CA2255476C - Stent fabrication - Google Patents

Stent fabrication Download PDF

Info

Publication number
CA2255476C
CA2255476C CA002255476A CA2255476A CA2255476C CA 2255476 C CA2255476 C CA 2255476C CA 002255476 A CA002255476 A CA 002255476A CA 2255476 A CA2255476 A CA 2255476A CA 2255476 C CA2255476 C CA 2255476C
Authority
CA
Canada
Prior art keywords
stent
tube
wall
covering layer
discontinuous
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CA002255476A
Other languages
French (fr)
Other versions
CA2255476A1 (en
Inventor
Goran Lukic
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Schneider Europe GmbH
Original Assignee
Schneider Europe GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=8212838&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=CA2255476(C) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Schneider Europe GmbH filed Critical Schneider Europe GmbH
Publication of CA2255476A1 publication Critical patent/CA2255476A1/en
Application granted granted Critical
Publication of CA2255476C publication Critical patent/CA2255476C/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/04Hollow or tubular parts of organs, e.g. bladders, tracheae, bronchi or bile ducts
    • A61F2/06Blood vessels
    • A61F2/07Stent-grafts
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/82Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/86Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure
    • A61F2/90Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure characterised by a net-like or mesh-like structure
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/04Hollow or tubular parts of organs, e.g. bladders, tracheae, bronchi or bile ducts
    • A61F2/06Blood vessels
    • A61F2/07Stent-grafts
    • A61F2002/072Encapsulated stents, e.g. wire or whole stent embedded in lining
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/04Hollow or tubular parts of organs, e.g. bladders, tracheae, bronchi or bile ducts
    • A61F2/06Blood vessels
    • A61F2/07Stent-grafts
    • A61F2002/075Stent-grafts the stent being loosely attached to the graft material, e.g. by stitching
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2220/00Fixations or connections for prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof
    • A61F2220/0025Connections or couplings between prosthetic parts, e.g. between modular parts; Connecting elements
    • A61F2220/0075Connections or couplings between prosthetic parts, e.g. between modular parts; Connecting elements sutured, ligatured or stitched, retained or tied with a rope, string, thread, wire or cable

Abstract

A stent is covered with a discontinuous expandable wall by the steps of radially contracting the stent and inserting at least a portion of the contracted stent into a tube, the inner surface of which has been previously done over with a lifting medium. The stent is allowed to radially expand in the tube, and the assembly tube plus stent is wetted with an elastomeric polymerisable composition dissolved in a sufficient amount of solvent to permit wet forming.
After evaporation of the solvent, the elastomeric composition in the tube is polymerised and the layer covered portion of the stent is taken out of the tube.

Description

CA 022~476 1998-12-17 This is a division of our co-pending Canadian Patent Application No. 2,114,891 filed February 3, 1994.
This invention relates to the making of a stent with a discontinuous expandable wall comprising on at least a portion of its length a continuous covering layer of elastic material with an outer surface surrounding the discontinuous wall.
The discontinuous walls of stents, such as for instance the macroporous walls formed by a deformable wire mesh allowing diametral retraction for introduction of the stent into air cr food pipes and expansion therein for dilatation, or repair, or bridging of said pipes, have the disadvantage that they permit ingrowth of tumors and other rapid growth cells through the wire mesh or discontinuous wall, with the resulting risk of stent occlusion.
For preventing ingrowth of cells through the stent, the document DE-3918736-Al describes an expandable metallic stent with an inner teflon tube affixed to the stent by suture or pressure, or an inner tube and an outer tube, both of teflon, connected pouch like to each other. At least in case of degradation of the inner tube, there will be a strong risk of having flaps from the inner tube occluding the vessel, or migration of the inner tube with respect to the stent and a further risk of occlusion of the vessel. Furthermore, the absence of resiliency of teflon does not allow constriction and expansion of the stent without additional place consuming measures such as zig-zag folds of the teflon tubes.

CA 022~476 1998-12-17 The document "Endoscopy 1992 : 416-420" also describes an expandable metalllc stent for preventlng lngrowth of mallgnant structures. This stent, formed by an expandable wlre mesh, is covered by a slllcone membrane or sklrt whlch surrounds a portlon of lts length. Thls membrane or sklrt ls secured around the stent by suture of lts ends to the wlre mesh, and, in sltu, the membrane is thus radlally held in place between the stent wall and vessel wall. To have the membrane or sklrt posltloned between the stent wall and vessel wall ls advantageous ln case of degradatlon of the membrane.
However, such a coverage of the stent ls far from belng effortless and mostly wlll have to be done by hand, which requlres skill. In addition, it is limited to certain types of materlals and may prove fraglle, it being possible for the membrane or skirt to loosen from the wire mesh, which may allow relative movement between the membrane and the stent, with the resulting risk of occluding the vessel.
The lnventlon provldes a method for applylng a coverlng layer ln a stent with a discontinuous expandable wall comprlslng on at least a portlon of lts length a contlnuous covering layer of elastic material with an outer surface surrounding the discontlnuous wall, whereln the continuous covering layer of elastic material is adhered to the said portlon of the discontinuous wall of the stent being thereby intimately united with said wall portion, comprising the steps of forming a tube of predetermlned length wlth an elastomerlc polymerlsable composltlon, radially contracting CA 022~476 1998-12-17 - 2a -the stent, insertlng lnto the tube a portlon of the stent correspondlng to sald predetermlned length of the tube, allowlng the stent to radlally expand ln the tube, and weldlng the surfaces of contact between the stent and the tube.
In this way, the tube ls closely bound to the dlscontlnuous structure whlch lt covers and there ls definately no rlsk of separatlon therebetween. And even ln the case of a strong degradatlon of the coverlng layer tube ln course of tlme, there cannot by any mlgratlon of the coverlng layer wlth respect to the dlscontlnuous wall of the stent because of the aforesald lntlmal lnterconnection.
Furthermore, the llalson of the coverlng layer wlth the dlscontlnuous wall of the stent ellmlnates any need for dellcate, time and sklll consumlng efforts and allows coating of any klnd of dlscontlnuous expandable stent wall.
The lnventlon wlll now be descrlbed more partlcularly wlth reference to the accompanylng drawlngs whlch CA 022~476 1998-12-17 - show, by way of example only, one embodiment of the invention.

In the drawings :
Figure 1 is a perspective view of a quarter cut along the longitudlnal axis of the ~xemplified embodiment;

Figure 2 is an enlarged view of an axial cut of a 10 portion of its wall during a procedure for applying the covering layer.

The stent shown in Figure 1 is an expandable stent of which the wall (1), for instance cylindrical, is 15 formed by meshed wires (2) of stainless steel, plastics or hybrid materials such as plastics and carbon fiber.

The wall (1) comprises, on a portion of its length, a covering layer (3) made of an elastomeric biocompati-20 ble composition such as, for instance, the elastomericpolymerisable composition described in US Patent N~
5,112,900. The outer face (4) of layer (3) forms a surrounding surface, and layer (3) extends around and inside the discontinuous structure of ~he stent 25 in order to totally embrace and intimately unite with any material part of the meshed wires (2) which constitu-te said discontinuous structure.

On Figure 1, the left front face (5) of the covering 30 layer (3) is shown in an area of wall (1) where the wires (2) do not cross each other; on the contrary, the quarter cut along the longitudinal axis is shown in an area where the wires (2) cross and overlap each other.
A portion of the stent wall (1) is shown on Figure
2 with its covering layer (3), the stent wall (1) CA 022~476 1998-12-17 , being shown in an area where its wires (2) overlap each other, and the stent being inserted in a tube (6) the inner surface of which is coated with a lifting medium (7) as described in detail hereafter in connec-5 tion with a procedure for applying the covering layerto the stent.

