CA2246250A1 - Thermally stable ethylene/acid copolymers - Google Patents

Thermally stable ethylene/acid copolymers Download PDF

Info

Publication number
CA2246250A1
CA2246250A1 CA002246250A CA2246250A CA2246250A1 CA 2246250 A1 CA2246250 A1 CA 2246250A1 CA 002246250 A CA002246250 A CA 002246250A CA 2246250 A CA2246250 A CA 2246250A CA 2246250 A1 CA2246250 A1 CA 2246250A1
Authority
CA
Canada
Prior art keywords
anhydride
acid
units
meth
weight percent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
CA002246250A
Other languages
French (fr)
Inventor
Richard Tien-Hua Chou
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
EIDP Inc
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Publication of CA2246250A1 publication Critical patent/CA2246250A1/en
Abandoned legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F210/00Copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond
    • C08F210/02Ethene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F8/00Chemical modification by after-treatment
    • C08F8/44Preparation of metal salts or ammonium salts
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/02Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L23/04Homopolymers or copolymers of ethene
    • C08L23/08Copolymers of ethene
    • C08L23/0846Copolymers of ethene with unsaturated hydrocarbons containing other atoms than carbon or hydrogen atoms
    • C08L23/0869Acids or derivatives thereof
    • C08L23/0876Neutralised polymers, i.e. ionomers

Abstract

Ethylene/(meth)acrylic acid copolymers which have improved melt-thermal stability are described. The copolymers contain an intrachain anhydride unit derived from an additional comonomer which is an anhydride or anhydride forming comonomer, such as maleic anhydride and maleic acid or its monomethyl ester, present at a level of 0.05 to 3.0 weight percent. Measured properties of the terpolymers, other than thermal stability, are about the same as comparable ethylene/(meth)acrylic acid copolymers with no anhydride monomer.

Description

TI~LE
THERMALLY STABLE ETHYLENE/ACID COPOLYMERS
This is a continll~tion-in-part, of application Serial Terpolymers of ethylene; (meth)acrylic acid and alkyl acrylates form a class of acid copolymers with lower modulus and good low te,l,p~ ,al~re prop~ 1 Lies. A method of pl~p~ g these acid copolymers is disclosed in U.S.
Patent No. 4,690,981. They are used principally to form 'soft' ionomers by 5 neutralization of the acid. However, these acid copolymers with acrylates also find utility in their own right.
Ethylene/(meth)acrylic acid copolymers, incl~lAing terpolymers with an alkyl acrylate are A~Pficient in melt-thermal stability above 240~C. Melt flow starts to decrease. This is believed to be due to anhydride formation from 10 two carboxylic acid groups in ~djrc~ chains which form crosslinks, and hence reduce tractability and melt flow. This results in inc,eascd gel, dccledsed meltLd-lvability, and difficult extruder ~ ing after melt ~locessh-g in an extruder.Maleic anhydride as a monomer grafted onto ~-xicting polymers is well known as a means of obtaini.lg a polar functionality in polyolefin 15 polymers. Such graft-copolymers are useful as compatibiliz ing agents and as CO...pO~ t~ of hot-melt adhesives. There are also disclosures of maleic anhydride gra~ted ethylene/m-n~ rboxylic acid copolymers. Typical is JP-83-109721, which Ai~loses laminates where one layer is an ethylene/monoc~l~ylic acid polymer grafted with 0.05 to 5.0% maleic anhydride. However, ~fiting ~q~es an additional step after regular poly~ ;Qn~ and in a~lAitinn iS subject to considerable variation in product obtained, as well as ch~nges in p.op~.Les from ungrafted m3t~ 1 particularly a red~lction in melt flow. Re~Al~cti- n in melt flow is the very factor which melt-th~rm~l stabili7~tion seeks to avoid.
2 5 The problem of melt-thermal instability has been well recogllized, and various all~l..~ have been made to solve it. U.S. Patent No.
4,594,382 (~Ioening et al.), Ai~closcos that ~AAition of 5% or less of a hy~Ldled collli)uu.ld which deco~oses at from 100 to 300~C, such as hydrated ~ min~
i...~loves the melt-th~ stability.
3 o A related apl,lo~cl. is disclosed in U.S. Patent No. 5,276,135 (Powell), where allowing a small controlled h~cl~se in the (low) moisture content over the amount which tls rm~lly exists after air and nitrogen ~h~g, ,ç~ves melt-thprm~l stability. This patent also discloses that low t~ m~el.A~e polymerization of ethylene/(meth)acrylic acid copolymers, below 3 s the typical 200 - 270~C, produces polymer with greater melt-thermal stability.

