CA2291743C - Leave-on antimicrobial compositions - Google Patents

Leave-on antimicrobial compositions Download PDF

Info

Publication number
CA2291743C
CA2291743C CA002291743A CA2291743A CA2291743C CA 2291743 C CA2291743 C CA 2291743C CA 002291743 A CA002291743 A CA 002291743A CA 2291743 A CA2291743 A CA 2291743A CA 2291743 C CA2291743 C CA 2291743C
Authority
CA
Canada
Prior art keywords
leave
acid
antimicrobial composition
antimicrobial
skin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CA002291743A
Other languages
French (fr)
Other versions
CA2291743A1 (en
Inventor
Peter William Beerse
Jeffrey Michael Morgan
Kathleen Grieshop Baier
Theresa Anne Bakken
Marcus Wayne Evans
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Procter and Gamble Co
Original Assignee
Procter and Gamble Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Procter and Gamble Co filed Critical Procter and Gamble Co
Publication of CA2291743A1 publication Critical patent/CA2291743A1/en
Application granted granted Critical
Publication of CA2291743C publication Critical patent/CA2291743C/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K8/00Cosmetics or similar toiletry preparations
    • A61K8/18Cosmetics or similar toiletry preparations characterised by the composition
    • A61K8/30Cosmetics or similar toiletry preparations characterised by the composition containing organic compounds
    • A61K8/33Cosmetics or similar toiletry preparations characterised by the composition containing organic compounds containing oxygen
    • A61K8/34Alcohols
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61QSPECIFIC USE OF COSMETICS OR SIMILAR TOILETRY PREPARATIONS
    • A61Q17/00Barrier preparations; Preparations brought into direct contact with the skin for affording protection against external influences, e.g. sunlight, X-rays or other harmful rays, corrosive materials, bacteria or insect stings
    • A61Q17/005Antimicrobial preparations
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K8/00Cosmetics or similar toiletry preparations
    • A61K8/18Cosmetics or similar toiletry preparations characterised by the composition
    • A61K8/30Cosmetics or similar toiletry preparations characterised by the composition containing organic compounds
    • A61K8/33Cosmetics or similar toiletry preparations characterised by the composition containing organic compounds containing oxygen
    • A61K8/34Alcohols
    • A61K8/347Phenols
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K8/00Cosmetics or similar toiletry preparations
    • A61K8/18Cosmetics or similar toiletry preparations characterised by the composition
    • A61K8/30Cosmetics or similar toiletry preparations characterised by the composition containing organic compounds
    • A61K8/33Cosmetics or similar toiletry preparations characterised by the composition containing organic compounds containing oxygen
    • A61K8/36Carboxylic acids; Salts or anhydrides thereof
    • A61K8/368Carboxylic acids; Salts or anhydrides thereof with carboxyl groups directly bound to carbon atoms of aromatic rings
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K8/00Cosmetics or similar toiletry preparations
    • A61K8/18Cosmetics or similar toiletry preparations characterised by the composition
    • A61K8/30Cosmetics or similar toiletry preparations characterised by the composition containing organic compounds
    • A61K8/46Cosmetics or similar toiletry preparations characterised by the composition containing organic compounds containing sulfur
    • A61K8/463Cosmetics or similar toiletry preparations characterised by the composition containing organic compounds containing sulfur containing sulfuric acid derivatives, e.g. sodium lauryl sulfate
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K8/00Cosmetics or similar toiletry preparations
    • A61K8/18Cosmetics or similar toiletry preparations characterised by the composition
    • A61K8/30Cosmetics or similar toiletry preparations characterised by the composition containing organic compounds
    • A61K8/46Cosmetics or similar toiletry preparations characterised by the composition containing organic compounds containing sulfur
    • A61K8/466Cosmetics or similar toiletry preparations characterised by the composition containing organic compounds containing sulfur containing sulfonic acid derivatives; Salts
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P17/00Drugs for dermatological disorders
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P17/00Drugs for dermatological disorders
    • A61P17/10Anti-acne agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61QSPECIFIC USE OF COSMETICS OR SIMILAR TOILETRY PREPARATIONS
    • A61Q19/00Preparations for care of the skin
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61QSPECIFIC USE OF COSMETICS OR SIMILAR TOILETRY PREPARATIONS
    • A61Q19/00Preparations for care of the skin
    • A61Q19/10Washing or bathing preparations

Abstract

The present invention relates to a leave-on antimicrobial composition comprising from about 0.001 % to about 5.0 %, by weight of the leave-on antimicrobial composition, of an antimicrobial active; from about 0.05 % to about 10 %, by weight of the leave-on antimicrobial composition, of an anionic surfactant; from about 0.1 % to about 10 %, by weight of the leave-on antimicrobial composition, of a proton donating agent; and from about 0 % to about 99.85 %, by weight of the leave-on antimicrobial composition, water;
wherein the composition is adjusted to a pH of from about 3.0 to about 6Ø
The invention also encompasses methods for moisturizing, reducing the number of germs on the skin, and decreasing the spread of transient Gram negative and Gram positive bacteria using the leave-on antimicrobial compositions described herein.

Description

LEAVE-ON ANTIMICROBIAL COMPOSITIONS
TECHNICAL FIELD
The present invention relates to leave-on antimicrobial compositions which provide enhanced antimicrobial effectiveness compared to prior art compositions.
Specifically, the leave-on compositions of the invention provide previously unseen residual effectiveness against transient Gram negative bacteria, improved residual effectiveness against Gram positive bacteria and improved immediate germ removal upon use.
BACKGROUND OF THE INVENTION
Human health is impacted by many microbial entities. Inoculation by viruses and bacteria cause a wide variety of sicknesses and ailments. Media attention to cases of food poisoning, strep infections, and the like is increasing public awareness of microbial issues.
It is well known that the washing of hard surfaces, food (e.g. fruit or vegetables) and skin, especially the hands, with antimicrobial or non-medicated soap, can remove many viruses and bacteria from the washed surfaces. Removal of the viruses and bacteria is due to the surfactancy of the soap and the mechanical action of the wash procedure. Therefore, it is known and recommended that the people wash frequently to reduce the spread of viruses and bacteria.
Bacteria found on the skin can be divided into two groups: resident and transient bacteria.
Resident bacteria are Gram positive bacteria which are established as permanent microcolonies on the surface and outermost layers of the skin and play an important, helpful role in preventing the colonization of other, more harmful bacteria and fungi.
Transient bacteria are bacteria which are not part of the normal resident flora of the skin, but can be deposited when airborne contaminated material (ands on the skin or when contaminated material is brought into physical contact with it. Transient bacteria are typically divided into two subclasses: Gram positive and Gram negative. Gram positive bacteria. include pathogens such as Staphylococcus aureus, Streptococcus pyogenes and Clostridium botulinum.
Gram negative bacteria include pathogens such as Salmonella, Escherichia colt, Klebsiella, Haemophilus, Pseudomonas aeruginosa, Proteus and Shigella dysenteriae. Gram negative bacteria are generally distinguished from Gram positive by an additional protective cell membrane which generally results in the Gram negative bacteria being less susceptible to topical _ antibacterial actives.
Antimicrobial cleansing products have been marketed in a variety of forms for some time.
Forms include deodorant soaps, hard surface cleaners, and surgical disinfectants. These traditional rinse-off antimicrobial products have been formulated to provide bacteria removal during washing. The antimicrobial soaps have also been shown to provide a residual effectiveness against Gram positive bacteria, but limited residual effectiveness versus Gram negative bacteria. By residual effectiveness it is meant that bacteria growth on a surface is controlled for some period of time following the washing/rinSing process.
Antimicrobial liquid cleansers, are disclosed in U.S. Patent Numbers: 4;847,072, Bissett et al., issued July 11, 1989, 4,939,284, Degenhardt, issued July 3, 1990 and 4,820,698, Degenhardt; issued April -l l, 1989.
Some of these traditional products, especially the hard surface cleaners and surgical disinfectants; utilize high levels of alcohol andlor harsh surfactants which have been shown to dry out and irritate skin tissues. ideal persona) cleansers should gently cleanse the skin, cause little or no irritation, and not leave the skin overly dry after frequent use and preferably should provide a moisturizing benefit to the skin.
Finally, these traditional antimicrobial compositions have been developed for use in' a washing process with water. This limits their use to locations wiih available water.
Leave-on,. topical lotions have been used in the past to moisturize skin.
.However, these leave-on compositions have. not provided antimicrobial protection against transient Gram positive or Gram negative organisms. . _ PCT application WO 92118100, Keegan et al., published October 29, 1992 and PCT
application WO 95/32705, Fujiwara et al., published December 7,. 1995 teach non-wipe liquid skin cleansers comprising mildsurfactanu, antibacterial agents and acidic compounds to buffer the pH, which provide improved germ hostility. However, the use of the acid compounds foi only pH adjustment therein, results in compositions which do not deliver the pndissociated acid required to provide improved antimicrobial Benefits. This situation is compounded in Keegan and. Fujiwara by the preference of mild surfactants, including nonionic surfactants. Neither .
Keegan nor Fujiwara teach the use-of their compositions in a form which earl be used without available water, e.g. a leave-on composition. _ _ U.S. Patent Number 3,141,821, issued to Compeau, July Z1, 1964 and Irgasan DP