In order to apply the covering layer (3) on the stent, the deformable wall (1) of the stent is radially con-10 tracted and the portion thereof which has to be coatedis inserted into the tube (6) the inner surface of which has been previously done over with a lifting medium (7) such as for instance "teflon" in order to avoid adherence to the elastomeric composition 15 forming the covering layer (3). The contracted stent is allowed to expand radially in the tube (6) and the assembly of the tube and stent is wetted with the elastomeric polymerisable composition dissolved in a sufficient amount of solvent to permit wet forming 20 of a continuous covering layer around the totality of the discontinuous wall of the stent formed by the wire mesh inside the tube (6). The solvent is evaporated and the elastomeric composition is then polymerised in the tube and the layer covered stent portion is 25 taken out of the tube.

In that way, the shaping and liaison of the covering layer with the discontinuous wall of the stent is obtained automatically by mass polymerisation of the 30 elastomeric composition wholly surrounding the structure of such a wall inside the tube moulding its outer surface.

Of course, the discontinuous wall of the stent may 35 also be covered with the continuous covering layer all over its length, in which case the stent will be fully inserted into the tube for the dip forming CA 022~476 1998-12-17 !.

- process. In addition, the invention is not limited to the embodiment shown, being applicable to any kind of expandable stent having a discontinuous wall.

5 The thickness of the covering layer may be advantageous-ly selected as a function of the quantity of solvent added to the elastomeric com~osition, before polymerisa-tion and within the limits of a fluidity sufficient to allow wetting.

As a variant, it is also possible to obtain a greater thickness of the portions of the covering layer which are located at the outside of the discontinuous wall of the stent and between the mesh or elements thereof.
15 To this effect, the tube (6) done over with the lifting medium is first wetted alone with the elastomeric compo-sition previously added with an appropriate amount of solvent. The solvent is evaporated and the stent is then radially contracted for insertion into the tube 20 and the procedure follows as outlined hereinbefore.

According to a variant, not shown, the covering layer of elastic material needs not to integrally embrace the discontinuous structure of the stent, being suffi-25 cient that only a part of the thickness of the structurebe covered by the elastic material, in case of the example shown in Figure 1, only a radial portion of the wires (2).

30 According to further variants, also not shown, the elastic covering may be achieved by surface adhesion forces or through use of a binder.

Accordingly, a variant method provides for doing over 35 a roll on surface with a lifting medium and coating said roll on surface with an elastomeric polymerisable composition dissolved in a sufficient amount of solvent CA 022~476 1998-12-17 .' ~'' to permit contact forming, such an elastomeric composi-tion being, for instance, the composition described in US Patent N~ 5,112,900. An appropriate portion of the stent in expanded condition'is then rolled on said coated roll on surface; the stent is then withdrawn from the roll on surface, the solvent is allowed to evaporate, and the elastomeric composition adhered to the stent is polymerised.

A further variant method provides for using a covering layer formed of a tube made of an elastomeric polymerisa-ble composition, inserting the contracted stent into the tube, allowing the contracted stent to expand in the tube and vulcanising or similarly welding the surface of contact between the stent and the tube.

Still a further variant method also provides for using a covering layer formed of a tube made of an elastomeric polymerisable composition, coating the inside of the tube with an adhesive medium, inserting the contracted stent into the tube, and allowing the stent to expand radially in the so coated tube and the adhesive medium to cure, to thereby achieve adhesion of the assembly of stent and tube.
As a variant of this method, the inside of the tube may be coated with an elastomeric polymerisable composi-tion dissolved in an amount of solvent permitting contact forming, whereby after expansion of the stent, the solvent is allowed to evaporate and the elastomeric coating adhered by contact to the tube and to the stent is polymerised.

In a further variant the covering layer of elastic material may be adhered to the stent by radial pressure of the stent against the covering layer. In that case, the covering layer may be, for instance, formed of CA 022~476 1998-12-17 a tube made of an elastomeric composition stretched over the stent in order to allow contraction and ex-pansion thereof. Adhesion of the covering layer to the stent will be achieved by surface adhesion forces 5 with additionnal interpenetration between the covering layer and the stent.

In another variant, also-not shown, the covering layer may have a structured surface towards the wall of the stent, whereby adhesion of the covering layer to the stent will be achieved by some engagement of said structured surface into the discontinuous structure of the stent.

Of course, in all these variants, the discontinuous wall of the stent may be covered with the continuous covering layer all over its length or only over a portion thereof.

Claims

THE EMBODIMENTS OF THE INVENTION IN WHICH AN EXCLUSIVE
PROPERTY OR PRIVILEGE IS CLAIMED ARE DEFINED AS FOLLOWS:
1. A method for applying a covering layer in a stent with a discontinuous expandable wall comprising on at least a portion of its length a continuous covering layer of elastic material with an outer surface surrounding the discontinuous wall, wherein the continuous covering layer of elastic material is adhered to the said portion of the discontinuous wall of the stent being thereby intimately united with said wall portion, comprising the steps of:
forming a tube of predetermined length with an elastomeric polymerisable composition, radially contracting the stent, inserting into the tube a portion of the stent corresponding to said predetermined length of the tube, allowing the stent to radially expand in the tube, and welding the surfaces of contact between the stent and the tube.
CA002255476A 1993-04-23 1994-02-03 Stent fabrication Expired - Fee Related CA2255476C (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
EP93106646A EP0621015B1 (en) 1993-04-23 1993-04-23 Stent with a covering layer of elastic material and method for applying the layer on the stent
EP93106646.8 1993-04-23
CA002114891A CA2114891C (en) 1993-04-23 1994-02-03 Stent with a covering layer of elastic material and methods for applying the layer on the stent

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
CA002114891A Division CA2114891C (en) 1993-04-23 1994-02-03 Stent with a covering layer of elastic material and methods for applying the layer on the stent

Publications (2)

Publication Number Publication Date
CA2255476A1 CA2255476A1 (en) 1994-10-24
CA2255476C true CA2255476C (en) 2000-07-18

Family

ID=8212838

Family Applications (5)

Application Number Title Priority Date Filing Date
CA002206712A Expired - Fee Related CA2206712C (en) 1993-04-23 1994-02-03 Stent fabrication
CA002255476A Expired - Fee Related CA2255476C (en) 1993-04-23 1994-02-03 Stent fabrication
CA002114891A Expired - Fee Related CA2114891C (en) 1993-04-23 1994-02-03 Stent with a covering layer of elastic material and methods for applying the layer on the stent
CA002206709A Expired - Fee Related CA2206709C (en) 1993-04-23 1994-02-03 Stent fabrication
CA002205533A Expired - Fee Related CA2205533C (en) 1993-04-23 1994-02-03 Stent fabrication

Family Applications Before (1)

Application Number Title Priority Date Filing Date
CA002206712A Expired - Fee Related CA2206712C (en) 1993-04-23 1994-02-03 Stent fabrication

Family Applications After (3)

Application Number Title Priority Date Filing Date
CA002114891A Expired - Fee Related CA2114891C (en) 1993-04-23 1994-02-03 Stent with a covering layer of elastic material and methods for applying the layer on the stent
CA002206709A Expired - Fee Related CA2206709C (en) 1993-04-23 1994-02-03 Stent fabrication
CA002205533A Expired - Fee Related CA2205533C (en) 1993-04-23 1994-02-03 Stent fabrication

Country Status (8)

Country Link
US (3) US5534287A (en)
EP (1) EP0621015B1 (en)
JP (1) JP2914420B2 (en)
AT (1) ATE164056T1 (en)
CA (5) CA2206712C (en)
DE (1) DE69317548T2 (en)
DK (1) DK0621015T3 (en)
ES (1) ES2114964T3 (en)

