CA2246355C - Endovascular apparatus - Google Patents

Endovascular apparatus Download PDF

Info

Publication number
CA2246355C
CA2246355C CA002246355A CA2246355A CA2246355C CA 2246355 C CA2246355 C CA 2246355C CA 002246355 A CA002246355 A CA 002246355A CA 2246355 A CA2246355 A CA 2246355A CA 2246355 C CA2246355 C CA 2246355C
Authority
CA
Canada
Prior art keywords
sleeve
hardening
exterior
conduit
aneurysm
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CA002246355A
Other languages
French (fr)
Other versions
CA2246355A1 (en
Inventor
Thomas J. Holman
Darlene A. Thometz
Fertac Bilge
Paul J. Buscemi
David H. Donabedian
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Boston Scientific Scimed Inc
Original Assignee
Scimed Life Systems Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Scimed Life Systems Inc filed Critical Scimed Life Systems Inc
Priority to CA002420638A priority Critical patent/CA2420638C/en
Publication of CA2246355A1 publication Critical patent/CA2246355A1/en
Application granted granted Critical
Publication of CA2246355C publication Critical patent/CA2246355C/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/04Hollow or tubular parts of organs, e.g. bladders, tracheae, bronchi or bile ducts
    • A61F2/06Blood vessels
    • A61F2/07Stent-grafts
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/12Surgical instruments, devices or methods, e.g. tourniquets for ligaturing or otherwise compressing tubular parts of the body, e.g. blood vessels, umbilical cord
    • A61B17/12022Occluding by internal devices, e.g. balloons or releasable wires
    • A61B17/12027Type of occlusion
    • A61B17/1204Type of occlusion temporary occlusion
    • A61B17/12045Type of occlusion temporary occlusion double occlusion, e.g. during anastomosis
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/12Surgical instruments, devices or methods, e.g. tourniquets for ligaturing or otherwise compressing tubular parts of the body, e.g. blood vessels, umbilical cord
    • A61B17/12022Occluding by internal devices, e.g. balloons or releasable wires
    • A61B17/12099Occluding by internal devices, e.g. balloons or releasable wires characterised by the location of the occluder
    • A61B17/12109Occluding by internal devices, e.g. balloons or releasable wires characterised by the location of the occluder in a blood vessel
    • A61B17/12113Occluding by internal devices, e.g. balloons or releasable wires characterised by the location of the occluder in a blood vessel within an aneurysm
    • A61B17/12118Occluding by internal devices, e.g. balloons or releasable wires characterised by the location of the occluder in a blood vessel within an aneurysm for positioning in conjunction with a stent
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B2017/00004(bio)absorbable, (bio)resorbable, resorptive
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B2017/00535Surgical instruments, devices or methods, e.g. tourniquets pneumatically or hydraulically operated
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/12Surgical instruments, devices or methods, e.g. tourniquets for ligaturing or otherwise compressing tubular parts of the body, e.g. blood vessels, umbilical cord
    • A61B17/12022Occluding by internal devices, e.g. balloons or releasable wires
    • A61B2017/1205Introduction devices
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/12Surgical instruments, devices or methods, e.g. tourniquets for ligaturing or otherwise compressing tubular parts of the body, e.g. blood vessels, umbilical cord
    • A61B17/12022Occluding by internal devices, e.g. balloons or releasable wires
    • A61B2017/12127Double occlusion, e.g. for creating blood-free anastomosis site
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/82Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/86Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure
    • A61F2/89Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure the wire-like elements comprising two or more adjacent rings flexibly connected by separate members
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/82Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/94Stents retaining their form, i.e. not being deformable, after placement in the predetermined place
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/95Instruments specially adapted for placement or removal of stents or stent-grafts
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/95Instruments specially adapted for placement or removal of stents or stent-grafts
    • A61F2/954Instruments specially adapted for placement or removal of stents or stent-grafts for placing stents or stent-grafts in a bifurcation
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/04Hollow or tubular parts of organs, e.g. bladders, tracheae, bronchi or bile ducts
    • A61F2/06Blood vessels
    • A61F2002/065Y-shaped blood vessels
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/04Hollow or tubular parts of organs, e.g. bladders, tracheae, bronchi or bile ducts
    • A61F2/06Blood vessels
    • A61F2/07Stent-grafts
    • A61F2002/072Encapsulated stents, e.g. wire or whole stent embedded in lining
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/04Hollow or tubular parts of organs, e.g. bladders, tracheae, bronchi or bile ducts
    • A61F2/06Blood vessels
    • A61F2/07Stent-grafts
    • A61F2002/075Stent-grafts the stent being loosely attached to the graft material, e.g. by stitching
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2250/00Special features of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof
    • A61F2250/0003Special features of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof having an inflatable pocket filled with fluid, e.g. liquid or gas

Abstract

Percutaneous treatment of aortic aneurysms and like vascular anomalies by an apparatus and method wherein the apparatus is delivered via catheter and comprises a sleeve with at least one peripheral conduit which is caused to assume an expanded, rigid configuration by the introduction of a chemical or mechanical hardening means, whereby the sleeve is caused to assume an open cylindrical configuration for fluid flow therethrough.

Description

ENDOVASCULAR APPARATUS
Background of the Invention Field of the Invention The present invention relates to the percutaneous treatment of vessels by an apparatus and method wherein the apparatus is delivered via catheter and comprises a surgical graft which is fixated in a vessel by means of a chemical or mechanical hardening-filler material system.
General Backsround Previous methods of treating aortic aneurysms include treatment via surgical procedure in which an incision is made in the abdomen or chest of the patient, the diseased area is cleaned by the surgeon and an artificial graft is sutured in place.
This highly invasive procedure usually results in long hospital stays and lengthy recoveries. Further, mortality and morbidity complications often result as a consequence of this surgical procedure.
Other percutaneous methods have been attempted, such as are disclosed in U.S. Patent No. 4,577,631 (utilizing occlusion catheters with pressure sensitive adhesives), U.S. Patent No. 4,740,207 (self-expanding scent-type materials) and U.S.
Patents No. 4,271,839, 4,776,337 and 4,762,132 (other stem derived devices).
There still exists a need, however, for a simple method of repairing a vessel with an intravascular graft which allows normal tissue ingrowth to occur at the repair site. There exists a specific need for a percutaneous approach in which a catheter could be loaded with a surgical graft that can be fixated in a vessel such as the aorta.
Summary of the Invention The present invention provides devices for repairing aortic aneurysms and the like. The intraluminal graft of the present invention in one embodiment comprises a flexible linear or bifurcated tubular sleeve delivered to a repair site in a body by suitable means such as a catheter. The sleeve is suitably made of woven or cast material, and has peripheral conduits or tubes at each end. Each conduit has at least a single port that is connected to an elongated introduction means associated with the l catheter delivery means. The introduction means may be attached to the outer surface of the sleeve. The collapsed sleeve may be made rigid and circular by the introduction through the introduction means of a chemical or mechanical hardening means.
-2-The chemical hardening means may be a polymeric material introduced through the introduction means through an external source, such as a catheter or syringe. Alternatively, the mechanical hardening means may comprise a single wire or multiple wires inserted into the conduits to support the ends, or any portion of the ' sleeve. The wires are not attached to the sleeve but reside in the conduits to provide a constant spring tension. The wires may be of any suitable material which retains its tension, such as spring wire or memory wire.
The introduction means may be detached from the sleeve after introduction of the chemical or mechanical hardening means.
The sleeve may alternatively be associated With a fixation means comprising either a series of cylindrical tubules or an enclosure which fits over the sleeve, with a hardening-filter system enclosed therein. The hardening-filler system includes an activatable hardening material which may be provided in the form of microspheres that upon external agitation may be disrupted, allowing the contents to IS react together and form a hardened material that fills the tubules or enclosure, thereby expanding and rigidifying the fixation means, and fixing the sleeve in place in the site of repair. Polymeric materials which are activatable include thioisocyanates, aldehydes, isocyanates, divinyl compounds, epoxides or acrylates. In addition to the aforementioned, photoactivatabie crossiinkable groups as succinimidyi azido salicylate, succinimidyl-azidobenzoate, succinimidyl dithio acetate, azidoiodobenzene, fluoro nitrophenylazide, salicylate azides, benzophenonc-maleimide, and the tike may be used as photoactivatable crosslinking reagents. The material may also consist of a thin coating which can be activated by external forces such as laser, radio frequency, ultrasound or the like, with the same hardening result taking place. These materials 2S would allow for normal tissue ingrowth to take place.
Brief Description of the Figures Figure 1 shows a perspective view of a vascular graft according to the present invention in a folded state prior to placement and expansion thereof;
Figure 2 shows a perspective view of the vascular graft in an expanded state by means of wires;
Figure 3 is a perspective view of the device as in Figure 2 showing the introduction of chemical hardening material via syringe;

