CA2278445A1 - Receiver for use in a transmission system for spectral-coded data as well as a method - Google Patents

Receiver for use in a transmission system for spectral-coded data as well as a method Download PDF

Info

Publication number
CA2278445A1
CA2278445A1 CA002278445A CA2278445A CA2278445A1 CA 2278445 A1 CA2278445 A1 CA 2278445A1 CA 002278445 A CA002278445 A CA 002278445A CA 2278445 A CA2278445 A CA 2278445A CA 2278445 A1 CA2278445 A1 CA 2278445A1
Authority
CA
Canada
Prior art keywords
optical
frequency
receiver
fact
electrical signal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
CA002278445A
Other languages
French (fr)
Inventor
Thomas Pfeiffer
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Alcatel Lucent SAS
Original Assignee
Alcatel SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Alcatel SA filed Critical Alcatel SA
Publication of CA2278445A1 publication Critical patent/CA2278445A1/en
Abandoned legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/60Receivers
    • H04B10/66Non-coherent receivers, e.g. using direct detection
    • H04B10/67Optical arrangements in the receiver
    • H04B10/671Optical arrangements in the receiver for controlling the input optical signal

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Optical Communication System (AREA)
  • Optical Filters (AREA)

Abstract

The invention relates to a method for the reception of spectral-coded data and a receiver, whereby an optical signal is decoded, converted into an electrical signal and amplified, and whereby the optical signal is modulated by the modulation of the synchronization of the optical filter in a first frequency, the modulated signal is converted in a light-sensitive detector into an electrical signal of a second frequency, and this electrical signal is transformed in a detector back into the base band.

