CA2297145A1 - High temperature-stable fluorochemicals as hydrophobic and oleophobic additives to synthetic organic polymers - Google Patents

High temperature-stable fluorochemicals as hydrophobic and oleophobic additives to synthetic organic polymers Download PDF

Info

Publication number
CA2297145A1
CA2297145A1 CA 2297145 CA2297145A CA2297145A1 CA 2297145 A1 CA2297145 A1 CA 2297145A1 CA 2297145 CA2297145 CA 2297145 CA 2297145 A CA2297145 A CA 2297145A CA 2297145 A1 CA2297145 A1 CA 2297145A1
Authority
CA
Canada
Prior art keywords
fluorochemical
dimer
fiber
acid
fabric
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
CA 2297145
Other languages
French (fr)
Inventor
Thomas P. Klun
Alton J. Gasper
John A. Temperante
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
3M Co
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Publication of CA2297145A1 publication Critical patent/CA2297145A1/en
Abandoned legal-status Critical Current

Links

Classifications

    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F1/00General methods for the manufacture of artificial filaments or the like
    • D01F1/02Addition of substances to the spinning solution or to the melt
    • D01F1/10Other agents for modifying properties
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/249921Web or sheet containing structurally defined element or component
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/29Coated or structually defined flake, particle, cell, strand, strand portion, rod, filament, macroscopic fiber or mass thereof
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/29Coated or structually defined flake, particle, cell, strand, strand portion, rod, filament, macroscopic fiber or mass thereof
    • Y10T428/2913Rod, strand, filament or fiber
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/29Coated or structually defined flake, particle, cell, strand, strand portion, rod, filament, macroscopic fiber or mass thereof
    • Y10T428/2913Rod, strand, filament or fiber
    • Y10T428/2915Rod, strand, filament or fiber including textile, cloth or fabric
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/29Coated or structually defined flake, particle, cell, strand, strand portion, rod, filament, macroscopic fiber or mass thereof
    • Y10T428/2913Rod, strand, filament or fiber
    • Y10T428/2933Coated or with bond, impregnation or core
    • Y10T428/2964Artificial fiber or filament
    • Y10T428/2967Synthetic resin or polymer
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/29Coated or structually defined flake, particle, cell, strand, strand portion, rod, filament, macroscopic fiber or mass thereof
    • Y10T428/2913Rod, strand, filament or fiber
    • Y10T428/2933Coated or with bond, impregnation or core
    • Y10T428/2964Artificial fiber or filament
    • Y10T428/2967Synthetic resin or polymer
    • Y10T428/2969Polyamide, polyimide or polyester
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/31504Composite [nonstructural laminate]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T442/00Fabric [woven, knitted, or nonwoven textile or cloth, etc.]
    • Y10T442/10Scrim [e.g., open net or mesh, gauze, loose or open weave or knit, etc.]
    • Y10T442/102Woven scrim
    • Y10T442/183Synthetic polymeric fiber
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T442/00Fabric [woven, knitted, or nonwoven textile or cloth, etc.]
    • Y10T442/20Coated or impregnated woven, knit, or nonwoven fabric which is not [a] associated with another preformed layer or fiber layer or, [b] with respect to woven and knit, characterized, respectively, by a particular or differential weave or knit, wherein the coating or impregnation is neither a foamed material nor a free metal or alloy layer
    • Y10T442/2008Fabric composed of a fiber or strand which is of specific structural definition
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T442/00Fabric [woven, knitted, or nonwoven textile or cloth, etc.]
    • Y10T442/20Coated or impregnated woven, knit, or nonwoven fabric which is not [a] associated with another preformed layer or fiber layer or, [b] with respect to woven and knit, characterized, respectively, by a particular or differential weave or knit, wherein the coating or impregnation is neither a foamed material nor a free metal or alloy layer
    • Y10T442/2311Coating or impregnation is a lubricant or a surface friction reducing agent other than specified as improving the "hand" of the fabric or increasing the softness thereof
    • Y10T442/232Fluorocarbon containing

Abstract

This invention describes hydrophobic and oleophobic fibers, films and molded articles comprising synthetic organic polymer wherein dispersed within the fiber, fabric or molded article and present at the surface of the fiber, fabric or molded article are fluorochemical compounds. Method of preparing such fibers, films and molded articles, as well as articles made therefrom also are disclosed.