Families Citing this family (238)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6515009B1 (en) 1991-09-27 2003-02-04 Neorx Corporation Therapeutic inhibitor of vascular smooth muscle cells
US5811447A (en) 1993-01-28 1998-09-22 Neorx Corporation Therapeutic inhibitor of vascular smooth muscle cells
FR2688401B1 (en) * 1992-03-12 1998-02-27 Thierry Richard EXPANDABLE STENT FOR HUMAN OR ANIMAL TUBULAR MEMBER, AND IMPLEMENTATION TOOL.
EP0621015B1 (en) * 1993-04-23 1998-03-18 Schneider (Europe) Ag Stent with a covering layer of elastic material and method for applying the layer on the stent
US5723004A (en) 1993-10-21 1998-03-03 Corvita Corporation Expandable supportive endoluminal grafts
US6051020A (en) 1994-02-09 2000-04-18 Boston Scientific Technology, Inc. Bifurcated endoluminal prosthesis
US5609627A (en) * 1994-02-09 1997-03-11 Boston Scientific Technology, Inc. Method for delivering a bifurcated endoluminal prosthesis
US5693085A (en) * 1994-04-29 1997-12-02 Scimed Life Systems, Inc. Stent with collagen
JPH0847540A (en) * 1994-08-09 1996-02-20 Olympus Optical Co Ltd Stent for indwelling in vascular cavity and its production
DE4446036C2 (en) * 1994-12-23 1999-06-02 Ruesch Willy Ag Placeholder for placement in a body tube
US5762995A (en) * 1995-01-13 1998-06-09 Fuji Photo Optical Co., Ltd. Flexible sheathing tube construction, and method for fabrication thereof
US6451047B2 (en) 1995-03-10 2002-09-17 Impra, Inc. Encapsulated intraluminal stent-graft and methods of making same
US6579314B1 (en) * 1995-03-10 2003-06-17 C.R. Bard, Inc. Covered stent with encapsulated ends
US6264684B1 (en) 1995-03-10 2001-07-24 Impra, Inc., A Subsidiary Of C.R. Bard, Inc. Helically supported graft
BE1009278A3 (en) * 1995-04-12 1997-01-07 Corvita Europ Guardian self-expandable medical device introduced in cavite body, and medical device with a stake as.
BE1009277A3 (en) * 1995-04-12 1997-01-07 Corvita Europ Guardian self-expandable medical device introduced in cavite body, and method of preparation.
ATE270528T1 (en) * 1995-04-12 2004-07-15 Corvita Europ SELF-EXPANDING STENT FOR INTRODUCING A MEDICAL DEVICE INTO A BODY CAVITY AND METHOD OF MANUFACTURING
US6120536A (en) * 1995-04-19 2000-09-19 Schneider (Usa) Inc. Medical devices with long term non-thrombogenic coatings
US6010530A (en) * 1995-06-07 2000-01-04 Boston Scientific Technology, Inc. Self-expanding endoluminal prosthesis
ATE192346T1 (en) * 1995-06-22 2000-05-15 Schneider Europ Gmbh MEDICINAL DEVICE FOR THE TREATMENT OF A PART OF A BODY VESSEL USING IONIZATION RADIATION
US6193745B1 (en) * 1995-10-03 2001-02-27 Medtronic, Inc. Modular intraluminal prosteheses construction and methods
ES2131253T3 (en) * 1995-11-14 1999-07-16 Schneider Europ Gmbh DEVICE FOR THE IMPLEMENTATION OF AN ENDOPROTESIS.
US5788626A (en) 1995-11-21 1998-08-04 Schneider (Usa) Inc Method of making a stent-graft covered with expanded polytetrafluoroethylene
DE69526857T2 (en) 1995-11-27 2003-01-02 Schneider Europ Gmbh Buelach Stent for use in one pass
CA2199890C (en) * 1996-03-26 2002-02-05 Leonard Pinchuk Stents and stent-grafts having enhanced hoop strength and methods of making the same
US5713949A (en) * 1996-08-06 1998-02-03 Jayaraman; Swaminathan Microporous covered stents and method of coating
BE1010183A3 (en) 1996-04-25 1998-02-03 Dereume Jean Pierre Georges Em Luminal endoprosthesis FOR BRANCHING CHANNELS OF A HUMAN OR ANIMAL BODY AND MANUFACTURING METHOD THEREOF.
DE69734060T2 (en) 1996-05-24 2006-06-29 Angiotech Pharmaceuticals, Inc., Vancouver PREPARATIONS AND METHODS FOR TREATING OR PREVENTING DISEASES OF THE BODY PASSAGE PATHS
US20060030826A1 (en) * 1996-06-04 2006-02-09 Vance Products Incorporated,d/b/a Cook Urological Incorporated Implantable medical device with anti-neoplastic drug
US20060025726A1 (en) * 1996-06-04 2006-02-02 Vance Products Incorporated, D/B/A Cook Urological Incorporated Implantable medical device with pharmacologically active layer
US20060052757A1 (en) * 1996-06-04 2006-03-09 Vance Products Incorporated, D/B/A Cook Urological Incorporated Implantable medical device with analgesic or anesthetic
US5840046A (en) * 1996-06-21 1998-11-24 Medtronic, Inc. Guidewire having hydrophilic coating
US5928279A (en) 1996-07-03 1999-07-27 Baxter International Inc. Stented, radially expandable, tubular PTFE grafts
US6416537B1 (en) 1996-12-03 2002-07-09 Atrium Medical Corporation Multi-stage prosthesis
US5897587A (en) * 1996-12-03 1999-04-27 Atrium Medical Corporation Multi-stage prosthesis
US6010529A (en) 1996-12-03 2000-01-04 Atrium Medical Corporation Expandable shielded vessel support
US5925074A (en) * 1996-12-03 1999-07-20 Atrium Medical Corporation Vascular endoprosthesis and method
US5980972A (en) * 1996-12-20 1999-11-09 Schneider (Usa) Inc Method of applying drug-release coatings
US7959664B2 (en) * 1996-12-26 2011-06-14 Medinol, Ltd. Flat process of drug coating for stents
US5957974A (en) * 1997-01-23 1999-09-28 Schneider (Usa) Inc Stent graft with braided polymeric sleeve
US6090128A (en) * 1997-02-20 2000-07-18 Endologix, Inc. Bifurcated vascular graft deployment device
GB2324729B (en) 1997-04-30 2002-01-02 Bradford Hospitals Nhs Trust Lung treatment device
CA2424551A1 (en) * 1997-05-27 1998-11-27 Schneider (Usa) Inc. Stent and stent-graft for treating branched vessels
US5906641A (en) * 1997-05-27 1999-05-25 Schneider (Usa) Inc Bifurcated stent graft
ATE286687T1 (en) * 1997-07-17 2005-01-15 Schneider Europ Gmbh STENT AND PRODUCTION METHOD THEREOF
US5897911A (en) * 1997-08-11 1999-04-27 Advanced Cardiovascular Systems, Inc. Polymer-coated stent structure
US5954766A (en) * 1997-09-16 1999-09-21 Zadno-Azizi; Gholam-Reza Body fluid flow control device
US5976169A (en) * 1997-12-16 1999-11-02 Cardiovasc, Inc. Stent with silver coating and method
US6395019B2 (en) 1998-02-09 2002-05-28 Trivascular, Inc. Endovascular graft
US6488701B1 (en) 1998-03-31 2002-12-03 Medtronic Ave, Inc. Stent-graft assembly with thin-walled graft component and method of manufacture
US6077296A (en) * 1998-03-04 2000-06-20 Endologix, Inc. Endoluminal vascular prosthesis
US7208010B2 (en) * 2000-10-16 2007-04-24 Conor Medsystems, Inc. Expandable medical device for delivery of beneficial agent
US7208011B2 (en) 2001-08-20 2007-04-24 Conor Medsystems, Inc. Implantable medical device with drug filled holes
US20040254635A1 (en) 1998-03-30 2004-12-16 Shanley John F. Expandable medical device for delivery of beneficial agent
US6241762B1 (en) 1998-03-30 2001-06-05 Conor Medsystems, Inc. Expandable medical device with ductile hinges
US6520983B1 (en) * 1998-03-31 2003-02-18 Scimed Life Systems, Inc. Stent delivery system