Description

RECEIVER FOR USE IN A TRANSMISSION SYSTEM FOR SPECTRAL
CODED DATA AS WELL AS A METHOD
This invention relates to a receiver for use in a transmission system for spectral-coded data and a method as described in the independent claims.
The prior art, such as Patent Application DE 197 23 103.9, for example, discloses transmission methods that employ spectral coding. Such a transmission network consists of optical transmission lines and optical splatters, as well as optical amplifiers if necessary, and is used for the transmission of coded, multiplexed optical signals. Each transmitter contains a coder in which the signals to be transmitted are coded before they are dispatched into the optical transmission network. The coding is done optically, e.g. by frequency coding using an optical filter. Each receiver that wants to receive the data from a special transmitter must contain a decoder that is synchronized to the encoder of this specific transmitter. In the simplest case, the frequency ranges that are permeable for optical signals and the frequency ranges that are blocked for optical signals are the same in the coder and in the decoder. This method is known by the term CDMA (Code Division Multiple Access) . The senders used in this system can be light-emitting diodes, for example, the broad-band emission spectrum of which runs through an optical filter.
The optical filter can be a Fabry-Perot filter, for example, that converts the broad-band spectrum in a frequency polarization comb assembly.
On the receiving side, Patent Application DE 19723103.9, for example, discloses a differential receiver. Such a receiver contains a decoder that is synchronized to the coder of the transmitter, the optical signals of which it wants to or is authorized to receive. In particular, the simultaneous activity of a plurality of transmitters in the optical transmission leads to side-to-side crosstalk in the receiver of the optical signals from the transmitters. The signals to be detected, therefore, also contain portions of optical signals from other transmitters which are experienced as interference. The prior art discloses ways to suppress this interference by compensation in the differential receiver. Such a receiver with compensation of the two signal branches is disclosed, for example, in Patent Application DE 19748756.4. In the optical differential receiver for frequency-coded optical CDMA
systems disclosed in this patent, it is necessary, within the electrical modulation bandwidth, e.g., 108 MHz for a n~155 MBit/s system, to guarantee the synchronization of the two receiver arms with regard to the amplitude and phase shifts of the signals of less than 0.1 dB and < 10 ps for all frequencies. It is thereby possible to achieve a bit error rate of < 10-9, for example. The requirements for such an optical differential amplifier, however, increase with the number of simultaneous transmitters in the network, so that it becomes increasingly more difficult to connect much more than 8 transmitters to the network. For large numbers of transmitters, therefore, the concept of the differential receiver must be discarded. Nevertheless, the receiver claimed by the invention can be used to achieve the necessary suppression of the side-to-side crosstalk of the channels that are not to be received.
The receiver claimed by the invention with the characterizing features disclosed in Claim 1 has the advantage over similar devices of the prior art that a high number of transmitters can be operated in a transmission system. The sensitivity to crosstalk is largely eliminated by modulation of the optical signal.
Advantageous refinements and improvements of the receiver disclosed in the independent claim are possible with the features disclosed in the subclaims.
It is advantageous if, in the receiver, a high suppression of the side-to-side crosstalk of the other channels is guaranteed by a modulation of the filter characteristic of the optical filter. The modulation of the optical filter is advantageously performed at a high frequency, and the modulated signal is evaluated with a microwave detector.
In one advantageous embodiment, the optical decoder is a Mach-Zehnder filter. Another embodiment uses a Fabry-Perot filter as the optical decoder. The optical filter is advantageously connected directly with a microwave generator. The modulation frequency is thereby always greater than the frequency of the bit rate of the data transmission.
One exemplary embodiment of the invention is illustrated in the accompanying drawing and is explained in greater detail below.
The signal input (1) is connected with an optical filter (3), which is in turn connected with a microwave oscillator (7). The optical output of the optical filter (3) is connected with the input of a photodetector (4), the output of which is connected to an amplifier (5). The output signal of the amplifier is transmitted to a microwave detector (6), at which the electrical output data (2) are once again available. Figure 2 shows a detail from the synchronization curve of the optical filter (3). Plotted along the x-axis is the normalized inverse FSR (Free Spectral Range) of the receiver filter, and the y-axis represents the optical output power of the optical filter (3). By means of the microwave oscillator (7), the free spectral range (FSR) of the optical filter (3) at a frequency f0 is modulated by a few fractions, for example 10-5. The modulation of the optical filter (3) can thereby be performed, for example, by means of an optical phase modulator. The modulation frequency f0 must thereby be greater than the bit rate fdata of the data to be detected.
The shift is large enough that it runs through at least one maximum and one minimum of the synchronization curve of the optical filter (3). The output signal to the photo diode (5) is then amplitude-modulated at a frequency fl > f0, whereby contributions from upper harmonics are ignored. The exact value of fl depends on the shift of the FSR
modulation, and can be set using the latter. The frequency subcarrier at fl is still modulated with the data signals, so that a narrow band amplifier with a bandwidth of 2*~f around a central frequency of fl is required for the electrical amplification. For example, ~f - 0.7*fdata is sufficient as the bandwidth for the amplifier. The retransformation of the subcarrier signal into the base band is done, for example, using a microwave detector. The transmitters to be suppressed, which are received in the form of crosstalk between the channels in the receivers, do not make any contribution, because for it the corresponding synchronization curve is a constant, i.e., it does not depend on the precision adjustment of the free spectral range of the optical filter (3), and therefore does not generate any microwave signal in the photo diode, either.
These same advantages can be achieved by influencing the optical signal on the transmission side so that the transmitted frequency polarization comb assembly is subjected to a fitter. It is thereby possible, as described in Patent Application DE 19822616.0, to influence the optical transmission signal and to evaluate the electrical signal on the receiver side by the use of the microwave detector. The fitter can thereby be created on the transmitter side by modulation of the carrier frequency of the frequency polarization comb assembly, or by a modulation of the FSR of the transmitter filter.
The same advantages can be achieved by shifting the receiving spectrum to the transmitter side instead of the FSR of the optical filter. All the variants with an imposed optical fitter must be realized at a frequency f0 that is greater than the bit rate fdata~
As the microwave detector, an envelope curve detector can be used on the receiver side, although it is also possible to perform an evaluation by mans of a coherent hete-rodyning.

