CA2241984A1 - Medical guidewire - Google Patents

Medical guidewire Download PDF

Info

Publication number
CA2241984A1
CA2241984A1 CA002241984A CA2241984A CA2241984A1 CA 2241984 A1 CA2241984 A1 CA 2241984A1 CA 002241984 A CA002241984 A CA 002241984A CA 2241984 A CA2241984 A CA 2241984A CA 2241984 A1 CA2241984 A1 CA 2241984A1
Authority
CA
Canada
Prior art keywords
medical guidewire
distal
tubular portion
slot
distal tubular
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
CA002241984A
Other languages
French (fr)
Inventor
Robert J. Crowley
Isaac Ostrovsky
Mark A. Hamm
Kevin R. Heath
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Boston Scientific Corp
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Publication of CA2241984A1 publication Critical patent/CA2241984A1/en
Abandoned legal-status Critical Current

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M25/00Catheters; Hollow probes
    • A61M25/01Introducing, guiding, advancing, emplacing or holding catheters
    • A61M25/09Guide wires
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M25/00Catheters; Hollow probes
    • A61M25/01Introducing, guiding, advancing, emplacing or holding catheters
    • A61M25/09Guide wires
    • A61M2025/09058Basic structures of guide wires
    • A61M2025/09083Basic structures of guide wires having a coil around a core
    • A61M2025/09091Basic structures of guide wires having a coil around a core where a sheath surrounds the coil at the distal part
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M25/00Catheters; Hollow probes
    • A61M25/01Introducing, guiding, advancing, emplacing or holding catheters
    • A61M25/09Guide wires
    • A61M2025/09175Guide wires having specific characteristics at the distal tip

Abstract

This invention features a medical guidewire (10) constructed for insertion into the body for providing access to a body passage. The medical guidewire (10) has a main proximal portion in the form of an elongated tube (20) extending the majority of the length of the guidewire, and a distal tubular portion (24) integral with the main proximal portion. The distal portion includes a distal end and a flexible section (30) having a slot (32) cut in the wall of the distal tubular portion. The slot (32) crosses the right sections of the distal tubular portion at an oblique angle, and extends continuously about the distal tubular portion (24) to increase the flexibility of the distal tubular portion (24) with respect to the main proximal portion.

Description

W O 97125914 PCTrUS97/00461 MEDIC~L ~UIDEWIRE
Background of the Invention This invention relates to medical guidewires which are used by physicians to access body lumens or other remote areas within the body.
Guidewires are widely used in conjunction with therapeutic devices, such as catheters, which are 10 threaded over the guidewire to gain access to an area within the body requiring diagnosis or treatment.
Typically, a guidewire has a significantly smaller outer diameter than therapeutic devices and can therefore be inserted into the body to access remote areas more 15 easily. When the guidewire is positioned at the desired location within the body, the therapeutic device is passed over and guided along the guidewire to the location. The therapeutic device is then utilized to diagnose and/or treat the area at the location.
Summarv of the Invention This invention features a medical guidewire in the form of an elongated hollow tube, i.e., a tube with a continuous wall such as is formed by extrusion and drawing, having a sufficiently stiff proximal end, a 25 flexib~e, atraumatic distal end, and a thin wall thickness to ~i~;ze the open area within the tubular structure of the medical guidewire. In one aspect, small lumens of the body can be accessed with a tubular guidewire according to the invention, by conventional 30 guidewire t~chn; ques, and then an even smaller, subselective guidewire can pass through the open area of the initial guidewire to access even more restricted regions of the bo~y. Furthermore, the relatively large open area within the medical guidewire, as compared to 35 its small outer diameter, enables therapeutic means, such W O 97/2~gl4 PCT~US97/00461 as liquid medicants, surgical instruments, or diagnostic tools, to pass through the medical guidewire to access a desired location within the body. Thus, small lumens of the body can be accessed through the tubular structure of 5 the medical guidewire, using through the guidewire procedures, to provide certain types of diagnosis and/or treatment at the desired location within the body while also enabling access of conventional over-the-wire instruments. The small outer diameter of the medical 10 guidewire of the invention enables conventional over-the-wire instruments to be used in conjunction with the guidewire.
In one aspect, the invention features a medical guidewire constructed for insertion into the body for 15 providing access to a body passage, the guidewire having a main proximal portion in the form of an elongated tube ext~n~;ng the majority of the length of the guidewire, and a distal tubular portion integral with the main proximal portion. The distal portion includes a distal 20 end and a flexible section having a slot cut in the wall of the distal tubular portion. The slot crosses the right sections of the distal tubular portion at an oblique angle and extends continuously about the distal tubular portion, in excess of at least one rotation about 25 the distal tubular portion, to increase the flexibility of the distal tubular portion with respect to the main proximal portion.
In another aspect, the invention includes an elongated member having an outer diameter sized to pass 3Q through the medical guidewire such that the elongated member may be inserted through the main proximal portion and the distal tubular portion and extend beyond the distal end of the distal tubular ~ection further into the body. In preferred embodiments, the elongated member is 35 a subselective guidewire or an obtuxator.

W O 97125914 PCT~US97/00461 In another particular aspect, the slot in the flexible section of the medical guidewire crosses the right sections of the distal tubular portion at an oblique angle and extends continuously through a 5 plurality of rotations about the distal tubular portion to increase the flexibility of the distal tubular portion with respect to the main proximal portion.
Preferred embodiments include the following features.
The main proximal portion and the distal tubular portion are formed from nitinol and at least the distal tubular portion is annealed progressively to cause distal portions of the distal tubular portion to be more ~lexible than proximal portions thereof.
1~ A subselective guidewire is used in combination with the medical guidewire and is sized to pass through the medical guidewire, through the main proximal portion and the distal tubular portion, to extend beyond the distal end of the distal tubular portion further into the 20 body. The outer diameter of the main proximal portion is pre~erably of the order of 0.020 inches or smaller and the outer diameter of the subselective guidewire is preferably of the order of 0.014 inches or smaller.
The slot in the wall of the distal tubular portion 25 extends continuously through a plurality of rotations about the tube, preferably through at least five rotations. The width of the slot may vary along the length of the slot such that the width is less in pro~ l portions of the slot, e.g., from about 0.001 30 ~n~he~ to about 0.002 inches, relative to distal portions thereof, e.g., from about 0.004 inches to about 0.005 ~ nch~, Alternatively, the width of the slot may be constant, e.g., between about 0.002 inches to about 0.004 inches.

