CA2239500A1 - Lithiated manganese oxide - Google Patents

Lithiated manganese oxide Download PDF

Info

Publication number
CA2239500A1
CA2239500A1 CA002239500A CA2239500A CA2239500A1 CA 2239500 A1 CA2239500 A1 CA 2239500A1 CA 002239500 A CA002239500 A CA 002239500A CA 2239500 A CA2239500 A CA 2239500A CA 2239500 A1 CA2239500 A1 CA 2239500A1
Authority
CA
Canada
Prior art keywords
lithium
manganese
compound
complex
calcined
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
CA002239500A
Other languages
French (fr)
Inventor
G. Chithambarathanu Pillai
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Carus Chemical Co Inc
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Publication of CA2239500A1 publication Critical patent/CA2239500A1/en
Abandoned legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/50Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
    • H01M4/505Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G45/00Compounds of manganese
    • C01G45/02Oxides; Hydroxides
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G45/00Compounds of manganese
    • C01G45/12Manganates manganites or permanganates
    • C01G45/1221Manganates or manganites with a manganese oxidation state of Mn(III), Mn(IV) or mixtures thereof
    • C01G45/1242Manganates or manganites with a manganese oxidation state of Mn(III), Mn(IV) or mixtures thereof of the type [Mn2O4]-, e.g. LiMn2O4, Li[MxMn2-x]O4
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/70Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
    • C01P2002/72Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by d-values or two theta-values, e.g. as X-ray diagram
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/40Electric properties
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

The invention is directed to making a lithiated manganese dioxide using low and high temperature calcination steps.

Description

W O 98/144U3 PCTrUS97/17081 LITHIATED MAN~AN~SE QXIDE
This is a continuation-in-part application of application serial number 08/726,323, ~iled October 3, 1996.
FIELD OF THE lNv~:NllON
This invention relates to a method o~ making lithiated manganese oxide which is particularly useful in the manufacture of lithium/manganese batteries.
More particularly, this invention is directed to making LiM~04 from an amorphous manganese dioxide where the LiMn2O4 has an x-ray pattern recognized as particularly use~ul in the manu~acture o~ batteries.

R ~C~QUND OF THE lN v~NllON
Manganese dioxide is a known material for use as a cathodic material in batteries. It also i9 known that it is not suitable ~or rechargeable batteries.
Apparently irreversible structural changes occur in mangane~e dioxide during discharge which do not permit recharging.
Lithiated manganese oxide made ~rom MnQ2 has been investigated ~or use in rechargeable batteries.
The method o~ making the lithiated manganese oxide and the manganese dioxide starting material appears to materially af~ect the e~ectiveness o~ the lithiated manganese oxide used in rechargeable batteries. United States Patent Nos. 4,312,930 and 4,246,253 to Hunter describes a lithiated manganese oxide which Hunter says has a particularly e~fective utility for rechargeable batteries. Each o~ these Hunter patents is incorporated herein as if fully rewritten.
Making lithiated manganese compounds is not necessarily new. M~nchilov and Manev describe making lithiated manganese compounds (see Journal o~ Power Sources, 41 (1993) 305-314 and Log Batteries, Battery Mater., Vol. 14 (1995), respectively), but do not describe making such compounds ~rom relatively impure CA 02239~00 1998-06-03 W O 98/14403 PCTrUS97/17081 compounds which have a high sodium and/or potassium content and making relatively pure lithiated manganese compounds by removing the sodium and/or potassium and replacing those alkali metals with lithium to make a pure lithiated manganese compound.
An object of this invention is to provide a process for making lithiated manganese oxide.
Another object of this invention is to use chemically made manganese dioxide in ma~ing the lithiated manganese oxide by the process of the invention.
Yet another object o~ this invention is to make a pure form of lithiated manganese oxide from the reduction of an alkali metal permanganate or manganate such that the lithiated manganese oxide has a utility that is particularly effective for a cathodic material for rechargeable batteries.
Further objects and advantages of the invention will be found by reference to the following specification.
As used herein, LiMn204 means a lithiated manganese oxide with the general formula Li~n204 where x is greater than 0, less than about 2 and, in an important aspect is about 1.
As used herein, "amorphous manyanese dioxide"
means a manganese dioxide which does not have a substantially identifiable crystal structure as determined by x-ray diffractometry.
As used herein, "delta manganese dioxide"
means a manganese dioxide which does not have a single crystal structure which dominates to provide a manganese dioxide with at least one identifiable crystal structure. Delta manganese dioxide is often described as having the following general formula M20-4MnO2 where M is an al~ali metal cation.
As used herein, "reducing permanganate" means taking manganese (VII) to manganese (III or IV).

-CA 02239~00 1998-06-03 W O 98/14403 PCT~US97/17081 As used herein, "substantially all Mn IV"
means at least about 90 weight percent Mn IV and not more than about 10 weight percent Mn III.