Claims (10)

1. Receiver for use in a transmission system for spectral-coded data with periodic optical filters (3), light-sensitive detectors (4) and electrical signal amplifiers (5), characterized by the fact that an input signal can be evaluated that is modulated on the transmitter or receiver side by an impressed fitter of the carrier frequency of the frequency polarization comb assembly or by the fitter of the frequency intervals of the frequency polarization comb assembly.
2. Receiver for use in a transmission system for spectral-coded data with periodic optical filters (3), light-sensitive detectors (4) and electrical signal amplifiers (5), characterized by the fact that the filter characteristic of the at least one optical filter (3) can be modulated at a frequency f 0 and that the electrical signal obtained by means of the light-sensitive detector (4) is applied to a microwave detector (6).
3. Receiver as claimed in one of the preceding claims, characterized by the fact that the optical filter is a Mach-Zehnder filter.
4. Receiver as claimed in one of the preceding claims, characterized by the fact that the optical filter is a Fabry-Perot filter.
5. Receiver as claimed in one of the preceding claims, characterized by the fact that the optical filter (3) is connected to a microwave generator (7).
6. Receiver as claimed in one of the preceding claims, characterized by the fact that the frequency of the modulation is greater than the frequency of the bit rate of the data transmission.
7. Receiver as claimed in one of the preceding claims, characterized by the fact that the modulation shift is at least large enough that it runs through a maximum and a minimum of the synchronization curve of the optical filter.
8. Method for the reception of spectral-coded optical signals in a CDMA transmission system, whereby an optical signal is decoded, converted into an electrical signal and amplified, characterized by the fact that the optical signal is modulated by modulation of the synchronization of the optical decoder at a first frequency, the modulated signal is converted in a light-sensitive detector into an electrical signal of a second frequency, and this electrical signal is transformed back into the base band in a detector.
9. Method for the reception of spectral-coded optical signals in a CDMA transmission system, whereby an optical signal is decoded, converted into an electrical signal and amplified, characterized by the fact that the optical signal is modulated by modulation in the transmitter, the modulated signal is converted in a light-sensitive detector into an electrical signal of a second frequency, and this electrical signal is transformed back into the base band in a detector.
10. Method as claimed in Claim 8, characterized by the fact that the electrical signal is electrically amplified before transformation back into the base band.
CA002278445A 1998-07-25 1999-07-23 Receiver for use in a transmission system for spectral-coded data as well as a method Abandoned CA2278445A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE19833549.0 1998-07-25
DE19833549A DE19833549A1 (en) 1998-07-25 1998-07-25 Receiver for use in a transmission system for spectrally coded data and a method

Publications (1)

Publication Number Publication Date
CA2278445A1 true CA2278445A1 (en) 2000-01-25

Family

ID=7875318

Family Applications (1)

Application Number Title Priority Date Filing Date
CA002278445A Abandoned CA2278445A1 (en) 1998-07-25 1999-07-23 Receiver for use in a transmission system for spectral-coded data as well as a method

Country Status (5)

Country Link
US (1) US6594056B1 (en)
EP (1) EP0977383A3 (en)
JP (1) JP2000059340A (en)
CA (1) CA2278445A1 (en)
DE (1) DE19833549A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1286488A1 (en) 2001-08-20 2003-02-26 Alcatel Optical code converter
KR100827147B1 (en) * 2001-10-19 2008-05-02 삼성전자주식회사 Transceiver and method for re-transmission and decording of high speed data in cdma mobile communication system