Description

High Temperature-Stable Fluorochemicals as Hydrophobic and Oleophobic Additives to Synthetic Organic Polymers FIELD OF THE INVENTION
This invention relates to fiber, film and molded article compositions comprising hydrophobic and oleophobic synthetic organic polymer. In another aspect, the present invention relates to methods for preparing hydrophobic and oleophobic fiber, film and molded articles from synthetic organic polymer. In yet another aspect, the present invention relates to fabrics comprising hydrophobic and oleophobic synthetic organic fiber and to methods of making such fabrics.
BACKGROUND OF THE INVENTION
Synthetic organic polymers, especially polyolefins, are employed widely to create a variety of products. Included among such varied products are: blown and cascade films, extruded sheets, foams, fibers, products made from foam and fibers, woven and knitted fabrics, non-woven fibrous webs and molded articles. Many polymers used in these products, such as polypropylene, exhibit some hydrophobicity (i.e., water resistance), but exhibit no oleophobicity (i.e., oil resistance).
The use of various fluorochemicals to treat topically a variety of fibers and fibrous substrates, such as textiles, carpet, leather, paper and non-woven webs, to impart to those materials desired properties not indigent to the virgin materials, is known. See, for example, Mason Hayek, Waterproofing and WaterlOil Repellency, 24, Kirk-Othmer Encyclopedia of Chemical Technology, pp. 448-455 {3rd ed. 1979) or Banks, Ed., Organofluorine Chemicals and Their Industrial Applications, Ellis Horwood Ltd., Chichester, England, pp. 226-234 ( 1979).
Such fluorochemical compositions include fluorochemical urethane and urea-based oIigomers as disclosed in U.S. Pat. Nos. 3,398,182 (Guenthner et al.), 4,001,305 (Dear et al.), 4,215,205 (Landucci), 4,606,737 (Stern), 4,668,406 (Chang), 4,792,354 (Matsuo et al.) and 5,410,073 (Kirchner); compositions of cationic and non-cationic fluorochemicals as disclosed in U.S. Pat. No. 4,566,981 (Howells);
and compositions containing fluorochemical carboxylic acid and epoxidic cationic resin as disclosed in U.S. Pat. No. 4,426,466 (Schwartz). Also known are fluorochemical esters as disclosed by U.S. Pat. Nos. 3,923,715 (Dettre), 4,029,585 (Dertre), 4,264,484 (Patel); and, more specifically, fluorochemical esters deriv~i from dimerized unsaturated fatty acids as disclosed by U.S. Pat. No. 4,539,006 (Langford) and World Published Application WO 93/10085 (Coppens et al.).
These fluorochemicals can be applied to various fibrous substrates by methods known in the art, including spraying, padding, and finish bath immersion, or can be applied directly to the fiber before the fiber is woven by incorporating the fluorochemical into the fiber spin finish.
Blending fluorochemicals with synthetic organic polymers and melt extruding fibers from the molten blend to produce fibers and fibrous substrates exhibiting hydrophilicity and oleophilicity also is known. U.S. Pat. No.
5,025,052 (Crater et al.) describes fibers, films and molded articles prepared by melt extruding a blend or mixture of (a) fiber- or film-forming synthetic organic polymers and (b) fluorochemical oxazolidinones to produce fibers, films and molded articles having low surface energy, repellency to oil and water, and resistance to soils. U.S.
Pat.
No. 5,380,778 (Buckanin) describes fibers, films, and shaped articles made by melt extruding a blend of a fluorochemical aminoalcohol and a thermoplastic polymer, such as polypropylene. U.S. Pat. No. 5,451,622 (Boardman et al.) describes shaped articles, such as fibers and films, made by melt extruding mixtures of fluorochemical piperazine compound and thermoplastic synthetic polymer. U.S. Pat. No.