AMENDED SltEET
IPEAlEP

.
.

This is said to be due to the greater nurnber of adjacent carboxylic acid units formed when low tc~l~.d~ polymP~i7~tion is used, a~lj~çnt monocarboxylic acid groups reacting together, releasing water and forming intrachain anhydride groups in prefcl~"ce to intclchdill anhydride groups when no diads are present.
5 However, low telmp~laluLc pol~ alion strongly de~rea3cs productivity, in addition to making polymer with quite di~r, nl ..,~çk~llical plop~.lies than polymer made at normal polymPri7~tion tel~lalu~s.
All these approaches are presllmed to be effective because water or released water s~pl~3ses illl~l~in anhydride crosslink formation. They 0 have the disadvantages of low produ-;livily, change in the plu~ llies of the polymer, or need for a significant amount of a particulate additive.
There is a need for a mPtho~ of improving the melt-thPrm~l stability of ethylene/(meth)acrylic acid copolymers, inclllfling terpolymers with alkyl acrylates, which does not involve (i) recl~lc-ing productivity during 5 plep~dlion of the copolymer, (ii) a change in ll~Pcl-AI-ic~l pl~p~"lies, (iii) the difficulty of producing polymer with controlled moisture levels, or (iv) does not require use of an additive.

SUMMARY OF TH~ INVENTION
2 o The invention depends on the ,ecog.. ;l;on that one can suppress unwanted anhydride formation (i~lt~,~hain), not just by encouraging the form~tion of, but by act~ally directly introducing anhydride units intr~h~in This can be achieved by introducing by copol~..,e~ ;on, anhydride or anhydride producing monomer into the polymer chain itself. Suitable~ 5 mol n mPrs for this ~ ose are dic~l,o~lic acid anhydrides, dicarboxylic acids elves, or dicarboxylic acid half esters.
More specifically, the invention is a co.l.posilion, compricing:
an ethylene/(meth)acr,vlic acid copolyrner having from 5 to 25 weight percent (meth)acrylic acid derived units, the acid copolymer having additionally 3 o copolyl~ chaill units derived from a further com-n.-.~ or comonomPrs selected from the group con~i~ting of maleic anhydride, itaconic anhydride, methyl hydrogen m~ t~, ethyl hydrogen m~le~t~ maleic acid, itaconic acid, and a ~ c of any of these monom~r~, the ;.~1~ rh~;-- units from the further comonnmer or comnnom~ being 3 5 present at a total level of 0.05 to 3.0 weight percent of the copolymer.

AMFNr)~) SHEE
IP~'EP

. K

DETAILED DESCRIPTIO~ OF THE INVENTION
In this disclosure, the term copolymer means a polymer produced from more than one monomer. Copolymers may be dipolymers having only 5 two monoll,c.s copolymerized together, terpolymers or have more than three monomers. The copolymers of the invention are 'direct' copolymers, that is to say they are not graft-copolymers where monomer is pol~,ll.,.~ed in the plesence of polymer and the resl-lting polymer ~ rh~s to the .oYi~ting polymer chain. In this regard, the comol-n...~, ~ produce single 'i~ achain' units in the 10 copolymer, as distinct from either polymeric 'side-chain' units or single 'crosslink' units.
Copolymers have units derived from the various comonomers poly...- ;,.~.1 It is common to say polymers 'contain' a given monomer, polymers 'having' a certain amount of a given mo,lollll, or polymers 'o~ a givenmol~,ll~r, all being commonly acc~,~t~d shorthand for me~ning units derived from that m-)rl~m~r.
The ethylene/monocarboxylic acid copolymers of this disclosure have as the monoc ~-l~lic acid acrylic acid or methacrylic acid or both. These three possibilities are co~ liently referred to in the disclosure by using the 2 o term 'ethylenel(meth)acrylic acid copolymers'.
The term ';~ 11A;~ in this disclosure is used to distinguish only from mtel~l~in units which are crosslink units. The hlllachain anhydride ring does not ,~c~,ss~; ;ly include two backbone carbon atoms. Thus in the case of maleic a~ ;de the unit ~vill include two backbone carbon atoms, but in the 2 s case of it~onic acid which is methylene succinic acid, or its anhydride, the anhydride unit will not include two backbone carbon atoms.
The 'further com~n-~2n~(s)' of the copolymers of this invention, that is to say in addition to the ethylene, (meth)acrylic acid, are l"onvll,e.~
which have anhydride units or can readily directly lead to int~h~in anhydride 3 o units in the polymer. Suitable anhydride monomers are dic,~l.o~-ylic acid anhydrides such as maleic anhydride and itaconic anhydride. Mono..~ ~ which d~,tly yield ir~.,ch~iM anhydride units are dicarboxylic acids such as maleic acid, it~ nic acid, run~;C acid, and half esters of these acids. Such monomers have acid groups on ~;13ar~nt c~bol~s or an acid and an ester group on ~ c~.nt s 3 5 c~l/ons. The p,efell~d comon~-m~rs are maleic anhydride and ethyl hydrogen Ai~ r~ 'EC
I P--AJ'- ~

