CA2255220A1 - Efficient high latitude service area satellite mobile broadcasting systems - Google Patents

Efficient high latitude service area satellite mobile broadcasting systems Download PDF

Info

Publication number
CA2255220A1
CA2255220A1 CA002255220A CA2255220A CA2255220A1 CA 2255220 A1 CA2255220 A1 CA 2255220A1 CA 002255220 A CA002255220 A CA 002255220A CA 2255220 A CA2255220 A CA 2255220A CA 2255220 A1 CA2255220 A1 CA 2255220A1
Authority
CA
Canada
Prior art keywords
satellite
constellation
satellites
audio
broadcasting system
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CA002255220A
Other languages
French (fr)
Other versions
CA2255220C (en
Inventor
Robert D. Briskman
Robert A. Nelson
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sirius XM Radio Inc
Original Assignee
Sirius XM Radio Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sirius XM Radio Inc filed Critical Sirius XM Radio Inc
Publication of CA2255220A1 publication Critical patent/CA2255220A1/en
Application granted granted Critical
Publication of CA2255220C publication Critical patent/CA2255220C/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04HBROADCAST COMMUNICATION
    • H04H40/00Arrangements specially adapted for receiving broadcast information
    • H04H40/18Arrangements characterised by circuits or components specially adapted for receiving
    • H04H40/27Arrangements characterised by circuits or components specially adapted for receiving specially adapted for broadcast systems covered by groups H04H20/53 - H04H20/95
    • H04H40/90Arrangements characterised by circuits or components specially adapted for receiving specially adapted for broadcast systems covered by groups H04H20/53 - H04H20/95 specially adapted for satellite broadcast receiving
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/14Relay systems
    • H04B7/15Active relay systems
    • H04B7/185Space-based or airborne stations; Stations for satellite systems
    • H04B7/195Non-synchronous stations
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/14Relay systems
    • H04B7/15Active relay systems
    • H04B7/185Space-based or airborne stations; Stations for satellite systems
    • H04B7/18523Satellite systems for providing broadcast service to terrestrial stations, i.e. broadcast satellite service

Abstract

Satellite audio broadcasting systems include orbital constellations for providing high elevation angle coverage of audio broadcast signals from the constellation's satellites to fixed and mobile receivers within service areas located at geographical latitudes well removed from the equator.

Claims (11)

  1. Claim 1 A satellite audio broadcasting system for mobile and fixed receivers in a geographical service area at latitudes above about 30 ° N or below about 30° S
    comprising a satellite constellation of 2 or more satellites, each in its own geosynchronous orbit, with each orbit having orbital parameters that provide high elevation angles throughout said area.
  2. Claim 2 The satellite audio broadcasting system of Claim 1 wherein audio broadcasts from said constellation to said mobile and fixed receivers are in the radio frequency range of about 1 to about 4 giga Hertz.
  3. Claim 3 The satellite audio broadcasting system of Claim 1 having the satellites in said constellation located in orbital planes separated from one another by a number of degrees equal to 360° divided by the number of satellites in the constellation.
  4. Claim 4 The satellite broadcasting system of claim 1 or claim 2 wherein said orbital parameters for each satellite in said constellation minimize passage of said satellites through the Van Allen radiation belts around the earth.
  5. Claim 5 The satellite audio broadcasting system of claim 1 or claim 2 wherein said orbital parameters minimize onboard satellite propulsion required to maintain each satellite in said constellation in its desired orbit.
  6. Claim 6 The satellite audio broadcasting system of claim 1 or claim 2 wherein said orbital parameters are selected from the group consisting of satellite antenna pointing angles, satellite pattern rotation angles and satellite antenna beam shapes.
  7. Claim 7 The satellite audio broadcasting system of claim 1 or claim 2 wherein said orbital parameters are selected from the group consisting of the inclination of each satellite, the eccentricity of the orbit for each satellite, the argument of perigee for each satellite in said constellation, the longitude of the ascending node of each orbit for each satellite in said constellation, and the ground trance for each satellite in said constellation.
  8. Claim 8 A method of providing audio satellite broadcast transmissions to fixed and mobile receivers in a target geographic area that is, at least in part, in a latitude above 30° N or a latitude below about 30° S comprising providing a constellation of satellites, with each satellite in its own orbital plane, each with a period of revolution around the earth substantially the same as the period of rotation of the earth on its axis, each with an inclination in the range of about 40°
    to about 80°, and each with an eccentricity of about 0.15 to about 0.30, and transmitting, from two or more of said satellites, audio broadcast signals that are substantially identical m content.
  9. Claim 9 The method of claim 8 further comprising providing spacial diversity between said audio broadcast signals from two or more satellites in said constellation.
  10. Claim 10 The method of claim 8 further comprising choosing orbital plane separations and relative satellite phasing among said satellites in said constellation to optimize transmissions of audio broadcast signals to said target geographic area.
    Claim 10 The method of claim 8 further comprising receiving, at said fixed and mobile receivers, from at least one satellite in said constellation, audio broadcast signals for reproduction at said fixed and mobile receivers.
  11. Claim 11 The method of claim 8 further comprising providing time diversity between substantially identical audio broadcast signals from two or more satellites in said constellation.
CA2255220A 1998-05-20 1998-12-21 Efficient high latitude service area satellite mobile broadcasting systems Expired - Fee Related CA2255220C (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US09/082,489 US6223019B1 (en) 1996-03-14 1998-05-20 Efficient high latitude service area satellite mobile broadcasting systems
US09/082,489 1998-05-20