WO 97/29716 PCTlUS97/02377
-3-Figure 4 is a perspective view of an alternate embodiment comprising a series of cylindrical tubules;
Figure 5 is a perspective view of an alternative embodiment of the device, where the vascular graft includes an enclosure which fits over the sleeve;
Figure G is an alternative embodiment of the present invention having a fluid track comprising a continuous cylindrical tubule which is helically wound around the proximal and distal ends of the sleeve;
Figures 7a and 7b represent an alternative embodiment comprising a bifurcated vascular graft including a dual guide wire delivery system;
Figures 8a through 8d show placement of a bifurcated vascular graft according to the present invention;
Figure 9 shows a further alternative embodiment of a vascular graft according to the present invention;
Figures IOa through lOc show filling of the cylindrical tubules after placement of the graft;
Figures lla through ,11d are fragmentary views of vascular grafts according to the present invention; and Figures 12a and 12b are cross sectional views of a vascular graft according to the present invention.
Detailed Description of the Invention The present invention provides a device and method for repairing an aneurysm or the like in a vessel, such as the aorta.
Referring to Figures 1 and 2, a vascular graft comprising a sleeve is shown generally at 10. Sleeve 10 is shown in a folded conformation in Figure 1 and in an expanded state in Figure 2. Sleeve 10 is either a flexible linear or bifurcated (as shown in Figures 7-12) tubular sleeve made of woven or extruded cast material.
Sleeve IO is made of a biocompatibie polymeric material. Fabrics from which sleeve 10 may be made are polyamides, such as nylon G, nylon G,G, and the like, Dacron~, polyesters, such as PET, polyethers, fluorinated polymers, such as polytetrafluoroethylene (PTFE), or biodegradable or nonbiodegradable fibers derived from natural sources such as carbohydrates, collagens, and proteins. The fabric may be of a woven knit, or solid structure. The most preferred materials are Dacron~ and PTFE. Sleeve IO is suitably
-4-delivered by a catheter. Catheters of polyurethan, PTFE, PVC silicone or the like with internal diameters of 1 to about 3mm are suitable for polymer injection.
Sleeve 10 has a proximal end 14, a distal end 16, an interior portion 18, an exterior portion 20 and peripheral circular conduits or tubes 22, 24 located one at each end 14, 16 respectively. Each conduit 22, 24 has at least one inlet port 26 and at least one outlet or exhaust port 28, inlets) 26 being connected to elongated introduction means 30, 32 respectively. Introduction means 30, 32 may be attached to exterior portion 20 of sleeve 10. Referring to Figure 2, collapsed sleeve 10 is expanded and made rigid by the insertion of a spring wire or wires 34, 36 inserted through introduction means 30, 32. A single wire or multiple wires may be inserted to support ends 14, 16, the center body or any portion of sleeve 10.
Wires 34, 36 are not attached to sleeve 10 but reside in introduction means 30, 32 or conduits 22, 24, providing a constant spring tension. The entrance tubing may be detached from the sleeve after placement of supporting wires 34, 36 in end tubes 22, 24.
The supporting wire may be made of stainless steel, spring steel, memory shape metals (such as nitinol, for example), titanium, or metal alloys of any kind, not limited to the aforementioned. Furthermore, the configuration of the supporting wire may be solid, braided or woven.
As shown in Figure 3, the graft may be expanded and made rigid and circular by a chemical hardening means introduced into a single spiral tube, or alternatively, as shown in Figure 4, a series of interconnected concentric cylindrical tubules 40 attached to and encasing the sleeve 10. Tubules 40 are interconnected by means of connecting tubes 41 extending between the tubules.
The chemical hardening means may be introduced in the form of an injectable polymeric material comprised of a one part system, a two part system, self expanding systems, thermosets, thermoplastics and the like. These polymers or polymeric systems would fill tubes 32 or tubules 40, causing them to expand and rigidify, thereby fixing the sleeve at the site of repair. This embodiment is of particular use for fusing such grafts in large vessels such as the aorta or pulmonary arteries.
Two part activatable hardening material may be supplied in the form of microspheres (not shown) that upon agitation by an external force may be disrupted. The external energy could originate from any suitable source including -4a-IR, visible or UV light through optic fiber on mechanical vibrational means from about 1 to 100,000 WO 97!29716 PCT/US97/02377
-5-hertz supplied by mechanical or electrical transducers or by heat upon disruption of the microspheres, the activatable hardening material is liberated and allowed to harden.
Disruption of the microspheres releases the separated components, allowing the ' components to react together and form a hardened material that fills series of tubules 40 thereby fixing sleeve IO in place at the site of repair. Polymeric systems may be comprised of vinyl or divinyl compounds in which an initiator is contained in the microspheres, epoxies containing microencapsulated amine component, or diisocyanates with encapsulated amine or hydroxyl terminated prepolymers. Amino groups can be so isolated from methylacetimidate, ethyl acetimidate, dimethylgiutarimidate, dimethyl, adipidate, dimethyl sebaimidate, diisotltionyl propionimidatc, dimethyl oxydipropionimidatesuccinate bis-esters, disuccinimidyl tartarate, dicyanatobenzene, dichlorodinitrobenzene, adipaldehyde, glutaraldehyde and the like.
These hardening-filter systems would allow for normal tissue ingrowth in series of tubules 40 to take place. Because the tubules comprise only a small fraction of the total surface area of the sleeve, these hardening filling systems would allow for tissue ingrowth to take place into the sleeve material not impeded by the tubules, providing further reinforcement of the placement of the sleeve 10.
In a further embodiment shown in Figure 5, the material may be introduced by means of a hardening-filler system comprising an enclosure 50 attached to sleeve 10. Enclosure S0, like tubules 40, is filled with an activatable hardening material consisting of either a one-part polymer system, a two-part polymer system or a self expanding monomer, which upon polymerization would fill enclosure 50, causing it to expand and rigidify, thereby fixing sleeve IO at the site of repair. The activatable hardening material is described above with reference to Figure 4.
Referring now to Figure 6, an alternative embodiment of sleeve 10 is shown in place at a repair site G0. Sleeve 10 has a fluid track comprising a continuous cylindrical tubule 40 which is heIicaIly wound around proximal end 14 and distal end 16 of sleeve 10. Tubule 40 can be filled with a curing polymer selected from thermoset polymers or two part polymers, as described hereinabove. Sleeve 10 may optionally include supplemental physical attachment means (not shown) such as spikes, barbs or the like at proximal and distal ends 14,16.
Figures 7-9 represent an alternative embodiment comprising a bifurcated vascular graft l I0 including a dual guide wire delivery system I I2. Graft 110 has a
6 PCT/US97/02377 _6_ proximal end 1 I4 and at least two distal ends 116, I I8. Figures 8a through 8d show placement of bifurcated vascular graft 1I0 at a repair site 160 where the vessel bifurcates. Graft I10 and delivery system 112 are advanced through a vessel to repair site I60. Delivery system 1 I2 includes guide wires 120, I22 whereby ends I
14, t 16,118 ' are placed at different branches of the vessel bifurcation. Figure 7b shows graft l I0 in place at site 160.
Figures 9-I2 show an alternative embodiment of a vascular graft according to the present invention, indicated generally at 2I0. Graft 210 has proximal and distal ends 214,216 and cylindrical tubule 240. Tubule 240 has a first end 242 and a second end 244, located near proximal end 214. After placement of graft 210, tubule 240 is filled.
Referring to Figures 10a, I0b and 10c, filling means 250 is shown.
Although filling means 250 is shown in conjunction with a tubular vascular graft, such a filling means may be used with any vascular graft according to the present invention.
Filling means 250 comprises casing 251, filling tube 252 with distal infusion inlet 254 and exhaust tube 256 with distal exhaust vent 258. Filling means 250 may be incorporated into the vascular graft delivery means or may alternatively be separate from but associated with the delivery means. Figure IOb is an enlarged fragmentary view of filling tube 252 which shows the manner in vyhich infusion inlet 254 connects to first end 242 of tubule 240, via pinch ring 262 located near the distal end of infusion inlet 254. Distal end of infusion inlet 254 is advanced into end 242 of tubule 240 until pinch ring 262 is inserted in tubule 240. As shown in Figure 10c, casing 251 of filling means 250 is advanced over end 242 of tubule 240 whereby pinch ring 262 creates an interference fit between filling tube 252 and end 242 of tubule 240. Exhaust vent 258 connects to end 244 of tubule 240 in the same manner.
Figures 11-12 show alternative embodiments of the inventive vascular graft. Figure l la shows a graft 310 having an outer layer 370 surrounding tubules 340.
Figure llb shows graft 310 having two outer layers 370,372 surrounding tubules 340.
Figure llc shows graft 410 having no outer layer over tubules 440, and lacking ' connection between tubule 440 and proximal coil 480. Figure lId shows a cross section of graft S I0, having an inner core 590. Figures 12a and 12b show a ' longitudinal cross section of graft 610 in place in repair site 660, wherein graft 610 has _'7 an enlarged proximal coil 680 located directly at proximal end 614 of graft 610, i.e. not more than about 5mm from proximal end 614.
The unique features of the device are the manner of its delivery and ' fixation at the site of repair, its low profile which may prevent interference with normal heart functions, and the non-invasive nature of the delivery which would reduce costs normally associated with closure of such a defect. The device and method of fixation provides a non-invasive treatment of aortic aneurysms and the like. The device is made of polymeric material and is delivered via catheter in a non-invasive procedure. In one embodiment, the device operates through chemical means to repair an aneurysm.
I0 Advantages of the apparatus and method of the present invention are many. No preformed stem is required and the apparatus has a smaller insertion diameter than previous vascular grafts. Further, the vascular graft has a lower cost of production than previous graft materials and procedures.
The practice of the present invention achieves several objectives and advantages. Currently, there are no percutaneous devices available to cure a septai defect or the like. The device and method of the present invention provides an advantage over surgery in that the cost of the procedure is substantially less, the risk of infection is less, the hospital residency time is Less and there is no physically deforming scar.
Further advantages include applicability to procedures such as repair of PDA, patent ductus anomaly. The non-invasive mode of delivery would reduce costs associated with this type of procedure. In addition, the low profile of the apparatus may minimize or prevent interference with normal heart functions.
While this invention may be embodied in many different forms, there are described in detail herein specific preferred embodiments of the invention.
This description is an exemplification of the principles of the invention and is not intended to limit the invention to the particular embodiments illustrated.
The above Examples and disclosure are intended to be illustrative and not exhaustive. These examples and description will suggest many variations and alternatives to one of ordinary skill in this art. All these alternatives and variations are intended to be included within the scope of the attached claims. Those familiar with the art may recognize other equivalents to the specific embodiments described herein which equivalents are also intended to be encompassed by the claims attached hereto.