maleate. Most ~refe,led is maleic anhyd~ide. When the monomers are diacids they readily dehydrate and produce primarily intrachain anhydride units, in conkast to forrning interchain (crosslink) anhydride units as do monoc~rboxylic acid units.
The amount of the anhydride or anhydride producing comonomer is from O.OS to 3.0 weight percent, ~lc~eldbly 0.3 to 2.0 weight percent, and more preferably from 0.3 to 1.5, most preferably from 0.5 to 1.2 weight percent.Below O.OS there is littie or no improvement in melt-thermal stability. Above 3.0 percent there are flimini~hing return_, as well as inc,~ lg cost in producing 0 the copolymer, as well as the begi~ c of p.op. ,ly cll~ng~ in the polymer.The invention is applicable to copolymers c~ Ainit~ from 5 to 30 weight percent (meth)acrylic acid, preferably from 8 to 22 weight percent, the copolymers having an MI of from lO0 to O.l. The invention is particularly useful for low MI polymers, since when crosslinkin~ occurs with low MI (high molecular weight) polymers, the percent change in viscosity for a given molar amount of cros~linkin~ is greater ~han with a high MI polymer. It is thus particularly useful for acid copolymers having an MI of less than 20, and more particularly for copolymers having an Ml of less than lO. The invention is verv useful for the more common acid copolymers having no softening alkyl 2 o acrylate present. The invention does not include neutralized acid copolymers, i.e., ionomers. Ionomers retain more water, and for this and other reasons melt stability falls into a dirr~ nt category.
While not co.. ;~ to any particular theory, it is believed that the p~se.lcc; or formation of illtl~cha~l anhydride units su~plesses fomlAtion of 2 5 fur~er anhydride units of the illte.chain type, possibly partiy as a result of eqnilibrillm consid~ation~ Anhydride units formed from (meth)acrylic acid units are more likely to be ullw~lted interchain anhydride units which in.i~
viscosity, ~hcleds ;.~I,r rhA;~ anhydride units have virtually no effect on viscosity. Because of the particular ~ ~livilies of ethylene and 3 o (meth)acrylic acid, the ple~.,ce of two ~ nt acid units, at least for polymers with less than 20 weight percent _cid, is rare unless produced at low t~ c~ s where productivity is drastically re~luce(l Even then, such acid groups will not be ~nd~nl from adjn~nt ill~ chain c&l,ons, but on ~lt~ te carbon atoms along the chain.

AM~NDED SHEET
IPEA/EP

The copolymers of this invention are produced by standard free-radical copolymeri7~tion methn~ls, under high p~ e, opc.dLing in a continuous ma~u1ei. Monomers are fed into the reaction ulixlu e in a p1(,po1lionwhich relates to the monomer's reactivity and the amount desired to be 5 inco1~o1dted. ~eacled monomers are recycled. In this way, uniform, near-random distribution of monomer units along the chain is achieved.
Poly,..~ ;on in this .11alu1.,- is well known, and is described in U.S. Patent No. 4,35 l ,93 l (~nnit~ge) which is hereby inco1~,dted by lef~ ,e11ce. At high acid levels it is an advantage to use so-called co-solvent technology to preventphase separation of monomer and polymer. This is fully described in U.S.
Patents Nos. 5,028,674 (Hatch et al.), and 5,057,593 (Stat_), both of which are also hereby incorporated by reference.
While the monocarboxylic acids and dic~bo~ylic acids may differ SO11~ ~.hdl in reactivity, they may be fed together as a mixed solution. The reactivity of the acids is so great colllpal~,d with ethylene that all acid is largely co~ led as it is introduced at the 1e4uilod rate for the ~llou,11~ of monomer wanted in the polymer.