5,411,576 {Jones et al.) describes an oily mist resistant electret filter media comprising melt blown electret microfibers and a melt processable fluorochemical having a melting point of at least about 25°C and a molecular weight of about 500 to 2500, the fluorochemical preferably being a fluorochemical oxazolidinone, fluorochemicai piperazine or a perfluorinated alkane having from 15 to 50 carbon atoms. U.S. Pat. No. 5,300,587 (Mascia et al.) describes oil-repellent polymeric compositions made by blending a perfluoropolyether and optionally a radical starter with a thermoplastic polymer, intimately mixing the resulting composition at high temperature for sufficient time to form macroradicals from the polymer, and cooling the final composition to room temperature. U.S. Pat. No. 5,336,717 (Rolando et al.) discloses fluorochemical graft copolymers derived from reacting monomers having terminal olefinic double bonds with fluorochemical olefins having fluoroaiiphatic groups and polymerizable double bonds.
While these various fluorochemical melt additives can in some circumstances impart satisfactory hydrophobicity and/or oleophobicity to thermoplastic resins, they typically suffer poor thermal stability above 300°C, a melt processing temperature often encountered in the industry, and they also can be prohibitively expensive, lending self evident limitation to their commercial utility.
SUMMARY OF THE INVENTION
Briefly, in one aspect, this invention describes hydrophobic and oleophobic fibers, fabrics, films and molded articles (including combinations thereof) 1 S comprising synthetic organic polymer wherein dispersed within the fiber, film, fabric or molded article and present at the surface of the fiber, fabric, film or molded article are fluorochemical compounds. The fluorochemical compounds so dispersed generally are those that can be depicted either by Formula I, Formula II, Formula III
or Formula IV below:
(I) [(Rr)~-Q-O-C(O)lP-A
(H) [(Rf~, - Q - C(O) - O]p - A' [~'~ - Q - N~) - C(O))a - A
(IV) [~e~ - Q - C(O) - N(R)w - A
wherein:
Rr is a fluorinated, preferably perfluorinated, alkyl group bonded through carbon;
n is 1 or 2;
Q is a divalent or trivalent linking group, where the divalent linking group can be simply a covalent bond;
p is 1, 2 or many, up to the valency of A or A';
R is a hydrogen atom or is a substituted or unsubstituted alkyl group, preferably an alkyl group having from 1 to 6 carbon atoms;
A is the residue of a mono- or polyfixnctional carboxylic acid; and A' is the residue of a mono- or polyfunctional alcohol or amine with the proviso that A or A' contain at least 34, or alternatively at least 36, carbon atoms when Q is -CHZCHr.
The above-depicted fluorochemicals and those compositions containing them impart hydrophobicity and oleophobicity to synthetic organic polymers when blended as melt additives with such polymers prior to their thermal extrusion.
These fluorochemicals and fluorochemical compositions also offer the additional benefits of thermal stability above 300°C and yield lower material cost compared to currently employed fluorochemical polymer additives.
In another aspect, the present invention relates to methods of preparing hydrophobic and oleophobic fibers, films, and molded articles from synthetic organic polymers containing the described fluorochemicais.
In yet another aspect, the present invention relates to fabrics comprising hydrophobic and oleophobic synthetic organic fiber, useful, for example, in medical fabrics and apparel, and filter media. Methods for making such fibers also is disclosed.
DETAILEb DESCRIPTION OF THE INVENTION
Those fluorochemicals preferred in the practice of the invention are selected from the group of compounds that can be depicted generally by the formulas presented below:
(I) [(Rf~, - Q - O - C(O)Ir - A
(B) [(Re)~-Q-C(O)-O]P-A' [(Rf)p - Q - N(R) - C(O)]P - A
(~) [(Rr)n - Q - C(O) - N(R)]r - A' wherein:
Rr is a fluorinated, preferably perfluorinated, alkyl group bonded through carbon that may be substituted or unsubstituted, cyclic or acyclic, linear or branched (or any combination thereof] that optionally may contain one or more catenary heteroatoms such as nitrogen, sulfur, or oxygen;
the terminal portion of Rf preferably is a fully-fluorinated terminal group containing at least 7 fluorine atoms (e.g., CF3CF2CF2-, (CF3)2CF- or SFsCF2-); Rf may contain one or more hydrogen atoms or one or more other halogen atoms (e.g. chlorine) provided that at least 75%, and preferably at least 90%, of the atoms attached to the carbon backbone are fluorine atoms;
n is 1 or 2;