{Triclo~y technical literature from Ciba-Giegy, Inc., "Basic Formulation for Hand Disinfectioa 89/42/01" set forth antibacterial skin cleanser compositions-which could provide improved 'antibacterial effectiveness using certain anionic surfactants, antimicrobial actives and acids. However, the selection of highly active surfactants results in personal cleansing compositions which are drying and harsh to the skin. Again, neither reference teaches the use of antimicrobial compositions iwa form which can be used without available water, e.g. a-leave-on.
Given the severe heahh impacts of bacteria like Salmonella, Escherichia coli and Shigella, it would be highly desirable to formulate antimicrobial cleansing products which provides improved reduction of these germs on the skin and improved residual effectiveness versus these transient bacteria, which are mild to the skin and which can be used without water. Existing products have been unable to deliver all of these benefits.
Applicants have found that leave-on antimicrobial compositions which provide such mildness and antimicrobial benefits can be formulated by using known antibacterial actives in combination with specific organic and/or inorganic acids as proton donating agents, and specific anionic surfactants, all of which are deposited on the skin. The deposited proton donating agent and anionic surfactant enhance the selected active, to provide a new level of hostility to bacteria contacting the skin.
SUMMARY OF THE INVENTION
The present invention relates to a leave-on antimicrobial composition comprising from about 0.401% to about 5.0%, by weight of the leave-on antimicrobial composition, of an antimicrobial active; from about 0.05% to about 10%, by weight of the leave-on antimicrobial composition, of an anionic surfactant; from about 0.1 % to about 10%, by weight of the leave-on antimicrobial composition, of a proton donating agent; and from about 0% to about 99.85%, by weight of the leave-on antimicrobial composition, water; wherein the composition is adjusted to a pH of from about 3.0 to about 6Ø The invention also encompasses methods for cleansing, reducing the number of germs on the skin and decreasing the spread of transient Gram negative and Gram positive bacteria using the leave-on antimicrobial compositions described herein.
DETAILED DESCRIPTION OF THE INVENTION
The leave-on antimicrobial compositions of the present invention are highly efficacious for providing improved germ reduction, and residual antimicrobial effectiveness versus transient bacteria, are mild to the skin and can be used without additional available water.
The term "leave-on antimicrobial composition" is used herein to mean products suitable for application to the human skin for the purpose controlling the growth and viability of transient bacteria on the skin.
The compositions of the present invention can also be useful for treatment of acne. As used herein "treating acne" means preventing, retarding and/or arresting the process of acne formation in mammalian skin.
The compositions of the invention can also potentially be useful for providing an essentially immediate (i.e., acute) visual improvement in skin appearance following application of the composition to the skin. More particularly, the compositions of the present invention are useful for regulating skin condition, including regulating visible and/or tactile discontinuities in skin, including but not limited to visible and/or tactile discontinuities in skin texture and/or color, more especially discontinuities associated with skin aging. Such discontinuities may be induced or caused by internal and/or external factors. Extrinsic factors include ultraviolet radiation (e.g., from sun exposure), environmental pollution, wind, heat, low humidity, harsh surfactants, abrasives, and the like. Intrinsic factors include chronological aging and other biochemical changes from within the skin.
Regulating skin condition includes prophylactically and/or therapeutically regulating skin condition. As used herein, prophylactically regulating skin condition includes delaying, minimizing and/or preventing visible and/or tactile discontinuities in skin.
As used herein, therapeutically regulating skin condition includes ameliorating, e.g., diminishing, minimizing and/or effacing, such discontinuities. Regulating skin condition involves improving skin appearance and/or feel, e.g., providing a smoother, more even appearance and/or feel. As used herein, regulating skin condition includes regulating signs of aging.
"Regulating signs of skin aging" includes prophylactically regulating and/or therapeutically regulating one or more of such signs (similarly, regulating a given sign of skin aging, e.g., lines, wrinkles or pores, includes prophylactically regulating and/or therapeutically regulating that sign).
"Signs of skin aging" include, but are not limited to, all outward visibly and tactilely perceptible manifestations as well as any other macro or micro effects due to skin aging. Such signs may be induced or caused by intrinsic factors or extrinsic factors, e.g., chronological aging and/or environmental damage. These signs may result from processes which include, but are not limited to, the development of textural discontinuities such as wrinkles, including both fine superficial wrinkles and coarse deep wrinkles, skin lines, crevices, bumps, large pores (e.g., associated with adnexal structures such as sweat gland ducts, sebaceous glands, or hair follicles), scaliness, flakiness and/or other forms of skin unevenness or roughness, loss of skin elasticity (loss and/or inactivation of functional skin elastin), sagging (including puffiness in the eye area and jowls), loss of skin firmness, loss of skin tightness, loss of skin recoil from deformation, discoloration (including undereye circles), blotching, sallowness, hyperpigmented skin regions such as age spots and freckles, keratoses, abnormal differentiation, hyperkeratinization, elastosis, collagen breakdown, and other histological changes in the stratum corneum, dermis, epidermis, the skin vascular system (e.g., telangiectasia or spider vessels), and underlying tissues, especially those proximate to the skin.
All percentages and ratios used herein, unless otherwise indicated, are by weight and all measurements made are at 25°C, unless otherwise designated. The invention hereof can comprise, consist of, or consist essentially of, the essential as well as optional ingredients and components described therein.
I. INGREDIENTS
The leave-on antimicrobial compositions of the present invention comprise an antimicrobial active, an anionic surfactant, and a proton donating agent. Each of these ingredients is described in detail as follows.
A. ANTIMICROBIAL ACTIVE
The leave-on antimicrobial composition of the present invention comprises from about 0.001% to about 5%, preferably from about 0.05% to about 2%, and more preferably from about 0.1% to about 1%, by weight of the leave-on antimicrobial composition, of an antimicrobial active. The exact amount of antibacterial active to be used in the compositions will depend on the particular active utilized since actives vary in potency. Non-cationic actives are required in order to avoid interaction with the anionic surfactants of the invention.
Given below are examples of non-cationic antimicrobial agents which are useful in the present invention .
Pyrithiones, especially the zinc complex (ZPT) Octopirox~
Dimethyldimethylol Hydantoin (Glydant~) Methylchloroisothiazolinonelmethylisothiazolinone (Kathon CG~) Sodium Sulfite Sodium Bisulfate Imidazolidinyl Urea (German 115~) Diazolidinyl Urea (Germall II~) Benzyl Alcohol 2-Bromo-2-nitropropane-I,3-diol (Bronopol~) Formalin (formaldehyde) Iodopropenyl Butylcarbamate (Polyphase P100~) Chloroacetamide Methanamine Methyldibromonitrile Glutaronitrile (1,2-Dibromo-2,4-dicyanobutane or Tektamer~) Glutaraldehyde 5-bromo-5-nitro-1,3-dioxane (Bronidox~) Phenethyl Alcohol o-Phenylphenol/sodium o-phenylphenol Sodium Hydroxymethylglycinate (Suttocide A~) Polymethoxy Bicyclic Oxazolidine (Nuosept C~) Dimethoxane Thimersal Dichlorobenzyl Alcohol Captan Chlorphenenesin Dichlorophene Chlorbutanol Glyceryl Laurate Halogenated biphenyl Ethers 2,4,4'-trichloro-2'-hydroxy-diphenyl ether (Triclosan~ or TCS) 2,2'-dihydroxy-5,5'-dibromo-Biphenyl ether Phenolic Compounds Phenol 2-Methyl Phenol 3-Methyl Phenol 4-Methyl Phenol 4-Ethyl Phenol 2,4-Dimethyl Phenol 2,5-Dimethyl Phenol 3,4-Dimethyl Phenol 2,6-Dimethyl Phenol 4-n-Propyl Phenol 4-n-Butyl Phenol 4-n-Amyl Phenol 4-tent-Amyl Phenol 4-n-Hexyl Phenol 4-n-Heptyl Phenol Mono- and Poly-Alkyl and Aromatic Halophenols p-Chlorophenol Methyl p-Chlorophenol Ethyl p-Chlorophenol n-Propyl p-Chlorophenol n-Butyl p-Chlorophenol n-Amyl p-Chlorophenol sec-Amyl p-Chlorophenol n-Hexyl p-Chlorophenol Cyclohexyl p-Chlorophenol n-Heptyl p-Chlorophenol n-Octyl p-Chlorophenol o-Chlorophenol Methyl o-Chlorophenol Ethyl o-Chlorophenol n-Propylo-Chlorophenol n-Butyl o-Chlorophenol n-Amyl o-Chlorophenol tert-Amyl o-Chlorophenol n-Hexyl o-Chlorophenol n-Heptyl o-Chlorophenol o-Benzyi p-Chlorophenol o-Benxyl-m-methyl p-Chlorophenol o-Benzyl-m, m-dimethyl p-Chlorophenol o-Phenylethyl p-Chlorophenol o-Phenylethyl-m-methyl p-Chlorophenol 3-Methyl p-Chlorophenol 3,5-Dimethyl p-Chlorophenol 6-Ethyl-3-methyl p-Chlorophenol 6-n-Propyl-3-methyl p-Chlorophenol 6-iso-Propyl-3-methyl p-Chlorophenol 2-Ethyl-3,5-dimethyl p-Chlorophenol 6-sec-Butyl-3-methyl p-Chlorophenol 2-iso-Propyl-3,5-dimethyl p-Chlorophenol 6-Diethylmethyl-3-methyl p-Chiorophenol 6-iso-Propyl-2-ethyl-3-methyl p-Chlorophenol 2-sec-Amyl-3,5-dimethyl p-Chlorophenol 2-Diethylmethyl-3,5-dimethyl p-Chlorophenol 6-sec-Octyl-3-methyl p-Chlorophenol p-Chloro-m-cresol p-Bromophenol Methyl p-Bromophenol Ethyl p-Bromophenol n-Propyl p-Bromophenol n-Butyl p-Bromophenol n-Amyl p-Bromophenol sec-Amyl p-Bromophenol n-Hexyl p-Bromophenol Cyclohexyl p-Bromophenol o-Bromophenol tert-Amyl o-Bromophenol n-Hexyl o-Bromophenol n-Propyl-m,m-Dimethyl o-Bromophenol 2-PhenylPhenol 4-Chloro-2-methyl phenol 4-Chloro-3-methyl phenol 4-Chloro-3,5-dimethyl phenol 2,4-Dichloro-3,5-dimethylphenol 3,4,5,6-Terabromo-2-methylphenol 5-Methyl-2-pentylphenol 4-Isopropyl-3-methylphenol Para-chloro-meta-xylenol (PCMX) Chlorothymol Phenoxyethanol Phenoxyisopropanol 5-Chloro-2-hydroxydiphenylmethane Resorcinol and its Derivatives Resorcinol Methyl Resorcinol Ethyl Resorcinol n-Propyl Resorcinol n-Butyl Resorcinol n-Amyl Resorcinol n-Hexyl Resorcinol n-Heptyl Resorcinol n-Octyl Resorcinol n-Nonyl Resorcinol Phenyl Resorcinol Benzyl Resorcinol Phenylethyl Resorcinol Phenylpropyl Resorcinol p-Chlorobenzyl Resorcinol 5-Chloro 2,4-Dihydroxydiphenyl Methane 4'-Chloro 2,4-Dihydroxydiphenyl Methane 5-Bromo 2,4-Dihydroxydiphenyl Methane 4' -Bromo 2,4-Dihydroxydiphenyl Methane Bisphenolic Compounds 2,2'-Methylene bis (4-chlorophenol) 2,2'-Methylene bis (3,4,6-trichlorophenol) 2,2'-Methylene bis (4-chloro-6-bromophenol) bis (2-hydroxy-3,5-dichlorophenyl) sulphide bis (2-hydroxy-5-chlorobenzyl)sulphide Benzoic Esters (Parabens) Methylparaben Propylparaben Butylparaben Ethylparaben Isopropylparaben Isobutylparaben Benzylparaben Sodium Methylparaben Sodium Propylparaben Halogenated Carbanilides 3,4,4'-Trichlorocarbanilides (Triclocarban~or TCC) 3-Trifluoromethyl-4,4'-dichlorocarbanilide 3,3',4-Trichlorocarbanilide Another class of antibacterial agents, which are useful in the present invention, are the so-called "natural" antibacterial actives, referred to as natural essential oils.
These actives derive their names from their natural occurrence in plants. Typical natural essential oil antibacterial actives include oils of anise, lemon, orange, rosemary, wintergreen, thyme, lavender, cloves, hops, tea tree, citronella, wheat, barley, lemongrass, cedar leaf, cedarwood, cinnamon, fleagrass, geranium, sandalwood, violet, cranberry, eucalyptus, vervain, peppermint, gum benzoin, basil, fennel, fir, balsam, menthol, ocmea origanum, Hydastis carradensis, Berberidaceae daceae, Ratanhiae and Curcuma Tonga. Also included in this class of natural essential oils are the key chemical components of the plant oils which have been found to provide the antimicrobial benefit. These chemicals include, but are not limited to anethol, catechole, camphene, carvacol, eugenol, eucalyptol, ferulic acid, farnesol, hinokitiol, tropolone, limonene, menthol, methyl salicylate, thymol, terpineol, verbenone, berberine, ratanhiae extract, caryophellene oxide, citronellic acid, curcumin, nerolidol and geraniol.
Additional active agents are antibacterial metal salts. This class generally includes salts of metals in groups 3b-7b, 8 and 3a-Sa. Specifically are the salts of aluminum, zirconium, zinc, silver, gold, copper, lanthanum, tin, mercury, bismuth, selenium, strontium, scandium, yttrium, cerium, praseodymiun, neodymium, promethum, samarium, europium, gadolinium, terbium, dysprosium, holmium, erbium, thulium, ytterbium, lutetium and mixtures thereof.
Preferred antimicrobial agents for use herein are the broad spectrum actives selected from the group consisting of Triclosan~, Triclocarban~, Octopirox~, PCMX, ZPT, natural essential oils and their key ingredients, and mixtures thereof. The most preferred antimicrobial active for use in the present invention is Triclosan~.
B. ANIONIC SURFACTANT
The leave-on antimicrobial compositions of the present invention comprise from about 0.05% to about 10, preferably from about 0.1 to about 4%, and more preferably from about 0.2%
to about 1%, by weight of the cleansing composition, of an anionic surfactant.
Without being limited by theory, it is believed that the anionic surfactant disrupts the lipid in the cell WO 98/55080 PC'TIUS98II0972 membrane of the bacteria. The particular acid used herein reduces the negative charges on the cell wall of the bacteria, crosses through the cell membrane, weakened by the surfactant, and acidifies the cytoplasm of the bacteria. The antimicrobial active can then pass more easily through the weakened cell wall, and more efficiently poison the bacteria.
Nonlimiting examples.of anionic lathering surfactants useful in fete compositions of the present invention are disclosed in McCutcheon's, Detergents and Emulsifiers, North American edition (/990), published. by The Manufacturing Confectioner Publishing Co.;
McCutcheon's, Functional Materials. North American Edition (1992);. and U.S. Patent No.
3,929,678, to Laughlin et al., issued December 30, '1975.
A wide variety of anionic surfactants are potentially useful herein.
Nonlimiting examples of anionic lathering surfactants include those selected from the group consisting of alkyl and alkyl ether sulfates, sulfated monoglycerides, sutfonated olefins, alkyl aryl sulfonates, primary or secondary alkane sulfonates, alkyl sutfosuccinates, acyi taurates, acyl isethionates; alkyl glycerylether sulfonate, sulfonated methyl esters, sulfonated fatty acids, alkyl phosphates, acyl glutamates, acyl sarcosinates, alkyl sulfoacetates, acylated peptides, alkyl ether carboxylates, acyl tactylates, anionic fluorosurfactants, and mixtures thereof. Mixtures of anionic surfactants can be used effectively in the present invention.
Anionic surfactants for use in the cleansing. compositions include alkyl and alkyl ether -sulfates. Thcsc materials have the respective formulae R.IO..SO~M and R1(CH2H40)X-O-S03M, ,wherein R 1 is a saturated or unsaturat~, branched or unbranched alkyl group from about 8 to about 24 carbon atoms, x is 1 to i 0, and M is a water-soluble ration such as ammonium, sodium, potassium, magnesium, triethanolamine, dieihanolamine and monoethano#aminc. The alkyl sulfates are typically wade by the sulfation of monohydric alcohols (having from about 8 to about 24 carbon atoms) using sulfur trioxide or other known sulfation technique. The alkyl ether sulfates are typically made as condensation products of ethylene oxide and monohydric alcohols (having from about 8 to about 24 carbon atoms) and then sulfated. These alcohols can be derived from fats, c.g., coconut oihor tallow, or can be synthetic. Specific examples of alkyl sulfates which may be used in the cleanser compositions are sodium, ammonium, potassium, magnesium; or TEA salts of lauryl or myristyl sulfate.
Examples of alkyl ether sulfates which may be used include ammonium, sodium, magnesium, or TEA laureih-3 sulfate.
Another suitable class of anionic surfactants are the sulfated monoglyceridcs of the form RICO-O-CH2-C(OH)H-CH2-O=St?~M, wherein R1 is a saturated or unsaturated, branched or unbranchod alkyl group from about 8 to about 24 carbon atoms, and M is a water-soluble canon such as ammonium, sodium, potassium, magnesium, triethanolamine, diethanalamine and monoethanolamine. Thtse are typically made by the reaction of glycerin with fatty acids (having from about 8 to about 24 carbon atoms) to form a monoglyceride and the subsequent sulfation of this monogiyceride with sulfur trioxide. An example of a sulfated monoglyceride is sodium cocomonoglyceride sulfate.
Other suitable anionic surfactants include olefin sulfonates of the form R1 S03M, wherein RI is a mono-olefin having from about 12 to about 24 carbon atoms, and M is a water-soluble cation such as ammonium, sodium, potassium, magnesium, triethanoiamine, diethanolamine and monoethanolamine. These compounds can be produced by the sulfonation of alpha olefins by means of uncomplexed sulfur trioxide, followed by neutralization of the acid reaction mixture in conditions such that any sultones which have been formed in the reaction are hydrolyzed to give the corresponding hydroxyalkanesulfonate. An example of a sulfonated olefin is sodium C 14-C16 alpha olefin sulfonate.
Other suitable anionic surfactants are the linear alkylbenzene sulfonates of the form Rl-C6H4-S03M, wherein Rl is a saturated or unsaturated, branched or unbranched alkyl group from about 8 to about 24 carbon atoms, and M is a water-soluble canon such as ammonium, sodium, potassium, magnesium, triethanolamine, diethanolamine and monoethanolamine.
These are formed by the sulfonation of linear alkyl benzene with sulfur trioxide. An example of this anionic surfactant is sodium dodecylbenzene sulfonate.
Still other anionic surfactants suitable for this cleansing composition include the primary or secondary alkane sulfonates of the form R1 S03M, wherein Rl is a saturated or unsaturated, branched or unbranched alkyl chain from about 8 to about 24 carbon atoms, and M is a water-soluble cation such as ammonium, sodium, potassium, magnesium, triethanolamine, diethanolamine and monoethanolamine. These are commonly formed by the sulfonation of paraffins using sulfur dioxide in the presence of chlorine and ultraviolet light or another known sulfonation method. The sulfonation can occur in either the secondary or primary positions of the alkyl chain. An example of an alkane sulfonate useful herein is alkali metal or ammonium C 13-C 17 paraffin sulfonates.
Still other suitable anionic surfactants are the alkyl sulfosuccinates, which include disodium N-octadecylsulfosuccinamate; diammonium lauryl sulfosuccinate;
tetrasodium N-(1,2-dicarboxyethyl~N-octadecylsulfosuccinate; diamyl ester of sodium sulfosuccinic acid; dihexyl ester of sodium sulfosuccinic acid; and dioctyl esters of sodium sulfosuccinic acid.
Also useful are taurates which are based on taurine, which is also known as 2-aminoethanesulfonic acid. Examples of taurates include N-alkyltaurines such as the one prepared by reacting dodecylamine with sodium isethionate according to the teaching of U.S.
Patent 2,658,072 which is incorporated herein by reference in its entirety.
Other examples based of taurine include the acyl taurines formed by the reaction of n-methyl taurine with fatty acids (having from about 8 to about 24 carbon atoms).