Publications (2)

Publication Number Publication Date
CA2255220A1 true CA2255220A1 (en) 1999-11-20
CA2255220C CA2255220C (en) 2011-11-29

Family

ID=22171551

Family Applications (1)

Application Number Title Priority Date Filing Date
CA2255220A Expired - Fee Related CA2255220C (en) 1998-05-20 1998-12-21 Efficient high latitude service area satellite mobile broadcasting systems

Country Status (8)

Country Link
US (2) US6223019B1 (en)
EP (1) EP0959573A3 (en)
JP (1) JP3108689B2 (en)
CN (1) CN1174563C (en)
AU (1) AU759284B2 (en)
CA (1) CA2255220C (en)
MX (1) MXPA99001381A (en)
NO (1) NO318038B1 (en)

Families Citing this family (34)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030189136A1 (en) * 1998-05-20 2003-10-09 Toshihide Maeda Communication system, communication receiving device and communication terminal in the system
US6257526B1 (en) * 1998-11-09 2001-07-10 Hughes Electronics Corporation Satellite system and method of deploying same
US6327523B2 (en) * 1999-01-21 2001-12-04 Hughes Electronics Corporation Overhead system of inclined eccentric geosynchronous orbitting satellites
AU1326901A (en) * 1999-08-16 2001-03-13 Mobile Communications Holdings, Inc. Constellation of elliptical orbit satellites with line of apsides lying in or near the equatorial plane
US6491257B1 (en) * 1999-10-13 2002-12-10 Motorola, Inc. Technique for satellite constellation growth
US6347216B1 (en) 1999-11-04 2002-02-12 Xm Satellite Radio Inc. Method and system for providing geographic specific services in a satellite communications network
US6442385B1 (en) * 1999-11-04 2002-08-27 Xm Satellite Radio, Inc. Method and apparatus for selectively operating satellites in tundra orbits to reduce receiver buffering requirements for time diversity signals
US6778810B1 (en) * 1999-12-03 2004-08-17 The Directtv Group, Inc. Method and apparatus for mitigating interference from terrestrial broadcasts sharing the same channel with satellite broadcasts using an antenna with posterior sidelobes
US7184761B1 (en) * 2000-03-27 2007-02-27 The Directv Group, Inc. Satellite communications system
US7369809B1 (en) * 2000-10-30 2008-05-06 The Directv Group, Inc. System and method for continuous broadcast service from non-geostationary orbits
JP2002157516A (en) * 2000-11-17 2002-05-31 Hitachi Ltd Method and device for providing advertisement information
US6851651B2 (en) * 2002-02-15 2005-02-08 Lockheed Martin Corporation Constellation of spacecraft, and broadcasting method using said constellation
US20030181159A1 (en) * 2002-03-22 2003-09-25 Paul Heinerscheid Combination of multiple regional beams and a wide-area beam provided by a satellite system
US7624948B2 (en) * 2004-12-07 2009-12-01 Lockheed Martin Corporation Optimized land mobile satellite configuration and steering method
US7669803B2 (en) * 2004-12-07 2010-03-02 Lockheed Martin Corporation Optimized land mobile satellite system for north american coverage
US7519324B2 (en) * 2005-03-16 2009-04-14 Lockheed Martin Corporation Geosynchronous satellite constellation
US7672638B1 (en) * 2005-03-16 2010-03-02 Lockheed Martin Corporation Geosynchronous satellite constellation
US7454272B1 (en) * 2005-08-25 2008-11-18 Raytheon Company Geostationary stationkeeping method
US20070063982A1 (en) * 2005-09-19 2007-03-22 Tran Bao Q Integrated rendering of sound and image on a display
US20070171891A1 (en) * 2006-01-26 2007-07-26 Available For Licensing Cellular device with broadcast radio or TV receiver
US20070222734A1 (en) * 2006-03-25 2007-09-27 Tran Bao Q Mobile device capable of receiving music or video content from satellite radio providers
US7827491B2 (en) * 2006-05-12 2010-11-02 Tran Bao Q Systems and methods for video editing
US7840180B2 (en) * 2006-12-22 2010-11-23 The Boeing Company Molniya orbit satellite systems, apparatus, and methods
US20080178233A1 (en) * 2007-01-22 2008-07-24 Goc Richard J Audio and video program purchasing
US8016240B2 (en) * 2007-03-29 2011-09-13 The Boeing Company Satellites and satellite fleet implementation methods and apparatus
US9045239B2 (en) * 2009-01-14 2015-06-02 Space Systems/Loral, Llc Spacecraft payload orientation steering
WO2010096592A2 (en) * 2009-02-19 2010-08-26 Korb C Laurence Methods for optimizing the performance, cost and constellation design of satellites for full and partial earth coverage
US20120119034A1 (en) * 2009-07-02 2012-05-17 Space Systems/Loral, Inc. Deorbiting a Spacecraft from a Highly Inclined Elliptical Orbit
FR2962411B1 (en) * 2010-07-12 2014-03-14 Astrium Sas METHOD FOR PRODUCING A SPATIAL SLEEP SYSTEM FOR MONITORING NEAR-SPACE
CA2716174C (en) * 2010-10-01 2019-11-26 Telesat Canada Satellite system
CN103888183B (en) * 2014-03-28 2018-01-09 中国科学院国家天文台 A kind of method that round-the-clock communication is realized using two IGSO telecommunication satellites
CN108430875B (en) * 2015-11-27 2022-05-24 加拿大卫星公司 Satellite system and method for global coverage
US10329034B2 (en) 2016-02-26 2019-06-25 Space Systems/Loral, Llc Efficient orbital storage and deployment for spacecraft in inclined geosynchronous orbit
US11662183B1 (en) 2022-09-13 2023-05-30 Guardiansat, Llc Systems and methods for automomous protection of satellites from hostile orbital attackers