CA 0224l984 l998-07-02 W O 97/25914 PCT~US97/00461 The oblique angle is greater at proximal portions of the slot than distal portions thereof and may decrease progressively, proximally to distally, along the slot, from about 45~ to about 10~.
The distal tubular portion may further include a transition section, located proximally of the flexible section, that has portions of the wall of the distal tubular portion removed to impart an intermediate range of flexibility such that the transition section is more 10 flexible than the main proximal portion and less flexible than the flexible section. The transition section includes at least one slot shorter than the slot in the flexible section. The transition section slot has a discontinuous slot section which includes a series of 15 relatively short slots, generally helically aligned, separated by unslotted portions of the wall of the distal tubular portion. In aggregate, the discontinuous slot section extends more than one rotation about the distal tubular portion. The length of the discontinuous slot 20 section and the length of the flexible section each extend about 2 to 3 cm of the length of the distal tubular body.
The transition section may further include a pattern of perforations through the wall of the distal 25 tubular portion. The pattern of perforations is located pro~; ~lly of the relatively short slot and extends about 3 to 5 cm of the length of the distal tubular portion.
The pattern size and shape of the perforations are selected to cause the corresponding region of the distal 30 tubular portion to be more flexible than proximal portions thereof and less flexible than distal portions thereof.
A sealing element extends along at least a portion of the distal tubular portion and is joined to the wall 35 of the tubular member on both sides of the slot. The CA 0224l984 l998-07-02 W O97l25914 PCTrUS97/00461 sealing element has at least one fluid-delivery perforation aligned with the slot to deliver fluids to a desired location within the body. The ~1 ing element may be a polymeric tube, in shrunken state, that 5 surrounds at least a portion of said distal tubular portion or may be a polymeric tube, in a rA~;~lly ~rAn~ed state, that contacts the inside of at least a portion of said distal tubular portion. Alternatively, an ela~tomer may fill at least a portion of the slot in 10 said distal tubular portion.
A distal tip portion, located distally of the distal tubular portion, has a rounded distal extremity for atraumatic insertion into the body and is fabricated from a polymeric material chosen from the group 15 comprising PET, polyimide, or polyethylene. The distal tip portion includes a polymeric core disposed within a polymeric sleeve which is attached to the polymeric core.
The polymeric core and the polymeric sleeve are made from a nylon material and the polymeric core may further 20 contain a radiopaque material. A nitinol core, having a tapered distal portion is disposed within the polymeric core and extends proximally through at least a portion of the distal tubular portion. The diameter of the nitinol core that e~tends into at least a portion of the distal 25 tubular portion is smaller than the internal diameter of the distal tubular portion to provide a clearance between the nitinol core and the inner surface of said distal tubular portion.
Alternatively, the distal tip portion is hollow 30 and includes a longitudinal slit in opposing walls of the distal tip portion. The longitudinal slit is biased closed and upon application of an internal force, i.e., a longitll~; nA 1 thrusting force of an elongated member or fluid pressure, is capable of opening to provide a 35 passageway through the distal tip portion.

Another aspeot of the invention features a method of treating a patient using a medical guidewire that implements the structural features of the invention. The t medical guidewire is inserted into a body lumen and the 5 elongated member is inserted into the medical guidewire.
The elongated member is sized to pass through the mediaal guidewire so that the elongated member may be inserted through the main proximal portion and the distal tubular portion of the medical guidewire. The medical guidewire 10 and the elongated member are guided to a desired location in the body lumen requiring treatment and the elongated member is extended beyond the distal end of the medical guidewire, further into the body, to access remote, small passages at the desired location.
Preferred embodiments include the following features.
While the medical guidewire and the elongated mem~er are guided to the desired location in the body lumen, the position of the elongated member within the 20 medical guidewire is adjusted to alter the stiffness of the distal tubular portion of the medical guidewire.
F~rther, a surgical inY~ll ~nt may be slid, in guided contact, over the medical guidewire to access the desired location such that at least one surgical 25 operation using the surgical insLr~ ~nt may be performed at the desired location.
In another aspect, the invention features a method of treating a patient using the medical guidewire of the invention. The medical guidewire is inserted into a body 30 lumen and guided to a desired location in the lumen requiring treatment. Liquid is infused through the medical guidewire and exits the medical guidewire though the slot in the distal tubular portion of the medical guidewire to enter the body lumen at the desired W O 97/2~914 PCTrUS97/00461 -location. The medical guidewire is removed from the body lumen.
Other features and advantages of the invention will become apparent from the following detailed 5 description, and from the claims.

~rief Description of the Drawinqs Fig. 1 shows a medical guidewire according to the invention, while Fig. la is an enlarged cross-sectional view of the medical guidewire taken along line a-a in 10 Fig. 1;
Fig. 2-4 shows side views of embodiments of a portion of the medical guidewire of the invention;
Fig. 5 shows a side view of an embodiment of the medical guidewire, having a sealing element, while Fig.
15 ~a shows a side view of an alternative embodiment of the sealing element;
Figs. 6 and 7 are side views, partially in cross-sectional, of embodiments of the medical guidewire of the invention;
2~ Figs. 8 and 8a are side views, partially in cross-sectional, of further embodiments of the medical guidewire of the invention, while Fig. 8b shows a cross-sectional view of a further embodiment of the medical guidewire of the invention.
~escriPtion of the Preferred Embodiments Referring to Figure 1, a medical guidewire 10 is shown for use as a primary access device for entering a body lumen, particularly relatively small body lumens, such as, for example, the vasculature of the brain or 30 distal coronary arteries. The overall length of the medical guidewire is about 180 to 220 cm.
The medical guidewire comprises a hollow tube defined by a continuous wall, such as can be formed by extrusion and drawing. The inner and outer diameters of WO 97125914 PCT~US97/~0461 the medical guidewire are sized to reduce the wall thickness of the guidewire to optimize the open area of the lumen within the guidewire. This construction facilitates the delivery of therapeutic means, such as, 5 liquids, surgical instruments, or diagnostic tools, through the medical guidewire 10 while also providing the means for secondary access, i.e., by guiding a catheter over the medical guidewire to access the desired location. To maintain adequate strength, stiffness, and 10 tor~ue characteristics, the medical guidewire 10 is formed from a flexible and resilient metal, preferably nitinol.
In particular, the medical guidewire 10 has an outer diameter 14 of the order of 0.020 inches (0.51 mm) 15 and a wall thickness 16 of the order of 0.002 inches ~0.051 mm) to ~; ;ze the expanse of open area 18.
Medical guidewire 10 is comprised of at least two integral portions, main proximal portion 20 and distal tubular portion 24. Main proximal portion 20 is about 20 1~5 cm to about 205 cm in length and is in the form of an elongated tube, i.e., an elongated hollow cylinder, and although ~lexible, has a sti~fness o~ about 50-100 N-mm2 to impart sufficient lateral stiffness and torque transmission capabilities along its length.
Re~erring as well to Figure 2, distal tubular portion 24 i5 located distally of main proximal portion 2Q and is from about 15 to about 25 cm in length. Distal tubular section is also in the form of a tube and is integral with main proximal portion 20. For purposes of 30 this invention, the term "integral" means that the distal tubular portion is attached to main proximal portion by a ~uitable method (e.g., by welding, brazing, heat shr;nk;ng, or gluing) in an end to end, abutting relationship or in an overlapping relationship.
35 Alternatively, "integral" means that distal tubular W O 97125914 PCTrUS97/00461 -_ g portion and main proximal portion are fabricated from the same continuous tube, but comprise distinct portions in that tube. Distal tubular portion 24 has a stiffness of ~bout 25-50 N-mm2 or less, to impart flexibility to 5 medical guidewire 10. Additionally, the flexibility of medical guidewire 10 may be varied by progressively annealing either a portion, e.g., distal tubular portion 24, or the entire length of medical guidewire 10.
Distal tubular portion 24 is comprised of flexible lQ section 30 having slot 32. The length of flexible section 30 is about 2 to 3 cm. Slot 32 is preferably cut completely through wall 33 of distal tubular portion.
A~ternatively, to vary the stiffness of distal tubular portion 24, a portion of slot 32 may be replaced with a 15 grooved section (not shown), which is only partially cut through the wall of distal tubular portion 24. In either embodiment, slot 32 crosses right sections, e.g., section 34, of the distal tubular portion at an oblique angle, e.g., angle e , and extends continuously for at least one 20 rotation, preferably through a plurality of rotations, e.g., from about 3 to 15 rotations. It should be understood that right section 34 is perpendicular to the longitll~; n~ 1 axis 12 of medical guidewire 10 and that oblique angle e is an angle formed between right section 25 34 and the center axis of slot 32 (represented by line 35~.
To vary the stiffness within flexible section 30, such that distal portions of flexible section 30 are more flexible than proximal portions thereof, oblique angle e 30 is greater at proximal portions of slot 32 than distal portions thereof, e.g., obli~ue angle e1 is greater than ob~ique angle e2. The decrease of angle e proximally to distally is progressive, i.e., with each rotation about distal tubular portion 24, angle e decreases uniformly 35 between 1 to 8~ or more per rotation. Alternatively, CA 0224l984 l998-07-02 W O 97i25914 PCTAJS97tOO461 angle e decreases variably, i.e., with each rotation, angle e decreases variably. Preferably, angle e varies from about 45~ to about 10~ proximally to distally.
Additionally, the stiffness of flexible section 30 5 may be varied by increasing the width of slot 32 proximally to distally. For example, the width of slot 32 at proximal portions of flexible section 30 is from about 0.~01 inches to about 0.002 inches (O.OOZ5 cm to about 0.051 mm) and the width of slot 32 at distal 10 portions thereof is from about 0.004 inches to about 0.005 inches (0.102 mm to about 0.127 mm).
Alternatively, the width of slot 32 may be constant, e.g., from 0.002 inches to 0.004 inches (0.051 mm to 0.102 mm).
Referring now to Figure 3, distal tubular section 24 may further comprise transition section 40, located proximally of flexible section 30. Portions of wall 33 in transition section 40 are removed to impart an intermediate range of flexibility to transition section 20 40, i.e., transition section 40 is more flexible than main proximal portion 20 and less flexible than flexible section 30. Wall 33 may be removed only partially, such a~, for example, having a groove or a notch cut only partially through wall 33, or wholly, such as, for 25 example, a slot cut completely through wall 33, or a combination of both. Transition section 40 includes at least one discontinuous slot 42, and preferably a plurality of discontinuous slots 42, separated by unslotted portions 43 of wall 33. Discontinuous slot 42 30 is preferably generally helically aligned about wall 33 of distal tubular portion 24 and proceeds through more than one rotation about distal tubular portion 24. In particular, if a reference line "X" is drawn on wall 33 parallel to longitt~; n~ l axis 12, discontinuous slot 42, 35 ha~ing one end 44 beginning on or near reference line -W O 97i25914 PCTrUS97/00461 "X", proceeds generally helically about distal tubular portion 24 such that second end 46 is located past reference line "X", i.e., discontinuous slot 42 proceeds through more than one rotation about distal tubular 5 portion 24.
The portion of transition section 40 having discontinuous slots 42 extends about 2 to 3 cm of the length of distal tubular section 24. Each discontinuous 51ot 42 has a length of about 0.03 inches to about 0.05 10 inches (0.076 cm to about 1.27 mm), preferably about 0.04 inches (1.02 mm). The distance ~etween discontinuous slots 42, or the length o~ unslotted portion 42, is about 0.01 inches to about 0.1 inches ~0.025 cm to about 0.25 cm). The pitch of discontinuous slot 42 is preferably 15 about 45~ and width 48 is preferably constant, between about 0.001 inches to about 0.002 inches (0.025 mm to about 0.051 mm). Alternatively, width 48 may vary as described above.
Referring to Figure 4, transition section 40 may 20 further comprise a pattern of perforations 50 through wall 33 of distal tubular section 24. The pattern of perforations is located proximally of discontinuous slots 42 and extends through a length of about 3 to 5 cm of the length of distal tubular section 24. The pattern size 25 and shape of the perforations is selected such that the pattern of perforations 50 is less flexible than discontinuous slots 42 and more flexible than main proximal portion 20.
Pattern of perforations 50 consists of a plurality 30 of angled slots 52, that are cut through wall 33.
Alternatively, angled slots 52 may be only partially cut through wall 33 and may have various depths to alter the stiffness of distal tubular section 24 at pattern of perforations 50.