Claims (41)

_g_ THE EMBODIMENTS OF THE INVENTION IN WHICH AN EXCLUSIVE
PROPERTY OR PRIVILEGE IS CLAIMED ARE DEFINED AS FOLLOWS:
1. A vascular graft apparatus comprising:
a) a flexible, tubular sleeve having at least onE; axis therethrough and further comprising a first end, at least one opposite end located opposite said first end, an interior portion and an exterior portion;
b) at least one exterior conduit attached to said sleeve, and surrounding and partially covering the exterior portion of said sleeve, said at least one exterior conduit having an inlet port;
c) delivery means removably connected to the at least one exterior conduit at its inlet port, said delivery means being in association with a hardening means;
whereby when the sleeve is delivered to an implant site at an area of a vessel having an aneurysm such that the apparatus is positioned at the aneurysm and the hardening means is delivered, the hardening means causes the at least one exterior conduit to assume an expanded, rigid configuration which fits securely into the vessel and is anchored thereto by pressure, causing the sleeve to be supported in an open condition for fluid flow therethrough.
2. The apparatus of claim 1 further comprising at lease; one additional conduit surrounding the sleeve, said at least one additional conduit being located at the first end of the sleeve.
3. The apparatus of claim 1 wherein the at least one opposite end comprises at least two opposite ends located opposite said first end.
4. The apparatus of claim 1 further comprising a plurality of exterior conduits surrounding the sleeve, said exterior conduits being located between the first end and an opposite end of the sleeve.
5. The apparatus of claim 1 further comprising an enclosure over the exterior portion of the sleeve between the first end and an opposite end thereof.
6. The apparatus of claim 1 wherein:
a) the hardening means comprises at least one wire for insertion into and extension through an introduction means into said at least one exterior conduit.
7. The apparatus of claim 6 wherein the wire is made of a material selected from the group consisting of stainless steel, spring steel, memory shape metals, and metal alloys.
8. The system of claim 7 wherein the wire is made of nitinol.
9. The system of claim 7 wherein the wire is made of titanium.
10. The apparatus of claim 1 wherein the hardening means comprises an activatable hardening material selected from the group consisting of one-part polymer systems, two-part polymer systems and self-expanding monomers which, upon polymerization, fill said at least one exterior conduit, the apparatus further comprising a source of hardening material in association with the delivery means.
11. The apparatus of claim 10 wherein the hardening means further comprises at least one receptacle containing the activatable hardening material.
12. The apparatus of claim 11 further comprising a plurality of microspheres wherein the activatable hardening material is carried, said microspheres being located within the said at least one receptacle and further being constructed and arranged to release the activatable hardening material upon disruption of the plurality of microspheres, thereby allowing the activatable hardening material to harden.
13. The apparatus of claim 11 wherein the activatable hardening material comprises a first component and a second component, said first component and said second component being isolated from each other by said plurality of microspheres and carried in said plurality of microspheres, said plurality of microspheres being constructed and arranged to release said first and second components upon disruption of the plurality of microspheres, thereby allowing said first and second components to react and harden.
14. The apparatus of claim 1 wherein said at least one exterior conduit has an outlet port, whereby when the sleeve is delivered to an area of an artery having an aneurysm such that the apparatus is positioned at the aneurysm and hardening means is introduced, each said at least one exterior conduit is substantially filled with hardening means and is thereby caused to assume an expanded, rigid configuration which fits securely into the vessel and is anchored thereto by pressure, causing the sleeve to be supported in an open condition for fluid flow therethrough.
15. The apparatus of claim 14 comprising at least two exterior conduits surrounding the sleeve, one of said at least two exterior conduits being located proximal to the first end of the sleeve, and a second of said at least two conduits being located between the first end and an opposite end of the sleeve.
16. A system for repairing an arterial aneurysm, the system comprising:
a) a catheter delivery means; and b) an arterial graft apparatus comprising:
i) a flexible, tubular sleeve having at least one axis therethrough and further comprising a first end, at least one opposite end located opposite said first end, an interior portion and an exterior portion;
ii) at least one exterior conduit attached to said sleeve, and surrounding and partially covering the exterior portion of said sleeve, said at least one exterior conduit having at least one port;
iii) introduction means associated with the catheter delivery means and being in communication with said at least one port; and iv) hardening means delivered through said introduction means for causing the arterial graft device to assume a rigid cylindrical configuration;
whereby when the apparatus is delivered to an area of an artery having an aneurysm such that the sleeve is positioned at the aneurysm and hardening means is introduced, the conduits are caused to assume a rigid, expanded configuration which fits securely into the artery and is anchored thereto by pressure, causing the sleeve to be supported to an open condition for fluid flow therethrough, and causing the aneurysm to be repaired.
17. The system of claim 16 wherein the sleeve is made of a nonbiodegradable, biocompatible polymeric material.
18. The system of claim 17 wherein the polymeric material is selected from the group consisting of thermosetting polymer, thermoplastic polymers, thermoplastic elastomers, elastomers, composites, pseudo-thermoplastics, carbohydrates, proteins, and mixtures thereof.
19. The system of claim 16 wherein the sleeve is made of a material selected from the group consisting of Dacron~ or PTFE.
20. The system of claim 16 wherein the sleeve is made: of a woven or braided material.
21. The system of claim 16 wherein the sleeve is made of a material selected from the group consisting of polyamides, nylon 6, nylon 6,6, polyesters, PET, polyethers, fluorinated polymers, polytetrafluoroethylene, biodegradable or nonbiodegradable fibers derived from natural sources such as carbohydrates, collagens, and proteins, and mixtures thereof.
22. The system of claim 16 wherein the sleeve is biodegradable.
23. The system of claim 16 wherein:

a) the hardening means comprises at least one wire for insertion into and extension through the introduction means into an exterior conduit.
24. The system of claim 23 wherein the wire is made: of a material selected from the group consisting of stainless steel, spring steel, memory shape metals, and metal alloys.
25. The system of claim 24 wherein the wire is made of nitinol.
26. The system of claim 24 wherein the wire is made of titanium.
27. The system of claim 16 wherein the peripheral conduit has an inlet port and an exhaust port and wherein the hardening means is a polymeric material.
28. The system of claim 27 wherein the polymeric material is introduced through the introduction means via an external source.
29. The system of claim 2g wherein the external source is a syringe.
30. The system of claim 28 wherein the external source is a catheter.
31. The system of claim 16 wherein the hardening means comprises an activatable hardening material selected from the group consisting of one-part polymer systems, two-part polymer systems and self-expanding monomers.
32. The system of claim 31 wherein the hardening means further comprises a plurality of microspheres wherein the activatable hardening material is carried, said microspheres being constructed and arranged to release the activatable hardening material upon disruption, thereby allowing the activatable hardening material to harden.
33. The system of claim 32 wherein the activatable hardening material comprises a first component and a second component isolated from each other by and carried in said plurality of microspheres, said plurality of microspheres being constructed and arranged to release said first and second components upon disruption, thereby allowing the components to react and harden.
34. A vascular graft apparatus, comprising:
a) a flexible, tubular sleeve having at least one axis therethrough and further comprising a first end, at least one opposite end located opposite said first end, and an exterior portion;

b) at least one exterior conduit surrounding and partially covering said sleeve, each said at least one exterior conduit having an inlet port;

c) delivery means removably connected to at least one exterior conduit at its inlet port, said delivery means being in association with a hardening means, said hardening means comprising an activatable hardening material selected from the group consisting of one-part polymer systems, two-part polymer systems and self-expanding monomers which, upon polymerization, fill said at least one exterior conduit, the apparatus further comprising a source of hardening material in association with the delivery means;

whereby when the sleeve is delivered to an implant site at an area of a vessel having an aneurysm such that the apparatus is positioned at the aneurysm and the hardening means is delivered, the hardening means causes the at least one exterior conduit to assume an expanded, rigid configuration which fits securely into the vessel and is anchored thereto by pressure, causing the sleeve to be supported in an open condition for fluid flow therethrough.
35. The apparatus of claim 34 wherein the hardening means further comprises at least one receptacle containing the activatable hardening material.
36. A vascular graft apparatus, comprising:
a) a flexible, tubular sleeve having at least one axis therethrough and further comprising a first end, at least one opposite end located opposite said first end, and an exterior portion;

b) at least one exterior conduit surrounding and partially covering said sleeve, each said at least one exterior conduit having an inlet port;
c) delivery means removably connected to at least one exterior conduit at its inlet port;
d) hardening means in association with the delivery means, said hardening means comprising an activatable hardening material selected from the group consisting of one-part polymer systems, two-part polymer systems and self-expanding monomers, said hardening means further comprising at least one receptacle containing the activatable hardening material, the apparatus further comprising a plurality of microspheres wherein the activatable hardening material is carried, said plurality of microspheres being located within said at least one receptacle and further being constructed and arranged to release the activatable hardening material upon disruption of the plurality of microspheres, thereby allowing the activatable hardening material to harden, said apparatus further comprising a source of hardening material in association with the delivery means;
whereby when the sleeve is delivered to an implant site at an area of a vessel having an aneurysm such that the apparatus is positioned at the aneurysm and the hardening means is delivered, the hardening means causes the at least one exterior conduit to assume an expanded, rigid configuration which fits securely into the vessel and is anchored thereto by pressure, causing the sleeve to be supported in an open condition for fluid flow therethrough.
37. A vascular graft apparatus, comprising:
a) a flexible, tubular sleeve having at least one axis therethrough and further comprising a first end, at least one opposite end located opposite said first end, and an exterior portion;
b) at least one exterior conduit surrounding and partially covering said sleeve, each said at least one exterior conduit having an inlet port;

c) delivery means removably connected to at least one exterior conduit at its inlet port;

d) hardening means in association with the delivery means, said hardening means comprising an activatable hardening material selected from the group consisting of one-part polymer systems, two-part polymer systems and self-expanding monomers, said hardening means further comprising at least one receptacle containing the activatable hardening material, the apparatus further comprising a plurality of microspheres and wherein the activatable hardening material comprises a first component and a second component, said first component and said second component being isolated from each other by said plurality of microspheres and carried in said plurality of microspheres, said plurality of microspheres being constructed and arranged to release said first component and said second component upon disruption of the plurality of microspheres, thereby allowing said first component and said second component to react and harden, said apparatus further comprising a source of hardening material in association with the delivery means;