EXAMPLES
2 o Exl~e.il11e. tal polymers cG~ ;nil-g either maleic anhydride or methyl hydrogen m~ t~ were ~ ~ed in a pilot plant unit in the n~lllc.
described above. Control s~les without the anhydride or illtldchail~
anhydride-formin~ monomer were also made and co111~ ed, and con~p~ ;sion was also madc with collJ~lh.~ial sdll~lcs of comparable co~osilion. The 2 5 maleic anllydride or ethyl hydrogen m~le~te was mixed with the meth~tylic or acrylic acid, formin~ a homogencous solution for feeding to the pilot plant dulocla~e which was ope~dl~d at 240~C and l 898288 g/cm2 (27,000 psi).

A~ î'!DcD SHEET
IPEAJEP

Composition of the polymers was determined using infrared absorbance. The methacrylic or acrylic acid content was determine~ at 940 cm~l and the anhydride content at 1783 cm~l. To insure the anhydride forming monomer ethyl hydrogen maleate was converted to anhydride for IR
5 analysis, the pressed film sample was treated at 290~C for one minute. It is believed that this II~AI~ II converts essenti~lly 100 % of the monomer to anhydride. A list of samples tested is given in Table 1. The ethyl hydrogen m~le3te (MAME) content shown refers to the weight percent of MAME
calculated from the amount of anhydride de~, ...it~ed by IR
0 Melt-thermal stability was ~e~ d by comp~;llg Melt Index (MI) at 190~C, using ASTM D-1238, condition E, before and after a heat tre~tm~nt at 290~C for 60 ..~il,..les in a melt indexer barrel. Prior to all MI
m~ cllt~ samples were dried for two days in a vacuum oven at 60~C. The Melt Index Ratio (MIR) is the ratio of MI after tre~trn~nt to MI before 15 ll~n~ rnt The higher the value, the less change, and more melt-th~rm~lly stable the polymer.
It is clearly hllpol t~l that the presence of anhydride at the levels used does not m~t~ri~lly change plo~llies (other than melt-thermal stability) COlllp~ll~ with co---~ ble ethylene/(meth)acrylic acid copolymers without 2 o intrachain anhydride units. In order to ~letermin~ that the copolymers with and without anhydride had comparable pro~.lies, adhesion to LLDPE and ~1.. ,,;.. foil were tested. ~llh~ )n to these substrates was ll~ea~ ,d as follows. Films of the polymers, .005 cm (2 mil) thick, were individually heat sealed to each substrate using a Sentinel Heat Sealer under the following conditions: 0.5 secon-lc dwell time, 2109 g/cm2 (30 psi) jaw p~,ss~, both jaws heated. The films were sealed to the LLDPE using tri-foil as a carrier on each side of the films. For sealing the films to foil, the tri-foil was used on the film side only. The a&esion test was p~ru~lcd using an Instron with the samples T-peeled at 25.4 cm (10 inches) per minute. Flexural modulus was also 3 o .-lea~cd on the s~mpl~s using ASTM D790. The results of the a&esion test, and the flexural modulus values ~ct~ d are given in Table 2.
While colllp~able ~lh~sion and flexural modulus to control samples does not ensure that all pro~.lies remain the same, adhesion and flexural modulus are h.llJoll~l ~no~ ies, and are sensili~ to acid cont~nt~ and AM~N~EQ SHEE T
~P~ ''J_'7 their measured values can provide a godd indication if any substantial change inother plo~,lies is likely to have taken place with anhydride modification.
Table 1 indicates ~at the presence of the anhydride or anhydride producing monomer improves melt-thermal stability signicantly. While there is 5 not a rigid q~ re trend, in terms of improved stabiltiy with increasing level of third mOll~m~r, values of MIR for controls, either standard plant m~t~ri~l or e~ ;...- nt~l S~~ 9, are all lower than polymers with maleic anhydride or cthyl hydrogen m~ te, and generally signific~ntly lower. Ofthe two s~hili~ing monGlu~,~, based on the limited data, there is no clear inl1ir?~tion 0 that one i~ beMer than the other.
Table 2 inr~ic~tes polymers with and without anhydride have generally CGl~ dble ~ h~cion values. ~-lh~cior~ based on sealing at 230~C is solllGv~l~t more v~;able and lower than adhesion values at 260~C.
Neverthele~s, there is no clear change when anhydride monomer is present.
5 Flexural moclul-lc values also indicate the plese.lce of anhydride does not produce any clear change.
There are no eY~nnples of copolymers co~ g an allcyl acrylate and the further comollolllc.s. However, the further com- nom~r or co.~-ono..~ s will be effective in stabilizing acid copolymers which also contain 2 o an alkyl acrylate.

AM~NDED SîYEET
IPEAIEP

, ... . . . .. . .