Family Cites Families (87)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2959644A (en) 1957-06-13 1960-11-08 Motorola Inc Electronic device
US3163820A (en) 1961-05-22 1964-12-29 Bell Telephone Labor Inc Satellite communication system employing a retrograding orbit
US3836969A (en) 1971-10-26 1974-09-17 Rca Corp Geo-synchronous satellites in quasi-equatorial orbits
US3825837A (en) 1972-06-01 1974-07-23 Communications Satellite Corp Television radio frequency switch
JPS577490B2 (en) 1974-02-26 1982-02-10
US4021737A (en) 1975-06-04 1977-05-03 Trask Burdick S System for processing and transmitting audio signals received from a television set for reproduction by a high fidelity FM receiver
US4286262A (en) 1975-09-02 1981-08-25 Mallard Manufacturing Corporation Electronic transmitter device
US4038600A (en) 1976-02-17 1977-07-26 Westinghouse Electric Corporation Power control on satellite uplinks
US4291409A (en) 1978-06-20 1981-09-22 The Mitre Corporation Spread spectrum communications method and apparatus
US4291410A (en) 1979-10-24 1981-09-22 Rockwell International Corporation Multipath diversity spread spectrum receiver
DE3145207A1 (en) 1981-02-28 1982-09-23 Siemens AG, 1000 Berlin und 8000 München TELECOMMUNICATION SATELLITE SYSTEM WITH GEOSTATIONAL POSITION LOOPS
GB2098821A (en) 1981-03-20 1982-11-24 Chan Kong Philip Radio receiver
JPS5819782A (en) 1981-07-29 1983-02-04 Tdk Corp Receiver
US4630058A (en) 1982-02-26 1986-12-16 Rca Corporation Satellite communication system
US4535476A (en) 1982-12-01 1985-08-13 At&T Bell Laboratories Offset geometry, interference canceling receiver
US4660196A (en) 1983-08-01 1987-04-21 Scientific Atlanta, Inc. Digital audio satellite transmission system
US4532635A (en) 1983-08-19 1985-07-30 Rca Corporation System and method employing two hop spread spectrum signal transmissions between small earth stations via a satellite and a large earth station and structure and method for synchronizing such transmissions
US4742410A (en) 1983-12-16 1988-05-03 Josephine County Technology, Inc. Disk drive system with head protection mechanism
US4640987A (en) 1984-04-23 1987-02-03 Keizo Tsukada Cordless telephone
DE3426851C1 (en) 1984-07-20 1985-10-17 Deutsche Forschungs- und Versuchsanstalt für Luft- und Raumfahrt e.V., 5300 Bonn Satellite navigation system
US4560945A (en) 1984-09-04 1985-12-24 Westinghouse Electric Corp. Adaptive feedforward cancellation technique that is effective in reducing amplifier harmonic distortion products as well as intermodulation distortion products
US4588958A (en) 1985-03-29 1986-05-13 Rca Corporation Adjustable reflective predistortion circuit
US4809935A (en) * 1985-07-31 1989-03-07 Analytic Services, Inc. Satellite continuous coverage constellations
US4712250A (en) 1985-08-12 1987-12-08 Sound Sender, Inc. Tape player adapter for car radio
JPS6258732A (en) 1985-09-06 1987-03-14 Nippon Soken Inc On-vehicle communication equipment
JPS6261431A (en) 1985-09-12 1987-03-18 Kokusai Denshin Denwa Co Ltd <Kdd> Transmission power control system
US4685133A (en) 1985-09-16 1987-08-04 Inr Technologies, Inc. Wireless audio transmission system
US4720873A (en) 1985-09-18 1988-01-19 Ricky R. Goodman Satellite audio broadcasting system
US4801940A (en) 1985-10-30 1989-01-31 Capetronic (Bsr) Ltd. Satellite seeking system for earth-station antennas for TVRO systems