Another class of anionic surfactants suitable for use in the cleansing composition are the acyl isethionates. The acyl isethionates typically have the formula R1C0-O-wherein R1 is a saturated or unsaturated, branched or unbranched alkyl group having from about 10 to about 30 carbon atoms, and M is a cation. These are typically formed by the reaction of fatty acids (having from about 8 to about 30 carbon atoms) with an alkali metal isethionate. Nonlimiting examples of these acyl isethionates include ammonium cocoyl isethionate, sodium cocoyl isethionate, sodium lauroyl isethionate, and mixtures thereof.
Still other suitable anionic surfactants are the alkylglyceryl ether sulfonates of the form R1-OCH2-C(OH)H-CH2-S03M, wherein Rl is a saturated or unsaturated, branched or unbranched alkyl group from about 8 to about 24 carbon atoms, and M is a water-soluble cation such as ammonium, sodium, potassium, magnesium, triethanolamine, diethanolamine and monoethanolamine. These can be formed by the reaction of epichlorohydrin and sodium bisulfate with fatty alcohols (having from about 8 to about 24 carbon atoms) or other known methods. One example is sodium cocoglyceryl ether sulfonate.
Other suitable anionic surfactants include the sulfonated fatty acids of the form R1-CH(S04)-COOH and sulfonated methyl esters of the from R1-CH(S04)-CO-O-CH3, where R1 is a saturated or unsaturated, branched or unbranched alkyl group from about 8 to about 24 carbon atoms. These can be formed by the sulfonation of fatty acids or alkyl methyl esters (having from about 8 to about 24 carbon atoms) with sulfur trioxide or by another known sulfonation technique. Examples include alpha sulphonated coconut fatty acid and lauryl methyl ester.
Other anionic materials include phosphates such as monoalkyl, dialkyl, and trialkylphosphate salts formed by the reaction of phosphorous pentoxide with monohydric branched or unbranched alcohols having from about 8 to about 24 carbon atoms.
These could also be formed by other known phosphation methods. An example from this class of surfactants is sodium mono or dilaurylphosphate.
Other anionic materials include acyl glutamates corresponding to the formula RICO-N(COOH)-CH2CH2-C02M wherein Rl is a saturated or unsaturated, branched or unbranched alkyl or alkenyl group of about 8 to about 24 carbon atoms, and M is a water-soluble canon.
Nonlimiting examples of which include sodium lauroyl glutamate and sodium cocoyl glutamate.
_ Other anionic materials include alkanoyl sarcosinates corresponding to the formula R1CON(CH3rCH2CH2-C02M wherein R1 is a saturated or unsaturated, branched or unbranched alkyl or alkenyl group of about 10 to about 20 carbon atoms, and M
is a water-soluble cation. Nonlimiting examples of which include sodium lauroyl sarcosinate, sodium cocoyl sarcosinate, and ammonium lauroyl sarcosinate.

Other anionic materials include alkyl ether carboxylates corresponding to the formula R1-(OCH2CH2)X OCH2-C02M wherein R1 is a saturated or unsaturated, branched or unbranched alkyl or alkenyl group of about 8 to about 24 carbon atoms, x is I to 10, and M is a water-soluble cation. Nonlimiting examples of which include sodium laureth carboxylate.
Other anionic materials include acyl lactylates corresponding to the formula RICO-[O-CH(CH3)-CO]X C02M wherein R1 is a saturated or unsaturated, branched or unbranched alkyl or alkenyl group of about 8 to about 24 carbon atoms, x is 3, and M is a water-soluble canon.
Nonlimiting examples of which include sodium cocoyl lactylate.
Other anionic materials include the carboxylates, nonlimiting examples of which include sodium lauroyl carboxylate, sodium cocoyl carboxylate, and ammonium lauroyl carboxylate.
Anionic flourosurfactants can also be used.
Any counter cation, M, can be used on the anionic surfactant. Preferably the counter cation is selected from the group consisting of sodium, potassium, ammonium, monoethanolamine, diethanolamine, and triethanolamine. More preferably the counter cation is ammonium.
Nonlimiting examples of preferred anionic surfactants useful herein include those selected from the group consisting of sodium and ammonium alkyl sulfates and ether sulfates having chain lengths of predominantly 12 and 14 carbon atoms, olefin sulfates having chain lengths of predominantly 14 and 16 carbon atoms, and paraffin sulfonates having chain lengths of from 13 to 17 carbon atoms, and mixtures thereof. More preferred for use herein is ammonium and sodium lauryl sulfate, ammonium and sodium myristyl sulfate, ammonium and sodium laureth-1, laureth-2, laureth-3, and laureth-4 sulfates, C 14-C 16 olefin sulfonates, C 13-C 17 paraffin sulfonates, and mixtures thereof. Most preferred is ammonium lauryl sulfate.
Another class of preferred anionic surfactants consist of surfactants which have a pKa of greater than about 4Ø These acidic surfactants include the group consisting of acyl sarcosinates, acyl glutamates, alkyl ether carboxylates and mixtures thereof.
Acidic surfactants have been found to be a more efficacious surfactant. Without being limited by theory, it is believed that these surfactants provide both the acid and anionic surfactant benefit in one component. Leave-on antimicrobial compositions comprising these acidic surfactants provide better antimicrobial efficacy than other surfactants. Their acidic property also allows to the use of less separate proton dontaing agent, which even further improves the mildness of the leave-on antimicrobial compositions herein. When used, the acidic surfactants are used in the cleansing compositions herein at levels from about 0.1% to about 10%, preferably from about 0.2% to about 8%, more preferably from about 0.3% to about 5%, even more preferably from about 0.4% to about 2%, and most preferably from about 0.5% to about 1%.