THERMAL STABILITY OF ANHYDRIDE-CONTAINING ACID
COPOLYMERS

Polymer Composition Wei~eht percent MI MI after MI ratio # (v~.%) initial 290~/60min.
E/MAA/~LAH 87.5/11.9/0.6 31 20 0.645 2 E/MAA/MAME 85.8/13.1/1/1 31.1 24.1 0.775 3 E/MAA/M~I 87.2/12.0/0.8 34.4 28.4 0.816 4 E/MAA~ 88.0/11.1/0.9 23.7 18.3 0.772 E/MAA/MAH 93.9/5.7/0.4 43.9 38.1 0.868 6 E/MA~E 92.0/7.4/0.6 17.1 12.2 0.713 7 E/~IAAI~ 83.4/15.8/0.8 100.6 73.1 0.727 8 E/MAAI~ 89.5/10.0/0.5 6.65 3.75 0.564 9 EIMAA~ 91.5/8.1/0.4 23.4 15 0.641 E/MAA/M~ 87.3/11.8/0.9 10.9 7.6 0.697 lC E/MAA 90.0/10.0 10.3 4.8 0.466 11 E/A.A/MAH 90.4/8.9l0.7 12.1 6.74 0.557 2C E/AA 91.8/8.2 9.4 3.57 0.380 3C-P E/MAA 91.0/9.0 9.1 4.6 0.505 4C-P E/MAA 91.0/9.0 8.6 3.4 0.395 5C-P E/MAA 90.0/10.0 33 15.5 0.470 6C-P E/MAA 85.0/15.0 45.3 24.8 0.547 7C-P E/AA 91.0/9.0 10 5.29 0.529 E = Ethylene; MAA = Methacrylic acid; AA = Acrylic acid; MAH = Maleic anhydride; MAME = Monoethyl ester of maleic acid (ethyl hydrogen m~le~te).
Suffix -P = Co~ l .~ial Plant m~teri~l: All other samples pilot plant m~teri~l.

AMEN!~ED SHEET
IPEA/~P

, , ." . , t PROPERTIES OF ANHYDRIDE-CONTAINING ACID COPOLYMERS

PolYmer SealTemp. PeelS~ren~ Peel Stren~th Flexural # ~ F toLLDPE to 1 mil.Al foil Modulus ~/cm2 (~si) k~/cm2(Kpsi) 230 14.8 (0.21) 0.57 921.0 (13.1) 250 96.3 (1.37) 0.72 lC 230 54.8 (0.78) 0.17 991.3 (14.1) 250 123.0 (1.75) 0.46 11 230 53.4(0.76) 0.98 949.1 (13.5) 250 106.9 (1.52) 1.41 2C 230 38.0 (0.54) 0.66 921.0 (13.1) 25~ 121.0 (1.72) 1.71 Ah~N~?E2 SHEET
~P~P

Claims (6)

1. A composition, comprising:
an ethylene (meth)acrylic acid copolymer consisting of ethylene and from 5 to 30 weight percent (meth)acrylic acid, the acid copolymer having additionally copolymerized intrachain units derived from a further comonomer or comonomers selected from the group consisting of maleic anhydride, itaconic anhydride, methyl hydrogen maleate, ethyl hydrogen maleate, maleic acid, itaconic acid, and a mixture of any of these monomers, the intrachain units from the further comonomer or comonomers being present at a level of 0.05 to 3.0 weight percent with respect to the copolymer, the MI of the copolymer according to ASTM D-1238 at 190°C being from 0.1 to 100 g/10 min.
2. The composition of claim 1 wherein the further comonomer is maleic anhydride or ethyl hydrogen maleate.
3. The composition of claim 1 wherein the further comonomer derived units are present at a level of from 0.3 to 1.5 weight percent.
4. The composition of claim 2 wherein the level of (meth)acrylic acid dervived units is 8 to 22 weight percent.
5. The composition of claim 2 wherein the MI of the copolymer is from 0.1 to 20 g./10 min.
6. A process of stabilizing an ethylene (meth)acrylic acid copolymer having from 5 to 30 weight percent (meth)acrylic acid, optionally also containing up to 40 weight percent of an alkyl acrylate having an alkyl group with from 1 to 8 cabon atoms, said process comprising the addition of a copolymerized intrachain unit derived from a further comonomer or comonomers selected from the group consisting of maleic anhydride, itaconic anhydride, methyl hydrogen maleate, ethyl hydrogen maleate, maleic acid, itaconic acid, and a mixture of any of these monomers, the intrachain units from the further comonomer or comonomers being present at a level of 0.05 to 3.0 weight percent with respect to the copolymer, the MI of the copolymer being from 0.1 to 100 g/10 min.
CA002246250A 1996-03-22 1997-03-20 Thermally stable ethylene/acid copolymers Abandoned CA2246250A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US62018896A 1996-03-22 1996-03-22
US08/620,188 1996-03-22
US78037297A 1997-01-09 1997-01-09
US08/780,372 1997-01-09