SU~RY OF THE lNV~-llON
The process of the invention provides a high purity LiMn204 from chemically made MnO2. The lithiated manganese oxide has an especially e~ective utility for use as a cathodic material in batteries. The invention is particularly useful and nonobvious because it utilizes as a starting material a relatively inexpensive chemically made amorphous manganese dioxide with alkali metal in it, removes the unwanted alkali metals such as sodium and potassium, replaces the sodium and/or potassium with lithium and makes a pure spinel material which is especially use~ul ~or batteries. The invention has the ability to remove sodium and/or potassium to an amount of at least not more than about 0.005 moles of sodium and potassium together per mole of manganese in the lithiated manganese compound. Further, the chemically made manganese dioxide used in the invention should be distinguished from manganese dioxide made electrochemically ~EMD). EM3 is believed not to be an appropriate starting manganese dioxide ~or process of the invention because it will not work well or at least e~iciently in the process of the invention.
Typically sodium and potassium are considered undesirable in making a high purity spinel manganese compound where the sodium and potassium must be removed. ln the process of the invention, these metals are used to form M2MnO4 and M3MnO4 (where M is Na or K) which are stable at alkaline pH and are removed in an LiOH wash.
The proce~s of the invention also surprisingly does not make significant amounts, as prior art processes do, of M~03 and Li2MnO3 (a so-called n rock salt compound). The process o~ the invention, through CA 02239~00 1998-06-03 W O 98tl4403 PCTrUS97/17081 the use of an excess of lithium compound and calcination of a blend of MnO2 and lithium compound at low calcination temperatures in a first calcination, avoids the formation of the rock salt compound. While not intending to be bound by theory, it is believed that the process of the invention does not form the aforedescribed impurities, quickly incorporates lithium into a manganese dioxide structure and does not permit the lithium to volatilize during a calcining step.
The invention provides a method of making LiMn204, a lithiated manganese oxide, from amorphous manganese dioxide for which LiMn204is particularly useful as cathodic material for rechargeable batteries.
The invention provides for blending an amorphous MnO2 with a lithium compound, such as Lio~, to provide a lithium/manganese oxide blend. The lithium in the lithium compound is in stoichiometric excess of the manganese in the manganese ~ioxide, such that there is more than about one equivalent mole lithium for every mole of manganese dioxide (one e~uivalent of lithium ion for every mole of manga~ese dioxide). In another aspect, an excess of lithium compound is sufficient to replace potassium and sodium in the manganese dioxide which excess is e~fe~tive ~or providing the resulting lithiated manganese oxide with the ability to provide at least about four volts of electromotive force when the lithiated manganese oxide is used as a cathode material in a rechargeable battery which is recyclable at least about fifty times.
The lithium/manganese oxide blend first is calcined at a temperature range of from about 150~ to about 550~C for about 2 to about 72 hours to provide an initially calcined lithium/manganese complex. In an important aspect, the initial calcination may be done rapidly in from about 2 to about 10 hours at about 300~C to about 500~C. The molar ratio o~ lithium to manganese in the initially calcined complex is adjusted to about one lithium atom to two manganese atoms to CA 02239~00 1998-06-03 W O 98114403 PCTrUS97/17081 provide a stoichiometric lithium/manganese complex.
This is uni~uely done by exposing the initially calcined lithium/manganese complex to an aqueous environment which includes aqueous lithium and adjusting the pH o~ the environment to about 6.0 to about 6.5. This generally will be e~ective for providing one lithium atom ~or about every two manganese atoms in the initially calcined complex. The stoichiometric lithium/manganese complex is calcined at a temperature range o~ ~rom about 500~ to about 900~C
~or a time e~ective ~or providing lithiated manganese oxide having the ~ormula LiMn2O4. The second calcination is done at a time and temperature e~ective for providing the lithiated manganese oxide with the }5 capability o~ providing an electromotive ~orce of ~rom about 3 to about 4 volts in a circuit without load when the lithiated manganese oxide is used as a cathodic material in a battery which is recyclable at least about 50 times.
The invention is particularly useful in that it permits the utilization o~ a chemically made ~orm o~
MnO2 as a starting material. In this aspect the MnO2 may be made ~rom the reduction of permanganate or manganate. In an important aspect this reduction is done by an organic compound. In an important aspect o~
the invention the starting manganese dioxide results ~rom the reduction o~ permanganate [Mn(VII)] to a manganese dioxide which is substantially all (at least 90 weight percent) manganese IV, although the manganese dioxide starting material may include some manganese III.
In an another important aspect o~ the invention, the permanganate reduction reaction is the reaction o~ an alkali metal permanganate such as KMnO4 or NaMnO4 with an organic reducing agent such as a compound containing side chain methyl groups. These compounds include ~umaric acid, propanol, glucose, toluene sulphonamide, picoline, methyl substituted CA 02239~00 1998-06-03 W O 98/14403 PCTrUS97/17081 pyridines, dimethyl substituted pyridines and alkene compounds which reduce the permanganate. In this aspect the permanganate reduction is under alkaline conditions which means that it is conducted at a p~ of above about 7 and preferably above about 10. The most common forms of permanganate are potassium and sodium permanganate with potassium permanganate being more common than sodium permanganate. The latter permanganates are cnmmo~ly used as oxidizers, and as oxidizers, are reduced in an oxidation/reduction reaction which commn~l y produces MnO~ as a by-product.
The invention advantageously uses this by-product.
As discussed above, an important aspect o~
the invention i~volves the use of sodium and/or potassium containing MnO2, such as MnO2 ~rom a sodium and/or potassium permanganate or manganate oxidation/reduction reaction with the advanta~eous removal of these alkali metals. In this aspect of the invention, the permanganate or manganate is an alkali metal permanganate or manganate such as potas8ium or sodium permanganate. The initially calcined lithium/manganese complex made ~rom the alkali metal permanganate or manganate is washed in an a~ueous medium to remove alkali metal manganate impurities where the aqueous medium comprises lithium ion such as from aqueous LiOH. This washing precludes the addition of deleterious ions to the lithium/manganese complex and removes sodium and potassium cont~m;n~nts which often are in the form of ~MnO4 or M3MnO4 twhere M is potassium or sodium). M2MnO4 or M3MnO4 are stable in a LiOH/water medium at a p~ o~ from about 11 to about 13 or more so that they solubilize and wash from the lithium/man~anese dioxide complex. Thereafter the washed initially calcined complex is slurried in an acidic aqueous medium at a pH of from about 6.0 to about 6.5 to control the stoichiometry of the final product such that Li~Mn204 has x greater than 0 but less than about 2. In an important aspect the pH is CA 02239~00 1998-06-03 W O 98fl4403 PCTrUS97/17081 controlled so that x is about 1. This permits the production of the lithiated manganese oxide which is ~ree ~rom potassium and sodium which would ultimately have a deleterious effect on the use of the lithiated manganese compound in batteries.
In another important aspect o~ the invention, the lithiated compound of the invention exhibits an x-ray di~raction pattern as described herein and a~
shown in Figure 1.
DESCRIPTION OF THE PREFERRED ~M~OD~ LS
The invention provides a method o~ making LiMn204 from amorphous manganese dioxide. The method of the invention provides LiMn204 which is particularly useful as cathodic material ~or rechargeable batteries.
The invention permits the use o~ an amorphous MnO~ which is a by-product o~ an oxidation/reduction reaction. ~n an important aspect a permanganate or manganate salt, particularly an alkali metal permanyanate or manganate, is reduced during an oxidation of an organic compound by the permanganate or manganate salt. The oxidation/reduction reaction using an organic reducing agent is conducted at a pH o~ at least 7, but in an important aspect is conducted at a pH above about 10.
The manganese dioxide that results ~rom the oxidation/reduction reaction is amorphous and may be characterized as delta manganese dioxide. The organic compound reduces permanganate or the manganate such that the resulting manganese dioxide is substantially all manganese IV (at least about 90 weight percent manganese IV). Not more than about 10 weight percent of the resulting manganese dioxide is manganese III.
The organic compound which may be used in the oxidation/reduction reaction may be an organic compound having side chain lower alkyl groups (side ch~;n~
having one to ~our carbon atoms, such as methyl, ethyl, propyl and butyl groups). Such compounds include alkyl CA 02239~00 1998-06-03 substituted pyridines and dialkyl substituted pyridine~
having the general ~ormula X ~/Y
~ ~ 11 \ /
N

where at least one o~ x and y are methyl, ethyl, propyl and butyl, but one x or y may be H. Other organic compounds which may ~e used to reduce the permanganate or manganate include fumaric acid, propanol, glucose, toluene sulpho~m;de, picoline and the compounds listed below in Table I. Table I illustrates the pH o~ the dependency o~ the oxidation/reduction reaction and illustrates the need for alkaline conditions when an organic reducing agent is used.
Table I
Organic Compounds which Reduce Aqueou~ Permanganate as reported in the Chemical Literature*