Non-anionic surfactants of the group consisting of nonionic surfactants, cationic surfactants, amphoteric surfactants and mixtures thereof, have been found to actually inhibit residual effectiveness benefits. It is believed that these surfactants interfere with the anionic surfactant disruption of the lipid in the cell membrane. The ratio of the amount of these non-anionic surfactants to the amount of anionic surfactant should be less than 1:1, preferably less than 1:2, and more preferably less than I :4 in the compositions herein.
The leave-on antimicrobial compositions of the present invention preferably do not comprise hydrotropic sulfonates, particularly salts of terpenoids, or mono- or binuclear aromatic compounds such as sulfonates of camphor, toluene, xylene, cumene and naphthene.
C. PROTON DONATING AGENT
The leave-on antimicrobial compositions of the present invention comprise from about 0.1% to about 10%, preferably from about 0.5% to about 8%, more preferably from about 1% to about 5%, based on the weight of the personal cleansing composition, of a proton donating agent. By "proton donating agent" it is meant any acid compound or mixture thereof, which results in undissociated acid on the skin after use. Proton donating agents can be organic acids, including polymeric acids, mineral acids or mixtures thereof.
Organic Acids Proton donating agents which are organic acids which remain at least partially undissociated in the neat composition. These organic proton donating agents can be added directly to the composition in the acid form or can be formed by adding the conjugate base of the desired acid and a sufficient amount of a separate acid strong enough to form the undissociated acid from the base.
Bufferin_g_Capacity Preferred organic proton donating agents are selected and formulated based on their buffer capacity and pKa. Buffer capacity is defined as the amount of protons (weight %) available in the formulation at the product pH for those acid groups with pKa's less than about 6Ø Buffer capacity can be either calculated using pKa's, pH, and the concentrations of the acids and conjugate bases, ignoring any pKa greater than 6.0, or it can be determined experimentally through a simple acid-base titration using sodium hydroxide or potassium hydroxide using an endpoint of pH equals 6Ø
Preferred organic proton donating agents of the antibacterial cleansing composition herein have a buffer capacity of greater than about 0.005%, more preferably greater than about 0.01 %, even more preferably greater than about 0.02%, and most preferably greater than about 0.04%.
Mineral Acids Proton donating agents which are mineral acids will not remain undissociated in the neat composition. Despite this, it has been found that mineral acids can be effective proton donating agents for use herein. Without being limited by theory, it is believed that the strong mineral acid, acidify the carboxylic and phosphatidyl groups in proteins of the skin cells, thereby providing in-situ undissociated acid. These proton donating agents can only be added directly to the composition in the acid form.
It is critical to achieving the benefits of the invention that the undissociated acid from the proton donating agent (deposited or formed in-situ) remain on the skin in the protonated form.
Therefore, the pH of the leave-on antimicrobial compositions of the present invention must be adjusted to a sufficiently low level in order to either form or deposit substantial undissociated acid on the skin. The pH of the compositions should be adjusted and preferably buffered to range from about 3.0 to about 6.0, preferably from about 3.5 to about 5.0 and more preferably from about 3.5 to about 4.5.
A non-exclusive list of examples of organic acids which can be used as the proton donating agent are adipic acid, tartaric acid, citric acid, malefic acid, malic acid, succinic acid, glycolic acid, glutaric acid, benzoic acid, malonic acid, salicylic acid, gluconic acid, polyacrylic acid, their salts, and mixtures thereof. Especially preferred organic proton donating agents are the group consisting of malic acid, malonic acid, citric acid, succinic acid and lactic acid. A
non-exclusive list of examples of mineral acid for use herein are hydrochloric, phosphoric, sulfuric and mixtures thereof.
Salicylic acid has been found to be a more preferred proton donating agent.
Leave-on antimicrobial compositions comprising salicylic acid provide better antimicrobial efficacy than other proton donating agents. When used, salicylic acid is used in the leave-on compositions herein at a level of from about 0.1 S% to about 2.0%.
Water The leave-on antimicrobial compositions of the present invention comprise from about 0% to about 99.85%, preferably from about 3% to about 98%, more preferably from about 5% to about 97.5%, and most preferably from about 38% to about 95.99% water.
Preferable Optional Ingredients Mildness Enhancers In order to achieve the mildness required of the present invention, optional ingredients to enhance the mildness to the skin can be added. These ingredients include cationic and nonionic polymers, co-surfactants, moisturizers and mixtures thereof. Polymers useful herein include polyethylene glycols, polypropylene glycols, hydrolyzed silk proteins, hydrolyzed milk proteins, hydrolyzed keratin proteins, guar hydroxypropyltrimonium chloride, polyquats, silicone polymers and mixtures thereof. When used, the mildness enhancing polymers comprise from about 0.1 % to about 1 %, preferably from about 0.2% to about 1.0%, and more preferably from WO 98!55080 PCT/US98/10972 i5 about 0.2% to about 0.6%, by weight of the leave-on antimicrobial composition, of the composition. Co-surfactants useful herein include nonionic surfactants such as the Genapol~
24 series of ethoxylated alcohals, PO~(20) sorbitan monooleate (Tween~ 80), polyethylene glycol cocoate and,PIuronic~ propylene oxidelethyiene oxide block,polymers, and amphoteric surfactants such as alkyl betaines, alkyl sultaines, alkyl amphoacetates, alkyl amphodiacetates, alkyl amphopropionates, and alkyl amphodipropionates. When used, the mildness enhancing cosurfactants comprise from abort 20% to about 70%, preferably from about 20%
to about 50%, by weight of the anionic surfactant, of the leave-on composition.
Another group of mildness enhancers are lipid skin moisturizing agents which provide a moisturizing benefit to the user of the leave-on antimicrobial composition when the lipophilic skin moisturizing agent is deposited to the user's skin. When used in the antimicrobial compositions herein, Iipaphilic skin moisturizing agents are used, they are employed at a level of about 0:1 % to about 30%, preferably from about 0.2% to about 10%, most preferably from about U.S% to about 5% by weight of the composition.
In some cases, the lipophilic skin moisturizing agent can desirably be defined in terms of its solubility parameter, as defined by Vausthan in Cosmetics and Toiletries.
Vol. 1.03, p., 47-69, October 1988. A lipophilic skin moisturizing agent having a Vaughan solubility Parameter (VSP) from 5 to 10; preferably from 5.5 to 9:is suitable for use in the antimicrobial compositions herein.
A wide variety of lipid type materials and mixtures of materials are suitable for use in the leave-on antimicrobial compositions of the present invention. Preferably; the lipophiiic skin conditioning agent is selxted from the group consisting of hydrocarbon oils and waxes, silicones, fatty acid derivatives, cholesterol, cholesterol -derivatives, dl-and tri-glycerides, vegetable oils, vegetable oil derivatives, liquid nondigestibIe oils such as those described in U.S.
Patents 3,600;186 to. Mattson; Issued August 11, I97I and 4,005, l 95 and 4,005,196 to Jandacek et al; both issued January 25, 1977, all of which are herein incorporated by reference, or blends of liquid digestible or. nondigestibie oils with solid polyoi polyesters such~as those described in .
U.S. Pateat 4,797,300 to Jandaeelc; issued 3anuary 10; 1989; U.S Patents 5;306,514, 5,306;516 and 5,306,515 to Letton; all issued April 26, 1994, and acetogylceride esters, alkyl esters, alkenyl esters, lanolin and its derivatives, milk tri-glycerides, wax esters, beeswax derivatives, sterols, phospholipids and mixtures thereof. Fatty acids, fatty acid .soaps and water soluble polyols are specifically excluded from our definition of a lipophilic skin moisturizing agent.
f~vdrocarbon oils~d waxes: Some examples are petrolatum, mineral oil micro-crystalline waxes, polyalkexs (~.g. hydrogenated and nonhydragenated polybutene and polydecene), parafftns, cerasin, ozokerite, polyethylene and perhydrosqualette. Blends of petrolatum and hydrogenated and nonhydrogenated high molecular weight polybutenes wherein the ratio of petrolatum to polybutene ranges from about 90:10 to about 40:60 are also suitable for use as the lipid skin moisturizing agent in the compositions herein.
Silicone Oils: Some examples are dimethicone copoIyol, dimethylpolysiIoxane, diethylpolysiIoxane, high molecular weight dimethicone, mixed C1-C30 alkyl polysitoxane, phenyl dimethicone, dimethiconol, and mixtures thereof. More' preferred are nonvolatile silicones selected from dimethicone, dimethiconol, mixed C1-C30 alkyl poiysiloxane, and mixtures thereof. Nonlimiting examples of Silicones useful herein are described in U.S. Patent No. 5,011,681, to Ciotti et al., issued Aprjl 30, 1991.
Dl- and. tri-Qlycerides: Some examples are castor oil, soy bean oil, derivatized soybean oils such as maleated soy bean oil; safflower oil, cotton seed oil, corn oil, walnut oil, peanut oil, olive oil, cod liver oil, almond oil, avocado oil, palm oil and sesame oil, vegetable oils and vegetable oil derivatives; coconut oil and derivatized coconut oil, cottonseed oil and derivatized cottonseed oil, jojoba oil, .cocoa butter, and the like.
Aceto~ivceride esters are used and an example is acetylatcd monoglycerides.
Lanolin and its derivatives. arc preferred and some examples are lanolin, lanolin oil, lanolin -wax, lanolin alcohols, lanolin fatty acids, isopropyl .lanolate, acetylated lanolinø_ acctylated lanolin alcohols, lanolin alcohol linoicate, lanolin alcohol riconoleate.
It is most preferred when at Least 75 % of the Iipophilic skin conditioning agent is comprised of lipids selected from the group consisting: petrolatum, blends of,petrolatum and high molecular weight polybutenc, mineral oil, liquid nondigestible oils (e.g.
liquid cottonseed sucrose octaesters) or blends of liquid digestible or -nondigesiible ails with solid polyol polyesters (e.g. sucrose octaesters preparal from C22 fatty acids) wherein the-ratio of liquid digestible or t~oadigestible oil to solid polyoi polyester ranges from about 96:4 to about 80:20, hydrogen or n~hydmgertated polybutene, microcrystalline wax, polyalkene, paraffn, ~~YI~ ~Y~~~l~ne; dimethicones alkyl siloxane, potymethylsiloxane, methytphenylpotysiloxane and mixtures thereof. When as blend of petrolatum and cxha lipids is used; the ratio of petTOIattun. to the other selected lipids (hydrogenated or tmhydrogenated polybutene or polydecette or mineral oil) is preferably from about-10:1 to about I:2; more preferably from about 5:1 to about 1:1.
Stabilizers When a Iipophiiic skin moisturizing agent is employed as the mildness enhancer in the antimicrobial compositions herein, a stabiiiur may also be included at a level ranging from about 0.I°/. to about I0°/., preferably from about 0.1% to about 8%, more preferably from about 0.1 % to about 5°lo by weight of the leave-on aniimicrobiat composition:

The stabilizer is used to form a crystalline stabilizing network in the liquid composition that prevents the lipophilic skin moisturizer agent droplets from coalescing and phase splitting in the product. The network exhibits time dependent recovery of viscosity after shearing (e.g., thixotropy).
The stabilizers used herein are not surfactants. The stabilizers provide improved shelf and stress stability. Some preferred hydroxyl-containing stabilizers include 12-hydroxystearic acid, 9,10-dihydroxystearic acid, tri-9,10-dihydroxystearin and tri-12-hydroxystearin (hydrogenated castor oil is mostly tri-12-hydroxystearin). Tri-12-hydroxystearin is most preferred for use in the compositions herein. When these crystalline, hydroxyl-containing stabilizers are utilized in the leave-on compositions herein, they are typically present at from about 0.1 % to 10%, preferably from 0.1% to 8%, more preferably from 0.1% to about 5% of the antimicrobial compositions. The stabilizer is insoluble in water under ambient to near ambient conditions.
Alternatively, the stabilizer employed in the leave-on compositions herein can comprise a polymeric thickener. When polymeric thickeners as the stabilizer in the leave-on compositions herein, they are typically included in an amount ranging from about 0.01 % to about 5%, preferably from about 0.3% to about 3%, by weight of the composition. The polymeric thickener is preferably an anionic, nonionic, cationic or hydrophobically modifier polymer selected from the group consisting of cationic polysaccharides of the cationic guar gum class with molecular weights of 1,000 to 3,000,000, anionic, cationic, and nonionic homopolymers derived from acrylic and/or methacrylic acid, anionic, cationic, and nonionic cellulose resins, cationic copolymers of dimethyldialkylammonium chloride, and acrylic acid, cationic homopolymers of dimethylalkylammonium chloride, cationic polyalklene, and ethoxypolyalkylene imines, polyethylene glycol of molecular weight from 100,000 to 4,000,000, and mixtures thereof. Preferably, the polymer is selected from the group consisting of sodium polyacrylate, hydroxy ethyl cellulose, cetyl hydroxy ethyl cellulose, and Polyquaternium 10.
Alternatively, the stabilizer employed in the leave-on compositions herein can comprise C 10-C22 ethylene glycol fatty acid esters. C I 0-C22 ethylene glycol fatty acid esters can also desirably be employed in combination with the polymeric thickeners hereinbefore described.
The ester is preferably a diester, more preferably a C 14-C 18 diester, most preferably ethylene glycol distearate. When C10-C22 ethylene glycol fatty acid esters are utilized as the stabilizer in the leave-on antimicrobial compositions herein, they are typically present at from about 3% to about 10%, preferably from about S% to about 8%, more preferably from about 6%
to about 8%
of the leave-on antimicrobial compositions.
Another class of stabilizer which can be employed in the antimicrobial compositions of the present invention comprises dispersed amorphous silica selected from the group consisting of fumed silica and precipitated silica and mixtures thereof. As used herein the term "dispersed amorphous silica" refers to small; finely divided non-crystalline silica having a mean agglomerate particle size of less than about 100 microns.
Fumed silica, which is also known as arced silica; is produced by the vapor phase hydrolysis of silicon tetrachloride in a hydrogen oxygen .flame. It is believed that the combustion process creates silicone dioxide molecules which condense to form particles. The particles collide, attach and sinter together. The result of this process is a three dimensional branched chain aggregate. Once the aggregate cools below the fusion point of silica, which is about 1710°C, further collisions result in mechanical entanglement of the chains to form agglomerates. Precipitated silicas and silica gels are generally made in aqueous solution. _See, Cabot Technical Data Pamphlet TD-I00 entitled "CAB-O-S1L~ Untreated Fumed Silica.
Properties and Functions", October 1993, and Cabot Technical Dal Pamphlet TD-104 entitled "CAB-0.S1L~ Fumed Silica in Cosmetic and Personal Care Products", March .1992.
The fumed-silica preferably has a mean agglomerate particle size ranging from about 0.1 microns to about 1U0 microns, preferably from about l micron to about 50 microns, and mare preferably from about I0 microns to about 30 microns. The agglomerates are composed of aggregates which have a mean particle size ranging from about 0.01 microns to about 15 microns, preferably from about 0.05 micron$ to about 10 microns, more preferably from about .
0. i microns to about 5 microns and most preferably from about 0.2 microns to about 0.3 microns. The silica preferably has a surface area greater than 50 sq. mlgram, mare preferably greater than about 130 sq. rzaJgram, most preferably greater than about 180 sq. mJgram.
lNhen amorphous. silicas are used as the stabilizer herein, they are typically included in the leave-an compositions at levels ranging from about 0.I % to about 10%, preferably from about 0.25°/. to about 8%, more preferably from about 0.5% to about 5%.
A fourth class of stabilizer which can be employed in the leaven antimicrobial compo~siti~s of the present invention comprises dispersed smectite clay selected from the group consisting of bentonite and hectoritt and mixtures thereof Bentonite is~
colloidal aluminum clay sulfate. See Merck Index, Eleventh Edition, 1989; entry lOfi2, p. 164, which is incorporated by reference. Htctorite is a clay containing sodium, magnesium, lithium, silicon, oxygen, hydrogen and flourine. See Merck Index, eleventh Edition, 1989, entry 4538, p. 729.
When~smectite clay is emplt~yed as the stabilizer in the leave-on compositions of the present invention, it is typically included in amounts ranging from about 0.I%
to about 10%, prrferabty from about 0.25% to about 8%, more preferably from ghoul 0.5% to about 5%.
Other known stabilizers, such as~ fatty acids and fatty atcohols, can also be employed in the campositio~s herein. Palmitic acid and lauric acid are especially preferred for use herein.

Other Optional Ineredients The compositions of the present invention can comprise a wide range of optional ingredients. The CTFA International Cosmetic Ingredient Dictionary, Sixth Edition, 1995, which is incorporated by reference herein in its entirety, describes a wide variety of nonlimiting cosmetic and pharmaceutics) ingredients commonly used in the skin care industry, which are suitable for use in the compositions of the present invention. Nonlimiting examples of functional classes of ingredients are described at page 537 of this reference.
Examples of these functional classes include: abrasives, anti-acne agents, anticaking agents, antioxidants, binders, biological additives, bulking agents, chelating agents, chemical additives, colorants, cosmetic astringents, cosmetic biocides, denaturants, drug astringents, emulsifiers, external analgesics, film formers, fragrance components, humectants, opacifying agents, plasticizers, preservatives, propellants, reducing agents, skin bleaching agents, skin-conditioning agents (emollient, humectants, miscellaneous, and occlusive), skin protectants, solvents, foam boosters, hydrotropes, solubilizing agents, suspending agents {nonsurfactant), sunscreen agents, ultraviolet light absorbers, and viscosity increasing agents (aqueous and nonaqueous).
Examples of other functional classes of materials useful herein that are well known to one of ordinary skill in the art include solubilizing agents, sequestrants, and keratolytics, and the like.
II. METHODS OF MANUFACTURE OF THE LEAVE-ON ANTIMICROBIAL
COMPOSITIONS
The leave-on antimicrobial compositions of the present invention are made via art recognized techniques for the various forms of leave-on products.
III. METHODS OF USING THE LEAVE-ON ANTIMICROBIAL COMPOSITION
The leave-on antimicrobial compositions of the present invention are useful for reducing the number of germs on the skin and controlling the spread of Gram negative and Gram positive bacteria over time. Typically, a suitable or effective amount of the composition is applied to the area to be treated. Alternatively, a suitable amount of the topical composition can be applied via intermediate application to a washcloth, sponge, pad, cotton ball, puff or other application device. Generally, an effective amount of product to be used wilt depend upon the needs and usage habits of the individual. Typical amounts of the present compositions useful for cleansing range from about 0.1 mg/cm2 to about 10 mg/cm2, preferably from about 0.6 mg/cm2 to about 5 mg/cm2 skin area to be cleansed.
EXAMPLES
The following examples further describe and demonstrate embodiments within the scope of the present invention. In the following examples, all ingredients are listed at an active level.
The examples are given solely for the purpose of illustration and are not to be construed as limitations of the present invention, as many variations thereof are possible without departing from the spirit and scope of the invention.
Ingredients are identified by chemical or CTFA name.
Fifteen leave-on antimicrobial compositions are prepared according to the tables below.
Leave-on Antimicrobial Compositions Component Ex.l Ex.2 Ex.3 Ex.4 Ex.S

Mineral oil I .00% 1.00% I.00% 1.00% 0.00%

Propylene glycol 1.00% I.00% 1.00% I .00% 1.00%

Ammonium Lauryl Sulfate 0.60% 0.60% 0.60% 0.60% 0.60%

Citric Acid 4.00% 0.00% 0.00% 0.00% 0.00%

Sodium Citrate 3.30% 0.00% 2.00% 0.00% 0.00%

Succinic Acid 0.00% 4.00% 0.00% 0.00% 4.00%

Sodium Succinate 0.00% 3.30% 0.00% 0.00% 3.20%

Malic Acid 0.00% 0.00% 2.50% 0.00% 0.00%

Malonic Acid 0.00% 0.00% 0.00% 4.00% 0.00%

Sodium Malonate 0.00% 0.00% 0.00% 3.20% 0.00%

Steareth 20 0.55% 0.55% 0.55% 0.55% 0.00%

Steareth 2 0.45% 0.45% 0.45% 0.45% 0.00%

Triclosan~ 0.15% 0.15% 0.15% 0.15% 0.15%

Miscellaneous 0.36% 0.36% 0.36% 0.36% 0.36%

Water q.s. q.s. q.s. q.s. q.s.

pH 4.0 4.5 3.9 3.9 3.9 Component Ex.6 Ex.7 Ex.8 Ex.9 Ex.IU

Mineral oil 0.00% 0.00% 1.00% 1.00% 1.00%

Propylene glycol 1.00% 1.00% 1.00% 1.00% 1.00%

Ammonium Lauryl Sulfate 0.60% 0.60% 0.60% 0.60% 1.00%

Citric Acid 0.00% 0.00% 2.50% 2.50% 4.00%

Sodium Citrate 0.00% 3.70% 2.00% 2.00% 3.20%

Succinic Acid 4.00% 0.00% 0.00% 0.00% 0.00%

Sodium Succinate 3.00% 0.00% 0.00% 0.00% 0.00%

Malic Acid 0.00% 4.00% 0.00% 0.00% 0.00%

Steareth 20 0.55% 0.00% 0.55% 0.08% 0.28%

Steareth 2 0.45% 0.00% 0.45% 0.07% 0.23%

Oleth 20 0.00% 0.00% 0.00% 0.08% 0.28%

Oleth 2 0.00% 0.00% 0.00% 0.07% 0.23%

Triclosan~ 0.00% 0.50% 0.50% 0.15% 0.25%

Thymol 1.00% 0.00% 0.00% 0.00% 0.00%

Miscellaneous 0.36% 0.36% 0.36% 0.36% 0.36%

Water q.s. q.s. q.s. q.s. q.s.

pH 3.2 5.0 3.9 3.9 3.9 Component Ex.ll Ex. Ex. Ex. l4 Ex.lS
l2 l3 Mineral oil 1.00% 1.00% I.00% 1.00% 1.00%

Propylene glycol I .00% 1.00% 1.00% 1.00% 1.00%

Ammonium Lauryl Sulfate0.00% 0.00% 0.00% 0.00% 0.60%

Ammonium Laureth Sulfate0.00% 5.00% 0.00% 0.00% 0.00%

Hostapur SAS 60 (SPS) 1.00% 0.00% 0.00% 0.00% 0.00%

C 14-C 16 Sodium Alpha0.00% 0.00% 2.00% 0.00% 0.00%
Olefin Sulfonate Sodium Lauroyl Sarcosinate0.00% 0.00% 0.00% 1.00% 0.00%

Citric Acid 0.055% 7.50% 0.00% 0.00% 0.00%

Sodium Citrate 0.00% 4.00% 2.00% 0.00% 0.00%

Succinic Acid 4.00% 0.00% 0.00% 0.00% 0.00%

Sodium Succinate 0.67% 0.00% 0.00% 0.00% 0.00%

Malic Acid 0.00% 0.00% 2.50% 0.00% 0.00%

Malonic Acid 0.00% 0.00% 0.00% 4.00% 0.00%

Sodium Malonate 0.00% 0.00% 0.00% 3.20% 0.00%

Salicylic Acid 0.00% 0.00% 0.00% 0.00% 0.50%

Steareth 20 0.55% 0.55% 0.55% 0.55% 0.55%

Steareth 2 0.45% 0.45% 0.45% 0.45% 0.45%

Triclosan~ 0.15% 3.00% 0.15% 0.01% 0.15%

Cocamidopropyl Betaine0.00% 0.00% 0.00% 4.00% 0.00%

Polyquat 10 0.00% 0.00% 0.00% 0.40% 0.00%

Miscellaneous 0.36% 0.36% 0.36% 0.36% 0.36%

Water q.s. q.s. q.s. q.s. q.s.

LpH I 3-6 I 3-6 I 3-6 ~ 3-6 I 3-6 Procedure for Making Leave-on Antimicrobial Composition Examples When mineral oil is used, premix mineral oil, propylene glycol, active, steareth 2 and 20, oleth 2 and 20, and 50%, by weight of the oil, glycol, active, steareth and oleth materials, water to a premix vessel. Heat to 165°F ~ 10°F. Add additional 50%, by weight of the oil, glycol, active, steareth and oleth materials, of water to the premix tank.
Add all but 5 weight percent of remaining water to second mix tank. If required, add premix to the mix tank. Add surfactants to mix tank. Heat materials to 155°F ~10°F and mix until dissolved. Cool to less than 100°F, add acid and antibacterial active, if not in premix, and perfumes. Mix until materials are dissolved. Adjust pH to target with required buffer (NaOH or buffer salt). Add remaining water to complete product.