Publications (1)

Publication Number Publication Date
CA2246250A1 true CA2246250A1 (en) 1997-09-25

Family

ID=27088670

Family Applications (1)

Application Number Title Priority Date Filing Date
CA002246250A Abandoned CA2246250A1 (en) 1996-03-22 1997-03-20 Thermally stable ethylene/acid copolymers

Country Status (6)

Country Link
US (2) US5902869A (en)
EP (1) EP0888391B1 (en)
JP (1) JP3942638B2 (en)
CA (1) CA2246250A1 (en)
DE (1) DE69705502T2 (en)
WO (1) WO1997034939A1 (en)

Families Citing this family (42)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070014897A1 (en) * 1992-06-05 2007-01-18 Ramesh Ram K Backseamed casing and packaged product incorporating same
US6221410B1 (en) * 1992-09-25 2001-04-24 Cryovac, Inc. Backseamed casing and packaged product incorporating same
CN1077029C (en) * 1995-10-06 2002-01-02 克里奥瓦克公司 Cylindrical packaging film with back-sealed seam and packaged product thereof
US5967030A (en) 1995-11-17 1999-10-19 Micron Technology, Inc. Global planarization method and apparatus
US6316363B1 (en) 1999-09-02 2001-11-13 Micron Technology, Inc. Deadhesion method and mechanism for wafer processing
US6331488B1 (en) 1997-05-23 2001-12-18 Micron Technology, Inc. Planarization process for semiconductor substrates
WO2000006619A1 (en) * 1998-07-27 2000-02-10 E.I. Du Pont De Nemours And Company Mixed-metal-neutralized-copolymer-resins for metal coating powder applications
US6218316B1 (en) * 1998-10-22 2001-04-17 Micron Technology, Inc. Planarization of non-planar surfaces in device fabrication
US6518172B1 (en) * 2000-08-29 2003-02-11 Micron Technology, Inc. Method for applying uniform pressurized film across wafer
US7112624B2 (en) 2001-01-19 2006-09-26 Exxonmobil Chemical Patents, Inc. Ethylene alkyl acrylate copolymers with improved heat resistance
US6515075B1 (en) * 2001-07-12 2003-02-04 Kimberly-Clark Worldwide, Inc. Films, fibers and articles of chemically modified polyethylene oxide compositions with improved environmental stability and method of making same
US6509419B1 (en) * 2001-07-12 2003-01-21 Kimberly-Clark Worldwide, Inc. Chemically modified polyethylene oxide compositions with improved environmental stability
DE10254280A1 (en) * 2002-11-20 2004-06-03 Basf Ag Ethylene terpolymer waxes, process for their preparation and their use
EP1422059B1 (en) * 2002-11-21 2012-04-25 Total Petrochemicals Research Feluy Multilayer rotational moulding
EP1631623B1 (en) * 2003-06-05 2014-12-31 E.I. Du Pont De Nemours And Company Multilayer film or sheet comprising SCUFF RESISTANT COMPOSITIONS COMPRISING ETHYLENE ACID COPOLYMERS AND POLYAMIDES
US20090298372A1 (en) * 2003-06-05 2009-12-03 E. I. Du Pont De Nemours And Company Article comprising ionomer and polyamide
US7153918B2 (en) * 2003-07-24 2006-12-26 E. I. Du Pont De Nemours And Company Random ethylene/alkyl acrylate copolymers, compounds and elastomeric compositions thereof with improved low temperature properties
US8455574B2 (en) * 2004-02-19 2013-06-04 E I Du Pont De Nemours And Company Composite compositions comprising cellulose and polymeric components
EP1812515A1 (en) * 2004-11-08 2007-08-01 E.I. Dupont De Nemours And Company Toughened polyamide for food packaging and health care applications
WO2006054741A1 (en) 2004-11-22 2006-05-26 Jsr Corporation Ionomer, method for producing same and molded article
US20070105984A1 (en) * 2005-11-07 2007-05-10 Griffin Elizabeth R Composition comprising cellulose and polyvinyl chloride polymer
US7144938B1 (en) 2005-12-02 2006-12-05 E. I. Du Pont De Nemours And Company Composition comprising ionomer and polyamide
WO2007135038A1 (en) * 2006-05-23 2007-11-29 Basf Se Method for producing ethylene copolymers
US7592056B2 (en) * 2006-10-24 2009-09-22 E.I. Du Pont De Nemours And Company Composition comprising ionomer and polyamide
US20080161503A1 (en) * 2006-12-29 2008-07-03 E.I. Du Pont De Nemours And Company Composition Comprising Ethylene Copolymer and Polyamide
US7834089B2 (en) 2007-05-08 2010-11-16 E. I. Du Pont De Nemours And Company Ionomeric ethylene vinyl alcohol compositions
WO2009158140A1 (en) * 2008-05-30 2009-12-30 E.I. Du Pont De Nemours And Company Molded articles comprising ionomer compositions
US8288467B2 (en) * 2008-12-08 2012-10-16 Nike, Inc. Zinc ionomer rubber activator
US20110020573A1 (en) * 2009-07-22 2011-01-27 E.I. Du Pont De Nemours And Company Polyamide composition containing ionomer
US20120157230A1 (en) 2010-12-20 2012-06-21 Robert Blink Golf ball layers based on polyalkenamer / ionomer / polyamide blends
US8586663B2 (en) 2011-02-08 2013-11-19 E I Du Pont De Nemours And Company Polymer composition comprising polyamide and ionomer
JP5854804B2 (en) * 2011-07-08 2016-02-09 ダンロップスポーツ株式会社 Golf ball resin composition and golf ball
JP5915321B2 (en) * 2012-03-29 2016-05-11 日本ポリエチレン株式会社 Laminated body for pressure vessel liner, pressure vessel and method for producing the same
US9631063B2 (en) * 2013-03-14 2017-04-25 Frito-Lay North America, Inc. Composition and method for making a flexible packaging film
WO2015160518A1 (en) * 2014-04-17 2015-10-22 Nike Innovate C.V. Golf ball with scuff-resistant cover
WO2015168068A1 (en) 2014-04-29 2015-11-05 E. I. Du Pont De Nemours And Company Photovoltaic cells with improved multilayer backsheet
WO2015168073A1 (en) 2014-04-29 2015-11-05 E. I. Du Pont De Nemours And Company Solar cell modules with improved backsheet
CN106232725A (en) 2014-04-29 2016-12-14 纳幕尔杜邦公司 There is the photovoltaic cell of the backboard of improvement
BR112021000469A2 (en) 2018-07-31 2021-04-06 Performance Materials Na, Inc. IONOMER
US20210261762A1 (en) * 2018-07-31 2021-08-26 Performance Materials Na, Inc. Ionomers of ethylene acid copolymers with enhanced creep resistance
US20210380775A1 (en) * 2018-09-28 2021-12-09 Performance Materials Na, Inc. Polyamide foam preparation
KR20220132867A (en) * 2021-03-24 2022-10-04 에스케이이노베이션 주식회사 Method for producing ethylene-acrylic acid copolymer