CA 0224l984 l998-07-02 W 097i25914 PCTrUS97/00461 Angled slots 52 are oriented at a particular pitch, preferably 45~, and are disposed at 90~ or 120~
intervals along wall 33 of distal tubular portion 24.
Width 54 of angled slots 52 is about 0.001 inches to 5 about 0.005 inches (0.025 mm to about 0.127 mm). ~ength 56 of each angled slot 52 is about 0.020 inches (0.51 mm~
and each slot is separated by a length of about 1.0 to about 1.5 mm. The desired degree of flexibility in the pattern of perforations 50 may be varied by varying slot 10 width 54, slot length 56, and the distance between slots.
Additionally, the shape of angled slots 52 may be varied to vary the flexibility.
Distal tubular portion 24 is preferably manufactured from a nitinol tube. To impart the desired 15 flexibility characteristics to flexible section 30 and transition section 40, slots 32, 42, and 52 are formed into distal tubular portion 24 by, for example, EDM
ma~h; n; ng, chemical masking, electro-chemical etching, or laser etching.
Referring to Figure 5, a sealing element 60 seals and provides additional strength to medical guidewire 10.
In the preferred embodiment, sealing element 60 is a ~leeve that is heat shrunk to ~UL loul.d at least a portion of distal tubular portion 24. The thickness of sealing 25 element 60 is about 0.0005 inches (0.013 mm) and is fabricated from either PET, polyimide, polyethylene, polyurethane, teflon, EVA, silicon, or hydrophilic gel.
The outer diameter of distal tllhlll ~r portion 24 is preferably reduced at portions including sealing element 30 60 such that the outer diameter of medical guidewire 10 remains constant. For example, distal tubular portion outer diameter 64 is less than distal tubular portion outer diameter 66 such that the outer diameter of medical guidewire 10 is not increased at portions including 35 sealing element 60.