whereby when the sleeve is delivered to an implant site at an area of a vessel having an aneurysm such that the apparatus is positioned at the aneurysm and the hardening means is delivered, the hardening means causes the at least one exterior conduit to assume an expanded, rigid configuration which fits securely into the vessel and is anchored thereto by pressure, causing the sleeve to be supported in an open condition for fluid flow therethrough.
38. The apparatus of claim 34 wherein each said at least one exterior conduit has an outlet port, whereby when the sleeve is delivered to an area of any artery having an aneurysm such that the apparatus is positioned at the aneurysm and hardening means is introduced, each said at least one exterior conduit is substantially filled with hardening means and is thereby caused to assume an expanded, rigid configuration which fits securely into the vessel and is anchored thereto by pressure, causing the sleeve to be supported in an open condition for fluid flow therethrough.
39. The apparatus of claim 38 comprising at least two exterior conduits surrounding the sleeve, one of said at least two exterior conduits being located proximal to the first end of the sleeve, and a second of said at least two conduits being located between the first end an opposite end of the sleeve.
40. A vascular graft apparatus comprising:

a) a flexible, tubular sleeve having at least one axis therethrough and further comprising a first end, at least one second end, an interior portion and an exterior portion;

b) an exterior conduit attached to said sleeve, and surrounding and partially covering the exterior portion of said sleeve at the first end and said at least one second end, said exterior conduit having at least one entrance port, said exterior conduit being adjacent to the exterior portion of the sleeve;

c) introduction means in communication with the at least one entrance port of each exterior conduit for introduction of a hardening means;

whereby when the sleeve is delivered to an area of an artery having an aneurysm such that the sleeve is positioned at the aneurysm, and the hardening means is introduced, each said exterior conduit is caused to assume an expanded, rigid configuration which fits securely into the artery and is anchored thereto by pressure, causing the sleeve to be supported in an open condition for fluid flow therethrough.
41. A vascular graft apparatus comprising:

a) a flexible, tubular sleeve having at least one axis therethrough and further comprising a first end, at least two opposite ends located opposite said first end, and an exterior portion;

b) at least one exterior conduit attached to said sleeve, and surrounding and partially covering the exterior portion of said sleeve, each said at least one exterior conduit having an inlet port, said at least one exterior conduit being adjacent to the exterior portion of the sleeve;

c) delivery means removably connected to the at least one exterior conduit at its inlet port, said delivery means being in association with a hardening means;

whereby when the sleeve is delivered to an implant site at an area of a vessel having an aneurysm such that the apparatus is positioned at the aneurysm, and the hardening means is delivered, the hardening means causes the at least one exterior conduit to assume an expanded, rigid configuration which fits securely into the vessel and is anchored thereto by pressure, causing the sleeve to be supported in an open condition for fluid flow therethrough.
CA002246355A 1996-02-13 1997-02-13 Endovascular apparatus Expired - Fee Related CA2246355C (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CA002420638A CA2420638C (en) 1996-02-13 1997-02-13 Endovascular apparatus

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US08/600,834 US5871537A (en) 1996-02-13 1996-02-13 Endovascular apparatus
US08/600,834 1996-02-13
PCT/US1997/002377 WO1997029716A1 (en) 1996-02-13 1997-02-13 Endovascular apparatus

Related Child Applications (1)

Application Number Title Priority Date Filing Date
CA002420638A Division CA2420638C (en) 1996-02-13 1997-02-13 Endovascular apparatus

Publications (2)

Publication Number Publication Date
CA2246355A1 CA2246355A1 (en) 1997-08-21
CA2246355C true CA2246355C (en) 2003-04-29

Family

ID=24405224

Family Applications (1)

Application Number Title Priority Date Filing Date
CA002246355A Expired - Fee Related CA2246355C (en) 1996-02-13 1997-02-13 Endovascular apparatus

Country Status (5)

Country Link
US (10) US5871537A (en)
EP (1) EP0959810B1 (en)
AT (1) ATE552799T1 (en)
CA (1) CA2246355C (en)
WO (1) WO1997029716A1 (en)