Claims (42)

The embodiments of the invention in which an exclusive property or privilege is claimed are defined as follows:
1. A leave-on antimicrobial composition comprising:

a. from about 0.001% to about 5.0%, by weight of the leave-on antimicrobial composition, of an antimicrobial active;

b. from about 0.05% to about 1%; by weight of the leave-on antimicrobial composition, of an anionic surfactant;

c. from about 1% to about 10%, by weight of the leave-on antimicrobial composition, of a proton donating agent; and d. from about 0% to about 99.85%, by weight of the leave-on antimicrobial composition, water;

wherein the composition is adjusted to a pH of from about 3.0 to about 6Ø
2. A leave-on antimicrobial composition according to claim 1 wherein the antimicrobial active is selected from the group consisting of triclosan, triclocarban, piroctone oleamine, PCMX, ZPT, natural essential oils and their key chemical components, and mixtures thereof.
3. A leave-on antimicrobial composition according to claim 2 wherein the proton donating agent is an organic acid having a Buffering Capacity of greater than about 0.005.
4. A leave-on antimicrobial composition according to claim 3 wherein the proton donating agent is selected from the group comprising adipic acid, tartaric acid, citric acid, maleic acid, malic acid, succinic acid, glycolic acid, glutaric acid, benzoic acid, malonic acid, salicylic acid, gluconic acid, polyacrylic acid, their salts, and mixtures thereof.
5. A leave-on antimicrobial composition according to claim 4 wherein the ratio of the amount of non-anionic surfactants to the amount of anionic surfactant in the antibacterial cleansing composition is less than 1:1.
6. A leave-on antimicrobial composition according to claim 5 wherein the composition is adjusted to a pH of from about 3.5 to about 5Ø
7. A leave-on antimicrobial composition according to claim 6, wherein the composition is adjusted to a pH of from about 3.5 to about 4.5.
8. A leave-on antimicrobial composition according to claim 7 wherein the antimicrobial active is triclosan.
9. A leave-on antimicrobial composition according to claim 8 wherein the proton donating agent is selected from the group consisting of malic acid, malonic acid, citric acid, succinic acid and lactic acid.
10. A leave-on antimicrobial composition according to claim 1 further comprising a mildness enhancing agent.
11. A leave-on antimicrobial composition according to claim 10 wherein the mildness enhancing agent is selected from the group consisting of from about 0.1% to about 1.0%, by weight of the antimicrobial composition, of a mildness enhancing polymer, from about 20% to about 70%, by weight of the anionic surfactant, of a mildness enhancing cosurfactant, and mixtures thereof.
12. A leave-on antimicrobial composition according to claim 10 wherein the mildness enhancing agent comprises a lipophilic skin moisturizing agent and the composition comprises from about 0.1% to about 30% of the lipophilic skin moisturizing agent.
13. A leave-on antimicrobial composition according to claim 1 further comprising from about 0.1% to about 10%, by weight of the cleansing composition, of an acidic surfactant.
14. A leave-on antimicrobial composition according to claim 1 wherein from about 0.15% to about 2%, by weight of the leave-on antimicrobial composition, of the proton donating agent is salicylic acid.
15. A method for providing residual effectiveness against transient Gram negative bacteria, improved residual effectiveness against Gram positive bacteria and improved immediate reduction of germs on the skin comprising the use of a safe and effective amount of the composition of claim 1 on human skin.
16. A method for providing residual effectiveness against transient Gram negative bacteria, improved residual effectiveness against Gram positive bacteria and improved immediate reduction of germs on the skin comprising the use of a safe and effective amount of the composition of claim 9 on human skin.
17. A method for providing residual effectiveness against transient Gram negative bacteria, improved residual effectiveness against Gram positive bacteria and improved immediate reduction of germs on the skin comprising the use of a safe and effective amount of the composition of claim 10 on human skin.
18. A method for providing residual effectiveness against transient Gram negative bacteria, improved residual effectiveness against Gram positive bacteria and improved immediate reduction of; germs on the skin comprising the use of a safe and effective amount of the composition of claim l2 on human skin.
19. A method for providing residual effectiveness against transient Gram negative bacteria, improved residual effectiveness against Gram positive bacteria and improved immediate reduction of germs on the skin comprising the use of a safe and effective amount of the composition of claim 13 on human skin.
20. A method for providing residual effectiveness against transient Gram negative bacteria, improved residual effectiveness against Gram positive bacteria and improved immediate reduction of germs on the skin comprising the use of a safe and effective amount of the composition of claim 14 on human skin.
21. A method for treating acne comprising the use of a safe and effective amount of the composition of claim 1 on human skin.
22. A leave-on antimicrobial composition comprising:

a. from about 0.001% to about 5.0%, by weight of the leave-on antimicrobial composition; of an antimicrobial active;

b. from about 0.05% to about 4%, by weight of the leave-on antimicrobial composition, of an anionic surfactant selected from the group consisting of sodium and ammonium alkyl sulfates and ether sulfates having chain lengths of predominantly 12 and 14 carbon atoms, olefin sulfonates having chain lengths of predominantly 14 and l6 carbon atoms, and paraffin sulfonates having an average chain length of from 13 to 17 carbon atoms, and mixtures thereof;

c. from about 0.1% to about 10%, by weight of the leave-on antimicrobial composition, of a proton donating agent; and d. from about 0% to about 99.85%, by weight of the leave-on antimicrobial composition, water;

wherein the composition is adjusted to a pH of from about 3.0 to about 6.0; and wherein the ratio of the amount of non-anionic surfactants to the amount of anionic surfactant in the antibacterial composition is less than 1:1.
23. A leave-on antimicrobial composition according to claim 22 wherein the antimicrobial active is selected from the group consisting of triclosan, triclocarban, piroctone oleamine , PCMX, ZPT, natural essential oils and their key chemical components, and mixtures thereof.
24. A leave-on antimicrobial composition according to claim 23 wherein the proton donating agent is an organic acid having a Buffering Capacity of greater than about 0.005.
25. A leave-on antimicrobial composition according to claim 24 wherein the proton donating agent is selected from the group comprising adipic acid, tartaric acid, citric acid, maleic acid, malic acid, succinic acid, glycolic acid, glutaric acid, benzoic acid, malonic acid, salicylic acid, gluconic acid, polyacrylic acid, their salts, and mixtures thereof.
26. A leave-on antimicrobial composition according to claim 25 wherein the antimicrobial active is present at a level ranging from about 0.05% to about 2%, the anionic surfactant is present at a level of from about 0.1% to about 4%, and the proton donating agent is present at a level of from about 0.5% to about 8%.
27. A leave-on antimicrobial composition according to claim 26 wherein the composition is adjusted to a pH of from about 3.5 to about 5Ø
28. A leave-on antimicrobial composition according to
claim 29 wherein the composition is adjusted to a pH of from about 3.5 to about 4.5.

29. A leave-on antimicrobial composition according to claim 28 wherein the antimicrobial active is triclosan.
30. A leave-on antimicrobial composition according to claim 29 wherein the proton donating agent is selected from the group consisting of malic acid, malonic acid, citric acid, succinic acid and lactic acid.
31. A leave-on antimicrobial composition according to claim 30 wherein the anionic surfactant is ammonium lauryl sulfate.
32. A leave-on antimicrobial composition according to claim 22 further comprising a mildness enhancing agent.
33. A leave-on antimicrobial composition according to claim 32 wherein the mildness enhancing agent is selected from the group consisting of from about 0.1% to about 1.0%, by weight of the antimicrobial composition, of a mildness enhancing polymer, from about 20% to about 70%, by weight of the anionic surfactant, of a mildness enhancing cosurfactant, and mixtures thereof.
34. A leave-on antimicrobial composition according to claim 22 wherein the mildness enhancing agent comprises a lipophilic skin moisturizing agent and the composition comprises from about 0.1% to about 30% of the lipophilic skin moisturizing agent.
35. A leave-on antimicrobial composition according to claim 22 further comprising from about 0.1% to about 10%, by weight of the cleansing composition, of an acidic surfactant.
36. A leave-on antimicrobial composition according to claim 22 wherein from about 0.15% to about 2%, by weight of the leave-on aritimicrobial composition, of the proton donating agent is salicylic acid.
37. A method for providing residual effectiveness against transient Gram negative bacteria, improved residual effectiveness against Gram positive bacteria and improved immediate reduction of germs on the skin comprising the use of a safe and effective amount of the composition of claim 22 on human skin.
38. A method for providing residual effectiveness against transient Gram negative bacteria, improved residual effectiveness against Gram positive bacteria and improved immediate reduction of germs on the skin comprising the use of a safe and effective amount of the composition of claim 31 on human skin.
39. A method for providing residual effectiveness against transient Gram negative bacteria, improved residual effectiveness against Gram positive bacteria and improved immediate reduction of germs on the skin comprising the use of a safe and effective amount of the composition of claim 33 on human skin.
40. A method for providing residual effectiveness against transient Gram negative bacteria, improved residual effectiveness against Gram positive bacteria and improved immediate reduction of germs on the skin comprising the use of a safe and effective amount of the composition of claim 34 on human skin.
41. A method for providing residual effectiveness against transient Gram negative bacteria, improved residual effectiveness against Gram positive bacteria and improved immediate reduction of germs on the skin comprising the use of a safe and effective amount of the composition of claim 35 on human skin.
42. A method for providing residual effectiveness against transient Gram negative bacteria, improved residual effectiveness against Gram positive bacteria and improved immediate reduction of germs on the skin comprising the use of a safe and effective amount of the composition of claim 36 on human skin.
CA002291743A 1997-06-04 1998-05-29 Leave-on antimicrobial compositions Expired - Fee Related CA2291743C (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US08/869,129 1997-06-04
US08/869,129 US6210695B1 (en) 1997-06-04 1997-06-04 Leave-on antimicrobial compositions
PCT/US1998/010972 WO1998055080A2 (en) 1997-06-04 1998-05-29 Leave-on antimicrobial compositions

Publications (2)

Publication Number Publication Date
CA2291743A1 CA2291743A1 (en) 1998-12-10
CA2291743C true CA2291743C (en) 2003-03-11

Family

ID=25352973

Family Applications (1)

Application Number Title Priority Date Filing Date
CA002291743A Expired - Fee Related CA2291743C (en) 1997-06-04 1998-05-29 Leave-on antimicrobial compositions

Country Status (13)

Country Link
US (1) US6210695B1 (en)
EP (1) EP0986363A2 (en)
JP (1) JP2002501541A (en)
KR (1) KR20010013376A (en)
CN (1) CN1205920C (en)
AR (1) AR012241A1 (en)
AU (1) AU745439B2 (en)
BR (1) BR9809970A (en)
CA (1) CA2291743C (en)
CO (1) CO4940392A1 (en)
PE (1) PE85099A1 (en)
WO (1) WO1998055080A2 (en)
ZA (1) ZA984766B (en)