CA 0224l984 l998-07-02 W O 97/25914 PCTrUS97/00461 Alternatively, sealing element 60 may be a sleeve that is radially expanded from inside medical guidewire 10 (not shown), to contact the inside wall 26 of at least a portion of distal tubular portion 24, or may be an 5 elastomer 61 which fills at least a portion of the slots located in distal tubular portion 24 (Fig. 5a).
Sealing element 60 may include at least one fluid-delivery aperture 62, preferably a plurality of fluid-delivery apertures 62, aligned along slot 32.
10 Additionally, if sealing element 60 covers a portion of slots 42 and/or 52 in transition section 40, fluid delivery perforations 62 are aligned along portions of these slots. Fluid-delivery apertures 62 enable a fluid to be infused through medical guidewire 10 and out 15 through the fluid-delivery apertures 62 into a body lumen to the site of interest and are preferably about 1 to 5 mils in diameter. For example, the infused fluid may be a saline solution which can be used to flush the site of interest or to clean surgical instruments used in 20 combination with the medical guidewire ~0 during a surgical procedure or diagnosis. Alternatively, the fluid may be a liquid medicant to treat the site of interest or a radiographic or ultrasonic contrast agent to monitor fluid flow through the site of interest using, 25 for example, x--ray or ultrasound techrliques. Fluid--~elivery apertures 62 are fabricated using a laser or a heated needle to perforate sealing element 60.
Referring to Figure 6, in one embodiment, a distal tip portion 70 is attached to distal tubular portion 24.
30 To enable atraumatic insertion of medical guidewire 10 into the body, distal tip portion 70 is flexible, is about 0.5 inches to about 3 inches (1.27 cm to about 7.62 cm~ long, and has a rounded distal extremity 72, the outer diameter of which is about 0.014 inches (0.356 mm).
35 ~istal tip portion 70 includes sleeve 74 which abuts W O 97125914 PCT~US97/00461 distal end 36 of distal tip portion 24. The inner and outer diameter o~ distal tubular portion 24 at distal end 36 is substantially similar to the inner and outer diameter of sleeve 74. Sleeve 74 further surrounds core 5 76. Core 76 encases tapered core 78. Sleeve 74 and core 76 are made from a polymeric material, preferably nylon.
Further, the availability of a range of stiffness for sleeve 74 and core 76 permits the overall stiffness of distal tip portion 70 to be tailored to the desired end 10 use of medical guidewire 10. Additionally, core 76 may be filled with a radiopaque material so that a physician can view its position within the body using an x-ray.
To attach distal tip portion 70 to distal tubular portion 24, sealing element 60 surrounds a portion 79 of 15 the proximal end of sleeve 74. Sleeve 74 is bonded to core 76, and core 76 is bonded to tapered core 78, preferably with flexible adhesives, such as, for example, urethane.
Tapered core 78 is approximately 6-~0 cm in length 20 and preferably has three sections, distal section 80, tapered section 82 and proximal section 84. Distal section 80 is approximately 1 to 2 cm in length, preferably 1 cm, and has a constant diameter, which is pre~erably about 3 to 4 mils (about 0.076 mm to 0.101 25 mm~. Tapered section 82 is located proximally of distal section 80 and is also preferably about 1 to 2 cm in length. The proximal end 83 of tapered section 82 has the largest diameter of tapered core 78, e.g., about 6 mils (0.152 mm), and tapers uniformly to distal end 85 of 30 tapered section 82, where the diameter is about 3 mils ~o.076 mm). Alternatively, tapered core 78 may have a constant diaméter. Proximal section 84 is located proximal~y of tapered section 82 and is about 4 to 6 cm ~n length and extends proY;~lly through a portion of 3 distal tubular portion 24. The diameter of proximal W O 97/2~914 PCTrUS97/00461 section 84 is substantially the same as the diameter of the proximal end 83 of tapered section 84, i.e., about 6 mils (0.152 mm). Therefore, there is clearance between the inner diameter of distal tubular portion 24 and the 5 proximal section of tapered core 78 to enable the passage of fluids. Preferably, tapered core 78 is fabricated from a solid nitinol wire.
Referring to Fig. 7, in an alternative embodiment, distal tip portion 90 comprises duck bill 96 bonded to 10 sealing element 60 by, for example, a flexible adhesive, such as urethane. Duck bill 96 is fabricated from a polymeric material (e.g., PET, polyimide, or polyethylene) and includes a longitll~;n~l slit 98 in opposite walls of distal tip portion 90. Longit~;n~l 15 slit 98 is ~iased closed, however, upon an application of an internal ~orce, such as, for example, fluid pressure or a longitll~;n~l thrusting force, longitll~in~l slit 98 opens to provide a passageway through distal tip portion 90 .
Referring to Fig. 8 et seq., medical guidewire 10 includes elongated member 100, which is inserted through main proximal portion 20 and distal tubular portion 24 and may, in certain applications, be ext~n~e~ beyond distal end 36 of distal tubular portion 24 further into 25 the body. To enable the insertion of elongated member 100 through medical guidewire 10, for coronary, neurology, or urology applications, elongated - he~ lOO
has an outer diameter of the order of 0.014 inches (0.356 mm~ or smaller and the outer diameter of the medical 30 guidewire is of the order of 0.020 inches (0.051 cm) or smaller. Alternatively, for cardiac, gastro-intestinal, or peripheral vascular applications, elongated member has an outer diameter of the order of 0.03 inches (0.076 cm) or smaller and the outer diameter of medical guidewire is 35 of the order of 0.035 inches (0.089 cm) or smaller. The W O 97125914 PCTrUS97/00461 length of elongated member 100 is typically about 180 to 220 cm, or more. This length is sufficiently long to enable a user to manipulate elongated member 100 at proximal end 102 and still provide sufficient length at 5 distal portion 104 such that elongated member can extend beyond distal end 36 o~ distal tubular portion 24 further into the body.
In a preferred embodiment, elongated member 100 is a subselective guidewire, as shown in Fig. 8, preferably 10 ~ormed ~rom a solid nitinol wire, but alternatively, formed from a nitinol coil. Alternatively, elongated member 100 is an obturator 112 (Fig. 8a) or an ultrasound imaging transducer 114 (Fig. 8b--To enable the passage o~
ultrasonic sound waves through medical guidewire 10, a 15 sonolucent window 115 may be located in distal tubular portion 24 or distal tip portion 70 may be fabricated ~rom a sonolucent material). Additionally, elongated member 100 may be in the form of other surgical or diagnostic instruments, such as, for example, a basket 20 retrieval system, a surgical instrument (e.g., a cutter), a laser fiber, an optical fiber, a balloon, a radioactive element, an antenna, or an electrode or series o~
electrodes.
~ethod of Use A user inserts medical guidewire 10 into a body lumen using, for example, the Seldinger techn;que.
Pre~erably, to increase the stiffness of medical guidewire 10, elongated h~r lOO is inserted through medical guidewire lO prior to inserting medical guidewire 30 10 into the body lumen. The medical guidewire, including elongated member 100, is guided within a body lumen to a location within the body lumen requiring treatment. As medical guidewire 10 is guided within a body lumen, a user manipulates elongated member 100 along longitudinal 35 axis 12 within distal tubular portion 24 to vary the CA 0224l984 l998-07-02 W O97i25gl4 PCTnUS97/00461 stiffness of medical guidewire 10 at distal tubular portion 24. When medical guidewire 10 is positioned at or near the location within the body lumen requiring treatment, the user, by manipulating the proximal end o~
5 elongated member 100, extends elongated ~ h~ lOO beyond distal end 36 of distal tubular section 24 further into the body. The elongated member 100 thus accesses remote, small passages at the desired location for diagnosis and/or treatment of the area. For example, in the 10 illustrated embodiment, elongated member 100 is a subselective guidewire, which enables a user to access more distal or tortuous regions of the body. Other ~urgical instruments or diagnostic or therapeutic means used within small lumens of the body may be employed as 15 elongated member 100 to per~orm their respective procedures at the desired location.
Alternatively, after medical guidewire 10 is guided to a desired location within the body, medical guidewire 10 is used to infuse liquids to that location.
20 For example, liquids, such as saline solution, medicants, or x-ray contrast liquids, are infused through slot 32, through slots 32, 42 and 52~ through fluid-delivery apertures 62 (when distal tubular portion includes sealing element 60), through open distal end 36, and/or 25 through longitll~;n~l slit 98 in distal tip portion 90.
Medical guidewire 10 may further be used to guide surgical or diagnostic instruments over medical guidewire 10 to access a desired location in a body lumen. When the instrument is positioned at the desired location 30 within the body lumen, at least one surgical or diagnostic procedure using the in~LL~ -nt is performed.
The instrument may be removed and replaced with a different instrument as required by the treatment, W O 97f25914 PCT~US97/00461 diagnosis, or surgical procedure being per~ormed by the user.
What i5 claimed is:

Claims (28)