US6264689B1 (en) 1998-03-31 2001-07-24 Scimed Life Systems, Incorporated Low profile medical stent
US6099559A (en) * 1998-05-28 2000-08-08 Medtronic Ave, Inc. Endoluminal support assembly with capped ends
AU4323199A (en) 1998-06-19 2000-01-05 Endologix, Inc. Self expanding bifurcated endovascular prosthesis
US6153252A (en) * 1998-06-30 2000-11-28 Ethicon, Inc. Process for coating stents
US6217609B1 (en) 1998-06-30 2001-04-17 Schneider (Usa) Inc Implantable endoprosthesis with patterned terminated ends and methods for making same
US6156064A (en) 1998-08-14 2000-12-05 Schneider (Usa) Inc Stent-graft-membrane and method of making the same
US6143022A (en) * 1998-08-24 2000-11-07 Medtronic Ave, Inc. Stent-graft assembly with dual configuration graft component and method of manufacture
US20080086214A1 (en) * 1998-08-31 2008-04-10 Wilson-Cook Medical Inc. Medical device having a sleeve valve with bioactive agent
US20070016306A1 (en) * 1998-08-31 2007-01-18 Wilson-Cook Medical Inc. Prosthesis having a sleeve valve
US6746489B2 (en) 1998-08-31 2004-06-08 Wilson-Cook Medical Incorporated Prosthesis having a sleeve valve
US7118600B2 (en) 1998-08-31 2006-10-10 Wilson-Cook Medical, Inc. Prosthesis having a sleeve valve
US6660030B2 (en) 1998-12-11 2003-12-09 Endologix, Inc. Bifurcation graft deployment catheter
US6733523B2 (en) 1998-12-11 2004-05-11 Endologix, Inc. Implantable vascular graft
US6187036B1 (en) 1998-12-11 2001-02-13 Endologix, Inc. Endoluminal vascular prosthesis
DE69927055T2 (en) 1998-12-11 2006-06-29 Endologix, Inc., Irvine ENDOLUMINAL VASCULAR PROSTHESIS
US7018401B1 (en) 1999-02-01 2006-03-28 Board Of Regents, The University Of Texas System Woven intravascular devices and methods for making the same and apparatus for delivery of the same
US6398803B1 (en) 1999-02-02 2002-06-04 Impra, Inc., A Subsidiary Of C.R. Bard, Inc. Partial encapsulation of stents
US6261316B1 (en) 1999-03-11 2001-07-17 Endologix, Inc. Single puncture bifurcation graft deployment system
US8034100B2 (en) 1999-03-11 2011-10-11 Endologix, Inc. Graft deployment system
US6391288B1 (en) 1999-07-27 2002-05-21 Shiseido Co., Ltd. Microcapsule and method of making the same
DE19951477A1 (en) 1999-10-26 2001-05-03 Biotronik Mess & Therapieg Stent
US7278195B2 (en) * 1999-12-16 2007-10-09 Israel Aircraft Industries Ltd. Method for producing a coated medical support device
US6245100B1 (en) 2000-02-01 2001-06-12 Cordis Corporation Method for making a self-expanding stent-graft
US6296661B1 (en) 2000-02-01 2001-10-02 Luis A. Davila Self-expanding stent-graft
US6679264B1 (en) 2000-03-04 2004-01-20 Emphasys Medical, Inc. Methods and devices for use in performing pulmonary procedures
US8474460B2 (en) 2000-03-04 2013-07-02 Pulmonx Corporation Implanted bronchial isolation devices and methods
US8236048B2 (en) 2000-05-12 2012-08-07 Cordis Corporation Drug/drug delivery systems for the prevention and treatment of vascular disease
DE10049814B4 (en) * 2000-10-09 2006-10-19 Universitätsklinikum Freiburg Device for supporting surgical procedures within a vessel, in particular for minimally invasive explantation and implantation of heart valves
PT1328213E (en) 2000-10-16 2005-10-31 Conor Medsystems Inc EXPANSIVE MEDICAL DEVICE FOR THE ADMINISTRATION OF A BENEFICIAL AGENT
US20040204756A1 (en) * 2004-02-11 2004-10-14 Diaz Stephen Hunter Absorbent article with improved liquid acquisition capacity
US20020143384A1 (en) * 2001-03-30 2002-10-03 Hitoshi Ozasa Stent cover and stent
DE10118944B4 (en) 2001-04-18 2013-01-31 Merit Medical Systems, Inc. Removable, essentially cylindrical implants
US8182527B2 (en) 2001-05-07 2012-05-22 Cordis Corporation Heparin barrier coating for controlled drug release
US7828833B2 (en) 2001-06-11 2010-11-09 Boston Scientific Scimed, Inc. Composite ePTFE/textile prosthesis
US7560006B2 (en) * 2001-06-11 2009-07-14 Boston Scientific Scimed, Inc. Pressure lamination method for forming composite ePTFE/textile and ePTFE/stent/textile prostheses
CA2450160C (en) * 2001-06-11 2011-03-22 Boston Scientific Limited Composite eptfe/textile prosthesis
EP1273314A1 (en) 2001-07-06 2003-01-08 Terumo Kabushiki Kaisha Stent
US7547321B2 (en) 2001-07-26 2009-06-16 Alveolus Inc. Removable stent and method of using the same
US7056338B2 (en) 2003-03-28 2006-06-06 Conor Medsystems, Inc. Therapeutic agent delivery device with controlled therapeutic agent release rates
JP4398244B2 (en) 2001-10-04 2010-01-13 ネオヴァスク メディカル リミテッド Flow reduction implant
JP4446739B2 (en) 2001-10-11 2010-04-07 パルモンクス・コーポレイション Bronchial flow control device and method of using the device
US7597775B2 (en) 2001-10-30 2009-10-06 Boston Scientific Scimed, Inc. Green fluoropolymer tube and endovascular prosthesis formed using same
US6814561B2 (en) 2001-10-30 2004-11-09 Scimed Life Systems, Inc. Apparatus and method for extrusion of thin-walled tubes
DE10159708A1 (en) * 2001-12-05 2003-06-18 Bayer Ag Alkaline chloride electrolysis cell with gas diffusion electrodes
US7147661B2 (en) 2001-12-20 2006-12-12 Boston Scientific Santa Rosa Corp. Radially expandable stent
US7125464B2 (en) 2001-12-20 2006-10-24 Boston Scientific Santa Rosa Corp. Method for manufacturing an endovascular graft section
US7326245B2 (en) * 2002-01-31 2008-02-05 Boston Scientific Scimed, Inc. Medical device for delivering biologically active material
US7445629B2 (en) * 2002-01-31 2008-11-04 Boston Scientific Scimed, Inc. Medical device for delivering biologically active material
DE10219014A1 (en) * 2002-04-27 2003-11-13 Ruesch Willy Gmbh Self-expanding stent for reinforcing and/or keeping open a hollow organ comprise two elastic tubular layers which bracket and positionally fix at least one helical filament
CA2485285A1 (en) 2002-05-10 2003-11-20 Cordis Corporation Method of making a medical device having a thin wall tubular membrane over a structural frame
US7270675B2 (en) * 2002-05-10 2007-09-18 Cordis Corporation Method of forming a tubular membrane on a structural frame
US7351256B2 (en) * 2002-05-10 2008-04-01 Cordis Corporation Frame based unidirectional flow prosthetic implant
US7485141B2 (en) * 2002-05-10 2009-02-03 Cordis Corporation Method of placing a tubular membrane on a structural frame
US7166120B2 (en) 2002-07-12 2007-01-23 Ev3 Inc. Catheter with occluding cuff
US7232452B2 (en) * 2002-07-12 2007-06-19 Ev3 Inc. Device to create proximal stasis
DE60323502D1 (en) 2002-07-26 2008-10-23 Emphasys Medical Inc BRONCHIAL FLOW DEVICE WITH A MEMBRANE SEAL
AU2003277023B2 (en) * 2002-09-26 2009-02-26 Endovascular Devices, Inc. Apparatus and method for delivery of mitomycin through an eluting biocompatible implantable medical device
US6971813B2 (en) * 2002-09-27 2005-12-06 Labcoat, Ltd. Contact coating of prostheses