US4823341A (en) 1986-08-14 1989-04-18 Hughes Aircraft Company Satellite communications system having frequency addressable high gain downlink beams
JPS6346824A (en) 1986-08-14 1988-02-27 Kokusai Denshin Denwa Co Ltd <Kdd> Transmission power control system
US4879711A (en) 1986-08-14 1989-11-07 Hughes Aircraft Company Satellite communications system employing frequency reuse
US4831619A (en) 1986-08-14 1989-05-16 Hughes Aircraft Company Satellite communications system having multiple downlink beams powered by pooled transmitters
CA1334292C (en) 1986-10-06 1995-02-07 Andrew E. Turner Apogee at constant time-of-day equatorial (ace) orbit
US4901307A (en) 1986-10-17 1990-02-13 Qualcomm, Inc. Spread spectrum multiple access communication system using satellite or terrestrial repeaters
US4829570A (en) 1987-05-22 1989-05-09 Recoton Corporation Wireless remote speaker system
FR2628274B1 (en) 1988-03-02 1990-08-10 Centre Nat Etd Spatiales COMMUNICATIONS SYSTEM WITH MOBILES USING SATELLITES
JPH01307302A (en) 1988-06-06 1989-12-12 Nec Corp Loop antenna for portable radio equipment
US4908847A (en) 1988-11-10 1990-03-13 Telcor, Inc. Adaptor set for converting standard telephone into cordless telephone
JPH0338932A (en) 1989-07-06 1991-02-20 Oki Electric Ind Co Ltd Space diversity system
US5048118A (en) 1989-07-10 1991-09-10 Motorola, Inc. Combination dual loop antenna and bezel with detachable lens cap
FR2650135B1 (en) 1989-07-19 1994-05-20 Centre Nal Etudes Spatiales SATELLITE AND METHOD OF ORBITTING BY GRAVITATIONAL ASSISTANCE
US5036523A (en) 1989-10-03 1991-07-30 Geostar Corporation Automatic frequency control of satellite transmitted spread spectrum signals
DE69019825T2 (en) 1989-11-06 1995-12-21 Motorola Inc SATELLITE TRANSMISSION SYSTEM.
US5274840A (en) 1989-11-06 1993-12-28 Motorola, Inc. Satellite communication system
US5015965A (en) 1989-11-22 1991-05-14 General Electric Company Predistortion equalizer with resistive combiners and dividers
US5239670A (en) 1989-11-30 1993-08-24 Motorola, Inc. Satellite based global paging system
US5038341A (en) 1989-12-01 1991-08-06 Hughes Aircraft Company Relay communication system
US5017926A (en) 1989-12-05 1991-05-21 Qualcomm, Inc. Dual satellite navigation system
US5126748A (en) 1989-12-05 1992-06-30 Qualcomm Incorporated Dual satellite navigation system and method
US5099252A (en) 1989-12-08 1992-03-24 Larsen Electronics, Inc. Mobile cellular antenna system
US5073900A (en) 1990-03-19 1991-12-17 Mallinckrodt Albert J Integrated cellular communications system
IT1239472B (en) 1990-04-09 1993-11-02 Sits Soc It Telecom Siemens LINEARIZER OF THE PRE-DISTORTION TYPE FOR MICROWAVE POWER AMPLIFIERS
DE4111705C2 (en) 1990-04-28 1998-03-19 Pioneer Electronic Corp Sound signal modulation system
JP2873872B2 (en) 1990-09-06 1999-03-24 株式会社ソキア C / A code removal type frequency diversity correlation reception system in GPS
US5283780A (en) 1990-10-18 1994-02-01 Stanford Telecommunications, Inc. Digital audio broadcasting system
US5455823A (en) * 1990-11-06 1995-10-03 Radio Satellite Corporation Integrated communications terminal
US5303393A (en) 1990-11-06 1994-04-12 Radio Satellite Corporation Integrated radio satellite response system and method
US5251328A (en) 1990-12-20 1993-10-05 At&T Bell Laboratories Predistortion technique for communications systems
US5148452A (en) 1990-12-31 1992-09-15 Motorola, Inc. Global positioning system digital receiver