1. A medical guidewire constructed for insertion into the body for providing access to a body passage, comprising:
a main proximal portion in the form of an elongated tube, said tube extending the majority of the length of the guidewire, and a distal tubular portion integral with said main proximal portion and having a distal end, said distal portion including a flexible section having a slot cut in the wall of said distal tubular portion, said slot crossing the right sections of said distal tubular portion at an oblique angle, said slot extending continuously about said distal tubular portion in excess of at least one rotation about said distal tubular portion to increase the flexibility of said distal tubular portion with respect to said main proximal portion.
2. The medical guidewire of claim 1, in combination with an elongated member sized to pass through said medical guidewire, whereby said elongated member may be inserted through said main proximal portion and said distal tubular portion of the medical guidewire and extend beyond said distal end of said distal tubular portion further into the body.
3. The medical guidewire of claim 2, wherein said elongated member is a subselective guidewire.
4. The medical guidewire of claim 2, wherein said main proximal portion has an outer diameter of the order of 0.020 inches or smaller and said elongated member has an outer diameter of the order of 0.014 inches or smaller.
5. The medical guidewire of claim 1, wherein said slot extends continuously through a plurality of rotations about said tube.
6. The medical guidewire of claim 5, wherein said slot extends continuously through at least five rotations.
7. The medical guidewire of claim 5, wherein said oblique angle is greater at proximal portions of said slot than distal portions thereof.
8. The medical guidewire of claim 7, wherein said oblique angle decreases progressively, proximally to distally, along said slot.
9. The medical guidewire of claim 8, wherein said oblique angle varies from about 45° to about 10°
proximally to distally along said slot.
10. The medical guidewire of claim 1, wherein said main proximal portion and said distal tubular portion are formed from nitinol.
11. The medical guidewire of claim 1, wherein the width of said slot varies along the length of said slot whereby the width of said slot is less in proximal portions of said slot relative to distal portions thereof.
12. The medical guidewire of claim 11, wherein the width of said slot varies from about 0.001 inches to 0.002 inches to about 0.004 inches to 0.005 inches.
13. The medical guidewire of claim 1, wherein the width of said slot is constant and is between about 0.002 inches to about 0.004 inches.
14. The medical guidewire of claim 1, wherein said distal tubular portion includes a transition section located proximally of said flexible section, said transition section having portions of said wall removed to impart an intermediate range of flexibility such that said transition section is more flexible than said main proximal portion and less flexible than said flexible section.
15. The medical guidewire of claim 14, wherein said transition section includes at least one slot shorter than said slot of said flexible section.
16. The medical guidewire of claim 15, wherein said slot of said transition section comprises a discontinuous slot section having a series of relatively short slots generally helically aligned, separated by unslotted portions of the wall of said distal tubular portion and, in aggregate more than one rotation about said distal tubular portion.
17. The medical guidewire of claim 15, wherein said transition section further includes a pattern of perforations through said wall of said distal tubular portion, said pattern of perforations is located proximally of said relatively short slot and extends about 3 to 5 cm of the length of said distal tubular portion, the pattern size and shape of said perforations being selected to cause the corresponding region of said distal tubular portion to be more flexible than proximal portions thereof and less flexible than distal portions thereof.
18. The medical guidewire of claim 1, wherein at least said distal tubular portion is annealed progressively to cause distal portions of said distal tubular portion to be more flexible than proximal portions thereof.
19. The medical guidewire of claim 1, further comprising a sealing element extending along at least a portion of said distal tubular portion, said sealing element being joined to the wall of said tubular member on both sides of said slot.
20. The medical guidewire of claim 19, wherein said sealing element has at least one fluid-delivery perforation aligned with said slot.
21. The medical guidewire of claim 1, further comprising a distal tip portion distal of said distal tubular portion, said distal tip portion having a rounded distal extremity for atraumatic insertion into the body.
22. The medical guidewire of claim 21, wherein said distal tip portion is hollow and includes a longitudinal slit in opposing walls of said distal tip portion, said longitudinal slit being biased closed and upon application of an internal force, capable of opening to provide a passageway through said distal tip portion.
23. A system for insertion into the body for providing access to a body passage, said system comprising:

a main proximal portion in the form of a continuous hollow tube, said tube extending the majority of the length of the guidewire, a distal tubular hollow portion integral with said main proximal portion and having a distal end, said distal portion including a flexible section having a slot cut in the tubular wall of said distal tubular portion, said slot crossing the right sections of said distal tubular portion at an oblique angle, said slot extending continuously about said distal tubular portion, in excess of at least one rotation about said tubular portion, to increase the flexibility of said distal tubular portion with respect to said main proximal portion, and an elongated member, said elongated member having an outer diameter sized to pass through said medical guidewire, whereby said elongated member may be inserted through said main proximal portion and said distal tubular portion of the medical guidewire and extend beyond said distal end of said distal tubular section further into the body.
24. The medical guidewire of claim 23, wherein said elongated member is a subselective guidewire.
25. A method of treating a patient, comprising:
providing the medical guidewire of claim 1 wherein said distal end is open;
inserting said medical guidewire into a body lumen;
inserting an elongated member into said medical guidewire, said elongated member being sized to pass through said medical guidewire, whereby said elongated member may be inserted through said main proximal portion and said distal tubular portion of the medical guidewire;

guiding said medical guidewire and said elongated member to a desired location in said body lumen requiring treatment;
extending said elongated member beyond said distal end of said medical guidewire further into the body; and accessing remote, small passages at said location with said elongated member.
26. The method of claim 25, further comprising:
while guiding said medical guidewire and said elongated member to a location in said body lumen, adjusting the position of said elongated member within said medical guidewire to alter the stiffness of said distal tubular portion of said medical guidewire.
27. The method of claim 25, further comprising:
sliding a surgical instrument in guided contact over said medical guidewire;
accessing said location with said surgical instrument; and performing at least one surgical operation using said surgical instrument at said location.
28. A method of treating a patient, comprising:
inserting the medical guidewire of claim 1 into a body lumen;
guiding said medical guidewire to a desired location in said body lumen requiring treatment;
infusing a liquid through said medical guidewire, said liquid exiting said medical guidewire through said slot in said distal tubular portion to enter said body lumen; and removing said medical guidewire from said body lumen.
CA002241984A 1996-01-16 1997-01-16 Medical guidewire Abandoned CA2241984A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US08/586,588 US6004279A (en) 1996-01-16 1996-01-16 Medical guidewire
US08/586,588 1996-01-16

Publications (1)

Publication Number Publication Date
CA2241984A1 true CA2241984A1 (en) 1997-07-24

Family

ID=24346360

Family Applications (1)

Application Number Title Priority Date Filing Date
CA002241984A Abandoned CA2241984A1 (en) 1996-01-16 1997-01-16 Medical guidewire

Country Status (5)

Country Link
US (1) US6004279A (en)
EP (1) EP0879013A4 (en)
JP (1) JP2000503225A (en)
CA (1) CA2241984A1 (en)
WO (1) WO1997025914A1 (en)