Families Citing this family (241)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6039749A (en) 1994-02-10 2000-03-21 Endovascular Systems, Inc. Method and apparatus for deploying non-circular stents and graftstent complexes
US6451047B2 (en) 1995-03-10 2002-09-17 Impra, Inc. Encapsulated intraluminal stent-graft and methods of making same
US6053943A (en) * 1995-12-08 2000-04-25 Impra, Inc. Endoluminal graft with integral structural support and method for making same
US6264684B1 (en) 1995-03-10 2001-07-24 Impra, Inc., A Subsidiary Of C.R. Bard, Inc. Helically supported graft
US5871537A (en) * 1996-02-13 1999-02-16 Scimed Life Systems, Inc. Endovascular apparatus
US6835203B1 (en) * 1996-11-04 2004-12-28 Advanced Stent Technologies, Inc. Extendible stent apparatus
US7591846B2 (en) * 1996-11-04 2009-09-22 Boston Scientific Scimed, Inc. Methods for deploying stents in bifurcations
US8211167B2 (en) 1999-12-06 2012-07-03 Boston Scientific Scimed, Inc. Method of using a catheter with attached flexible side sheath
US6325826B1 (en) * 1998-01-14 2001-12-04 Advanced Stent Technologies, Inc. Extendible stent apparatus
US6692483B2 (en) 1996-11-04 2004-02-17 Advanced Stent Technologies, Inc. Catheter with attached flexible side sheath
ES2273363T3 (en) * 1996-11-04 2007-05-01 Advanced Stent Technologies, Inc. DOUBLE EXTENSIBLE STENT.
US7220275B2 (en) * 1996-11-04 2007-05-22 Advanced Stent Technologies, Inc. Stent with protruding branch portion for bifurcated vessels
US6599316B2 (en) 1996-11-04 2003-07-29 Advanced Stent Technologies, Inc. Extendible stent apparatus
US6551350B1 (en) * 1996-12-23 2003-04-22 Gore Enterprise Holdings, Inc. Kink resistant bifurcated prosthesis
US6951572B1 (en) * 1997-02-20 2005-10-04 Endologix, Inc. Bifurcated vascular graft and method and apparatus for deploying same
US5995958A (en) * 1997-03-04 1999-11-30 Xu; Kevin Houzhi System and method for storing and managing functions
US6936057B1 (en) * 1997-05-19 2005-08-30 Cardio Medical Solutions, Inc. (Cms) Device and method for partially occluding blood vessels using flow-through balloon
GB9713624D0 (en) * 1997-06-28 1997-09-03 Anson Medical Ltd Expandable device
US6070589A (en) 1997-08-01 2000-06-06 Teramed, Inc. Methods for deploying bypass graft stents
AU1378899A (en) * 1997-11-12 1999-05-31 Robert Lazzara Vascular shunt apparatus
US6395019B2 (en) 1998-02-09 2002-05-28 Trivascular, Inc. Endovascular graft
US6241741B1 (en) 1998-03-09 2001-06-05 Corvascular Surgical Systems, Inc. Anastomosis device and method
ES2243050T3 (en) * 1998-03-09 2005-11-16 Ethicon, Inc. ANASTOMOSIS DEVICE.
US6626938B1 (en) * 2000-11-16 2003-09-30 Cordis Corporation Stent graft having a pleated graft member
US6290731B1 (en) 1998-03-30 2001-09-18 Cordis Corporation Aortic graft having a precursor gasket for repairing an abdominal aortic aneurysm
US6544253B1 (en) * 1998-07-24 2003-04-08 Eva Corporation Surgical support device and method of using the same
US6358276B1 (en) * 1998-09-30 2002-03-19 Impra, Inc. Fluid containing endoluminal stent
US6660030B2 (en) 1998-12-11 2003-12-09 Endologix, Inc. Bifurcation graft deployment catheter
US7655030B2 (en) 2003-07-18 2010-02-02 Boston Scientific Scimed, Inc. Catheter balloon systems and methods
US20050060027A1 (en) * 1999-01-13 2005-03-17 Advanced Stent Technologies, Inc. Catheter balloon systems and methods
US6350277B1 (en) * 1999-01-15 2002-02-26 Scimed Life Systems, Inc. Stents with temporary retaining bands
US6398803B1 (en) 1999-02-02 2002-06-04 Impra, Inc., A Subsidiary Of C.R. Bard, Inc. Partial encapsulation of stents
GB9904722D0 (en) * 1999-03-03 1999-04-21 Murch Clifford R A tubular intraluminal graft
US6261316B1 (en) 1999-03-11 2001-07-17 Endologix, Inc. Single puncture bifurcation graft deployment system
US8034100B2 (en) * 1999-03-11 2011-10-11 Endologix, Inc. Graft deployment system
US7387639B2 (en) * 1999-06-04 2008-06-17 Advanced Stent Technologies, Inc. Short sleeve stent delivery catheter and methods
AU6059200A (en) 1999-07-02 2001-01-22 Quickpass, Inc. Suturing device
EP1210014A1 (en) 1999-09-07 2002-06-05 Microvena Corporation Retrievable septal defect closure device
US6312462B1 (en) 1999-09-22 2001-11-06 Impra, Inc. Prosthesis for abdominal aortic aneurysm repair
US6689156B1 (en) * 1999-09-23 2004-02-10 Advanced Stent Technologies, Inc. Stent range transducers and methods of use
US6443979B1 (en) * 1999-12-20 2002-09-03 Advanced Cardiovascular Systems, Inc. Expandable stent delivery sheath and method of use
US6355063B1 (en) * 2000-01-20 2002-03-12 Impra, Inc. Expanded PTFE drug delivery graft
AU2001233098A1 (en) * 2000-01-27 2001-08-07 Sterilis, Inc. Cavity enlarger method and apparatus
EP1259192B1 (en) * 2000-03-03 2003-12-10 Cook Incorporated Endovascular device having a stent
US6551344B2 (en) * 2000-04-26 2003-04-22 Ev3 Inc. Septal defect occluder
US6729356B1 (en) 2000-04-27 2004-05-04 Endovascular Technologies, Inc. Endovascular graft for providing a seal with vasculature
US6658288B1 (en) 2000-05-05 2003-12-02 Endovascular Technologies, Inc. Apparatus and method for aiding thrombosis through the application of electric potential
US6440152B1 (en) 2000-07-28 2002-08-27 Microvena Corporation Defect occluder release assembly and method
US20020082684A1 (en) * 2000-09-25 2002-06-27 David Mishaly Intravascular prosthetic and method
US6695833B1 (en) * 2000-09-27 2004-02-24 Nellix, Inc. Vascular stent-graft apparatus and forming method
WO2002039888A2 (en) * 2000-11-15 2002-05-23 Endologix, Inc. Implantable vascular graft
US7314483B2 (en) * 2000-11-16 2008-01-01 Cordis Corp. Stent graft with branch leg
US6579308B1 (en) * 2000-11-28 2003-06-17 Scimed Life Systems, Inc. Stent devices with detachable distal or proximal wires
NL1017672C2 (en) * 2001-03-22 2002-09-24 Hendrik Glastra Implantable assembly with therapeutic effect.
US6602269B2 (en) * 2001-03-30 2003-08-05 Scimed Life Systems Embolic devices capable of in-situ reinforcement
US8617231B2 (en) 2001-05-18 2013-12-31 Boston Scientific Scimed, Inc. Dual guidewire exchange catheter system
GB0114918D0 (en) * 2001-06-19 2001-08-08 Vortex Innovation Ltd Devices for repairing aneurysms
US8101196B2 (en) 2001-06-26 2012-01-24 Biointeractions, Ltd. Polysaccharide biomaterials and methods of use thereof
US6994722B2 (en) * 2001-07-03 2006-02-07 Scimed Life Systems, Inc. Implant having improved fixation to a body lumen and method for implanting the same
FR2826863B1 (en) * 2001-07-04 2003-09-26 Jacques Seguin ASSEMBLY FOR PLACING A PROSTHETIC VALVE IN A BODY CONDUIT
US20030100945A1 (en) 2001-11-23 2003-05-29 Mindguard Ltd. Implantable intraluminal device and method of using same in treating aneurysms
US7288105B2 (en) 2001-08-01 2007-10-30 Ev3 Endovascular, Inc. Tissue opening occluder
JP4043210B2 (en) * 2001-10-09 2008-02-06 オリンパス株式会社 Stent
US7192441B2 (en) * 2001-10-16 2007-03-20 Scimed Life Systems, Inc. Aortic artery aneurysm endovascular prosthesis
AUPR847201A0 (en) * 2001-10-26 2001-11-15 Cook Incorporated Endoluminal graft
US20060292206A1 (en) * 2001-11-26 2006-12-28 Kim Steven W Devices and methods for treatment of vascular aneurysms
WO2003053288A1 (en) * 2001-12-20 2003-07-03 Trivascular, Inc. Advanced endovascular graft
JP2005512687A (en) * 2001-12-20 2005-05-12 トリバスキュラー,インコーポレイティド Method and apparatus for producing an endovascular graft section
US7147661B2 (en) 2001-12-20 2006-12-12 Boston Scientific Santa Rosa Corp. Radially expandable stent
US20100016943A1 (en) 2001-12-20 2010-01-21 Trivascular2, Inc. Method of delivering advanced endovascular graft
US7125464B2 (en) * 2001-12-20 2006-10-24 Boston Scientific Santa Rosa Corp. Method for manufacturing an endovascular graft section
AUPR969201A0 (en) * 2001-12-20 2002-01-24 White, Geoffrey H. A device for use in intraluminal grafting
US7326237B2 (en) * 2002-01-08 2008-02-05 Cordis Corporation Supra-renal anchoring prosthesis
US7122048B2 (en) * 2002-05-03 2006-10-17 Scimed Life Systems, Inc. Hypotube endoluminal device
AU2003249309A1 (en) * 2002-07-24 2004-02-09 Advanced Stent Technologies, Inc. Stents capable of controllably releasing histone deacetylase inhibitors
EP1542616B1 (en) * 2002-09-20 2015-04-22 Endologix, Inc. Stent-graft with positioning anchor
JP2006508776A (en) * 2002-09-20 2006-03-16 フローメディカ,インコーポレイテッド Method and apparatus for selective substance delivery via an intrarenal catheter
US7481821B2 (en) 2002-11-12 2009-01-27 Thomas J. Fogarty Embolization device and a method of using the same
US7141061B2 (en) * 2002-11-14 2006-11-28 Synecor, Llc Photocurable endoprosthesis system
US7468072B2 (en) * 2002-12-30 2008-12-23 Hesham Morsi Endovascular balloon graft
US7857748B2 (en) * 2003-01-15 2010-12-28 Syne Cor, Llc Photocurable endoprosthesis methods of manufacture
US20040143342A1 (en) * 2003-01-16 2004-07-22 Stack Richard S. Satiation pouches and methods of use
WO2004069055A2 (en) * 2003-02-04 2004-08-19 Ev3 Sunnyvale Inc. Patent foramen ovale closure system
US20040260382A1 (en) 2003-02-12 2004-12-23 Fogarty Thomas J. Intravascular implants and methods of using the same
US7438712B2 (en) * 2003-03-05 2008-10-21 Scimed Life Systems, Inc. Multi-braid exterior tube
US7150758B2 (en) * 2003-03-06 2006-12-19 Boston Scientific Santa Rosa Corp. Kink resistant endovascular graft
US7951557B2 (en) * 2003-04-27 2011-05-31 Protalix Ltd. Human lysosomal proteins from plant cell culture
US20100196345A1 (en) * 2003-04-27 2010-08-05 Protalix Production of high mannose proteins in plant culture
US6994723B1 (en) 2003-05-21 2006-02-07 Advanced Cardiovascular Systems, Inc. Medical device made from self-stiffening composite
US7632291B2 (en) 2003-06-13 2009-12-15 Trivascular2, Inc. Inflatable implant
US20050075625A1 (en) * 2003-07-18 2005-04-07 Kinh-Luan Dao Medical devices
US20050015110A1 (en) 2003-07-18 2005-01-20 Fogarty Thomas J. Embolization device and a method of using the same
US8721710B2 (en) * 2003-08-11 2014-05-13 Hdh Medical Ltd. Anastomosis system and method
US8298280B2 (en) * 2003-08-21 2012-10-30 Boston Scientific Scimed, Inc. Stent with protruding branch portion for bifurcated vessels
WO2005037138A2 (en) * 2003-10-14 2005-04-28 Peacock James C Iii Aneurysm treatment system and method
US7344557B2 (en) * 2003-11-12 2008-03-18 Advanced Stent Technologies, Inc. Catheter balloon systems and methods
US8157855B2 (en) * 2003-12-05 2012-04-17 Boston Scientific Scimed, Inc. Detachable segment stent
US7803178B2 (en) 2004-01-30 2010-09-28 Trivascular, Inc. Inflatable porous implants and methods for drug delivery
US20050187568A1 (en) * 2004-02-20 2005-08-25 Klenk Alan R. Devices and methods for closing a patent foramen ovale with a coil-shaped closure device
US7641686B2 (en) * 2004-04-23 2010-01-05 Direct Flow Medical, Inc. Percutaneous heart valve with stentless support
ES2407684T3 (en) 2004-05-05 2013-06-13 Direct Flow Medical, Inc. Heart valve without stent with support structure formed on site
GB0415152D0 (en) * 2004-07-06 2004-08-11 Anson Medical Ltd Interconnected tubular structures
US8048145B2 (en) 2004-07-22 2011-11-01 Endologix, Inc. Graft systems having filling structures supported by scaffolds and methods for their use
US8403955B2 (en) * 2004-09-02 2013-03-26 Lifescreen Sciences Llc Inflatable intravascular filter
US7641688B2 (en) 2004-09-16 2010-01-05 Evera Medical, Inc. Tissue augmentation device
EP1816978A1 (en) * 2004-09-16 2007-08-15 Juva Medical, Inc. Tissue augmentation device
US7244270B2 (en) * 2004-09-16 2007-07-17 Evera Medical Systems and devices for soft tissue augmentation
US20060058891A1 (en) * 2004-09-16 2006-03-16 Lesh Michael D Transformable tissue bulking device
US20060058890A1 (en) * 2004-09-16 2006-03-16 Lesh Michael D Methods for soft tissue augmentation
US20060058892A1 (en) * 2004-09-16 2006-03-16 Lesh Michael D Valved tissue augmentation implant
US20060074481A1 (en) * 2004-10-04 2006-04-06 Gil Vardi Graft including expandable cuff
US20070179600A1 (en) * 2004-10-04 2007-08-02 Gil Vardi Stent graft including expandable cuff
US8048144B2 (en) * 2004-11-30 2011-11-01 Scimed Life Systems, Inc. Prosthesis fixation device and method
US7588596B2 (en) * 2004-12-29 2009-09-15 Scimed Life Systems, Inc. Endoluminal prosthesis adapted to resist migration and method of deploying the same
US20060149364A1 (en) * 2004-12-31 2006-07-06 Steven Walak Low profile vascular graft
US8945169B2 (en) * 2005-03-15 2015-02-03 Cook Medical Technologies Llc Embolic protection device
US20060222596A1 (en) * 2005-04-01 2006-10-05 Trivascular, Inc. Non-degradable, low swelling, water soluble radiopaque hydrogel polymer
CA2610669A1 (en) * 2005-06-07 2006-12-14 Direct Flow Medical, Inc. Stentless aortic valve replacement with high radial strength
EP1909655A2 (en) 2005-06-20 2008-04-16 Sutura, Inc. Method and apparatus for applying a knot to a suture
EP1903985A4 (en) 2005-07-07 2010-04-28 Nellix Inc Systems and methods for endovascular aneurysm treatment
US20070038292A1 (en) * 2005-08-09 2007-02-15 Moise Danielpour Bio-absorbable stent
US7731741B2 (en) * 2005-09-08 2010-06-08 Boston Scientific Scimed, Inc. Inflatable bifurcation stent
US8192477B2 (en) * 2005-11-14 2012-06-05 Boston Scientific Scimed, Inc. Twisting bifurcation delivery system
US20070150041A1 (en) * 2005-12-22 2007-06-28 Nellix, Inc. Methods and systems for aneurysm treatment using filling structures
US8821561B2 (en) * 2006-02-22 2014-09-02 Boston Scientific Scimed, Inc. Marker arrangement for bifurcation catheter
US8828091B2 (en) * 2006-03-23 2014-09-09 Boston Scientific Scimed, Inc. Movable stent reinforcement
