point actuated by a trigger sleeve
US5158552A (en) * 1991-11-04 1992-10-27 American Cyanamid Company Safety trocar instrument having a retractable trocar actuated by relief of pressure on the trocar point
US5207647A (en) * 1991-11-05 1993-05-04 Phelps David Y Needle device
US5226891A (en) * 1992-04-07 1993-07-13 Applied Medical Resources Seal protection apparatus
JPH08501470A (en) * 1992-09-15 1996-02-20 ユーン、インバエ Automatic retractable safety insertion tool
US5372588A (en) * 1992-11-24 1994-12-13 Farley; Kevin Trocar having blunt tip
US5290240A (en) * 1993-02-03 1994-03-01 Pharmetrix Corporation Electrochemical controlled dispensing assembly and method for selective and controlled delivery of a dispensing fluid
US5346459A (en) * 1993-04-14 1994-09-13 Minnesota Mining And Manufacturing Company Trocar
US5569289A (en) * 1993-06-24 1996-10-29 Yoon; Inbae Safety penetrating instrument with penetrating member and cannula moving during penetration and triggered safety member protusion
US5571134A (en) * 1993-06-24 1996-11-05 Yoon; Inbae Safety penetrating instrument with penetrating member and safety member moving during penetration and triggered safety member protrusion

Also Published As

Publication number Publication date
AU5025796A (en) 1996-09-18
AU707255B2 (en) 1999-07-08
JP2974785B2 (en) 1999-11-10
JPH10506558A (en) 1998-06-30
EP0902693A1 (en) 1999-03-24
EP0902693A4 (en) 1999-03-24
US5573511A (en) 1996-11-12
WO1996026752A1 (en) 1996-09-06

Similar Documents

Publication Publication Date Title
CA2213769A1 (en) Retractable safety penetrating instrument with safety probe
US5607439A (en) Safety penetrating instrument with penetrating member moving during penetration and triggered safety member protrusion
US5665072A (en) Safety needle instrument with movable cannula and needle
US5569289A (en) Safety penetrating instrument with penetrating member and cannula moving during penetration and triggered safety member protusion
AU671266B2 (en) Retractable safety penetrating instrument for portal sleeve introduction
US5807402A (en) Safety penetrating instrument with protective sheath, triggered penetrating member retraction and single and safety member protrusion
US5779680A (en) Retractable safety needle instrument with movable safety member
AU685723B2 (en) Automatic retractable safety penetrating instrument
US5676156A (en) Automatic retractable safety penetrating instrument
US5904699A (en) Trocar for penetration and skin incision
US5637097A (en) Penetrating instrument having an expandable anchoring portion
US5584848A (en) Safety penetrating instrument with penetrating member, safety member and cannula moving during penetration and triggered safety member protrusion
US5645557A (en) Safety penetrating instrument with triggered penetrating member retraction and safety member protrusion
US5575804A (en) Safety penetrating instrument with cannula moving during penetration and triggered safety member protrusion
US5573545A (en) Safety penetrating instrument with safety member and cannula moving during penetration and triggered cannula and/or safety member protrusion
US5827315A (en) Safety penetrating instrument with penetrating member protected after penetration to predetermined depth
US5584849A (en) Retractable safety penetrating instrument with safety shield and multiple triggering and/or moving components
AU701798B2 (en) Safety penetrating instrument with penetrating member and safety member moving during penetration and triggered safety member protrusion
US5591189A (en) Safety penetrating instrument with safety member moving during penetration and triggered safety member protrusion
US5603719A (en) Retractable safety trocar with multiple triggering and/or moving components
EP0873720A1 (en) Retractable safety penetrating instrument for portal sleeve introduction

Legal Events

Date Code Title Description
EEER Examination request
FZDE Dead