wo ~ros3as rc~r~rs97nzz27 Q is a divalent of a trivalent linking goup (that can be a covalent bond where Q is divalent) or can be an organic moiety containing from 1 to about ZO atoms and that optionally can contain oxygen-, nitrogen- or sulfur-containing goups or any combination thereof, and is preferably free from active hydrogen atoms; preferably, Q is -S02N(R')(CH2~-, -(CH2~-, -CON(R'XCH2~- or -(CH2~S02N(R')(CH2~-, where R' is hydrogen, a phenyl goup or is a short chain substituted or unsubstituted alkyl goup, preferably a methyl or ethyl goup and where each k is independently an integer from 1 to about 20;
p is equal to 1, 2 or many, up to the valency of A or A';
R is a hydrogen atom or is a substituted or unsubstituted alkyl group, preferably an alkyl group having from 1 to 6 carbon atoms;
A is the residue of a dimer or trimer acid, representing an aliphatic moiety containing from 30 to 170 carbon atoms; and A' is the residue of a mono- or polyfunctional alcohol or amine representing an aliphatic moiety containing from 30 to 170 carbon atoms with the proviso that A or A' contain at least 34 carbon atoms when Q is -CHzCH2-.
It will be understood that, as the necessary result of the manner in which the above-depicted compounds are made, the fluorochemicals actually employed in the practice of the invention typically will be mixtures of compounds having varying numbers of fluorochemical tails. The compounds preferably are made such that the number of these fluorochemical tails (the bracketed groups of the above formulas) for each compound will nearly equal the valency of the mono- or polyfunctional acid or alcohol utilized in its preparation (i.e., more than about 75% of the available vaiencies of the acid or alcohol will be filled by the fluorochemicai tails).
Where a polyfunctional acid or alcohol is used, there can, however, be a residuum of unreacted sites on that acid or alcohol for at least a portion of the compounds.
Such mixtures are useful in practice of the invention, and are considered within the scope hereof.
Unless otherwise indicated herein, the terms "dimer acid" and "trimer acid"
are used herein in their common usage to mean polymerized unsaturated fatty acid products of relatively high molecular weight made up of mixtures comprising various ratios of a variety of large or relatively high molecular weight substituted cyclohexenecarboxylic acids, predominately 36-carbon dibasic acids (dimer acid) and 54-carbon tribasic acids (trimer acid), with no single structure suffcient to characterize each. Component structures may be acyclic, cyclic (monocyclic or bicyclic) or aromatic. Typical component structures present in dimer acids are illustrated below:
HOOC
HOOCH
(acyclic) HOOC
HOOC ' (monocyclic) HOOC
HOOC ' (bicyclic) WO 99!05345 PCT/US97/22227 HOOC
HOOC ' (aromatic) Structures for components of trimer acids are similar to those of dimer acids except that they contain an additional carboxylic acid group terminating from another hydrocarbon chain, they contain an additional non-functional hydrocarbon chain, and they contain a Beater portion of bicyclic compounds.
Dimer and trimer acids typically are prepared by condensing unsaturated monofunctional carboxylic acids such as oleic, linoleic, soya or tall oil acid through their olefinically unsaturated groups, in the presence of catalysts such as acidic clays. The distribution of the various structures in dimer acids (nominally dibasic acids) depends upon the unsaturated acid used in their manufacture.
Typically, oleic acid gives a dimer acid containing about 38% acyclics, about 56%
mono- and bicyclics, and about 6% aromatics. Soya acid gives a dimer acid containing about 24% acyclics, about 58% mono- and bicyclics and about 18%
aromatics. Tall oil acid gives a dimer acid containing about 13% acycIics, about 75% mono- and bicyclics and about 12% aromatics.
Dimer/trimer acids are commercially available from a variety of vendors, including Henkel Corporation/Emery Group {as EmpolT"" 1008, 1061, 1040 and 1043) and Unichema North America (as PripolT"' 1004 and 1009). For further information concerning these acids, see (1) Leonard, Edward C., "The Dimer Acids," Humko Sheffield Chemical, Memphis, Tennessee, 1975, pp. 1, 4 and 5, and (2) the Kirk-Othmer Encyclopedia of Chemical Technology, John Wiley & Sons, 3rd ed., Vol. 7, 1979, pp. 768-770. Different grades exist for the dimer and trimer acids. Some have been hydrogenated to remove olefinic double bonds andlor distilled for purification.