US20040093056A1 (en) 2002-10-26 2004-05-13 Johnson Lianw M. Medical appliance delivery apparatus and method of use
US7527644B2 (en) 2002-11-05 2009-05-05 Alveolus Inc. Stent with geometry determinated functionality and method of making the same
US7637942B2 (en) 2002-11-05 2009-12-29 Merit Medical Systems, Inc. Coated stent with geometry determinated functionality and method of making the same
US7959671B2 (en) 2002-11-05 2011-06-14 Merit Medical Systems, Inc. Differential covering and coating methods
US7875068B2 (en) 2002-11-05 2011-01-25 Merit Medical Systems, Inc. Removable biliary stent
KR20130032407A (en) * 2002-11-08 2013-04-01 코너 메드시스템즈, 엘엘씨 Method and apparatus for reducing tissue damage after ischemic injury
JP2006505364A (en) * 2002-11-08 2006-02-16 コナー メドシステムズ, インコーポレイテッド Expandable medical device and method for treating chronic total infarction using a local supply of angiogenic factors
US7814912B2 (en) 2002-11-27 2010-10-19 Pulmonx Corporation Delivery methods and devices for implantable bronchial isolation devices
US20050010170A1 (en) * 2004-02-11 2005-01-13 Shanley John F Implantable medical device with beneficial agent concentration gradient
EP2289571B1 (en) 2003-03-28 2016-08-03 Innovational Holdings, LLC Implantable medical device with beneficial agent concentration gradient
US7637934B2 (en) 2003-03-31 2009-12-29 Merit Medical Systems, Inc. Medical appliance optical delivery and deployment apparatus and method
US7374488B2 (en) * 2003-04-17 2008-05-20 Atronic Systems G.M.B.H. Player insert for a gaming machine, a gaming system and a method of operating a gaming system
JP4971580B2 (en) 2003-06-05 2012-07-11 テルモ株式会社 Stent and method for manufacturing stent
US6844024B2 (en) * 2003-06-13 2005-01-18 Ast Products, Inc. Methods for coating implants
US6984411B2 (en) * 2003-10-14 2006-01-10 Boston Scientific Scimed, Inc. Method for roll coating multiple stents
US7347869B2 (en) 2003-10-31 2008-03-25 Cordis Corporation Implantable valvular prosthesis
US7070616B2 (en) * 2003-10-31 2006-07-04 Cordis Corporation Implantable valvular prosthesis
US8435285B2 (en) 2003-11-25 2013-05-07 Boston Scientific Scimed, Inc. Composite stent with inner and outer stent elements and method of using the same
US20050113904A1 (en) * 2003-11-25 2005-05-26 Shank Peter J. Composite stent with inner and outer stent elements and method of using the same
US8465453B2 (en) * 2003-12-03 2013-06-18 Mayo Foundation For Medical Education And Research Kits, apparatus and methods for magnetically coating medical devices with living cells
US20090118817A1 (en) * 2005-06-16 2009-05-07 Mayo Foundation For Medical Education And Research Magnetic Medical Apparatus, Kits, and Methods
US7803178B2 (en) 2004-01-30 2010-09-28 Trivascular, Inc. Inflatable porous implants and methods for drug delivery
US8206684B2 (en) 2004-02-27 2012-06-26 Pulmonx Corporation Methods and devices for blocking flow through collateral pathways in the lung
JP2005278993A (en) * 2004-03-30 2005-10-13 Terumo Corp Stent for indwelling in living body, and production method of the same
US7335264B2 (en) * 2004-04-22 2008-02-26 Boston Scientific Scimed, Inc. Differentially coated medical devices, system for differentially coating medical devices, and coating method
US20050255230A1 (en) * 2004-05-17 2005-11-17 Clerc Claude O Method of manufacturing a covered stent
ATE482731T1 (en) 2004-08-13 2010-10-15 Delgado Reynolds M Iii DEVICE FOR LONG-TERM SUPPORT OF A LEFT VENTRICLE IN PUMPING BLOOD
US7393181B2 (en) * 2004-09-17 2008-07-01 The Penn State Research Foundation Expandable impeller pump
US7887579B2 (en) 2004-09-29 2011-02-15 Merit Medical Systems, Inc. Active stent
US9211181B2 (en) 2004-11-19 2015-12-15 Pulmonx Corporation Implant loading device and system
US7771472B2 (en) 2004-11-19 2010-08-10 Pulmonx Corporation Bronchial flow control devices and methods of use
US8876791B2 (en) 2005-02-25 2014-11-04 Pulmonx Corporation Collateral pathway treatment using agent entrained by aspiration flow current
US7731654B2 (en) 2005-05-13 2010-06-08 Merit Medical Systems, Inc. Delivery device with viewing window and associated method
US8828077B2 (en) 2006-03-15 2014-09-09 Medinol Ltd. Flat process of preparing drug eluting stents
JP2009530041A (en) 2006-03-23 2009-08-27 ザ・ペン・ステート・リサーチ・ファンデーション Cardiac assist device with expandable impeller pump
US8114464B2 (en) * 2006-03-24 2012-02-14 Stc.Unm Hybrid thin films that incorporate lamellar phospholipid layer assemblies and transmembrane proteins
US8721704B2 (en) * 2006-04-21 2014-05-13 W. L. Gore & Associates, Inc. Expandable stent with wrinkle-free elastomeric cover
US8425584B2 (en) * 2006-04-21 2013-04-23 W. L. Gore & Associates, Inc. Expandable covered stent with wide range of wrinkle-free deployed diameters
CA2667318C (en) 2006-10-22 2016-09-13 Idev Technologies, Inc. Methods for securing strand ends and the resulting devices
KR101659197B1 (en) 2006-10-22 2016-09-22 이데브 테크놀로지스, 아이엔씨. Devices and methods for stent advancement
KR100826664B1 (en) * 2006-11-01 2008-05-02 주식회사 엠아이텍 Stent and method of manufacturing the same
US8523931B2 (en) 2007-01-12 2013-09-03 Endologix, Inc. Dual concentric guidewire and methods of bifurcated graft deployment
US20100087907A1 (en) * 2007-02-16 2010-04-08 Emory University Apparatus And Methods For Treating The Aorta
US8221505B2 (en) * 2007-02-22 2012-07-17 Cook Medical Technologies Llc Prosthesis having a sleeve valve
US8087923B1 (en) 2007-05-18 2012-01-03 C. R. Bard, Inc. Extremely thin-walled ePTFE
US8226701B2 (en) 2007-09-26 2012-07-24 Trivascular, Inc. Stent and delivery system for deployment thereof
US8066755B2 (en) 2007-09-26 2011-11-29 Trivascular, Inc. System and method of pivoted stent deployment
US8663309B2 (en) 2007-09-26 2014-03-04 Trivascular, Inc. Asymmetric stent apparatus and method
EP2191853B1 (en) 2007-09-28 2015-07-29 Terumo Kabushiki Kaisha In-vivo indwelling matter
JP2010540190A (en) 2007-10-04 2010-12-24 トリバスキュラー・インコーポレイテッド Modular vascular graft for low profile transdermal delivery
US8328861B2 (en) 2007-11-16 2012-12-11 Trivascular, Inc. Delivery system and method for bifurcated graft
US8083789B2 (en) 2007-11-16 2011-12-27 Trivascular, Inc. Securement assembly and method for expandable endovascular device
US8221494B2 (en) 2008-02-22 2012-07-17 Endologix, Inc. Apparatus and method of placement of a graft or graft system
US8196279B2 (en) * 2008-02-27 2012-06-12 C. R. Bard, Inc. Stent-graft covering process
US8236040B2 (en) 2008-04-11 2012-08-07 Endologix, Inc. Bifurcated graft deployment systems and methods
EP2293838B1 (en) 2008-07-01 2012-08-08 Endologix, Inc. Catheter system
DE102008033170A1 (en) * 2008-07-15 2010-01-21 Acandis Gmbh & Co. Kg A braided mesh implant and method of making such an implant