US7481836B2 (en) * 2006-03-30 2009-01-27 Medtronic Vascular, Inc. Prosthesis with coupling zone and methods
US8252036B2 (en) * 2006-07-31 2012-08-28 Syntheon Cardiology, Llc Sealable endovascular implants and methods for their use
US9408607B2 (en) 2009-07-02 2016-08-09 Edwards Lifesciences Cardiaq Llc Surgical implant devices and methods for their manufacture and use
US9585743B2 (en) 2006-07-31 2017-03-07 Edwards Lifesciences Cardiaq Llc Surgical implant devices and methods for their manufacture and use
US8216297B2 (en) * 2006-08-14 2012-07-10 Trivascular, Inc. Dual chamber cuff structure
US20080071343A1 (en) * 2006-09-15 2008-03-20 Kevin John Mayberry Multi-segmented graft deployment system
US8133213B2 (en) * 2006-10-19 2012-03-13 Direct Flow Medical, Inc. Catheter guidance through a calcified aortic valve
US7935144B2 (en) 2006-10-19 2011-05-03 Direct Flow Medical, Inc. Profile reduction of valve implant
US8052732B2 (en) * 2006-11-14 2011-11-08 Medtronic Vascular, Inc. Delivery system for stent-graft with anchoring pins
US8523931B2 (en) * 2007-01-12 2013-09-03 Endologix, Inc. Dual concentric guidewire and methods of bifurcated graft deployment
PL2124831T3 (en) 2007-03-15 2017-03-31 Ortho-Space Ltd. Prosthetic devices
US20080228259A1 (en) * 2007-03-16 2008-09-18 Jack Fa-De Chu Endovascular devices and methods to protect aneurysmal wall
US20080234809A1 (en) * 2007-03-23 2008-09-25 Medtronic Vascular, Inc. Stent Graft System With Injection Tube
JP5411125B2 (en) 2007-03-29 2014-02-12 ノーブルズ メディカル テクノロジーズ、インコーポレイテッド Suture device and system for closing a patent foramen ovale
US20080262590A1 (en) * 2007-04-19 2008-10-23 Medtronic Vascular, Inc. Delivery System for Stent-Graft
SI2150608T1 (en) * 2007-05-07 2018-04-30 Protalix Ltd. Large scale disposable bioreactor
EP2167152B1 (en) 2007-06-13 2012-08-01 Boston Scientific Scimed, Inc. Anti-migration features and geometry for a shape memory polymer stent
JP2009000276A (en) 2007-06-21 2009-01-08 Olympus Medical Systems Corp Medical tube, medical instrument, stent set and endoscope device
US9814611B2 (en) 2007-07-31 2017-11-14 Edwards Lifesciences Cardiaq Llc Actively controllable stent, stent graft, heart valve and method of controlling same
US9566178B2 (en) 2010-06-24 2017-02-14 Edwards Lifesciences Cardiaq Llc Actively controllable stent, stent graft, heart valve and method of controlling same
US8486134B2 (en) 2007-08-01 2013-07-16 Boston Scientific Scimed, Inc. Bifurcation treatment system and methods
CA2697364C (en) 2007-08-23 2017-10-17 Direct Flow Medical, Inc. Translumenally implantable heart valve with formed in place support
US20090082845A1 (en) * 2007-09-26 2009-03-26 Boston Scientific Corporation Alignment stent apparatus and method
US8066755B2 (en) * 2007-09-26 2011-11-29 Trivascular, Inc. System and method of pivoted stent deployment
US8663309B2 (en) * 2007-09-26 2014-03-04 Trivascular, Inc. Asymmetric stent apparatus and method
US8226701B2 (en) 2007-09-26 2012-07-24 Trivascular, Inc. Stent and delivery system for deployment thereof
US20090082841A1 (en) * 2007-09-26 2009-03-26 Boston Scientific Corporation Apparatus for securing stent barbs
CN101917929A (en) 2007-10-04 2010-12-15 特里瓦斯库拉尔公司 Modular vascular graft for low profile percutaneous delivery
US8328861B2 (en) 2007-11-16 2012-12-11 Trivascular, Inc. Delivery system and method for bifurcated graft
US8083789B2 (en) * 2007-11-16 2011-12-27 Trivascular, Inc. Securement assembly and method for expandable endovascular device
US20100331958A1 (en) * 2007-12-20 2010-12-30 Trivascular, Inc. Hinged endovascular device
WO2009088953A2 (en) * 2007-12-31 2009-07-16 Boston Scientific Scimed Inc. Bifurcation stent delivery system and methods
US20090198329A1 (en) 2008-02-01 2009-08-06 Kesten Randy J Breast implant with internal flow dampening
US20090198331A1 (en) * 2008-02-01 2009-08-06 Kesten Randy J Implantable prosthesis with open cell flow regulation
US8221494B2 (en) * 2008-02-22 2012-07-17 Endologix, Inc. Apparatus and method of placement of a graft or graft system
US8196279B2 (en) * 2008-02-27 2012-06-12 C. R. Bard, Inc. Stent-graft covering process
US8236040B2 (en) 2008-04-11 2012-08-07 Endologix, Inc. Bifurcated graft deployment systems and methods
AU2009240419A1 (en) 2008-04-25 2009-10-29 Nellix, Inc. Stent graft delivery system
EP2291125B1 (en) 2008-05-09 2021-04-21 Nobles Medical Technologies, Inc. Suturing devices for suturing an anatomic valve
US8377108B2 (en) 2008-06-02 2013-02-19 Boston Scientific Scimed, Inc. Staggered two balloon bifurcation catheter assembly and methods
CA2726596A1 (en) * 2008-06-04 2009-12-10 Nellix, Inc. Sealing apparatus and methods of use
WO2009149405A1 (en) * 2008-06-05 2009-12-10 Boston Scientific Scimed, Inc. Balloon bifurcated lumen treatment
US8827954B2 (en) * 2008-06-05 2014-09-09 Boston Scientific Scimed, Inc. Deflatable bifurcated device
EP2293838B1 (en) 2008-07-01 2012-08-08 Endologix, Inc. Catheter system
US20100010518A1 (en) * 2008-07-09 2010-01-14 Joshua Stopek Anastomosis Sheath And Method Of Use
US8454680B2 (en) * 2008-07-10 2013-06-04 Atrial Systems, Llc Endovascular conduit device with low profile occlusion members
WO2010006243A2 (en) * 2008-07-10 2010-01-14 Atrial Systems, Llc Endovascular conduit device for increasing safety of cardiac lead extraction and other vascular procedures
USD853560S1 (en) 2008-10-09 2019-07-09 Nuvasive, Inc. Spinal implant insertion device
WO2010048052A1 (en) 2008-10-22 2010-04-29 Boston Scientific Scimed, Inc. Shape memory tubular stent with grooves
US9566146B2 (en) * 2008-12-19 2017-02-14 St. Jude Medical, Inc. Cardiovascular valve and valve housing apparatuses and systems
US8905961B2 (en) * 2008-12-19 2014-12-09 St. Jude Medical, Inc. Systems, apparatuses, and methods for cardiovascular conduits and connectors
US8728012B2 (en) * 2008-12-19 2014-05-20 St. Jude Medical, Inc. Apparatus and method for measuring blood vessels
US20100160939A1 (en) * 2008-12-19 2010-06-24 St. Jude Medical, Inc. Systems, apparatuses, and methods for cardiovascular cutting devices and valves
EP2429452B1 (en) 2009-04-28 2020-01-15 Endologix, Inc. Endoluminal prosthesis system
WO2010127305A2 (en) 2009-05-01 2010-11-04 Endologix, Inc. Percutaneous method and device to treat dissections
US10772717B2 (en) 2009-05-01 2020-09-15 Endologix, Inc. Percutaneous method and device to treat dissections
US9526813B2 (en) * 2009-07-13 2016-12-27 Yissum Research Development Company Of The Hebrew University Of Jerusalem Ltd. Intraluminal polymeric devices for the treatment of aneurysms
US8491646B2 (en) 2009-07-15 2013-07-23 Endologix, Inc. Stent graft
EP2459127B1 (en) 2009-07-27 2015-09-23 Endologix, Inc. Stent graft
US20110130756A1 (en) * 2009-12-01 2011-06-02 Everson Jr David C Vasculature device
US20110276078A1 (en) 2009-12-30 2011-11-10 Nellix, Inc. Filling structure for a graft system and methods of use
US20110218609A1 (en) * 2010-02-10 2011-09-08 Trivascular, Inc. Fill tube manifold and delivery methods for endovascular graft
US20110218617A1 (en) * 2010-03-02 2011-09-08 Endologix, Inc. Endoluminal vascular prosthesis
US8454682B2 (en) 2010-04-13 2013-06-04 Medtronic Vascular, Inc. Anchor pin stent-graft delivery system
US9603708B2 (en) 2010-05-19 2017-03-28 Dfm, Llc Low crossing profile delivery catheter for cardiovascular prosthetic implant
US9433501B2 (en) 2010-05-19 2016-09-06 Direct Flow Medical, Inc. Inflation media for implants
US8696738B2 (en) 2010-05-20 2014-04-15 Maquet Cardiovascular Llc Composite prosthesis with external polymeric support structure and methods of manufacturing the same
US8979824B2 (en) 2010-06-21 2015-03-17 Boston Scientific Scimed, Inc. Stent delivery system having retention structure
US8808348B2 (en) * 2010-06-23 2014-08-19 Boston Scientific Scimed, Inc. Delivery system having stent retention structure
EP2635241B1 (en) 2010-11-02 2019-02-20 Endologix, Inc. Apparatus for placement of a graft or graft system
WO2012068175A2 (en) 2010-11-16 2012-05-24 Trivascular, Inc. Advanced endovascular graft and delivery system
US9393100B2 (en) 2010-11-17 2016-07-19 Endologix, Inc. Devices and methods to treat vascular dissections
US8801768B2 (en) 2011-01-21 2014-08-12 Endologix, Inc. Graft systems having semi-permeable filling structures and methods for their use
US8808350B2 (en) 2011-03-01 2014-08-19 Endologix, Inc. Catheter system and methods of using same
CN103648437B (en) 2011-04-06 2016-05-04 恩朵罗杰克斯国际控股有限公司 For the method and system of vascular aneurysms treatment
CN110882021A (en) 2011-04-15 2020-03-17 心脏缝合有限公司 Suturing device and method for suturing an anatomical valve
US8978448B2 (en) 2011-10-11 2015-03-17 Trivascular, Inc. In vitro testing of endovascular device
US9289307B2 (en) 2011-10-18 2016-03-22 Ortho-Space Ltd. Prosthetic devices and methods for using same
US9827093B2 (en) 2011-10-21 2017-11-28 Edwards Lifesciences Cardiaq Llc Actively controllable stent, stent graft, heart valve and method of controlling same
US8992595B2 (en) 2012-04-04 2015-03-31 Trivascular, Inc. Durable stent graft with tapered struts and stable delivery methods and devices
US9498363B2 (en) 2012-04-06 2016-11-22 Trivascular, Inc. Delivery catheter for endovascular device
US9445897B2 (en) 2012-05-01 2016-09-20 Direct Flow Medical, Inc. Prosthetic implant delivery device with introducer catheter
EP3597115A1 (en) 2012-05-11 2020-01-22 Heartstitch, Inc. Suturing devices for suturing an anatomic structure
US20150094744A1 (en) * 2012-05-25 2015-04-02 H. Lee Moffitt Cancer Center And Research Institute, Inc. Vascular anastomosis stent
US10130346B2 (en) * 2012-07-24 2018-11-20 Omrix Biopharmaceuticals Ltd. Device and method for the application of a curable fluid composition to a bodily organ
US9358042B2 (en) * 2013-03-13 2016-06-07 The Spectranetics Corporation Expandable member for perforation occlusion
WO2014159093A1 (en) 2013-03-14 2014-10-02 Endologix, Inc. Method for forming materials in situ within a medical device
EA032962B1 (en) 2013-07-02 2019-08-30 Мед-Венче Инвестментс, Ллс Suturing device for suturing an anatomic structure
WO2015085145A1 (en) 2013-12-06 2015-06-11 Med-Venture Investments, Llc Suturing methods and apparatuses
CN108403257B (en) 2014-05-30 2021-03-16 安德乐吉克斯有限责任公司 Modular stent graft system and method using inflatable fill structures
US10178993B2 (en) 2014-07-11 2019-01-15 Cardio Medical Solutions, Inc. Device and method for assisting end-to-side anastomosis
US9636477B2 (en) 2014-10-09 2017-05-02 Vascular Solutions, Inc. Catheter
US9782561B2 (en) 2014-10-09 2017-10-10 Vacular Solutions, Inc. Catheter tip
CN111772868A (en) 2014-10-23 2020-10-16 特里瓦斯库拉尔公司 System for deploying a stent graft and system for detecting endoleaks
RU2580168C1 (en) * 2015-02-20 2016-04-10 Игорь Валерьевич Михайлов Article for formation of stent and method for formation thereof
DE102015104338A1 (en) * 2015-03-23 2016-09-29 Sitevasc Ug Tubular sleeve and system for the atraumatic treatment of hollow organs
CN107787211B (en) 2015-05-27 2020-12-08 特里瓦斯库拉尔公司 Balloon assisted endoluminal prosthesis deployment
JP2018524025A (en) 2015-06-30 2018-08-30 エンドロジックス、インク Lock assembly for coupling guidewire to delivery system
US10695206B2 (en) 2015-07-30 2020-06-30 Trivascular, Inc. Endoluminal prosthesis deployment devices and methods
US10959761B2 (en) 2015-09-18 2021-03-30 Ortho-Space Ltd. Intramedullary fixated subacromial spacers
CN105395297B (en) 2015-12-25 2016-11-30 李雷 Intravascular stent and conveying sacculus, implant system
EP3442437B1 (en) 2016-04-11 2020-11-11 Nobles Medical Technologies II, Inc. Tissue suturing device with suture spool
WO2018089419A1 (en) * 2016-11-09 2018-05-17 Boston Scientific Scimed, Inc. Deployable sleeves and related methods
US11045981B2 (en) 2017-01-30 2021-06-29 Ortho-Space Ltd. Processing machine and methods for processing dip-molded articles
US11839370B2 (en) 2017-06-19 2023-12-12 Heartstitch, Inc. Suturing devices and methods for suturing an opening in the apex of the heart
EP3668415B1 (en) 2017-08-18 2023-10-25 Nobles Medical Technologies II, Inc. Apparatus for applying a knot to a suture
US10722351B2 (en) 2017-08-24 2020-07-28 Medtronic Vascular, Inc. Transcatheter prosthesis with sealing component, and systems and methods for delivering and deployment thereof
US10709556B2 (en) * 2017-08-24 2020-07-14 Medtronic Vascular, Inc. Transcatheter prosthesis with sealing component, and systems and methods for delivering and deployment thereof
US10238834B2 (en) 2017-08-25 2019-03-26 Teleflex Innovations S.À.R.L. Catheter
DE102018103618A1 (en) * 2018-02-19 2019-08-22 Boris Vestweber stent
EP3941392A1 (en) 2019-03-20 2022-01-26 Inqb8 Medical Technologies, LLC Aortic dissection implant
EP3922217A1 (en) 2020-06-05 2021-12-15 BVS - Best Vascular Solutions GmbH Tubular non-woven structure as an active substance carrier for atraumatic treatment of hollow organs and a method for its production
DE102020117801A1 (en) 2020-06-05 2021-12-09 Bvs - Best Vascular Solutions Gmbh Tubular fleece structure as an active substance carrier for the atraumatic treatment of hollow organs and a method for production
WO2024018082A1 (en) 2022-07-22 2024-01-25 Bvs - Best Vascular Solutions Gmbh Balloon catheter device for atraumatic expansion of hollow organs, and a method for producing such a balloon catheter device
DE102022122630A1 (en) 2022-07-22 2024-01-25 Bvs - Best Vascular Solutions Gmbh Balloon catheter device for the atraumatic treatment of hollow organs and a method for producing such a balloon catheter device