COMPOUND pE 7 pH 10 Propanal Reaction Reaction Propylamine No reaction Reaction Ethyl ~ormate No reaction Reaction Alanine No reaction Reaction 25 Pyruvic acid Reaction Reaction Acrolein Reaction Reaction Allylamine Reaction Reaction Acrylic acid Reaction Reaction Allyl alcohol Reaction Reaction 30 Benzaldehyde Reaction Reaction Phenol Reaction Reaction Aniline Reaction Reaction Benzyl alcohol Reaction Reaction 2-Butanone No reaction Reaction CA 02239~00 1998-06-03 W O 98/14403 rcTrusg71l70 _ g _ * [Organic compound] = 50 mg/L.
[KMnO4] = 32 mg/l,.
Consumption o~ 10 mg/L o~ KmnO4 in 6 hours is an indication that a reaction had taken place.
In another aspect an inorganic reducing agent may be used. When manganese nitrate is used as the reducing agent, acid or alkaline conditions may be used.
The amorphous manganese dioxide ~rom the oxidation/reduction reaction is blended with an excess of lithium compound such as ~iOH, to provide a lithium/manganese blend. The lithium in the lithium compound is in stoichiometric excess o~ the manganese in the manganese dioxide, such that there is more than about one equivalent mole lithium for every mole of manganese dioxide (one equivalent o~ lithium ion ~or every mole of manganese dioxide). In another aspect, an excess of lithium compound is su~icient to replace potassium and/or sodium in the manganese dioxide which excess is effective for providing the resulting lithiated manganese oxide with the ability to provide at least about ~our volts of electromotive force when the lithiated manganese oxide is used as a cathode material in a rechargeable battery which is recyclable at least about fi~ty times and more importantly recyclable at least 300 times. In another important aspect, the blend should comprise ~rom about 1.6 to about 3.0 moles o~ the lithium compound for every mole of manganese dioxide. More than about 3 mole equivalents of lithium could be used, but to keep the process economic, recycling or some other method of conserving the lithium probably would have to be used Other lithium compounds which may be used in the first calcination include lithium oxide, lithium carbonate, lithium nitrate and lithium sulfate. In an important aspect about one mole of manganese dioxide is blended with about three moles of lithium hydroxide. The blending is between solid ingredients. No organic 801vents, except possibly in trace amounts, are CA 02239~00 1998-06-03 present. As used herein, trace amount means less than about 5 weight percent.
The lithium/manganese blend ~irst is calcined at a time and temperature effective ~or pro~iding lithium in an initially calcined manganese complex where the complex does not have more than about 10 weight percent o~ material in a 1I rock salt phase" which has the formula ~i2MnO3. The excess lithium in the lithium compound replaces the sodium and/or po~assium in the manganese dioxide which is e~fectively contaminated with sodium and/or potassium. The "rock salt phase"
will be ~ormed i~ the temperature i8 too high. IE the temperature is too low, the alkali present in the blend will not be completely converted into manganates and significant amounts o~ the alkali will not be removed in subsequent washing steps. Moreover, the initially calcined product, which after washing as described herein, will not provide the spinel end product after the second calcination. Generally the time and temperature ~or the ~irst calcination is in the range o~ ~rom about 150~ to about 550~C ~or about 2 to about 72 hours to provide an initially calcined lithium/manganese complex. In an important aspect, the first calcination is done at from about 300" to about 500 C for about 2 to about 10 hours.
A~ter the ~irst calcination, the initially calcined complex is washed with a 2~ lithium hydroxide solution. In the wash, about three parts 2~ lithium hydroxide solution is mixed with about one part initially calcined complex to form a slurry. The liquid is decanted from the solid. The slurrying and decanting is repeated once more with LiOH solution and finally with water. The washed and decanted cake is filtered. The filtered wet cake is then resuspended by mixing with about three parts of water to ~orm a slurry, such that the slurry has a pH in the range o~
about 11 to about 13. Therea~ter, the pH of the slurry is brought down to about 6.0 to about 6.5, and CA 02239~00 1998-06-03 W O 98/14403 PCT~US97/17081 preferably to about 6.1 to about 6 2 to provide a stoichiometric lithium/manganese complex. This is an important aspect of the invention. Acids which may be used to lower the pH o~ the water/initially calcined complex slurry include sulfuric acid, nitric acid, phosphoric acid, hydrochloric acid and hydrofluoric acid. In an important aspect, however, it has been found that sul~uric acid, nitric acid and phosphoric acid are particularly effective in adjusting pH and aid in the removal of sodium and/or potassium. The lithium hydroxide wash is important because it removes alkali metal manganates from the initially calcined complex.
These manganates are stable at an alkaline pH, are solubilized in the wash step, and are removed from the initially calcined complex by ~iltering, decanting or other means o~ separating the complex ~rom the aqueou~
medium. The pH adjustment is important because the pH
controls the ratio of lithium and manganese in the ultimate product, Li~Mn204. If the pH is too low, or below about 6.0, the final product may be contaminated with lower valent manganese oxides, such as Mn203. If the pH is too high, or above about 6.5, the ~inal product may be cont~m~n~ted with Li2MnO3.
After the initially calcined lithium/manganese complex has been washed and pH adjusted with acid to provide the stoichiometric complex, the stoichiometric complex is calcined at generally a higher temperature to provide the final stoichiometric lithium/manganese complex or lithiated manganese dioxide. This calcination is done for a time and temperature to provide a final lithium/manganese complex which will have a general ~ormula Li~Mn204 where x is greater than 0, but less than about 2. In an important aspect, this calcination will provide a product where x is about 1.
In another important aspect, this calcination will provide an electromotive force of ~rom about 3 to about 4 volts without load when it is used as a cathodic material in a battery which is recyclable at least CA 02239~00 1998-06-03 W O 98/14403 PCTrUS97/17081 about 50 times. In an important aspect, the stoichiometric calcination is at a temperature of ~rom about 500~ to about 900~C from about 2 to about 72 hours and preferably from about 750 to about 8~0~C ~or about 10 to about 30 hours and most preferably for about 4 hours at 800~C.
The following examples set ~orth how to practice the invention.