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4351931A (en) * 1961-06-26 1982-09-28 E. I. Du Pont De Nemours And Company Polyethylene copolymers
BE621846A (en) * 1961-08-31 1900-01-01
US3904588A (en) * 1973-08-09 1975-09-09 Du Pont Random ethylene/alkyl acrylate 1,4-butene-dioic acid terpolymers
DE3109950A1 (en) * 1981-03-14 1982-09-23 Basf Ag, 6700 Ludwigshafen HARD WAXES FROM TERPOLYMERS OF ETHYLENE WITH UNSATURED CARBONIC ACIDS AND UNSATURED CARBONIC ACID ESTERS
DE3148676C2 (en) * 1981-12-09 1985-11-21 Carl Hurth Maschinen- und Zahnradfabrik GmbH & Co, 8000 München Non-positive, detachable shaft-hub connection
US4690981A (en) * 1983-03-21 1987-09-01 E. I. Du Pont De Nemours And Company Ionomers having improved low temperature properties
DE3404742A1 (en) * 1984-02-10 1985-08-14 Basf Ag, 6700 Ludwigshafen METHOD FOR PRODUCING COPOLYMERISATES OF ETHYLENE WITH COMONOMERS CONTAINING CARBOXYL GROUPS IN A 2-ZONE REACTOR AT PRESSURES ABOVE 500 BAR
US4666988A (en) * 1984-10-18 1987-05-19 The Dow Chemical Company Ethylene copolymers reacted with metal oxides
US4766174A (en) * 1986-01-02 1988-08-23 E. I. Du Pont De Nemours And Company Process for preparing melt-processible aluminum ionomer blends
JPS638458A (en) * 1986-06-27 1988-01-14 Sumitomo Chem Co Ltd Coloring resin composition
DE3644668A1 (en) * 1986-12-30 1988-07-14 Basf Ag THERMOPLASTIC MOLDING MATERIALS BASED ON POLYAMIDES AND ETHYLENE COPOLYMERS
US4804703A (en) * 1987-07-12 1989-02-14 E. I. Du Pont De Nemours And Company Mineral reinforced nylon compositions for blowmolding
CA1338025C (en) * 1988-08-29 1996-01-30 Andri Elia Elia Toughened nylons characterized by low mold deposit
DE3903364A1 (en) * 1989-02-04 1990-08-09 Basf Ag IMPACT TOOL POLYAMIDE MOLDS
JPH02235741A (en) * 1989-03-10 1990-09-18 Showa Denko Kk Laminate and preparation thereof
US5130372A (en) * 1989-12-18 1992-07-14 Allied-Signal Inc. Ionomers of low molecular weight copolymer amides
WO1992015644A1 (en) * 1991-03-05 1992-09-17 Allied-Signal Inc. Flexible thermoplastic compositions comprising nylon
US5276135A (en) * 1992-03-20 1994-01-04 E. I. Du Pont De Nemours And Company Stabilized copolymers of ethylene with ethylenically unsaturated carboxylic acids
US5631328A (en) * 1993-10-27 1997-05-20 Chevron Chemical Company Low-haze ionomers of copolymers of alpha-olefins, carboxylic acid esters, and optional comonomers, and processes for making and acidifying these ionomers
NL9500471A (en) * 1995-03-09 1996-10-01 Supertape B V Adhesive tape to be applied between a cathode-ray tube, e.g. for television pictures, and a clamping strip to be applied around the cathode-ray tube