US5408686A (en) 1991-02-19 1995-04-18 Mankovitz; Roy J. Apparatus and methods for music and lyrics broadcasting
US5433726A (en) 1991-04-22 1995-07-18 Trw Inc. Medium-earth-altitude satellite-based cellular telecommunications system
US5439190A (en) 1991-04-22 1995-08-08 Trw Inc. Medium-earth-altitude satellite-based cellular telecommunications
US5175557A (en) 1991-07-18 1992-12-29 Motorola, Inc. Two channel global positioning system receiver
IL98893A (en) * 1991-07-19 1996-07-23 Mass Jonathan Artificial satellite communication system
US5319716A (en) 1991-09-17 1994-06-07 Recoton Corporation Wireless CD/automobile radio adapter
US5153598A (en) 1991-09-26 1992-10-06 Alves Jr Daniel F Global Positioning System telecommand link
US5278863A (en) 1992-04-10 1994-01-11 Cd Radio Incorporated Radio frequency broadcasting systems and methods using two low-cost geosynchronous satellites
US5485485A (en) 1992-04-10 1996-01-16 Cd Radio Inc. Radio frequency broadcasting systems and methods using two low-cost geosynchronous satellites and hemispherical coverage antennas
US5233626A (en) 1992-05-11 1993-08-03 Space Systems/Loral Inc. Repeater diversity spread spectrum communication system
JP2706600B2 (en) * 1992-05-28 1998-01-28 ティアールダブリュー インコーポレイテッド Cellular telecommunications systems based on mid-earth altitude satellites.
US5582367A (en) 1992-06-02 1996-12-10 Mobile Communications Holdings, Inc. Elliptical orbit satellite, system, and deployment with controllable coverage characteristics
US5349606A (en) 1992-12-31 1994-09-20 Gte Government Systems Corporation Apparatus for multipath DSSS communications
US5345244A (en) 1993-01-12 1994-09-06 Trimble Navigation Limited Cordless SPS smart antenna device
FR2703199B1 (en) 1993-03-26 1995-06-02 Matra Communication Radio transmission method using repeating spectrum inverting stations.
JP3181440B2 (en) 1993-07-30 2001-07-03 松下通信工業株式会社 CDMA communication device
US5652765A (en) 1993-08-06 1997-07-29 Ntt Mobile Communications Network Inc. Receiver and repeater for spread spectrum communications
TW239242B (en) 1994-03-28 1995-01-21 Leo One Ip L L C Satellite system using equatorial & polar orbit relays
US5638399A (en) * 1994-11-15 1997-06-10 Stanford Telecommunications, Inc. Multi-beam satellite communication system with user terminal frequencies having transceivers using the same set of frequency hopping
US5551065A (en) 1994-12-19 1996-08-27 Honore; David Wireless solar entertainment system
US5641134A (en) 1994-12-27 1997-06-24 Motorola, Inc. Satellite cellular telephone and data communication system at an inclined orbit
FR2729116A1 (en) * 1995-01-06 1996-07-12 Matra Marconi Space France METHOD FOR CONTROLLING ATTITUDE OF SATELLITE ON INCLINED ORBIT ON THE TERRESTRIAL ECUADOR
US5508756A (en) 1995-02-08 1996-04-16 Landy; Bruce T.V. signal tuner in a tape cassette body and method therefor
US5592471A (en) 1995-04-21 1997-01-07 Cd Radio Inc. Mobile radio receivers using time diversity to avoid service outages in multichannel broadcast transmission systems
US6226493B1 (en) 1996-05-31 2001-05-01 Motorola, Inc. Geosynchronous satellite communication system and method
US6019318A (en) * 1997-06-16 2000-02-01 Hugehs Electronics Corporation Coordinatable system of inclined geosynchronous satellite orbits
US5907582A (en) * 1997-08-11 1999-05-25 Orbital Sciences Corporation System for turbo-coded satellite digital audio broadcasting