Family Cites Families (77)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US581537A (en) * 1897-04-27 Necktie-fastener
US448332A (en) * 1891-03-17 Horse hay-rake
US414364A (en) * 1889-11-05 Vest-adjuster
US3631854A (en) 1969-05-19 1972-01-04 Robert Howard Fryer Inflatable medical assemblies
US3991767A (en) * 1973-11-02 1976-11-16 Cutter Laboratories, Inc. Tubular unit with vessel engaging cuff structure
DE2714810A1 (en) * 1976-04-05 1977-10-13 Anvar PROCESS FOR MANUFACTURING ORGAN DENTALS PRODUCED ACCORDING TO THE PROCESS
US4140126A (en) * 1977-02-18 1979-02-20 Choudhury M Hasan Method for performing aneurysm repair
US4141364A (en) * 1977-03-18 1979-02-27 Jorge Schultze Expandable endotracheal or urethral tube
US4183102A (en) * 1977-09-08 1980-01-15 Jacques Guiset Inflatable prosthetic device for lining a body duct
SE424045B (en) * 1979-01-12 1982-06-28 Tesi Ab CATHETER
US4271839A (en) * 1979-07-25 1981-06-09 Thomas J. Fogarty Dilation catheter method and apparatus
US4483332A (en) * 1983-01-03 1984-11-20 Bruce Rind Construction and method for forming an orthopedic cast and method of producing the construction
US4580568A (en) * 1984-10-01 1986-04-08 Cook, Incorporated Percutaneous endovascular stent and method for insertion thereof
US4577631A (en) * 1984-11-16 1986-03-25 Kreamer Jeffry W Aneurysm repair apparatus and method
FR2580818B1 (en) * 1985-04-19 1987-06-05 Labo Electronique Physique APPARATUS FOR EXAMINING MEDIA BY ULTRASONIC ECHOGRAPHY
US4871365A (en) * 1985-04-25 1989-10-03 American Cyanamid Company Partially absorbable prosthetic tubular article having an external support
US4733665C2 (en) * 1985-11-07 2002-01-29 Expandable Grafts Partnership Expandable intraluminal graft and method and apparatus for implanting an expandable intraluminal graft
US4741872A (en) * 1986-05-16 1988-05-03 The University Of Kentucky Research Foundation Preparation of biodegradable microspheres useful as carriers for macromolecules
US4740207A (en) * 1986-09-10 1988-04-26 Kreamer Jeffry W Intralumenal graft
GB8807026D0 (en) * 1988-03-24 1988-04-27 Sheffield City Council Bone fixation
WO1990001969A1 (en) * 1988-08-24 1990-03-08 Slepian Marvin J Biodegradable polymeric endoluminal sealing
US5328471A (en) * 1990-02-26 1994-07-12 Endoluminal Therapeutics, Inc. Method and apparatus for treatment of focal disease in hollow tubular organs and other tissue lumens
GB8927282D0 (en) * 1989-12-01 1990-01-31 Univ Strathclyde Vascular surgical devices
EP0441516B1 (en) 1990-02-08 1995-03-29 Howmedica Inc. Inflatable stent
US5123917A (en) * 1990-04-27 1992-06-23 Lee Peter Y Expandable intraluminal vascular graft
US5415634A (en) * 1990-08-23 1995-05-16 Devices For Vascular Intervention, Inc. Catheter having helical inflation lumen
CA2052981C (en) * 1990-10-09 1995-08-01 Cesare Gianturco Percutaneous stent assembly
US5156620A (en) * 1991-02-04 1992-10-20 Pigott John P Intraluminal graft/stent and balloon catheter for insertion thereof
DE4104702C2 (en) * 1991-02-15 1996-01-18 Malte Neuss Implants for organ pathways in spiral form
CA2074304C (en) * 1991-08-02 1996-11-26 Cyril J. Schweich, Jr. Drug delivery catheter
US5320100A (en) * 1991-09-16 1994-06-14 Atrium Medical Corporation Implantable prosthetic device having integral patency diagnostic indicia
US5151105A (en) * 1991-10-07 1992-09-29 Kwan Gett Clifford Collapsible vessel sleeve implant
US5336178A (en) * 1992-11-02 1994-08-09 Localmed, Inc. Intravascular catheter with infusion array
US5370691A (en) * 1993-01-26 1994-12-06 Target Therapeutics, Inc. Intravascular inflatable stent
US5334201A (en) * 1993-03-12 1994-08-02 Cowan Kevin P Permanent stent made of a cross linkable material
NL9300500A (en) * 1993-03-22 1994-10-17 Industrial Res Bv Expandable hollow sleeve for locally supporting and / or strengthening a body vessel, as well as a method for manufacturing it.
US5411549A (en) * 1993-07-13 1995-05-02 Scimed Life Systems, Inc. Selectively expandable, retractable and removable stent
WO1995008289A2 (en) 1993-09-16 1995-03-30 Scimed Life Systems, Inc. Percutaneous repair of cardiovascular anomalies and repair compositions
US5443495A (en) * 1993-09-17 1995-08-22 Scimed Lifesystems Inc. Polymerization angioplasty balloon implant device
US5738901A (en) * 1993-09-20 1998-04-14 Scimed Life Systems, Inc. Catheter balloon with retraction coating
US5432851A (en) * 1993-10-21 1995-07-11 Tecsec Incorporated Personal computer access control system
IT1269443B (en) * 1994-01-19 1997-04-01 Stefano Nazari VASCULAR PROSTHESIS FOR THE REPLACEMENT OR INTERNAL COATING OF MEDIUM AND LARGE DIAMETER BLOOD VESSELS AND DEVICE FOR ITS APPLICATION WITHOUT INTERRUPTION OF BLOOD FLOW
US5423851A (en) 1994-03-06 1995-06-13 Samuels; Shaun L. W. Method and apparatus for affixing an endoluminal device to the walls of tubular structures within the body
US5556426A (en) * 1994-08-02 1996-09-17 Meadox Medicals, Inc. PTFE implantable tubular prostheses with external coil support
US5562727A (en) * 1994-10-07 1996-10-08 Aeroquip Corporation Intraluminal graft and method for insertion thereof
US5534024A (en) * 1994-11-04 1996-07-09 Aeroquip Corporation Intraluminal stenting graft
US5507770A (en) * 1994-11-23 1996-04-16 Aeroquip Corporation Intraluminal grafting stent and method for implanting same in a blood vessel
IT1273855B (en) * 1994-12-16 1997-07-11 Xtrode Srl PROSTHESIS FOR VENOUS CAVITY
NL9500147A (en) * 1995-01-26 1996-09-02 Industrial Res Bv A method of manufacturing a sheath-shaped stent from foil material and a stent obtained using this method.
US5755770A (en) * 1995-01-31 1998-05-26 Boston Scientific Corporatiion Endovascular aortic graft
US6053943A (en) * 1995-12-08 2000-04-25 Impra, Inc. Endoluminal graft with integral structural support and method for making same
FR2735476B1 (en) 1995-06-14 1997-07-18 Rhone Poulenc Rorer Sa NEW APPLICATION OF PYRROLE DERIVATIVES
US5676685A (en) * 1995-06-22 1997-10-14 Razavi; Ali Temporary stent
US5725568A (en) * 1995-06-27 1998-03-10 Scimed Life Systems, Inc. Method and device for recanalizing and grafting arteries
US5554180A (en) * 1995-07-07 1996-09-10 Aeroquip Corporation Intraluminal stenting graft
US5713948A (en) * 1995-07-19 1998-02-03 Uflacker; Renan Adjustable and retrievable graft and graft delivery system for stent-graft system
US5766203A (en) * 1995-07-20 1998-06-16 Intelliwire, Inc. Sheath with expandable distal extremity and balloon catheters and stents for use therewith and method
US5665117A (en) 1995-11-27 1997-09-09 Rhodes; Valentine J. Endovascular prosthesis with improved sealing means for aneurysmal arterial disease and method of use
US5725547A (en) * 1996-01-04 1998-03-10 Chuter; Timothy A. M. Corrugated stent
US5871537A (en) * 1996-02-13 1999-02-16 Scimed Life Systems, Inc. Endovascular apparatus
CA2420638C (en) 1996-02-13 2008-04-08 Scimed Life Systems, Inc. Endovascular apparatus
CA2197375C (en) * 1996-02-15 2003-05-06 Yasuhiro Okuda Artificial blood vessel
NL1003178C2 (en) * 1996-05-21 1997-11-25 Cordis Europ Tubular prosthesis made of curable material.
US5716397A (en) * 1996-12-06 1998-02-10 Medtronic, Inc. Annuloplasty device with removable stiffening element
US5947995A (en) * 1997-06-06 1999-09-07 Samuels; Shaun Lawrence Wilkie Method and apparatus for removing blood clots and other objects
US6007575A (en) * 1997-06-06 1999-12-28 Samuels; Shaun Laurence Wilkie Inflatable intraluminal stent and method for affixing same within the human body
US6015474A (en) * 1997-06-20 2000-01-18 Protein Polymer Technologies Methods of using primer molecules for enhancing the mechanical performance of tissue adhesives and sealants
GB9713624D0 (en) 1997-06-28 1997-09-03 Anson Medical Ltd Expandable device
US5908435A (en) * 1997-10-23 1999-06-01 Samuels; Shaun L. W. Expandable lumen device and method of use
US6395019B2 (en) 1998-02-09 2002-05-28 Trivascular, Inc. Endovascular graft
US6015424A (en) 1998-04-28 2000-01-18 Microvention, Inc. Apparatus and method for vascular embolization
US6047825A (en) * 1998-08-21 2000-04-11 Samuels; Shaun Lawrence Wilkie Method and apparatus for storing medical guidewires
US20030225453A1 (en) * 1999-03-03 2003-12-04 Trivascular, Inc. Inflatable intraluminal graft
US6312462B1 (en) 1999-09-22 2001-11-06 Impra, Inc. Prosthesis for abdominal aortic aneurysm repair
US6355063B1 (en) * 2000-01-20 2002-03-12 Impra, Inc. Expanded PTFE drug delivery graft
US6428566B1 (en) * 2000-10-31 2002-08-06 Advanced Cardiovascular Systems, Inc. Flexible hoop and link sheath for a stent delivery system
US6588588B2 (en) * 2001-04-10 2003-07-08 Shaun L. W. Samuels Medical guidewire adapter for packaging reuse