US8679572B2 (en) 2008-08-28 2014-03-25 Cook Medical Technologies, LLC Coated stent
WO2010127040A1 (en) 2009-04-28 2010-11-04 Endologix, Inc. Apparatus and method of placement of a graft or graft system
US10772717B2 (en) 2009-05-01 2020-09-15 Endologix, Inc. Percutaneous method and device to treat dissections
EP2424447A2 (en) 2009-05-01 2012-03-07 Endologix, Inc. Percutaneous method and device to treat dissections
US9265633B2 (en) 2009-05-20 2016-02-23 480 Biomedical, Inc. Drug-eluting medical implants
US20110319987A1 (en) * 2009-05-20 2011-12-29 Arsenal Medical Medical implant
AU2010249558A1 (en) * 2009-05-20 2011-12-08 Arsenal Medical, Inc. Medical implant
US8888840B2 (en) * 2009-05-20 2014-11-18 Boston Scientific Scimed, Inc. Drug eluting medical implant
WO2010143200A2 (en) 2009-06-11 2010-12-16 Indian Institute Of Technology A coronary stent with nano coating of drug free polymer and a process for preparation thereof
CA2769631A1 (en) 2009-07-01 2011-01-06 The Penn State Research Foundation Blood pump with expandable cannula
US8491646B2 (en) 2009-07-15 2013-07-23 Endologix, Inc. Stent graft
WO2011017123A2 (en) 2009-07-27 2011-02-10 Endologix, Inc. Stent graft
US9023095B2 (en) 2010-05-27 2015-05-05 Idev Technologies, Inc. Stent delivery system with pusher assembly
JP6261339B2 (en) 2010-11-02 2018-01-17 エンドロジックス、インク Apparatus and method for placement of a graft or graft system
US9393100B2 (en) 2010-11-17 2016-07-19 Endologix, Inc. Devices and methods to treat vascular dissections
US9138518B2 (en) 2011-01-06 2015-09-22 Thoratec Corporation Percutaneous heart pump
CN103561807B (en) 2011-03-01 2015-11-25 恩朵罗杰克斯股份有限公司 Conduit system and using method thereof
US8992595B2 (en) 2012-04-04 2015-03-31 Trivascular, Inc. Durable stent graft with tapered struts and stable delivery methods and devices
US9498363B2 (en) 2012-04-06 2016-11-22 Trivascular, Inc. Delivery catheter for endovascular device
JP6346861B2 (en) * 2012-04-06 2018-06-20 ボストン サイエンティフィック サイムド,インコーポレイテッドBoston Scientific Scimed,Inc. Endoprosthesis and method for manufacturing the same
US9446179B2 (en) 2012-05-14 2016-09-20 Thoratec Corporation Distal bearing support
US9872947B2 (en) 2012-05-14 2018-01-23 Tc1 Llc Sheath system for catheter pump
US8721517B2 (en) 2012-05-14 2014-05-13 Thoratec Corporation Impeller for catheter pump
US9327067B2 (en) 2012-05-14 2016-05-03 Thoratec Corporation Impeller for catheter pump
EP4218887A1 (en) 2012-05-14 2023-08-02 Tc1 Llc Mechanical circulatory support device for stabilizing a patient after cardiogenic shock
US9421311B2 (en) 2012-07-03 2016-08-23 Thoratec Corporation Motor assembly for catheter pump
US9358329B2 (en) 2012-07-03 2016-06-07 Thoratec Corporation Catheter pump
EP4186557A1 (en) 2012-07-03 2023-05-31 Tc1 Llc Motor assembly for catheter pump
EP4122520A1 (en) 2013-03-13 2023-01-25 Tc1 Llc Fluid handling system
US11077294B2 (en) 2013-03-13 2021-08-03 Tc1 Llc Sheath assembly for catheter pump
US11033728B2 (en) 2013-03-13 2021-06-15 Tc1 Llc Fluid handling system
US9545301B2 (en) 2013-03-15 2017-01-17 Covidien Lp Coated medical devices and methods of making and using same
US9320592B2 (en) 2013-03-15 2016-04-26 Covidien Lp Coated medical devices and methods of making and using same
EP3797810A1 (en) 2013-03-15 2021-03-31 Tc1 Llc Catheter pump assembly including a stator
US9308302B2 (en) 2013-03-15 2016-04-12 Thoratec Corporation Catheter pump assembly including a stator
US9668890B2 (en) 2013-11-22 2017-06-06 Covidien Lp Anti-thrombogenic medical devices and methods
CN106456309A (en) 2014-04-08 2017-02-22 波士顿科学国际有限公司 Partially coated stents
US9827356B2 (en) 2014-04-15 2017-11-28 Tc1 Llc Catheter pump with access ports
US10583232B2 (en) 2014-04-15 2020-03-10 Tc1 Llc Catheter pump with off-set motor position
EP3131615B1 (en) 2014-04-15 2021-06-09 Tc1 Llc Sensors for catheter pumps
WO2015160990A1 (en) 2014-04-15 2015-10-22 Thoratec Corporation Catheter pump introducer systems and methods
EP3583973A1 (en) 2014-08-18 2019-12-25 Tc1 Llc Guide features for percutaneous catheter pump
US9789228B2 (en) 2014-12-11 2017-10-17 Covidien Lp Antimicrobial coatings for medical devices and processes for preparing such coatings
WO2016118777A1 (en) 2015-01-22 2016-07-28 Thoratec Corporation Reduced rotational mass motor assembly for catheter pump
US9675738B2 (en) 2015-01-22 2017-06-13 Tc1 Llc Attachment mechanisms for motor of catheter pump
EP3598986B1 (en) 2015-01-22 2021-02-17 Tc1 Llc Motor assembly with heat exchanger for catheter pump
US9907890B2 (en) 2015-04-16 2018-03-06 Tc1 Llc Catheter pump with positioning brace
WO2017004265A1 (en) 2015-06-30 2017-01-05 Endologix, Inc. Locking assembly for coupling guidewire to delivery system
CA2999986A1 (en) 2015-09-25 2017-03-30 Procyrion, Inc. Non-occluding intravascular blood pump providing reduced hemolysis
US11160970B2 (en) 2016-07-21 2021-11-02 Tc1 Llc Fluid seals for catheter pump motor assembly
EP3487550B1 (en) 2016-07-21 2022-09-28 Tc1 Llc Gas-filled chamber for catheter pump motor assembly
US10632005B2 (en) 2016-09-19 2020-04-28 Cti Vascular Ag Catheter system for treating vascular and non-vascular diseases
EP3391852A3 (en) 2017-04-21 2018-11-14 Cook Medical Technologies LLC Reinforced graft prosthesis
US10641427B2 (en) 2018-04-03 2020-05-05 Mueller International, Llc Stents and methods for repairing pipes
US11376113B2 (en) 2018-08-16 2022-07-05 Cook Medical Technologies Llc Graft material and method of use thereof
US11234806B2 (en) 2018-08-17 2022-02-01 Cook Medical Technologies Llc Data storage on implantable magnetizable fabric
US11439495B2 (en) 2018-08-22 2022-09-13 Cook Medical Technologies Llc Self-healing graft material and method of use thereof
US11723783B2 (en) 2019-01-23 2023-08-15 Neovasc Medical Ltd. Covered flow modifying apparatus
WO2020172136A1 (en) * 2019-02-19 2020-08-27 Mueller International, Llc Stent springs and stents for repairing pipes
US11187366B2 (en) 2019-03-15 2021-11-30 Mueller International, Llc Stent for repairing a pipe
US11079058B2 (en) 2019-03-15 2021-08-03 Mueller International , LLC Stent with coiled spring
US11326731B2 (en) 2019-04-24 2022-05-10 Mueller International, Llc Pipe repair assembly
US11391405B2 (en) 2019-08-09 2022-07-19 Mueller International, Llc Deployment probe for pipe repair device
US11802646B2 (en) 2019-08-09 2023-10-31 Mueller International, Llc Pipe repair device
AU2020396948A1 (en) 2019-12-03 2022-06-23 Procyrion, Inc. Blood pumps
EP4072649A4 (en) 2019-12-13 2024-02-14 Procyrion Inc Support structures for intravascular blood pumps
CN114052982A (en) * 2020-07-29 2022-02-18 上海苏畅医疗科技有限公司 Film-carrying support