Families Citing this family (76)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6617294B2 (en) 2000-10-20 2003-09-09 Vinod K. Narula Waterless sanitizing hand cleanser
AU2002215331A1 (en) 2000-10-20 2002-05-06 Dipak Narula Sanitizing hand cleanser
DE10065045A1 (en) * 2000-12-23 2002-07-04 Beiersdorf Ag W / O emulsions containing one or more ammonium acryloyldimethyltaurate / vinylpyrrolidone copolymers
JP2002255774A (en) * 2001-03-02 2002-09-11 Kao Corp Deodorant
US6610314B2 (en) * 2001-03-12 2003-08-26 Kimberly-Clark Worldwide, Inc. Antimicrobial formulations
US6712121B2 (en) 2001-10-12 2004-03-30 Kimberly-Clark Worldwide, Inc. Antimicrobially-treated fabrics
US20030161802A1 (en) * 2002-02-05 2003-08-28 Flammer Linda J. Anti-dandruff and anti-itch compositions containing sensate and sensate enhancer-containing compounds
US7169400B2 (en) * 2002-05-07 2007-01-30 Fort James Corporation Waterless lotion and lotion-treated substrate
US8012495B2 (en) * 2002-05-07 2011-09-06 Georgia-Pacific Consumer Products Lp Lotion-treated tissue and towel
JP2005530857A (en) * 2002-06-21 2005-10-13 ザ プロクター アンド ギャンブル カンパニー Antibacterial compositions, antibacterial products, and methods of using them
US20040001797A1 (en) * 2002-06-21 2004-01-01 Abel Saud Antimicrobial compositions, products and methods employing same
US7569530B1 (en) 2003-06-20 2009-08-04 The Procter & Gamble Company Antimicrobial compositions, products and methods employing same
JP2006501223A (en) * 2002-08-20 2006-01-12 ピネル,ドーレン・エム How to treat a fungal infection
KR20040045505A (en) * 2002-11-23 2004-06-02 임호 Week acidic liquid soap and method for preparation thereof
US7361376B2 (en) * 2003-04-11 2008-04-22 International Flavors & Fragrances Inc. Alkyldienamides exhibiting taste and sensory effect in flavor compositions
US7632531B2 (en) * 2003-04-11 2009-12-15 International Flavors & Fragnances Inc. Alkyldienamides exhibiting taste and sensory effect in flavor compositions
DE10318526A1 (en) * 2003-04-24 2004-11-11 Beiersdorf Ag High fat cleaning emulsion
US6884906B2 (en) * 2003-07-01 2005-04-26 International Flavors & Fragrances Inc. Menthyl half acid ester derivatives, processes for preparing same, and uses thereof for their cooling/refreshing effect in consumable materials
US7141686B2 (en) * 2003-07-10 2006-11-28 International Flavors & Fragrances Inc. E2, E4, Z8-undecatrienoic acid and ester and carboxamide derivatives thereof, organoleptic uses thereof and processes for preparing same
US20050019269A1 (en) * 2003-07-21 2005-01-27 Mold Eradication, Llc Mold eradication with Thyme solution and other essential oils
US7329767B2 (en) * 2003-10-03 2008-02-12 International Flavors & Fragrances Inc. Conjugated dienamides, methods of production thereof, compositions containing same and uses thereof
US8007839B2 (en) * 2003-10-03 2011-08-30 International Flavors & Fragrances Conjugated dienamides, methods of production thereof, compositions containing same and uses thereof
US20050260243A1 (en) * 2004-04-26 2005-11-24 The Procter & Gamble Company Method of treating microbial plant diseases
US8198326B2 (en) * 2004-09-07 2012-06-12 3M Innovative Properties Company Phenolic antiseptic compositions and methods of use
US9028852B2 (en) 2004-09-07 2015-05-12 3M Innovative Properties Company Cationic antiseptic compositions and methods of use
US7541055B2 (en) * 2004-09-10 2009-06-02 International Flavors & Fragrances Inc. Saturated and unsaturated N-alkamides exhibiting taste and flavor enhancement effect in flavor compositions
US7427421B2 (en) * 2004-09-10 2008-09-23 International Flavors & Fragrances Inc. Saturated and unsaturated N-alkamides exhibiting taste and flavor enhancement effect in flavor compositions
US20060106117A1 (en) * 2004-11-12 2006-05-18 Kimberly-Clark Worldwide, Inc. Compound and method for prevention and/or treatment of vaginal infections
US7619008B2 (en) * 2004-11-12 2009-11-17 Kimberly-Clark Worldwide, Inc. Xylitol for treatment of vaginal infections
US20090104281A1 (en) * 2004-12-09 2009-04-23 The Dial Corporation Compositions Having a High Antiviral and Antibacterial Efficacy
EP1827099A2 (en) * 2004-12-09 2007-09-05 The DIal Corporation Compositions having a high antiviral and antibacterial efficacy
CA2588782A1 (en) * 2004-12-09 2006-06-15 The Dial Corporation Compositions having a high antiviral and antibacterial efficacy
MX2007006862A (en) * 2004-12-09 2008-02-15 Dial Corp Compositions having a high antiviral and antibacterial efficacy.
US20090012174A1 (en) * 2004-12-09 2009-01-08 The Dial Corporation Compositions Having a High Antiviral and Antibacterial Efficacy
JP2008537732A (en) * 2005-03-10 2008-09-25 スリーエム イノベイティブ プロパティズ カンパニー Antimicrobial composition comprising an ester of hydroxycarboxylic acid
US10918618B2 (en) * 2005-03-10 2021-02-16 3M Innovative Properties Company Methods of reducing microbial contamination
WO2006099325A2 (en) * 2005-03-10 2006-09-21 3M Innovative Properties Company Methods of treating ear infections
US20060223765A1 (en) * 2005-03-30 2006-10-05 Kimberly-Clark Worldwide, Inc. Method for inhibiting and/or treating vaginal infection
US7148187B1 (en) 2005-06-28 2006-12-12 The Clorox Company Low residue cleaning composition comprising lactic acid, nonionic surfactant and solvent mixture
US20060293214A1 (en) * 2005-06-28 2006-12-28 Lily Cheng Synergistic acidic ternary biocidal compositions
US7786176B2 (en) 2005-07-29 2010-08-31 Kimberly-Clark Worldwide, Inc. Vaginal treatment composition containing xylitol
US8388992B2 (en) 2006-03-28 2013-03-05 Georgia-Pacific Consumer Products Lp Anti-microbial hand towel with time-delay chromatic transfer indicator and absorbency rate delay
MX2008014905A (en) * 2006-05-24 2009-03-05 Dial Corp Composition and method for controlling the transmission of noroviruses.
US20070274926A1 (en) * 2006-05-26 2007-11-29 The Dial Corporation Method of inhibiting the transmission of viruses
RU2008152402A (en) 2006-05-30 2010-07-10 Дзе Дайл Корпорейшн (Us) STRONG ANTI-VIRUS COMPOSITIONS
WO2007142967A2 (en) * 2006-05-31 2007-12-13 The Dial Corporation Alcohol-containing antimicrobial compositions having improved efficacy
US8147877B2 (en) 2006-06-01 2012-04-03 Ohso Clean, Inc. Essential oils based disinfecting compositions having tuberculocidal and fungicidal efficacies
EP2034826A2 (en) 2006-06-02 2009-03-18 The Dial Corporation Method of inhibiting the transmission of influenza virus
US20080145390A1 (en) * 2006-06-05 2008-06-19 The Dial Corporation Methods and articles having a high antiviral and antibacterial efficacy
US7642227B2 (en) * 2006-08-07 2010-01-05 Melaleuca, Inc. Cleansing and disinfecting compositions
JP5551442B2 (en) 2006-10-27 2014-07-16 スリーエム イノベイティブ プロパティズ カンパニー Antibacterial composition
US7465697B1 (en) 2006-11-02 2008-12-16 Ohsoclean, Inc. Essential oils based cleaning and disinfecting compositions
US20090062391A1 (en) * 2007-08-27 2009-03-05 Kent Christopher New Use of a virucidal ointment in the nares for prevention of transmission and contraction of common colds
AU2009306592B2 (en) * 2008-10-20 2013-05-23 Unilever Global Ip Limited An antimicrobial composition
EP2480090B1 (en) 2009-09-24 2013-11-06 Unilever NV Disinfecting agent comprising eugenol, terpineol and thymol
US9744125B2 (en) * 2010-01-15 2017-08-29 Nuance Health, Llc Use of a virucidal preparation on an area of the face for prevention of transmission or contraction of viral illnesses, or to shorten the duration of, or lessen the severity of viral illnesses
CN102933191A (en) * 2010-05-31 2013-02-13 荷兰联合利华有限公司 Skin treatment composition
US10279007B2 (en) * 2010-11-15 2019-05-07 Oxygenetix Institute, Inc. Topical treatment method for healing wounds, disinfecting, covering and concealing the wound until healing occurs
MX2013006435A (en) 2010-12-07 2013-07-03 Unilever Nv An oral care composition.
WO2013064360A2 (en) 2011-11-03 2013-05-10 Unilever N.V. A personal cleaning composition
CN103168777A (en) * 2011-12-26 2013-06-26 东北林业大学 Waterborne hinokitiol wood preservative and preparation method thereof
WO2016088907A1 (en) * 2014-12-01 2016-06-09 제주대학교 산학협력단 Skin-whitening cosmetic composition containing rosemary-derived verbenone as active ingredient
JP2016108278A (en) * 2014-12-08 2016-06-20 ロレアル Washing composition containing amorphous agglomerate particle
CN108366925A (en) * 2015-11-27 2018-08-03 荷兰联合利华有限公司 antimicrobial cleansing compositions
CN109069383A (en) * 2016-03-24 2018-12-21 拜尔克林兹Ph有限责任公司 The treatment of relevant to microbial biofilm skin symptom and disease
CN106305717A (en) * 2016-08-02 2017-01-11 德州安捷高科消毒制品有限公司 Disinfectant special for hand-foot-mouth viruses
WO2018049557A1 (en) * 2016-09-13 2018-03-22 The Procter & Gamble Company Methods of altering the microbiota composition of skin
WO2018049556A1 (en) * 2016-09-13 2018-03-22 The Procter & Gamble Company Methods of increasing microbial diversity of a skin microbiota
CN109498834B (en) * 2018-12-14 2021-10-08 广州润虹医药科技股份有限公司 Antibacterial hydrocolloid dressing and preparation method thereof
US20220117869A1 (en) * 2019-02-11 2022-04-21 Reckitt Benckiser Health Limited Topical sanitizing compositions
CN110292045B (en) * 2019-04-29 2021-10-08 北京美科兴业生物科技有限公司 Preparation method and application of antimicrobial composition containing epsilon-polylysine
WO2021189226A1 (en) 2020-03-24 2021-09-30 The Procter & Gamble Company Methods for testing skin samples
WO2021246352A1 (en) * 2020-06-05 2021-12-09 花王株式会社 External dermatological composition for germicidal and virucidal use
JP2023533183A (en) * 2020-06-15 2023-08-02 ユニリーバー・アイピー・ホールディングス・ベスローテン・ヴェンノーツハップ Antibacterial composition for combating malodours
WO2022063596A1 (en) * 2020-09-25 2022-03-31 Unilever Ip Holdings B.V. Moisturizing antibacterial composition
CN117255677A (en) * 2021-01-29 2023-12-19 皮埃尔·法布尔皮肤化妆品公司 Topical composition suitable for daily care of acne prone skin