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4131792A (en) * 1978-01-24 1978-12-26 The United States Of America As Represented By The Secretary Of The Air Force Fabry-Perot diplexer
DE3416493A1 (en) * 1984-05-04 1985-11-07 Standard Elektrik Lorenz Ag, 7000 Stuttgart OPTICAL RECEIVING DEVICE
US4703474A (en) * 1986-02-28 1987-10-27 American Telephone And Telegraph Company, At&T Bell Laboratories Spread spectrum code-division-multiple-access (SS-CDMA) lightwave communication system
JP3070610B2 (en) * 1989-07-28 2000-07-31 株式会社日立製作所 Optical tuning method, optical tuning device, and optical frequency multiplex transmission device
JPH0385834A (en) * 1989-08-30 1991-04-11 Hitachi Ltd Optical frequency multiplexer and optical frequency multiplex transmitter
US5105295A (en) * 1990-01-03 1992-04-14 Gte Laboratories Incorporated Four level FSK optical signal transmission with optical decoding and direct detection
US5159481A (en) * 1990-09-14 1992-10-27 Bell Communications Research, Inc. Polarization scrambler for polarization-sensitive optical devices
EP0489444B1 (en) * 1990-12-06 1999-04-07 Nec Corporation Method for transmission and receipt of coherent light signals
JP3226067B2 (en) * 1992-10-03 2001-11-05 キヤノン株式会社 Optical communication method and optical communication system
US5373389A (en) * 1992-10-27 1994-12-13 General Instrument Corporation Method for linearizing an unbalanced Mach Zehnder optical frequency discriminator
DE4326522A1 (en) * 1993-08-06 1995-02-09 Siemens Ag Programmable optical filter and optical circuit arrangement
JP3303515B2 (en) * 1994-03-18 2002-07-22 キヤノン株式会社 Optical communication system and optical communication system using the same
USH1702H (en) * 1995-01-06 1998-01-06 Esman; Ronald D. Wideband fiber-optic signal processor
DE19605567A1 (en) * 1996-02-15 1997-08-21 Sel Alcatel Ag Optical frequency-coded CDMA transmission system and optical receiver therefor
CA2206945A1 (en) * 1996-06-03 1997-12-03 Tadashi Koga Optical receiver board, optical wavelength-tuning filter module used foroptical receiver board, and actuator for optical wavelength-tuning filter module
DE19649085A1 (en) * 1996-11-27 1998-05-28 Alsthom Cge Alcatel Transmitting / receiving device and method for transmitting broadband signals and transmitting / receiving device for receiving broadband signals

Also Published As

Publication number Publication date
EP0977383A2 (en) 2000-02-02
US6594056B1 (en) 2003-07-15
DE19833549A1 (en) 2000-01-27
EP0977383A3 (en) 2004-03-03
JP2000059340A (en) 2000-02-25

Similar Documents

Publication Publication Date Title
US6359716B1 (en) All-optical analog FM optical receiver
EP0328156B1 (en) Digital information transmission system and method
US5883548A (en) Demodulation system and method for recovering a signal of interest from an undersampled, modulated carrier
US5784506A (en) Frequency-encoded optical CDMA transmission system and optical receiver therefor
JP2009273109A (en) Centralized lightwave wdm-pon employing intensity modulated downstream and upstream data signals
US4677608A (en) Method of transferring an additional information channel across a transmission medium
US6826371B1 (en) Variable rate DPSK system architecture
US5502810A (en) Optical transmission system
US6496297B1 (en) Device and method for modulating an optical signal
CA2297992A1 (en) An optical transmission system and transmitters and receivers
EP1168681B1 (en) Method and apparatus for transmitting high-frequency signals in an optical communication system
US20020063928A1 (en) Filtering of data-encoded optical signals
US6819877B1 (en) Optical links
JP2005311722A (en) Optical transmission system, and its transmitter and receiver
US20230254039A1 (en) Method for operating an electro-optical transmission device for arbitrary signals, computer program product and data transmission device
US6430336B1 (en) Device and method for minimizing optical channel drift
US6594056B1 (en) Receiver for use in a transmission system for spectral-coded data as well as a method
US5390043A (en) Compressed channel spacing for optical heterodyne communication systems
US7826750B2 (en) Method and arrangement for demodulating an optical DPSK binary signal
KR100317807B1 (en) Apparatus and method for detecting information of optical transmission channel using polarizing modulation
US20060098986A1 (en) Optical receiver for reducing optical beat interference and optical network including the optical receiver
KR100875381B1 (en) Apparatus and method for reducing optical interference noise in single wavelength optical subscriber network
CA2236862A1 (en) Receiver for receiving optical signals
JPS61114624A (en) Optical heterodyne receiver
Majumder et al. Effect of nonuniform laser FM response on the performance of multichannel heterodyne FSK systems using optical amplifiers

Legal Events

Date Code Title Description
FZDE Discontinued