Family Cites Families (81)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1205743A (en) * 1966-07-15 1970-09-16 Nat Res Dev Surgical dilator
US3738365A (en) * 1969-07-22 1973-06-12 R Schulte Spring reinforced extensible catheter
US3879516A (en) * 1972-12-07 1975-04-22 Technibiotics Method of constructing a catheter
US4331727A (en) * 1975-09-17 1982-05-25 Stanley Maas Adhesive transfer device
GB1565828A (en) * 1975-12-02 1980-04-23 Plastiques Ind Soc Implantable surgical pipeline
US4140126A (en) * 1977-02-18 1979-02-20 Choudhury M Hasan Method for performing aneurysm repair
DE3019996A1 (en) * 1980-05-24 1981-12-03 Institute für Textil- und Faserforschung Stuttgart, 7410 Reutlingen HOHLORGAN
US4441215A (en) * 1980-11-17 1984-04-10 Kaster Robert L Vascular graft
US4356218A (en) * 1981-05-07 1982-10-26 Union Carbide Corporation Liquid coating method and apparatus
CA1204643A (en) * 1981-09-16 1986-05-20 Hans I. Wallsten Device for application in blood vessels or other difficulty accessible locations and its use
SE445884B (en) * 1982-04-30 1986-07-28 Medinvent Sa DEVICE FOR IMPLANTATION OF A RODFORM PROTECTION
US4536179A (en) * 1982-09-24 1985-08-20 University Of Minnesota Implantable catheters with non-adherent contacting polymer surfaces
US4572186A (en) * 1983-12-07 1986-02-25 Cordis Corporation Vessel dilation
US4605406A (en) * 1984-08-03 1986-08-12 Medtronic, Inc. Method for fabricating prosthesis material
US4580568A (en) * 1984-10-01 1986-04-08 Cook, Incorporated Percutaneous endovascular stent and method for insertion thereof
EP0183372A1 (en) * 1984-10-19 1986-06-04 RAYCHEM CORPORATION (a Delaware corporation) Prosthetic stent
IT1186142B (en) * 1984-12-05 1987-11-18 Medinvent Sa TRANSLUMINAL IMPLANTATION DEVICE
US4699611A (en) * 1985-04-19 1987-10-13 C. R. Bard, Inc. Biliary stent introducer
US4710181A (en) * 1985-06-11 1987-12-01 Genus Catheter Technologies, Inc. Variable diameter catheter
US4733665C2 (en) * 1985-11-07 2002-01-29 Expandable Grafts Partnership Expandable intraluminal graft and method and apparatus for implanting an expandable intraluminal graft
US4681110A (en) * 1985-12-02 1987-07-21 Wiktor Dominik M Catheter arrangement having a blood vessel liner, and method of using it
US4665918A (en) * 1986-01-06 1987-05-19 Garza Gilbert A Prosthesis system and method
US4649922A (en) * 1986-01-23 1987-03-17 Wiktor Donimik M Catheter arrangement having a variable diameter tip and spring prosthesis
EP0556940A1 (en) * 1986-02-24 1993-08-25 Robert E. Fischell Intravascular stent
US4878906A (en) * 1986-03-25 1989-11-07 Servetus Partnership Endoprosthesis for repairing a damaged vessel
SE453258B (en) * 1986-04-21 1988-01-25 Medinvent Sa ELASTIC, SELF-EXPANDING PROTEST AND PROCEDURE FOR ITS MANUFACTURING
US4723549A (en) * 1986-09-18 1988-02-09 Wholey Mark H Method and apparatus for dilating blood vessels
SE455834B (en) * 1986-10-31 1988-08-15 Medinvent Sa DEVICE FOR TRANSLUMINAL IMPLANTATION OF A PRINCIPLE RODFORMALLY RADIALLY EXPANDABLE PROSTHESIS
US4793348A (en) * 1986-11-15 1988-12-27 Palmaz Julio C Balloon expandable vena cava filter to prevent migration of lower extremity venous clots into the pulmonary circulation
US4800882A (en) * 1987-03-13 1989-01-31 Cook Incorporated Endovascular stent and delivery system
US4876109A (en) * 1987-04-13 1989-10-24 Cardiac Pacemakers, Inc. Soluble covering for cardiac pacing electrode
US4886062A (en) * 1987-10-19 1989-12-12 Medtronic, Inc. Intravascular radially expandable stent and method of implant
US4916193A (en) * 1987-12-17 1990-04-10 Allied-Signal Inc. Medical devices fabricated totally or in part from copolymers of recurring units derived from cyclic carbonates and lactides
US4830003A (en) * 1988-06-17 1989-05-16 Wolff Rodney G Compressive stent and delivery system
US4921484A (en) * 1988-07-25 1990-05-01 Cordis Corporation Mesh balloon catheter device
US4856516A (en) * 1989-01-09 1989-08-15 Cordis Corporation Endovascular stent apparatus and method
US5180378A (en) 1989-04-24 1993-01-19 Abiomed, Inc. Laser surgery system
US5100429A (en) * 1989-04-28 1992-03-31 C. R. Bard, Inc. Endovascular stent and delivery system
DE3918736C2 (en) 1989-06-08 1998-05-14 Christian Dr Vallbracht Plastic-coated metal mesh stents
US5015253A (en) * 1989-06-15 1991-05-14 Cordis Corporation Non-woven endoprosthesis
US5171262A (en) * 1989-06-15 1992-12-15 Cordis Corporation Non-woven endoprosthesis
US5026607A (en) * 1989-06-23 1991-06-25 C. R. Bard, Inc. Medical apparatus having protective, lubricious coating
US5272012A (en) * 1989-06-23 1993-12-21 C. R. Bard, Inc. Medical apparatus having protective, lubricious coating
DE9010130U1 (en) * 1989-07-13 1990-09-13 American Medical Systems, Inc., Minnetonka, Minn., Us
US5089006A (en) * 1989-11-29 1992-02-18 Stiles Frank B Biological duct liner and installation catheter
JP2911927B2 (en) * 1989-11-29 1999-06-28 株式会社町田製作所 Flexible tube manufacturing method
ES2067700T3 (en) * 1989-12-29 1995-04-01 Med Inst Inc FLEXIBLE CATHETER RESISTANT TO THE FORMATION OF FOLDS.
US5108416A (en) * 1990-02-13 1992-04-28 C. R. Bard, Inc. Stent introducer system
US5071407A (en) * 1990-04-12 1991-12-10 Schneider (U.S.A.) Inc. Radially expandable fixation member
US5158548A (en) * 1990-04-25 1992-10-27 Advanced Cardiovascular Systems, Inc. Method and system for stent delivery
US5123917A (en) * 1990-04-27 1992-06-23 Lee Peter Y Expandable intraluminal vascular graft
US5180376A (en) * 1990-05-01 1993-01-19 Cathco, Inc. Non-buckling thin-walled sheath for the percutaneous insertion of intraluminal catheters
US5064435A (en) * 1990-06-28 1991-11-12 Schneider (Usa) Inc. Self-expanding prosthesis having stable axial length
DE4022956A1 (en) * 1990-07-19 1992-02-06 Sebastian Dr Freudenberg Simply positioned endo-luminal body - consists of thermoplastic-coated resistance wire with terminals, formed into cage-like structure, and placed over inflatable balloon
DE69118083T2 (en) * 1990-10-09 1996-08-22 Cook Inc Percutaneous stent assembly
DE9014230U1 (en) * 1990-10-13 1991-11-21 Angiomed Ag, 7500 Karlsruhe, De
US5112900A (en) 1990-11-28 1992-05-12 Tactyl Technologies, Inc. Elastomeric triblock copolymer compositions and articles made therewith
US5330449A (en) * 1991-01-17 1994-07-19 Sherwood Medical Company Catheter strain relief device
US5356433A (en) * 1991-08-13 1994-10-18 Cordis Corporation Biocompatible metal surfaces
US5151105A (en) * 1991-10-07 1992-09-29 Kwan Gett Clifford Collapsible vessel sleeve implant
US5282860A (en) * 1991-10-16 1994-02-01 Olympus Optical Co., Ltd. Stent tube for medical use
JP2961287B2 (en) * 1991-10-18 1999-10-12 グンゼ株式会社 Biological duct dilator, method for producing the same, and stent
US5211658A (en) * 1991-11-05 1993-05-18 New England Deaconess Hospital Corporation Method and device for performing endovascular repair of aneurysms
US5395349A (en) * 1991-12-13 1995-03-07 Endovascular Technologies, Inc. Dual valve reinforced sheath and method
US5316023A (en) * 1992-01-08 1994-05-31 Expandable Grafts Partnership Method for bilateral intra-aortic bypass
US5405377A (en) * 1992-02-21 1995-04-11 Endotech Ltd. Intraluminal stent
FR2688401B1 (en) * 1992-03-12 1998-02-27 Thierry Richard EXPANDABLE STENT FOR HUMAN OR ANIMAL TUBULAR MEMBER, AND IMPLEMENTATION TOOL.
US5282823A (en) * 1992-03-19 1994-02-01 Medtronic, Inc. Intravascular radially expandable stent
US5217026A (en) * 1992-04-06 1993-06-08 Kingston Technologies, Inc. Guidewires with lubricious surface and method of their production
US5246452A (en) * 1992-04-13 1993-09-21 Impra, Inc. Vascular graft with removable sheath
US5368566A (en) * 1992-04-29 1994-11-29 Cardiovascular Dynamics, Inc. Delivery and temporary stent catheter having a reinforced perfusion lumen
US5354308A (en) * 1992-05-01 1994-10-11 Beth Israel Hospital Association Metal wire stent
US5383928A (en) * 1992-06-10 1995-01-24 Emory University Stent sheath for local drug delivery
US5336351A (en) * 1992-07-14 1994-08-09 Tuf-Tite, Inc. Method for connecting a pipe connector to a hard plastic pipe
US5288359A (en) * 1992-08-07 1994-02-22 Minnestoa Mining And Manufacturing Company Method for adhesively bonding close fitting components
US5338312A (en) * 1992-10-02 1994-08-16 Becton, Dickinson And Company Article having multi-layered lubricant and method therefor
US5382234A (en) * 1993-04-08 1995-01-17 Scimed Life Systems, Inc. Over-the-wire balloon catheter
EP0621015B1 (en) * 1993-04-23 1998-03-18 Schneider (Europe) Ag Stent with a covering layer of elastic material and method for applying the layer on the stent
US5639278A (en) * 1993-10-21 1997-06-17 Corvita Corporation Expandable supportive bifurcated endoluminal grafts
US5389106A (en) * 1993-10-29 1995-02-14 Numed, Inc. Impermeable expandable intravascular stent
US7491234B2 (en) * 2002-12-03 2009-02-17 Boston Scientific Scimed, Inc. Medical devices for delivery of therapeutic agents