A. The permanganate reduction reaction to make amorphous MnO~:
1 mole of ~umaric acid, 3 moles o~ potassium hydroxide, 20 moles of water and 3.6 moles of potassium permanganate are mixed, heated to about 70~C-80~C and reacted in a reduction reaction o~ the permangana~e to pro~ide hydrous manganese dioxide. The resulting manganese dioxide is amorphous and is without a specific crystal structure.
B. The conversion o~ the MnO2 o~ example l~A) to lithiated manganese dioxide:
The manganese dioxide of example l(A) (1 part) and 0.68 parts of LiOH-H2o are blended and then calcined at about 450~C for about 16 hours to form a ~irst calcined product. 1 part o~ the first calcined product is slurried in a 7.6 parts of 2~ LiOH, the supernatant liquid containing the potassium salts and LiOH were decanted, the solids are reslurried in 7.6 parts o~ water and decanted again and then ~iltered or centri~uged. About 1 part of the wet centrifuged calcined product is slurried with 3 parts water and about 0.3 parts o~ concentrated sulfuric acid is added to the slurry, so as to adjust the pH of the slurry to about 6.0-6.2. Once the pH o~ the slurry has ~een stabilized to the above said pH range, the contents are allowed to settle, the liquid is decanted, the solids are resuspended with 3 parts water, the liquid is CA 02239~00 1998-06-03 W O 98/14403 PCT~US97/17081 decanted and the solids are filtered or centri~uged.
The solids after the pH adjustment are calcined at 800~C for about 16 hours to provide LiMn2O4.

~XAMPLE 2 A. The permanganate reduction reaction to make amorphous MnO2:
1 mole of 2-propanol, 0.75 moles of potassium hydroxide, 2Q moles of water and 1.5 moles o~ potassium permanganate are mixed, heated to about 70~C-80~C, and reacted in a reduction reaction of the permanganate to provide hydrous manganese dioxide. The resulting manganese dioxide is amorphous and is without a specific crystal structure.
B. The conversion of the MI1O2 of example 2(A) to lithiated manganese dioxide:
The manganese dioxide of example 2(A) (1 part) and 0.68 parts of LiOH H20 are blended and then calcined at about 450~C ~or about 16 hours to form a first calcined product. 1 part of the ~irst calcined product is slurried in a 7.6 parts of 2~ LiOH, the supernatant liquid containing the potassium salts and LiOH is decanted, the solids are reslurried in 7.6 25 parts of water and decanted again and then filtered or centrifuged. About 1 part of the wet centrifuged calcined product is slurried with 3 parts water and about 0.3 parts of concentrated sulfuric acid is added to the slurry, so as to adjust the pH of the slurry to 30 about 6.0-6.2. Once the pH of the slurry has been stabilized to the above said pH range, the contents are r allowed to settle, the li~uid is decanted, the solids are resuspended with 3 parts water, the liquid is decanted and the solids are filtered or centrifuyed.
35 The solids after the pH ad]ustment are calcined at 800~C for about 16 hours to provide LiMn2O4.

EXAMP~E 3 CA 02239~00 1998-06-03 W O 98/14403 PCTrUS97/17081 A. The permanganate reduction reaction to make amorphous MnO2:
1 mole of D-glucose, 5 moles of potassium hydroxide, 30 moles of water and 6.7 mole~ o~ pota~sium permanganate are mixed, heated to about 70~C-80~C and reacted in a reduction reaction of the permanganate to provide hydrous manganese dioxide. The resulting manganese dioxide is amorphous and is without a specific crystal structure.

. The conversion of the MnO2 of example 3(A) to lithiated manganese dioxide:
The manganese dioxide of example 3(A) (1 part) and 0.68 parts of LiOH-H2o are blended and then calcined at about 450~C for about 16 hours to form a first calcined product. 1 part of the ~irst calcined product is slurried in a 7.6 parts of 2~ LiOH, the supernatant liquid cont~; n; ng the potassium salts and LiOH is decanted, the solids are reslurried in 7.6 parts of water and decanted again and then filtered or centri~uged. About 1 part of the wet centrifuged calcined product is slurried with 3 parts water and about 0.3 parts of concentrated sulfuric acid is added to the slurry, so as to adjust the pH of the slurry to about 6.0-6.2. Once the pH of the slurr~ has been stabilized to the above said pH range, the contents are allowed to settle, the liquid is decanted, the solids are resuspended with 3 parts water, the liquid is decanted and the solids are filtered or centri~uged.
The solids after the pH adjustment are calcined at 800~C for about 16 hours to provide LiMn2O4.

EXAMP~E ~
A. The Permanganate ~eduction to make Amorphous MnO2:
~ne part of o-toluene sulphonamide, 1.5 parts of potassium permanganate, 0.5 parts NaOH and about 16 parts o~ additional water are mixed, heated to about =

CA 02239~00 1998-06-03 W O 98114403 PCTrUS97/17081 40~C to about 50~C and reacted in a reduction reaction of the permanganate to provide hydrous manganese dioxide. The resulting manganese dioxide product, collected and washed with water, is amorphous and is without a specific crystal structure.

B. The Conversion of the MnO2 o~ Example 4(A) to Lithiated Manganese Dioxide:
The manganese dioxide of Example 4 ~A) (1 part) and 0.68 parts of LiO~-H2o are blended and then calcined at about 450~C for about 16 hours to form a ~irst calcined product. One part of the ~irst calcined product, 7.6 parts of 2~ LiOH and 7.5 parts of water are slurried, the calcined product centrifuged and the water and a~ueous LiOH decanted there~rom to ~orm a washed calcined product. About 1 part of the wet centri~uged calcined product is slurried with 3 parts water and about 0.3 parts of concentrated sul~uric acid is added to the slurry, so as to adjust the pH of the slurry to about 6.0-6.2. Once the pH of the slurry has been stabilized to the above said pH range, the contents are allowed to settle, the liquid is decanted, the solids are resuspended with 3 parts water, the liquid is decanted and the solids are filtered or centrifuged. The solids after the pH adjustment are calcined at 800~C for about 16 hours to provide LiMn204.