Family Cites Families (91)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2999265A (en) 1957-09-23 1961-09-12 Dorothy B Tarnoff Saturated pad for cleansing and deodorizing
US3141821A (en) 1959-03-17 1964-07-21 Lehn & Fink Products Corp Synergistic combination of alkyl sulfonates, alkylaryl sulfonates and topical antibacterial agents for local antisepsis
US3057467A (en) 1959-11-18 1962-10-09 Colgate Palmolive Co Package for treating agents and disposable applicator forming a part thereof
NL275155A (en) 1961-03-09
US3326808A (en) 1965-08-25 1967-06-20 Pfizer & Co C Antiseptic detergent composition
US4118332A (en) 1965-10-22 1978-10-03 Colgate-Palmolive Company Synergistic antibacterial composition containing mixtures of certain halogenated diphenyl ethers and trichlorocarbanilides
US3398826A (en) 1966-10-12 1968-08-27 Colgate Palmolive Co Narrow fold moist towelette package
US3650964A (en) 1968-05-13 1972-03-21 Basf Wyandotte Corp Low foam anionic acid sanitizer compositions
US3835057A (en) 1968-07-15 1974-09-10 Lever Brothers Ltd Anti-bacterial detergent bar
US3563371A (en) 1969-06-12 1971-02-16 W S Kirkpatrick & Co Inc Wet towel package
US3881210A (en) 1972-03-24 1975-05-06 Scott Paper Co Flushable, pre-moistened, sanitary wiper and method of manufacturing same
US3867300A (en) 1972-08-10 1975-02-18 Carbolabs Inc Bactericidal composition
US3969258A (en) 1974-10-10 1976-07-13 Pennwalt Corporation Low foaming acid-anionic surfactant sanitizer compositions
US4075350A (en) 1975-12-18 1978-02-21 Michaels Edwin B Antimicrobial compositions employing certain betaines and certain amine oxides
US4062976A (en) 1975-12-18 1977-12-13 Michaels Edwin B Antimicrobial compositions employing certain substituted alanines and certain t-amine oxides
US4183952A (en) 1975-12-18 1980-01-15 Michaels Edwin B Antimicrobial compositions
US4067997A (en) 1975-05-21 1978-01-10 Med-Chem Laboratories Synergistic microbecidal composition and method
US4021572A (en) 1975-07-23 1977-05-03 Scott Eugene J Van Prophylactic and therapeutic treatment of acne vulgaris utilizing lactamides and quaternary ammonium lactates
US4045364A (en) 1975-11-24 1977-08-30 American Cyanamid Company Iodophor soap tissues
CA1052273A (en) 1975-12-18 1979-04-10 Edwin B. Michaels Antimicrobial compositions
EP0037224A1 (en) 1980-03-24 1981-10-07 THE PROCTER & GAMBLE COMPANY Rare earth metal carboxylates, their use as antimicrobial agents, and medicinal, cosmetic and cleansing compositions containing them
US4518593A (en) 1980-10-01 1985-05-21 S.E.R.T.O.G. Insecticide composition for use in the form of a shampoo
US4406884A (en) 1981-06-23 1983-09-27 The Procter & Gamble Company Topical antimicrobial composition
US4404040A (en) 1981-07-01 1983-09-13 Economics Laboratory, Inc. Short chain fatty acid sanitizing composition and methods
US4975217A (en) 1981-07-20 1990-12-04 Kimberly-Clark Corporation Virucidal composition, the method of use and the product therefor
US4514385A (en) 1981-10-05 1985-04-30 Alcon Laboratories, Inc. Anti-acne compositions
US4512987A (en) 1982-07-15 1985-04-23 Ciba-Geigy Corporation New pharmaceutical preparations
US4822604A (en) 1985-05-20 1989-04-18 S. C. Johnson & Son, Inc. Local treatment of dandruff, seborrheic dermatitis, and psoriasis
US4820698A (en) 1985-11-04 1989-04-11 The Procter & Gamble Company Antimicrobial agents and process for their manufacture
US4715980A (en) 1986-03-17 1987-12-29 Diversey Wyandotte Corporation Antimicrobial sanitizing composition containing n-alkyl and n-alkenyl succinic acid and methods for use
US4781974A (en) 1986-04-23 1988-11-01 James River Corporation Antimicrobially active wet wiper
US4732756A (en) 1986-06-27 1988-03-22 The United States Of America As Represented By The Secretary Of Agriculture (Z)-3-dodecen-1-ol (E)-2-butenoate and its use in monitoring and controlling the sweetpotato weevil
US4942029A (en) 1986-09-19 1990-07-17 Smith & Nephew United, Inc. Medicated skin preparation
US5547988B1 (en) 1986-12-23 1997-07-15 Tristrata Inc Alleviating signs of dermatological aging with glycolic acid lactic acid or citric acid
US4732797A (en) 1987-02-27 1988-03-22 James River Corporation Wet wiper natural acid preservation system
DE3713684A1 (en) 1987-04-24 1988-11-10 Wella Ag PRESERVED HAIR AND BODY DETERGENTS AND USE OF A PRESERVATIVE COMBINATION
US4847072A (en) 1987-10-22 1989-07-11 The Procter & Gamble Company Photoprotection compositions comprising tocopherol sorbate
US5108643A (en) 1987-11-12 1992-04-28 Colgate-Palmolive Company Stable microemulsion cleaning composition
EP0323798A3 (en) 1987-12-02 1991-07-03 Colgate-Palmolive Company Mild cleansing and conditioning composition to yield a soft, smooth skin
US4891227A (en) 1988-02-02 1990-01-02 Richardson-Vicks Inc. Medicated cleansing pads
US4891228A (en) 1988-02-02 1990-01-02 Richardson-Vicks Inc. Medicated cleansing pads
GB8913880D0 (en) 1989-06-16 1989-08-02 Unilever Plc Shampoo compositions
DE4026756C2 (en) * 1990-08-24 1995-03-23 Turner Gmbh Preservatives and their use
US5143720A (en) 1990-11-28 1992-09-01 Microcide, Inc. Disinfecting and sanitizing compositions
US5389676A (en) 1991-03-22 1995-02-14 E. B. Michaels Research Associates, Inc. Viscous surfactant emulsion compositions
CA2107001A1 (en) 1991-04-15 1992-10-16 Arthur E. Keegan, Jr. Antibacterial mild liquid surfactant skin cleanser
US5234719A (en) 1991-06-04 1993-08-10 Ecolab Inc. Food additive sanitizing compositions
US5378731A (en) 1991-06-07 1995-01-03 Minnesota Mining And Manufacturing Company Medicated shampoo
US5219887A (en) 1991-06-07 1993-06-15 Minnesota Mining And Manufacturing Company Disinfecting shampoo composition for animals
ES2195461T3 (en) 1991-11-25 2003-12-01 Richardson Vicks Inc USE OF SALICILIC ACID TO REGULATE SKIN WRINKLES AND / OR SKIN ATROPHY.
DE69321461D1 (en) 1992-03-03 1998-11-12 Reginald Keith Whiteley DISINFECTING COMPOSITION
US5312559A (en) * 1992-07-07 1994-05-17 The Procter & Gamble Company Personal cleanser with moisturizer
ES2114063T3 (en) 1992-07-27 1998-05-16 Procter & Gamble STRATIFIED TREATMENT PADS, DUAL TEXTURED.
EP0660720A4 (en) 1992-09-14 1996-12-27 Walter P Smith Skin-conditioning composition, its application and manufacture.
GB9302710D0 (en) 1993-02-11 1993-03-24 Procter & Gamble Cleansing compositions
GR1002595B (en) 1993-03-05 1997-02-12 Johnson & Johnson Consumer Products Inc. Cosmetic applicator useful for cleansing, moisturizing and protecting the skin from diaper rash.
FR2703057B1 (en) 1993-03-24 1995-06-16 Elysees Balzac Financiere Cellulose cellular material containing a biocidal agent and process for its preparation.
CA2098429A1 (en) 1993-03-30 1994-10-01 Yvette Lynn Touchet Preserved wet wipes
CA2168543A1 (en) 1993-07-03 1995-02-09 George Endel Deckner Personal cleansing compositions
WO1995003028A1 (en) 1993-07-23 1995-02-02 Morris Herstein Cosmetic, skin-renewal stimulating composition with long-term irritation control
ZA951012B (en) 1994-02-14 1996-08-08 Colgate Palmolive Co Composition
AU702897B2 (en) 1994-03-11 1999-03-11 Procter & Gamble Company, The Low pH, hydrolytically stable, cosmetic compositions containing acidic actives
US5512200A (en) 1994-04-18 1996-04-30 Thomas G. Bongard Low pH Acidic Compositions
GB2288811B (en) 1994-04-26 1998-07-15 Procter & Gamble Cleansing compositions
US5681802A (en) 1994-06-01 1997-10-28 Lever Brothers Company, Division Of Conopco, Inc. Mild antimicrobial liquid cleansing formulations comprising buffering compound or compounds as potentiator of antimicrobial effectiveness
ES2139903T3 (en) 1994-06-20 2000-02-16 Unilever Nv IMPROVEMENTS RELATED TO ANTIMICROBIAL CLEANING COMPOSITIONS.
US5635462A (en) 1994-07-08 1997-06-03 Gojo Industries, Inc. Antimicrobial cleansing compositions
EP0777716A2 (en) 1994-08-25 1997-06-11 Ciba SC Holding AG Surface-active formulations
CA2196771A1 (en) 1994-08-25 1996-02-29 Laszlo Moldovanyi Surface-active formulations
CA2206771C (en) 1994-12-09 2007-07-03 Unilever Plc Improvements relating to antimicrobial cleaning compositions
DE69611231T2 (en) * 1995-01-09 2001-06-28 Procter & Gamble THREE LIQUID BODY CLEANSING AGENTS FOAMING INTO ONE ULTRAMILDE
GB9503240D0 (en) 1995-02-20 1995-04-12 Unilever Plc Preparation
BR9607808A (en) 1995-03-20 1998-07-07 Unilever Nv Skin cleansing composition and process to enhance the antimicrobial effect of skin cleansing formulations
TW449485B (en) 1995-03-31 2001-08-11 Colgate Palmolive Co Skin care products containing anti itching/anti irritant agents
US5629081A (en) 1995-03-31 1997-05-13 Kimberly-Clark Tissue Corporation Premoistened, flushable, disposable and biodegradable wet wipes
EP0871438B1 (en) 1995-06-21 2008-02-27 Oy Extracta Ltd. Use of alpha-hydroxy acids in the manufacture of a medicament for the treatment of inflammation
US5607980A (en) 1995-07-24 1997-03-04 The Procter & Gamble Company Topical compositions having improved skin feel
EA001501B1 (en) 1995-08-24 2001-04-23 Унилевер Н.В. Hygienic set comprising a bath or shower sponge made with polymeric diamond mesh and a liquid cleanser with halogenated bacteriostat
EP0850039B1 (en) 1995-09-15 2001-07-25 Gabriel Rothan Liquid antiseptic soap
ATE214591T1 (en) 1995-10-16 2002-04-15 Procter & Gamble CONDITIONING SHAMPOO COMPOSITIONS WITH IMPROVED STABILITY
DE69618227T2 (en) 1995-11-01 2002-08-14 Kimberly Clark Co TOWELS SOAKED WITH ANTIMICROBIAL COMPOSITIONS
US5700842A (en) 1995-11-01 1997-12-23 Kimberly-Clark Worldwide, Inc. Methods of incorporating a hydrophobic substance into an aqueous solution
US6008173A (en) 1995-11-03 1999-12-28 Colgate-Palmolive Co. Bar composition comprising petrolatum
CN1221336A (en) * 1996-05-02 1999-06-30 普罗克特和甘保尔公司 Topical compositions comprising dispersed surfactant complex
US5871762A (en) * 1996-10-07 1999-02-16 The Procter & Gamble Company Cosmetic applicators which contain stable oil-in-water emulsions
CZ144499A3 (en) 1996-10-25 1999-09-15 The Procter & Gamble Company Disposable ready personal cleansing and treating article, process of its preparation and use
US6063397A (en) 1996-10-25 2000-05-16 The Procter & Gamble Company Disposable cleansing products for hair and skin
EP0938291B1 (en) 1996-10-25 2003-02-12 The Procter & Gamble Company Cleansing products
US5972361A (en) 1996-10-25 1999-10-26 The Procter & Gamble Company Cleansing products
US5780020A (en) 1996-10-28 1998-07-14 The Proctor & Gamble Company Methods and compositions for reducing body odor
US5871763A (en) * 1997-04-24 1999-02-16 Fort James Corporation Substrate treated with lotion

Also Published As

Publication number Publication date
AU745439B2 (en) 2002-03-21
BR9809970A (en) 2000-08-01
US6210695B1 (en) 2001-04-03
AU7704398A (en) 1998-12-21
CO4940392A1 (en) 2000-07-24
ZA984766B (en) 1999-01-19
KR20010013376A (en) 2001-02-26
CA2291743A1 (en) 1998-12-10
AR012241A1 (en) 2000-09-27
CN1205920C (en) 2005-06-15
WO1998055080A2 (en) 1998-12-10
WO1998055080A3 (en) 1999-03-11
EP0986363A2 (en) 2000-03-22
PE85099A1 (en) 1999-10-20
JP2002501541A (en) 2002-01-15
CN1264292A (en) 2000-08-23

Similar Documents

Publication Publication Date Title
CA2291743C (en) Leave-on antimicrobial compositions
US6190674B1 (en) Liquid antimicrobial cleansing compositions
AU735419B2 (en) Antimicrobial wipes
US6113933A (en) Mild, rinse-off antimicrobial liquid cleansing compositions containing acidic surfactants
US6106851A (en) Mild, rinse-off antimicrobial liquid cleansing compositions containing salicyclic acid
US6451333B1 (en) Mild, rinse-off antimicrobial liquid cleansing compositions
US6217887B1 (en) Leave-on antimicrobial compositions which provide improved immediate germ reduction
US6287577B1 (en) Leave-on antimicrobial compositions which provide improved residual benefit versus gram positive bacteria
US6436885B2 (en) Antimicrobial cleansing compositions containing 2-pyrrolidone-5-carboxylic acid
US6214363B1 (en) Liquid antimicrobial cleansing compositions which provide residual benefit versus gram negative bacteria
US6413529B1 (en) Antimicrobial wipes which provide improved residual benefit versus gram negative bacteria
US6482423B1 (en) Antimicrobial wipes which provide improved residual benefit versus gram positive bacteria
US6190675B1 (en) Mild, rinse-off antimicrobial liquid cleansing compositions which provide improved residual benefit versus gram positive bacteria
US6284259B1 (en) Antimicrobial wipes which provide improved residual benefit versus Gram positive bacteria
US6197315B1 (en) Antimicrobial wipes which provide improved residual benefit versus gram negative bacteria
CA2291255A1 (en) Mild, antimicrobial wipes
WO1998055095A1 (en) Liquid antimicrobial cleansing compositions which provide residual benefit versus gram negative bacteria
CA2291249C (en) Mild, leave-on antimicrobial compositions
MXPA99011374A (en) Leave-on antimicrobial compositions
MXPA99011372A (en) Antimicrobial wipes
MXPA99011318A (en) Liquid antimicrobial cleansing compositions

Legal Events

Date Code Title Description
EEER Examination request
MKLA Lapsed