Dimer diols and diamines can be made from the dimer acid by methods well known in the art. Dimer diols are commercially available from Henkel Corp./Emery _g_ Group as EmpolTM 1070 and 1475 diols. Dimer amines are commercially available from Witco Corp., for example, as KemamineTM DP-3695 amine.
Ester compositions of Formula ( I ) are made conveniently by heating a fluorochemical alcohol with either a dimer acid or a trimer acid in the presence of a standard acid catalyst, such as p-toluenesulfonic acid, preferably in a suitable solvent such as toluene. They also can be prepared by first making an acid chloride of the dimer/trimer acid by reaction with thionyl chloride, and then reacting the acid chloride with a fluorochemical alcohol at a slightly elevated temperature (50-60°C) in the presence of an acid scavenger, such as pyridine, and preferably in a low-boiling solvent such as chloroform. Suitable fluorochemical alcohols include sulfonamido alcohois such as those described in U.S. Pat. No. 2,803,656 (Ahlbrecht et al.), for example, sulfonamido-based alcohols such as CsFmSOzN(CH3)CH2CHzOH and CBF,~S02N(C2H5)CHZCHZOH and telomer-based alcohols such as CgF,~CHZCH20H. Suitable dimer and trimer acids include EmpolT'~
1008, 1061, 1040, and 1043 acids and PripolT"" 1004, 1009 and 1048 acids.
"Reverse" ester compositions of Formula ( II ) can be prepared by reacting a fluorochemical carboxylic acid with a dimer diol, using the same synthetic procedure as described for the preparation of the ester compositions of Formula ( I ). Suitable fluorochemical carboxylic acids include sulfonamido carboxylic acids such as those described in U.S. Pat. No. 2,809,990 (Brown et al.), for example, CBFoSOzN(CZHs)CHZCOOH. Suitable dimer diols include EmpolT"' 1070 and 1075 diols.
Amide compositions of Formula ( III ) can be prepared by reacting a fluorochemical amine with a dimer or trimer acid by heating the components together neat at an elevated temperature (at least 220°C).
Alternatively, they can be prepared by first making an acid chloride of the dimer/trimer acid by reaction with thionyl chloride, and then reacting the acid chloride with a fluorochemical amine at a slightly elevated temperature (SO-60°C), and preferably in a low-boiling solvent such as chloroform. Suitable fluorochemical amines include CsF"S02N(CZHs)CHzCHZNHz, CaFmS02N(C2Hs)CH2CHzNH(CH3) and -g-C$Fi7CH2CH2NH2. Suitable dimer and trimer acids include ErnpolT"" 1008, 1061, 1040, and 1043 acids and PripolT"" 1004, 1009 and 1048 acids.
"Reverse" amide compositions of Formula ( IV ) can be prepared by reacting a fluorochemical carboxylic acid with a dimer amine, using the same synthetic procedure as described for the preparation of the ester compositions of Formula ( I ). Suitable fluorochemical carboxylic acids include sulfonamido carboxylic acids such as those described in U.S. Pat. No. 2,809,990 (Brown et al.), for example, CaFnS4ZN(CzHs)CHZCOOH. Suitable dimer amines include KemamineT"" DP-3695 amine.
As used herein, the terms "fiber" and "fibrous" refer to particulate matter, generally thermoplastic resin, wherein the length to diameter ratio of the particulate matter is greater than or equal to about 10. Fiber diameters may range from about 0.5 micron up to at least 1,000 microns. Each fiber may have a variety of cross-sectional geometries, may be solid or hollow, and may be colored by, e.g., incorporating dye or pigment into the polymer melt prior to extrusion. The fluorochemicals and fluorochemical compositions of the invention modify both the surface and the bulk of each fiber in a uniform way. Thus, if some fluorochemical is washed from the surface of the fibers, the fluorochemical reservoir within the fiber supplies more of each surfactant to the surface of the fiber and thus replenishes the fiber's desired properties.
The described fluorochemicals and compositions comprising those fluorochemicals find particular utility as additives to synthetic organic polymers.
Synthetic polymeric fibers, films, and molded articles to which the fluorochemicals of the invention have been incorporated, have low surface energy, excellent oil and water repellency, and exhibit a resistance to soiling. Such polymers can be thermoplastic or thermoset including synthetic linear polyamides, e.g., nylon-6 and nylon-66; polyesters, e.g., polyethylene terephthalate; polyoleflns, e.g., polyethylene and polypropylene; polyolefin copolymers; epoxy resins; urethanes; acrylics;
polystyrenes, etc. The described fluorochemicals also can be used as blends.with other fluorochemicals, e.g., with fluorochemical poly(oxyalkylene) compounds oligomers or polymers.