A. The Permanganate Reduction Reaction to make Amorphous MnO2:
One mole of 2,3 picoline, 2.65 moles of potassium permanganate and about 70 moles of additional water are mixed, heated to about 70~C to about 80~C and reacted in a reduction reaction of the permanganate to provide hydrous manganese dioxide. The resulting manganese dioxide product, collected and washed with water, is amorphous and is without a specific crystal structure.

CA 02239~00 1998-06-03 W O 98/14403 PCT~US97/17081 B. The Conversion of the MnO2 of Example 5(A) to Lithiated Manganese Dioxide:
The manganese dioxide o~ Example 5(A) (1 part) and 0.68 parts of LiOH.H2o are blended and then calcined at about 450~C for about 16 hours to form a first calcined product. One part of the first calcined product, 7.6 parts of 2~ LiOH and 7.5 parts of water are slurried, the calcined product centrifuged and the water and aqueous LiOH decanted therefrom to form a washed calcined product. About 1 part of the wet centrifuged calcined product is slurried with 3 parts water and about 0.3 parts of concentrated sulfuric acid is added to the slurry, so as to ad~ust the pH of the slurry to about 6.0-6.2. Once the pH of the slurry has been stabilized to the above said pH range, the contents are allowed to settle, the liquid is decanted, the solids are resuspended with 3 parts water, the liquid is decanted and the solids are filtered or centrifuged. The solids after the pH adjustment are calcined at 800OC ~or about 16 hours to provide LiMn204.

Claims (27)

WHAT IS CLAIMED IS:
1. A method for making lithiated manyanese oxide, the method comprising:
providing amorphous manganese dioxide which includes an alkali metal selected from the group consisting of sodium, potassium and mixtures thereof;
blending the amorphous manganese dioxide with a lithium compound to provide a lithium compound/manganese dioxide blend, the lithium in the lithium compound being in stoichiometric excess of more than about one equivalent mole lithium for every mole of manganese in the manganese dioxide;
calcining the lithium compound/manganese dioxide blend at from about 150° to about 550°C for about 2 to about 72 hours to provide an initially calcined lithium/manganese complex;
washing the initially calcined lithium/manganese complex with aqueous lithium hydroxide to provide a washed initially calcined lithium/manganese complex, the washing being effective to provide the washed lithium/manganese complex which when slurried with water at a ratio of about 1 part complex to about 3 parts water will result in an aqueous slurry with a pH in the range of from about 11 to about 13;
slurrying the washed initially calcined lithium/manganese complex with water to provide an aqueous slurry and adjusting the pH of the aqueous slurry of the washed lithium/manganese complex to a pH
of less than about 7, the pH adjustment effective to provide a lithium/manganese complex which when calcined will provide a lithiated manganese compound having the formula LixMn2O4 where x is greater than 0 and less than about 2; and calcining the lithium/manganese complex from about 500° to about 900°C for a time effective to provide the lithiated manganese compound having the formula LixMn2O4 where x is greater than 0 and less than about 2.
2. A method as recited in claim 1 wherein the lithium compound is selected from the group consisting of lithium oxide, lithium carbonate, lithium nitrate, lithium sulfate, lithium hydroxide and mixtures thereof.
3. A method as recited in claim 1 wherein the lithium compound is lithium hydroxide.
4. A method as recited in claim 1 or 3 wherein the pH of the aqueous slurry of the washed initially calcined lithium/ manganese complex is adjusted to a range of from about 6.0 to about 6.5.
5. A method as recited in claims 1, 3 or 4 wherein x is about 1.
6. A method for making lithiated manganese oxide, the method comprising:
chemically reducing an alkali metal manganese compound selected from the group consisting of sodium permanganate, potassium permanganate, sodium manganate, potassium manganate and mixtures thereof to provide an amorphous reduced manganese dioxide which includes an alkali metal selected from the group consisting of sodium, potassium and mixtures thereof;
blending the reduced manganese dioxide with a lithium compound to provide a lithium/manganese dioxide blend, the lithium in the lithium compound being in excess which is effective to replace the sodium and potassium alkali metal in the manganese dioxide to provide the lithiated manganese oxide with the ability to provide at least about four volts of electromotive force when the lithiated manganese oxide is used as a cathode material in a rechargeable battery;

calcining the lithium/manganese dioxide blend at from about 150° to about 550°C for about 2 to about 72 hours to provide an initially calcined lithium/manganese complex;
washing the initially calcined lithium/manganese complex with aqueous lithium hydroxide to provide a washed initially calcined lithium/manganese complex, the washing being effective to provide the washed initially calcined lithium/manganese complex which when slurried with water at a ratio of about 1 part complex to about 3 parts water will result in an aqueous slurry with a pH
in the range of from about 11 to about 13;
slurrying the washed initially calcined lithium/manganese complex with water to provide an aqueous slurry and adjusting the pH of the aqueous slurry of the washed lithium/ manganese complex to a pH
of less than about 7, the pH adjustment effective to provide a lithium/manganese complex which when calcined will provide a lithiated manganese compound having the formula Li xMn2O4 where x is greater than 0 and less than about 2; and calcining the lithium/manganese complex from about 500° to about 900°C for a time effective to provide the lithiated manganese compound having the formula Li xMn2O4 where x is greater than 0 and less than about 2.
7. A method as recited in claim 6 wherein the lithium compound is selected from the group consisting of lithium oxide, lithium carbonate, lithium nitrate, lithium sulfate, lithium hydroxide and mixtures thereof.
8. A method as recited in claim 6 wherein the lithium compound is lithium hydroxide.
9. A method as recited in claims 7 or 9 wherein the pH of the aqueous slurry of the washed initially calcined lithium/manganese complex is adjusted to a range of from about 6.0 to about 6.5.
10. A method as recited in claims 6 or 9 wherein x is about 1.
11. A method for making lithiated manganese oxide, the method comprising:
chemically reducing an alkali metal manganese compound selected from the group consisting of sodium permanganate, potassium permanganate, sodium manganate, potassium manganate and mixtures thereof to provide an amorphous reduced manganese dioxide which includes an alkali metal selected from the group consisting of sodium, potassium and mixtures thereof;
blending amorphous reduced manganese dioxide from the reduced alkali metal manganese compound with a lithium compound to provide a lithium compound/manganese dioxide blend, the lithium in the lithium compound being in stoichiometric excess of more than about one equivalent mole lithium for every mole of manganese in the manganese dioxide;with a lithium compound to provide a lithium /manganese dioxide blend;
calcining the lithium/manganese dioxide blend at from about 150° to about 550°C for about 2 to about 72 hours to provide an initially calcined lithium/manganese complex;
washing the initially calcined lithium/manganese complex with aqueous lithium hydroxide to provide a washed initially calcined lithium/manganese complex, the washing being effective to provide the washed initially calcined lithium/manganese complex which when slurried with water at a ratio of about 1 part complex to about 3 parts water will result in an aqueous slurry with a pH in the range of from about 11 to about 13;