Families Citing this family (140)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6428489B1 (en) * 1995-12-07 2002-08-06 Precision Vascular Systems, Inc. Guidewire system
US20030069522A1 (en) 1995-12-07 2003-04-10 Jacobsen Stephen J. Slotted medical device
US6440088B1 (en) * 1996-05-24 2002-08-27 Precision Vascular Systems, Inc. Hybrid catheter guide wire apparatus and method
US6355016B1 (en) 1997-03-06 2002-03-12 Medtronic Percusurge, Inc. Catheter core wire
US7455646B2 (en) * 1997-06-04 2008-11-25 Advanced Cardiovascular Systems, Inc. Polymer coated guide wire
US6231565B1 (en) * 1997-06-18 2001-05-15 United States Surgical Corporation Robotic arm DLUs for performing surgical tasks
US6371943B1 (en) * 1997-09-08 2002-04-16 Epimed International, Inc. Spring tip needle combination
DE69828181T2 (en) * 1997-09-12 2005-12-08 Nippon Zeon Co., Ltd. BALLOON CATHETER
US6500147B2 (en) 1999-02-22 2002-12-31 Medtronic Percusurge, Inc. Flexible catheter
US6350253B1 (en) * 1999-07-19 2002-02-26 I-Flow Corporation Catheter for uniform delivery of medication
US7547302B2 (en) * 1999-07-19 2009-06-16 I-Flow Corporation Anti-microbial catheter
US8414543B2 (en) 1999-10-22 2013-04-09 Rex Medical, L.P. Rotational thrombectomy wire with blocking device
AU2614901A (en) 1999-10-22 2001-04-30 Boston Scientific Corporation Double balloon thrombectomy catheter
US7235092B2 (en) * 1999-11-19 2007-06-26 Advanced Bio Prosthetic Surfaces, Ltd. Guidewires and thin film catheter-sheaths and method of making same
JP2003522566A (en) * 1999-12-21 2003-07-29 シャーウッド サーヴィシス アクチェンゲゼルシャフト Device for thermal treatment of intervertebral disc
US7118551B1 (en) * 1999-12-22 2006-10-10 Advanced Cardiovascular Systems, Inc. Non-metal reinforcing mandrel
US6579246B2 (en) * 1999-12-22 2003-06-17 Sarcos, Lc Coronary guidewire system
US6755794B2 (en) 2000-04-25 2004-06-29 Synovis Life Technologies, Inc. Adjustable stylet
US6602207B1 (en) 2000-07-19 2003-08-05 Scimed Life Systems, Inc. Guide wire stiffness transition element
DE60035378T2 (en) 2000-09-07 2008-02-28 Covidien Ag Device for the treatment of intervertebral discs
US7097624B2 (en) * 2000-10-05 2006-08-29 Scimed Life Systems, Inc. Multi-layer and multi-section coils for guide wire
US6492615B1 (en) 2000-10-12 2002-12-10 Scimed Life Systems, Inc. Laser polishing of medical devices
US6522806B1 (en) * 2001-02-16 2003-02-18 Ethicon Endo-Surgury, Inc. Optical fiber including a diffuser portion and continuous sleeve for the transmission of light
US6875165B2 (en) 2001-02-22 2005-04-05 Retinalabs, Inc. Method of radiation delivery to the eye
US6878153B2 (en) * 2001-07-02 2005-04-12 Rubicon Medical, Inc. Methods, systems, and devices for providing embolic protection and removing embolic material
ES2274984T3 (en) 2001-07-05 2007-06-01 Precision Vascular Systems, Inc. MEDICAL DEVICE OF PUNTA BLANDA THAT CAN BE SUBJECT TO TORSION AND METHOD TO CONFORM.
US6776765B2 (en) * 2001-08-21 2004-08-17 Synovis Life Technologies, Inc. Steerable stylet
US6652508B2 (en) 2001-11-09 2003-11-25 Scimed Life Systems, Inc. Intravascular microcatheter having hypotube proximal shaft with transition
US7488338B2 (en) 2001-12-27 2009-02-10 Boston Scientific Scimed, Inc. Catheter having an improved torque transmitting shaft
US20030181864A1 (en) * 2002-03-21 2003-09-25 Deniega Jose Castillo Catheter for uniform delivery of medication
US6855136B2 (en) * 2002-04-03 2005-02-15 Gore Enterprise Holdings, Inc. Infusion catheter having an atraumatic tip
US6926725B2 (en) 2002-04-04 2005-08-09 Rex Medical, L.P. Thrombectomy device with multi-layered rotational wire
JP4602080B2 (en) 2002-07-25 2010-12-22 ボストン サイエンティフィック リミテッド Medical devices that travel through the human body structure
US7914467B2 (en) 2002-07-25 2011-03-29 Boston Scientific Scimed, Inc. Tubular member having tapered transition for use in a medical device
TWI292196B (en) * 2002-09-30 2008-01-01 Via Tech Inc Flip chip test structure
ITBS20020107A1 (en) 2002-11-25 2004-05-26 Invatec Srl METAL TUBE WITH AT LEAST ONE PART OF LENGTH WITH VARIABLE FLEXIBILITY.
US8377035B2 (en) 2003-01-17 2013-02-19 Boston Scientific Scimed, Inc. Unbalanced reinforcement members for medical device
US7169118B2 (en) 2003-02-26 2007-01-30 Scimed Life Systems, Inc. Elongate medical device with distal cap
US7001369B2 (en) 2003-03-27 2006-02-21 Scimed Life Systems, Inc. Medical device
US7758520B2 (en) * 2003-05-27 2010-07-20 Boston Scientific Scimed, Inc. Medical device having segmented construction
US8535344B2 (en) 2003-09-12 2013-09-17 Rubicon Medical, Inc. Methods, systems, and devices for providing embolic protection and removing embolic material
US7699865B2 (en) 2003-09-12 2010-04-20 Rubicon Medical, Inc. Actuating constraining mechanism
US7824345B2 (en) 2003-12-22 2010-11-02 Boston Scientific Scimed, Inc. Medical device with push force limiter
US7563222B2 (en) 2004-02-12 2009-07-21 Neovista, Inc. Methods and apparatus for intraocular brachytherapy
BRPI0507690A (en) * 2004-02-12 2007-07-24 Neovista Inc methods and apparatus for intraocular brachytherapy
US20060064145A1 (en) * 2004-09-21 2006-03-23 Podhajsky Ronald J Method for treatment of an intervertebral disc
US20060224219A1 (en) * 2005-03-31 2006-10-05 Sherwood Services Ag Method of using neural stimulation during nucleoplasty procedures
US20060089569A1 (en) * 2004-10-26 2006-04-27 Soukup Thomas M Articulator with adjustable stiffness distal portion
US7819887B2 (en) 2004-11-17 2010-10-26 Rex Medical, L.P. Rotational thrombectomy wire
US7632242B2 (en) 2004-12-09 2009-12-15 Boston Scientific Scimed, Inc. Catheter including a compliant balloon
US7803142B2 (en) 2005-02-02 2010-09-28 Summit Access Llc Microtaper needle and method of use
JP2006271955A (en) * 2005-03-02 2006-10-12 Terumo Corp Guide wire
US7828832B2 (en) * 2005-04-18 2010-11-09 Medtronic Vascular, Inc. Intravascular deployment device with improved deployment capability
US20060258987A1 (en) * 2005-05-10 2006-11-16 Cook Incorporated Catheter stiffening member
US20070060878A1 (en) 2005-09-01 2007-03-15 Possis Medical, Inc. Occlusive guidewire system having an ergonomic handheld control mechanism and torqueable kink-resistant guidewire
US9445784B2 (en) 2005-09-22 2016-09-20 Boston Scientific Scimed, Inc Intravascular ultrasound catheter
US7850623B2 (en) 2005-10-27 2010-12-14 Boston Scientific Scimed, Inc. Elongate medical device with continuous reinforcement member
CA2629648A1 (en) 2005-11-15 2007-05-24 Neovista Inc. Methods and apparatus for intraocular brachytherapy
US8876772B2 (en) 2005-11-16 2014-11-04 Boston Scientific Scimed, Inc. Variable stiffness shaft
US7892186B2 (en) 2005-12-09 2011-02-22 Heraeus Materials S.A. Handle and articulator system and method
US8292827B2 (en) * 2005-12-12 2012-10-23 Boston Scientific Scimed, Inc. Micromachined medical devices
US20070208405A1 (en) * 2006-03-06 2007-09-06 Boston Scientific Scimed, Inc. Stent delivery catheter
US20080114435A1 (en) * 2006-03-07 2008-05-15 Med Institute, Inc. Flexible delivery system
US8152742B2 (en) * 2006-05-01 2012-04-10 Boston Scientific Scimed, Inc. Crossing guide wire with corrugated shaping ribbon
US8728010B2 (en) * 2006-08-24 2014-05-20 Boston Scientific Scimed, Inc. Elongate medical device including deformable distal end
US8419658B2 (en) * 2006-09-06 2013-04-16 Boston Scientific Scimed, Inc. Medical device including structure for crossing an occlusion in a vessel
CA2663319A1 (en) 2006-09-13 2008-03-20 Boston Scientific Limited Crossing guidewire
US9339632B2 (en) * 2006-09-27 2016-05-17 Boston Scientific Scimed, Inc. Catheter shaft designs
US8556914B2 (en) 2006-12-15 2013-10-15 Boston Scientific Scimed, Inc. Medical device including structure for crossing an occlusion in a vessel
WO2008098191A2 (en) 2007-02-08 2008-08-14 C. R. Bard, Inc. Shape memory medical device and methods of manufacturing
US9387308B2 (en) * 2007-04-23 2016-07-12 Cardioguidance Biomedical, Llc Guidewire with adjustable stiffness
US7981148B2 (en) * 2007-05-16 2011-07-19 Boston Scientific Scimed, Inc. Stent delivery catheter
US8409114B2 (en) 2007-08-02 2013-04-02 Boston Scientific Scimed, Inc. Composite elongate medical device including distal tubular member
US8105246B2 (en) 2007-08-03 2012-01-31 Boston Scientific Scimed, Inc. Elongate medical device having enhanced torque and methods thereof
US8821477B2 (en) 2007-08-06 2014-09-02 Boston Scientific Scimed, Inc. Alternative micromachined structures
US9808595B2 (en) 2007-08-07 2017-11-07 Boston Scientific Scimed, Inc Microfabricated catheter with improved bonding structure
US20090076416A1 (en) * 2007-09-17 2009-03-19 Medtronic Vascular, Inc. Guidewire with Adjustable Core
EP2200505A1 (en) * 2007-10-26 2010-06-30 St. Jude Medical Systems AB Sensor guide wire
US20090118675A1 (en) * 2007-11-02 2009-05-07 Boston Scientific Scimed, Inc. Elongate medical device with a shapeable tip
US7841994B2 (en) 2007-11-02 2010-11-30 Boston Scientific Scimed, Inc. Medical device for crossing an occlusion in a vessel
US20090118704A1 (en) * 2007-11-02 2009-05-07 Boston Scientific Scimed, Inc. Interconnected ribbon coils, medical devices including an interconnected ribbon coil, and methods for manufacturing an interconnected ribbon coil
US8460213B2 (en) * 2008-01-03 2013-06-11 Boston Scientific Scimed, Inc. Cut tubular members for a medical device and methods for making and using the same
US8376961B2 (en) 2008-04-07 2013-02-19 Boston Scientific Scimed, Inc. Micromachined composite guidewire structure with anisotropic bending properties
US8353812B2 (en) 2008-06-04 2013-01-15 Neovista, Inc. Handheld radiation delivery system
US8535243B2 (en) 2008-09-10 2013-09-17 Boston Scientific Scimed, Inc. Medical devices and tapered tubular members for use in medical devices
EP2370237B1 (en) 2008-12-08 2015-12-02 Jeff Christian Micro-cutting machine for forming cuts in products
US11406791B2 (en) 2009-04-03 2022-08-09 Scientia Vascular, Inc. Micro-fabricated guidewire devices having varying diameters
US10363389B2 (en) * 2009-04-03 2019-07-30 Scientia Vascular, Llc Micro-fabricated guidewire devices having varying diameters
US8795254B2 (en) 2008-12-10 2014-08-05 Boston Scientific Scimed, Inc. Medical devices with a slotted tubular member having improved stress distribution
US8444669B2 (en) 2008-12-15 2013-05-21 Boston Scientific Scimed, Inc. Embolic filter delivery system and method
US20110276034A1 (en) * 2009-01-15 2011-11-10 Cathrx Ltd Steerable stylet
GB0902339D0 (en) * 2009-02-12 2009-04-01 St Georges Healthcare Nhs Trus Percutaneous guidewire
US20100249655A1 (en) * 2009-03-30 2010-09-30 C. R. Bard, Inc. Tip-Shapeable Guidewire
US9067333B2 (en) * 2009-04-03 2015-06-30 Scientia Vascular, Llc Micro-fabricated guidewire devices having elastomeric fill compositions
US20100256603A1 (en) * 2009-04-03 2010-10-07 Scientia Vascular, Llc Micro-fabricated Catheter Devices Formed Having Elastomeric Fill Compositions
US9616195B2 (en) 2009-04-03 2017-04-11 Scientia Vascular, Llc Micro-fabricated catheter devices having varying diameters
US20100256604A1 (en) * 2009-04-03 2010-10-07 Scientia Vascular, Llc Micro-fabricated Catheter Devices Formed Having Elastomeric Compositions
US9072873B2 (en) * 2009-04-03 2015-07-07 Scientia Vascular, Llc Micro-fabricated guidewire devices having elastomeric compositions
US9950137B2 (en) * 2009-04-03 2018-04-24 Scientia Vascular, Llc Micro-fabricated guidewire devices formed with hybrid materials
JP2010268974A (en) * 2009-05-21 2010-12-02 Asahi Intecc Co Ltd Method of producing metallic material, guide wire, and balloon catheter
US20110060316A1 (en) * 2009-09-04 2011-03-10 Dicarlo Paul Tipped Ribbon Integrated Guidewire
US8137293B2 (en) 2009-11-17 2012-03-20 Boston Scientific Scimed, Inc. Guidewires including a porous nickel-titanium alloy
JP2013523282A (en) 2010-03-31 2013-06-17 ボストン サイエンティフィック サイムド,インコーポレイテッド Guide wire with bending stiffness profile
US9795765B2 (en) 2010-04-09 2017-10-24 St. Jude Medical International Holding S.À R.L. Variable stiffness steering mechanism for catheters
US8764779B2 (en) 2010-05-13 2014-07-01 Rex Medical, L.P. Rotational thrombectomy wire
US9023070B2 (en) 2010-05-13 2015-05-05 Rex Medical, L.P. Rotational thrombectomy wire coupler
US9795406B2 (en) 2010-05-13 2017-10-24 Rex Medical, L.P. Rotational thrombectomy wire
US8663259B2 (en) 2010-05-13 2014-03-04 Rex Medical L.P. Rotational thrombectomy wire
US20120004493A1 (en) * 2010-07-02 2012-01-05 Hedger Troy S System for delivering treatment agents
US11298251B2 (en) 2010-11-17 2022-04-12 Abbott Cardiovascular Systems, Inc. Radiopaque intraluminal stents comprising cobalt-based alloys with primarily single-phase supersaturated tungsten content
JP5382953B2 (en) * 2011-01-28 2014-01-08 朝日インテック株式会社 Guide wire
WO2012106628A1 (en) 2011-02-04 2012-08-09 Boston Scientific Scimed, Inc. Guidewires and methods for making and using the same
US9072874B2 (en) 2011-05-13 2015-07-07 Boston Scientific Scimed, Inc. Medical devices with a heat transfer region and a heat sink region and methods for manufacturing medical devices
US9724494B2 (en) 2011-06-29 2017-08-08 Abbott Cardiovascular Systems, Inc. Guide wire device including a solderable linear elastic nickel-titanium distal end section and methods of preparation therefor
US20130025588A1 (en) * 2011-07-26 2013-01-31 Cook Medical Technologies Llc Loading dilator
WO2014107600A1 (en) * 2013-01-03 2014-07-10 Summit Access, LLC Composite wires for use in medical procedures and associated methods
JP5814287B2 (en) * 2013-03-25 2015-11-17 株式会社フジクラ Guide wire
US9855404B2 (en) 2013-05-03 2018-01-02 St. Jude Medical International Holding S.À R.L. Dual bend radii steering catheter
US10835183B2 (en) 2013-07-01 2020-11-17 Zurich Medical Corporation Apparatus and method for intravascular measurements
AU2014284381B2 (en) 2013-07-01 2019-04-18 Zurich Medical Corporation Apparatus and method for intravascular measurements
US9901706B2 (en) 2014-04-11 2018-02-27 Boston Scientific Scimed, Inc. Catheters and catheter shafts
EP4241820A1 (en) * 2015-01-23 2023-09-13 Terumo Kabushiki Kaisha Guide wire
US11020017B2 (en) * 2015-02-16 2021-06-01 Biosense Webster (Israel) Ltd. Angioplasty guidewire
US20160271366A1 (en) * 2015-03-19 2016-09-22 Cook Medical Technologies Llc Steerable catheter
US10299812B2 (en) 2015-06-05 2019-05-28 Cook Medical Technologies Llc Medical device snare
WO2017037538A2 (en) 2015-09-04 2017-03-09 Besselink Petrus A Flexible and steerable device
US11351048B2 (en) 2015-11-16 2022-06-07 Boston Scientific Scimed, Inc. Stent delivery systems with a reinforced deployment sheath
US10252024B2 (en) 2016-04-05 2019-04-09 Stryker Corporation Medical devices and methods of manufacturing same
US11207502B2 (en) 2016-07-18 2021-12-28 Scientia Vascular, Llc Guidewire devices having shapeable tips and bypass cuts
US11052228B2 (en) 2016-07-18 2021-07-06 Scientia Vascular, Llc Guidewire devices having shapeable tips and bypass cuts
US10821268B2 (en) * 2016-09-14 2020-11-03 Scientia Vascular, Llc Integrated coil vascular devices
US11141566B2 (en) * 2016-11-06 2021-10-12 Bendit Technologies Ltd. Steering tool
US11452541B2 (en) 2016-12-22 2022-09-27 Scientia Vascular, Inc. Intravascular device having a selectively deflectable tip
ES2966345T3 (en) 2017-05-26 2024-04-22 Scientia Vascular Inc Microfabricated medical device with a non-helical cutting arrangement
EP3661584A4 (en) 2017-08-02 2021-06-09 Malekmehr, Farshad Guidewire
US11305095B2 (en) 2018-02-22 2022-04-19 Scientia Vascular, Llc Microfabricated catheter having an intermediate preferred bending section
EP3908194A1 (en) * 2019-01-07 2021-11-17 Koninklijke Philips N.V. Increased flexibility substrate for intraluminal ultrasound imaging assembly
CN115175722A (en) * 2020-03-11 2022-10-11 史赛克公司 Slotted medical instrument with filler
WO2023053245A1 (en) * 2021-09-29 2023-04-06 朝日インテック株式会社 Guide wire
DE102022117162A1 (en) * 2022-07-11 2024-01-11 Phenox Gmbh guide wire