Also Published As

Publication number Publication date
US5902869A (en) 1999-05-11
JP2000506929A (en) 2000-06-06
JP3942638B2 (en) 2007-07-11
EP0888391B1 (en) 2001-07-04
DE69705502D1 (en) 2001-08-09
DE69705502T2 (en) 2002-05-16
EP0888391A1 (en) 1999-01-07
WO1997034939A1 (en) 1997-09-25
US5700890A (en) 1997-12-23

Similar Documents

Publication Publication Date Title
CA2246250A1 (en) Thermally stable ethylene/acid copolymers
EP0173416B1 (en) Hot melt butylene-ethylene copolymer adhesives
DE69830071T2 (en) ADHESIVES OF COPOLYMERS FROM MACROMONOMERS AND UNSATURATED ACIDS OR ANHYDRIDES
EP0011474B1 (en) Hot melt composition
US4248990A (en) Nonrandom copolymers of ethylene and unsaturated acid
EP0886656B1 (en) Adhesives comprising olefin polymers
JP5148877B2 (en) Hot melt adhesive with improved performance window
EP0803559A1 (en) Polyethylene based hot-melt adhesive
JP3131695B2 (en) Manufacturing method of laminated structure
JP7274615B2 (en) Functionalized Halogenated Olefin-Based Adhesives, Articles Containing The Same, And Methods For Using The Same
US6106939A (en) Aliphatic petroleum-based resins having controlled softening points and molecular weights and hot melt pressure sensitive adhesive containing same
US5095065A (en) Internal resin-tackified acrylic polymers
US5013784A (en) Internal resin-tackified acrylic polymers containing crosslinkable comonomers
KR0185669B1 (en) Copolymer latex from esters of (meth)acrylic acid and vinyl esters of branched chain carboxylic acids
WO1995024449A1 (en) Polypropylene-based hot-melt adhesive
US5106902A (en) Internal resin-tackified acrylic polymers containing crosslinkable comonomers
PL199449B1 (en) Graft copolymer mixture with improved properties and the use thereof as an adhesion promoter
US20070167568A1 (en) Tie based on grafted polyethylene and on high-impact or crystal polystyrene with cohesive failure
US5242754A (en) Internal resin-tackified acrylic polymers containing crosslinkable comonomers
WO1990015111A1 (en) Internal resin-tackified acrylic polymer
JPH0439350A (en) Aqueous dispersion
WO1990015853A1 (en) Internal resin-tackified acrylic polymers containing crosslinkable comonomers
JPS61132337A (en) Novel laminate
KR960007310B1 (en) Heat-adhesive polyolefin resin composition
CA2218228A1 (en) Asphalt modifier and asphalt composition containing said modifier

Legal Events

Date Code Title Description
EEER Examination request
FZDE Dead