slurrying the washed initially calcined lithium/manganese complex with water to provide an aqueous slurry and adjusting the pH of the aqueous slurry of the washed lithium/manganese complex to a pH
of less than about 7, the pH adjustment effective to provide a lithium/manganese complex which when calcined will provide a lithiated manganese compound having the formula LixMn2O4 where x is greater than 0 and less than about 2; and calcining the lithium/manganese complex from about 500° to about 900°C for a time effective to provide the lithiated manganese compound having the formula LixMn2O4 where x is greater than 0 and less than about 2.
12. A method as recited in claim 11 wherein the lithium compound is selected from the group consisting of lithium oxide, lithium carbonate, lithium nitrate, lithium sulfate, lithium hydroxide and mixtures thereof.
13. A method as recited in claim 11 wherein the lithium compound is lithium hydroxide.
14. A method as recited in claims 11 or 13 wherein the pH of the aqueous slurry of the washed lithium/manganese complex is adjusted to a range of from about 6.0 to about 6.5.
15. A method as recited in claim 14 where x is about 1.
16. A method as recited in claim 11 wherein the alkali metal manganese compound is reduced with an organic reducing compound which includes side chains having from about 1 to about four carbon atoms.
17. A method as recited in claims 11 or 13 wherein the alkali metal manganese compound is reduced with an organic reducing compound which has the general formula where at least one of x and y are methyl, ethyl, propyl and butyl, but one x or y may be H.
18. A method for making lithiated manganese oxide, the method comprising:
reducing an alkali metal permanganate selected from the group consisting of potassium permanganate and sodium permanganate with an organic reducing compound which includes side chains having from about 1 to about four carbon atoms under alkaline conditions to provide a permanganate reduced manganese dioxide;
blending the permanganate reduced manganese dioxide with a lithium compound to provide a lithium/manganese dioxide blend, the lithium in the lithium compound being in stoichiometric excess of more than about one equivalent mole lithium for every mole of manganese in the manganese dioxide;
calcining the lithium/manganese dioxide blend at time and temperature such that not more than about 10 weight percent of Li2MnO4 is formed, but sodium or potassium in the blend is converted into M2MnO4 or M3MnO4 wherein M=Na or K to provide an initially lithium/manganese complex;
washing the initially calcined lithium/manganese complex with aqueous lithium hydroxide to provide a washed initially calcined lithium/manganese complex, the washing being effective to provide the washed initially calcined lithium/manganese complex which when slurried with water at a ratio of about 1 part complex to about 3 parts water will result in a slurry with a pH in the range of from about 11 to about 13;
slurrying the washed initially calcined lithium/manganese complex with water to provide an aqueous slurry and adding acid to the aqueous slurry in an amount effective to provide a pH of less than about 7 and effective to provide a lithium/manganese complex which when calcined will provide a lithiated manganese compound having the formula Li xMn2O4 where x is greater than 0 and less than about 2; and calcining the lithium/manganese complex for a time and temperature effective to provide the lithiated manganese compound having the formula Li xMn2O4 where x is greater than 0 and less than about 2, the time and temperature also effective to provide the lithiated manganese compound with an electromotive force of from about 3 to about 4 volts when it is used as a cathodic material in a battery which is recyclable at least about fifty times.
19. A method as recited in claim 18 wherein the lithium/manganese dioxide blend is calcined at from about 150° to about 550°C for about 2 to about 72 hours and the lithium/manganese complex from about 500° to about 900°C.
20. A method as recited in claims 18 or 19 wherein a molar ratio of about two manganese atoms to about one lithium atom is provided under conditions of a pH of less than about 7.
21. A method as recited in claims 18 or 20 wherein the alkali metal permanganate is reduced with an organic reducing compound which has the general formula where at least one of x and y are methyl, ethyl, propyl and butyl, but one x or y may be H.
22. A method for making lithiated manganese oxide, the method effective for making lithiated manganese oxide having not more than about 0.005 moles of sodium and potassium per mole of manganese in the lithiated manganese oxide, the method comprising:
providing amorphous manganese dioxide which includes an alkali metal selected from the group consisting of sodium, potassium and mixtures thereof;
blending the amorphous manganese dioxide with a lithium compound to provide a lithium compound/manganese dioxide blend, the lithium in the lithium compound being in stoichiometric excess of more than about one equivalent mole lithium for every mole of manganese in the manganese dioxide;
calcining the lithium compound/manganese dioxide blend at from about 300° to about 500°C for about 2 to about 10 hours to provide an initially calcined lithium/manganese complex;
washing the initially calcined lithium/manganese complex with aqueous lithium hydroxide to provide a washed initially calcined lithium/manganese complex, the washing being effective to provide the washed lithium/manganese complex which when slurried with water at a ratio of about 1 part complex to about 3 parts water will result in an aqueous slurry with a pH in the range of from about 11 to about 13;
slurrying the washed initially calcined lithium/manganese complex with water to provide an aqueous slurry and adjusting the pH of the aqueous slurry of the washed lithium/manganese complex to a pH
of less than about 7, the pH adjustment effective to provide a lithium/manganese complex which when calcined will provide a lithiated manganese compound having the formula Li xMn2O4 where x is greater than 0 and less than about 2; and calcining the lithium/manganese complex from about 500° to about 900°C for a time effective to provide the lithiated manganese compound having the formula Li xMn2O4 where x is greater than 0 and less than about 2.
23. A method for making lithiated manganese oxide, the method effective for making lithiated manganese oxide having not more than about 0.005 moles of sodium and potassium per mole of manganese in the lithiated manganese oxide, the method comprising:
chemically reducing under alkaline conditions an alkali metal manganese compound selected from the group consisting of sodium permanganate, potassium permanganate, sodium manganate, potassium manganate and mixtures thereof to provide an amorphous reduced manganese dioxide which includes an alkali metal selected from the group consisting of sodium, potassium and mixtures thereof;
blending amorphous reduced manganese dioxide from the reduced alkali metal manganese compound with a lithium compound to provide a lithium compound/manganese dioxide blend, the lithium in the lithium compound being in stoichiometric excess of more than about one equivalent mole lithium for every mole of manganese in the manganese dioxide;with a lithium compound to provide a lithium /manganese dioxide blend;
calcining the lithium/manganese dioxide blend at from about 300° to about 500°C for about 2 to about 10 hours to provide an initially calcined lithium/manganese complex;