Also Published As

Publication number Publication date
CA2255220C (en) 2011-11-29
NO990114L (en) 1999-11-22
AU9703098A (en) 1999-12-02
MXPA99001381A (en) 2005-04-11
NO318038B1 (en) 2005-01-24
AU759284B2 (en) 2003-04-10
JP3108689B2 (en) 2000-11-13
NO990114D0 (en) 1999-01-12
US6564053B1 (en) 2003-05-13
US6223019B1 (en) 2001-04-24
CN1236232A (en) 1999-11-24
EP0959573A3 (en) 2002-05-02
EP0959573A2 (en) 1999-11-24
JP2000013297A (en) 2000-01-14
CN1174563C (en) 2004-11-03

Similar Documents

Publication Publication Date Title
CA2255220A1 (en) Efficient high latitude service area satellite mobile broadcasting systems
EP1022867B1 (en) System of inclined eccentric geosynchronous orbiting satellites
US7840180B2 (en) Molniya orbit satellite systems, apparatus, and methods
EP0648027B1 (en) Medium-earth-altitude satellite based cellular telecommunications
US6597989B2 (en) Non-geostationary orbit satellite constellation for continuous coverage of northern latitudes
AU688501B2 (en) Cost effective geosynchronous mobile satellite communication system
US6726152B2 (en) Satellite communications system
US6263188B1 (en) Elliptical satellite system which emulates the characteristics of geosynchronous satellites
US7480506B2 (en) Satellite communication system
EP3443688A1 (en) Dual leo satellite system and method for global coverage
JP2001506465A (en) High latitude geostationary satellite system
US20010051521A1 (en) Elliptical satellite system which emulates the characteristics of geosynchronous satellites
EP1047211A2 (en) Communication system with satellites at a high elevation angle
Prosch The use of big LEO satellite systems and EUREKA 147 DAB to provide reliable BC reception
RU2184421C1 (en) Method for operating quasigeostationary satellite communication system

Legal Events

Date Code Title Description
EEER Examination request
MKLA Lapsed

Effective date: 20171221