Also Published As

Publication number Publication date
CA2205533A1 (en) 1994-10-24
DK0621015T3 (en) 1998-12-21
CA2206709A1 (en) 1994-10-24
EP0621015A1 (en) 1994-10-26
US6375787B1 (en) 2002-04-23
US20020096252A1 (en) 2002-07-25
DE69317548T2 (en) 1998-08-13
CA2205533C (en) 2000-05-16
CA2206712A1 (en) 1994-10-24
DE69317548D1 (en) 1998-04-23
JPH07529A (en) 1995-01-06
JP2914420B2 (en) 1999-06-28
EP0621015B1 (en) 1998-03-18
CA2206709C (en) 1999-09-14
CA2255476A1 (en) 1994-10-24
US5534287A (en) 1996-07-09
CA2114891A1 (en) 1994-10-24
CA2206712C (en) 1999-08-10
CA2114891C (en) 1999-01-05
ES2114964T3 (en) 1998-06-16
ATE164056T1 (en) 1998-04-15

Similar Documents

Publication Publication Date Title
CA2255476C (en) Stent fabrication
CA2190717C (en) Expandable stent graft covered with expanded polytetrafluoroethylene
US6056906A (en) Method of making an intervascular catheter system for implanting a radially expandable stent within a body vessel
JP3927545B2 (en) Tubular PTFE graft with radially expandable stent
US5015253A (en) Non-woven endoprosthesis
KR100262836B1 (en) Stents and stent-grafts having enhanced hoop strength and methods of making the same
US5718973A (en) Tubular intraluminal graft
AU682558B2 (en) Bi-directional crimped graft
JP4592953B2 (en) Selective adhesion of stent-graft coating and mandrel and method of manufacturing a stent-graft device
US20010049551A1 (en) Polymer coated stent
EP1726271A2 (en) Selective adherence of stentgraft coverings, mandrel and method of making stent-graft device
WO2023233374A1 (en) Stent assemblies and method of manufacturing
WO2003057080A1 (en) Improved exterior stent and its use
MXPA96005796A (en) Expandable stent graft covered with polytetrafluoroethylene expand

Legal Events

Date Code Title Description
EEER Examination request
MKLA Lapsed