washing the initially calcined lithium/manganese complex with aqueous lithium hydroxide to provide a washed initially calcined lithium/manganese complex, the washing being effective to provide the washed initially calcined lithium/manganese complex which when slurried with water at a ratio of about 1 part complex to about 3 parts water will result in an aqueous slurry with a pH in the range of from about 11 to about 13;
slurrying the washed initially calcined lithium/manganese complex with water to provide an aqueous slurry and adjusting the pH of the aqueous slurry of the washed lithium/manganese complex to a pH
of less than about 7, the pH adjustment effective to provide a lithium/manganese complex which when calcined will provide a lithiated manganese compound having the formula LixMn2O4 where x is greater than 0 and less than about 2; and calcining the lithium/manganese complex from about 500° to about 900°C for a time effective to provide the lithiated manganese compound having the formula LixMn2O4 where x is greater than 0 and less than about 2.
24. A method as recited in claim 23 wherein the lithium compound is selected from the group consisting of lithium oxide, lithium carbonate, lithium nitrate, lithium sulfate, lithium hydroxide and mixtures thereof.
25. A method as recited in claim 23 wherein the lithium compound is lithium hydroxide.
26. A method as recited in claims 23 or 25 wherein the pH of the aqueous slurry of the washed lithium/manganese complex is adjusted to a range of from about 6.0 to about 6.5.
27. A method as recited in claim 26 where x is about 1.
CA002239500A 1996-10-03 1997-09-30 Lithiated manganese oxide Abandoned CA2239500A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US726,323 1996-10-03
US08/726,323 US5759510A (en) 1996-10-03 1996-10-03 Lithiated manganese oxide

Publications (1)

Publication Number Publication Date
CA2239500A1 true CA2239500A1 (en) 1998-04-09

Family

ID=24918132

Family Applications (1)

Application Number Title Priority Date Filing Date
CA002239500A Abandoned CA2239500A1 (en) 1996-10-03 1997-09-30 Lithiated manganese oxide

Country Status (5)

Country Link
US (2) US5759510A (en)
EP (1) EP0863847A4 (en)
AU (1) AU4650497A (en)
CA (1) CA2239500A1 (en)
WO (1) WO1998014403A1 (en)

Families Citing this family (34)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5759510A (en) * 1996-10-03 1998-06-02 Carus Chemical Company Lithiated manganese oxide
US6482374B1 (en) * 1999-06-16 2002-11-19 Nanogram Corporation Methods for producing lithium metal oxide particles
JP3372204B2 (en) * 1998-02-12 2003-01-27 三井金属鉱業株式会社 Method for producing Li-Mn composite oxide
US5955052A (en) * 1998-05-21 1999-09-21 Carus Corporation Method for making lithiated manganese oxide
US6306542B1 (en) * 1998-05-22 2001-10-23 Kabushiki Kaisha Toyota Chuo Kenkyusho Lithium manganese composite oxide for lithium secondary battery cathode active material, manufacturing method thereof, and lithium secondary battery using the composite oxide as cathode active material
US6784356B1 (en) * 1999-04-09 2004-08-31 Modine Manufacturing Company Phase change material with inhibitor and a method of making the same
US6759167B2 (en) * 2001-11-19 2004-07-06 The Gillette Company Primary lithium electrochemical cell
US6783893B2 (en) * 2001-11-19 2004-08-31 The Gillette Company Alkaline battery
US7993108B2 (en) 2002-10-09 2011-08-09 Abbott Diabetes Care Inc. Variable volume, shape memory actuated insulin dispensing pump
US7727181B2 (en) 2002-10-09 2010-06-01 Abbott Diabetes Care Inc. Fluid delivery device with autocalibration
DK1552146T3 (en) 2002-10-09 2011-08-15 Abbott Diabetes Care Inc Device for administering fluid, system and method
US7679407B2 (en) 2003-04-28 2010-03-16 Abbott Diabetes Care Inc. Method and apparatus for providing peak detection circuitry for data communication systems
CA2601441A1 (en) 2005-03-21 2006-09-28 Abbott Diabetes Care Inc. Method and system for providing integrated medication infusion and analyte monitoring system
US7768408B2 (en) 2005-05-17 2010-08-03 Abbott Diabetes Care Inc. Method and system for providing data management in data monitoring system
US7620437B2 (en) 2005-06-03 2009-11-17 Abbott Diabetes Care Inc. Method and apparatus for providing rechargeable power in data monitoring and management systems
US7756561B2 (en) 2005-09-30 2010-07-13 Abbott Diabetes Care Inc. Method and apparatus for providing rechargeable power in data monitoring and management systems
US7583190B2 (en) 2005-10-31 2009-09-01 Abbott Diabetes Care Inc. Method and apparatus for providing data communication in data monitoring and management systems
US8344966B2 (en) 2006-01-31 2013-01-01 Abbott Diabetes Care Inc. Method and system for providing a fault tolerant display unit in an electronic device
US8579853B2 (en) 2006-10-31 2013-11-12 Abbott Diabetes Care Inc. Infusion devices and methods
US8560082B2 (en) 2009-01-30 2013-10-15 Abbott Diabetes Care Inc. Computerized determination of insulin pump therapy parameters using real time and retrospective data processing
US8467972B2 (en) 2009-04-28 2013-06-18 Abbott Diabetes Care Inc. Closed loop blood glucose control algorithm analysis
US8798934B2 (en) 2009-07-23 2014-08-05 Abbott Diabetes Care Inc. Real time management of data relating to physiological control of glucose levels
US8142933B2 (en) * 2009-09-30 2012-03-27 Conocophillips Company Anode material for high power lithium ion batteries
US8303840B2 (en) * 2010-03-12 2012-11-06 The Gillette Company Acid-treated manganese dioxide and methods of making thereof
US8298706B2 (en) 2010-03-12 2012-10-30 The Gillette Company Primary alkaline battery
US20110219607A1 (en) * 2010-03-12 2011-09-15 Nanjundaswamy Kirakodu S Cathode active materials and method of making thereof
US20110223477A1 (en) * 2010-03-12 2011-09-15 Nelson Jennifer A Alkaline battery including lambda-manganese dioxide and method of making thereof
US9748568B2 (en) 2011-06-02 2017-08-29 Cornell University Manganese oxide nanoparticles, methods and applications
US9028564B2 (en) 2012-03-21 2015-05-12 The Gillette Company Methods of making metal-doped nickel oxide active materials
US8703336B2 (en) 2012-03-21 2014-04-22 The Gillette Company Metal-doped nickel oxide active materials
US9570741B2 (en) 2012-03-21 2017-02-14 Duracell U.S. Operations, Inc. Metal-doped nickel oxide active materials
US9793542B2 (en) 2014-03-28 2017-10-17 Duracell U.S. Operations, Inc. Beta-delithiated layered nickel oxide electrochemically active cathode material and a battery including said material
WO2018208860A1 (en) 2017-05-09 2018-11-15 Duracell U.S. Operations, Inc. Battery including beta-delithiated layered nickel oxide electrochemically active cathode meterial
CN112079397A (en) * 2020-08-28 2020-12-15 蜂巢能源科技有限公司 Method for washing lithium-rich carbonate precursor