Family Cites Families (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3841308A (en) * 1973-10-15 1974-10-15 Medical Evaluation Devices & I Distally valved catheter device
US4353358A (en) * 1980-08-28 1982-10-12 Emerson Reynolds L Sigmoidoscope
US4548206A (en) * 1983-07-21 1985-10-22 Cook, Incorporated Catheter wire guide with movable mandril
US5114402A (en) * 1983-10-31 1992-05-19 Catheter Research, Inc. Spring-biased tip assembly
US4580551A (en) * 1984-11-02 1986-04-08 Warner-Lambert Technologies, Inc. Flexible plastic tube for endoscopes and the like
CH667208A5 (en) * 1985-11-21 1988-09-30 Sarcem Sa REMOTE CONTROL CATHETER-GUIDE.
ES2000247A4 (en) * 1986-05-23 1988-02-01 Sarcem Sa CATHETER-GUIDE
US5154705A (en) * 1987-09-30 1992-10-13 Lake Region Manufacturing Co., Inc. Hollow lumen cable apparatus
US5165421A (en) * 1987-09-30 1992-11-24 Lake Region Manufacturing Co., Inc. Hollow lumen cable apparatus
US5368035A (en) * 1988-03-21 1994-11-29 Boston Scientific Corporation Ultrasound imaging guidewire
US4940062A (en) * 1988-05-26 1990-07-10 Advanced Cardiovascular Systems, Inc. Guiding member with deflectable tip
US4998923A (en) * 1988-08-11 1991-03-12 Advanced Cardiovascular Systems, Inc. Steerable dilatation catheter
US5037391A (en) * 1989-01-09 1991-08-06 Pilot Cardiovascular Systems, Inc. Steerable angioplasty device
US4911148A (en) * 1989-03-14 1990-03-27 Intramed Laboratories, Inc. Deflectable-end endoscope with detachable flexible shaft assembly
US5095915A (en) * 1990-03-19 1992-03-17 Target Therapeutics Guidewire with flexible distal tip
US5095911A (en) * 1990-05-18 1992-03-17 Cardiovascular Imaging Systems, Inc. Guidewire with imaging capability
US5228441A (en) * 1991-02-15 1993-07-20 Lundquist Ingemar H Torquable catheter and method
US5315996A (en) * 1991-02-15 1994-05-31 Lundquist Ingemar H Torquable catheter and method
AU660444B2 (en) * 1991-02-15 1995-06-29 Ingemar H. Lundquist Torquable catheter and method
US5329923A (en) * 1991-02-15 1994-07-19 Lundquist Ingemar H Torquable catheter
US5353798A (en) * 1991-03-13 1994-10-11 Scimed Life Systems, Incorporated Intravascular imaging apparatus and methods for use and manufacture
US5243988A (en) * 1991-03-13 1993-09-14 Scimed Life Systems, Inc. Intravascular imaging apparatus and methods for use and manufacture
CA2117088A1 (en) * 1991-09-05 1993-03-18 David R. Holmes Flexible tubular device for use in medical applications
US5437288A (en) * 1992-09-04 1995-08-01 Mayo Foundation For Medical Education And Research Flexible catheter guidewire
US5334145A (en) * 1992-09-16 1994-08-02 Lundquist Ingemar H Torquable catheter
US5833632A (en) * 1995-12-07 1998-11-10 Sarcos, Inc. Hollow guide wire apparatus catheters