Also Published As

Publication number Publication date
US20030220684A1 (en) 2003-11-27
EP0959810A1 (en) 1999-12-01
ATE552799T1 (en) 2012-04-15
EP0959810B1 (en) 2012-04-11
US7785365B2 (en) 2010-08-31
US20060276881A1 (en) 2006-12-07
US7491230B2 (en) 2009-02-17
WO1997029716A1 (en) 1997-08-21
US5871537A (en) 1999-02-16
US20030083738A1 (en) 2003-05-01
US20070282424A1 (en) 2007-12-06
CA2246355A1 (en) 1997-08-21
US20040215321A1 (en) 2004-10-28
US7255711B2 (en) 2007-08-14
US7799068B2 (en) 2010-09-21
US6059823A (en) 2000-05-09
US20030208257A1 (en) 2003-11-06
US20020040235A1 (en) 2002-04-04
US6692523B2 (en) 2004-02-17
US6319276B1 (en) 2001-11-20

Similar Documents

Publication Publication Date Title
CA2246355C (en) Endovascular apparatus
US20210093473A1 (en) System and methods for endovascular aneurysm treatment
AU687304B2 (en) Expandable transluminal graft prosthesis for repair of aneurysm and method for implanting
US6878161B2 (en) Stent graft loading and deployment device and method
AU669338B2 (en) Expandable transluminal graft prosthesis for repair of aneurysm and method for implanting
US6322587B1 (en) Bifurcated multicapsule intraluminal grafting system and method
EP0183372A1 (en) Prosthetic stent
JP2015057243A (en) Devices and methods for treatment of abdominal aortic aneurysms
JP2015516844A (en) Kink resistant stent graft
AU739203B2 (en) A device for grafting a prosthesis

Legal Events

Date Code Title Description
EEER Examination request
MKLA Lapsed

Effective date: 20160215