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4312930A (en) * 1978-09-29 1982-01-26 Union Carbide Corporation MnO2 Derived from LiMn2 O4
US4246253A (en) * 1978-09-29 1981-01-20 Union Carbide Corporation MnO2 derived from LiMn2 O4
US4590059A (en) * 1983-09-30 1986-05-20 Union Carbide Corporation Process for the production of manganese dioxide
JPH0746607B2 (en) * 1987-01-29 1995-05-17 三洋電機株式会社 Non-aqueous secondary battery
US4959282A (en) * 1988-07-11 1990-09-25 Moli Energy Limited Cathode active materials, methods of making same and electrochemical cells incorporating the same
CA1331506C (en) * 1988-07-12 1994-08-23 Michael Makepeace Thackeray Method of synthesizing a lithium manganese oxide
FR2644295A1 (en) * 1989-03-09 1990-09-14 Accumulateurs Fixes RECHARGEABLE ELECTROCHEMICAL GENERATOR WITH LITHIUM ANODE
GB2234233B (en) * 1989-07-28 1993-02-17 Csir Lithium manganese oxide
FR2659075B1 (en) * 1990-03-01 1992-05-29 France Etat Armement PROCESS FOR THE PREPARATION OF MANGANESE OXIDES BY THE SOL-GEL ROUTE.
US5135732A (en) * 1991-04-23 1992-08-04 Bell Communications Research, Inc. Method for preparation of LiMn2 O4 intercalation compounds and use thereof in secondary lithium batteries
US5211933A (en) * 1991-04-23 1993-05-18 Bell Communications Research, Inc. Method for preparation of LiCoO2 intercalation compound for use in secondary lithium batteries
FR2707426B1 (en) * 1993-07-09 1995-08-18 Accumulateurs Fixes Rechargeable lithium electrochemical generator and its production method.
DE69409352T2 (en) * 1993-12-24 1998-07-23 Sharp Kk Non-aqueous secondary battery, active material for positive electrode and process for its manufacture
JP3325423B2 (en) * 1995-03-20 2002-09-17 松下電器産業株式会社 Non-aqueous electrolyte secondary battery, positive electrode active material for battery and method for producing the same
US5766569A (en) * 1995-09-07 1998-06-16 Kerr-Mcgee Chemical Corporation Lithium manganese oxide compound and method of preparation
US5702679A (en) * 1995-10-06 1997-12-30 Kerr-Mcgee Chemical Corp. Method of preparing Li1+X- Mn2-X O4 for use as secondary battery
US5604057A (en) * 1995-11-27 1997-02-18 General Motors Corporation Secondary cell having a lithium intercolating manganese oxide
US5605773A (en) * 1995-12-06 1997-02-25 Kerr-Mcgee Corporation Lithium manganese oxide compound and method of preparation
US5753202A (en) * 1996-04-08 1998-05-19 Duracell Inc. Method of preparation of lithium manganese oxide spinel
US5759510A (en) * 1996-10-03 1998-06-02 Carus Chemical Company Lithiated manganese oxide

Also Published As

Publication number Publication date
US5997839A (en) 1999-12-07
EP0863847A4 (en) 2009-12-09
EP0863847A1 (en) 1998-09-16
WO1998014403A1 (en) 1998-04-09
US5759510A (en) 1998-06-02
AU4650497A (en) 1998-04-24

Similar Documents

Publication Publication Date Title
CA2239500A1 (en) Lithiated manganese oxide
US6207129B1 (en) Lithiated manganese oxide
US5753202A (en) Method of preparation of lithium manganese oxide spinel
KR100449219B1 (en) Electrode material for rechargeable batteries and process for the preparation thereof
Thackeray et al. Ramsdellite-MnO2 for lithium batteries: The ramsdellite to spinel transformation
EP1875537B1 (en) Method for preparing layered core-shell cathode active materials for lithium secondary batteries
Thackeray et al. The versatility of MnO2 for lithium battery applications
KR102128246B1 (en) Lithium-nickel-manganese transition metal oxide particles, preparation thereof and method of use thereof as electrode material
JP4253142B2 (en) Lithium manganese composite oxide for secondary battery, method for producing the same, and nonaqueous electrolyte secondary battery
CN109837392A (en) The recycling and regeneration method of lithium ion battery anode material waste material
JP3263725B2 (en) Method for producing layered rock salt type lithium manganese oxide by mixed alkaline hydrothermal method
US5955051A (en) Synthesis of lithium nickel cobalt dioxide
Spahr et al. Electrochemistry of Chemically Lithiated NaV3 O 8: A Positive Electrode Material for Use in Rechargeable Lithium‐Ion Batteries
CN102115167B (en) Vanadium dioxide powder as well as preparation method and application thereof
KR20220011146A (en) Relithiation under oxidizing conditions
CA2276301A1 (en) Process for preparing lithium and manganese oxides
Rossouw et al. Synthesis of highly crystalline ramsdellite MnO 2 and its lithiated derivative Li 0.9 MnO 2
JPH0393163A (en) Nonaqueous system secondary battery
JP2003048717A (en) Cubic rock salt type lithium ferritic oxide and production method therefor
CN117049499A (en) Method for preparing basic lithium iron phosphate and regenerating lithium iron phosphate by using waste lithium iron phosphate anode powder

Legal Events

Date Code Title Description
EEER Examination request
FZDE Discontinued
FZDE Discontinued

Effective date: 20061002