Also Published As

Publication number Publication date
JP2000503225A (en) 2000-03-21
WO1997025914A1 (en) 1997-07-24
EP0879013A4 (en) 2000-05-03
EP0879013A1 (en) 1998-11-25
US6004279A (en) 1999-12-21

Similar Documents

Publication Publication Date Title
US6004279A (en) Medical guidewire
US8834453B2 (en) Steerable wound drain device
US5554139A (en) Catheter
EP0379578B1 (en) Catheter for blood vessel
US6945956B2 (en) Steerable catheter
US8636270B2 (en) Structure for use as part of a medical device
US5372144A (en) Navigability improved guidewire construction and method of using same
US5843050A (en) Microcatheter
US8663196B2 (en) Endovascular sheath with gradable stiffness device and method
EP0309471B1 (en) Catheter
US6185449B1 (en) Braidless guide catheter
EP1819390B1 (en) Introducer apparatus
EP3120892A1 (en) Catheter shaft designs
JP2004136121A (en) Hybrid tube shape guide wire for catheter
CA2609966A1 (en) Aspiration catheter
JP2004024625A (en) Catheter and medical tube
WO1992008510A1 (en) Guidewire for crossing occlusions in blood vessels
CA2540470A1 (en) Expandable guide sheath and apparatus and methods for making them
EP1363540B1 (en) Imaging catheter for use inside a guiding catheter
US20070106245A1 (en) Infusion guidewire
EP0410557A2 (en) A guide wire
WO1996016690A1 (en) A catheter having wall support to prevent collapse thereof
WO2021183436A1 (en) Arterial access needle with proximal port
EP3412329B1 (en) Catheter
JP7125517B2 (en) Dilator

Legal Events

Date Code Title Description
FZDE Dead