Fibers, films, and~molded articles containing the fluorochemicals can be made by preparing a blend of the solid fluorochemical or fluorochemical composition with a chosen solid synthetic polymer by intimately mixing the fluorochemical with pelletized or powdered polymer, and melt extruding the blend into fibers or films by known methods. The fluorochemicals or fluorochemical compositions can be mixed directly with the polymer or they can be mixed with the polymer in the form of a "master batch" (concentrate) of the fluorochemical in the polymer. An organic solution of the fluorochemical or fluorochemical composition may also be mixed with the powdered or pelletized polymer, the mixture dried to remove solvent, then melted and extruded. Alternatively, molten fluorochemicals can be injected into a molten polymer stream to form a blend immediately prior to extrusion into fibers or films.
The amount of fluorochemical used as an additive is that amount sufficient to achieve the desired properties of oil and water repellency and/or soiling resistance. Preferably, the amount of additive to be used will be that amount which provides from about 100 to 20,000 ppm fluorine, more preferably 200 to 10,000 ppm fluorine, based on weight of the fiber or film, in the fiber or film after extrusion.
After melt extrusion of the fiber or film an annealing step can be carried out to enhance surface energy lowering and to enhance oil and water repellency for a particular fluorochemical additive. In addition to or in lieu of such an annealing process, the film or fiber also may be embossed between two heated roll where one or both of the rolls may be patterned. An annealing process typically is conducted below the melt temperature of the synthetic polymer, for example, in the case of nylon, about 150° to 220° C for a period of about 30 seconds to about S minutes.
In some cases, the presence of moisture can improve the effectiveness of the fluorochemical.
The fluorochemicals of the invention also can be employed as aqueous suspensions or emulsions, or as organic solvent solutions, in the treatment of textile fibers (or filaments) during their manufacture, e.g., in combination with spin finishes, or in the treatment of porous or fibrous substrates such as textiles, carpets, WO 99/05345 PCT/US9'7/22227 paper, and leather to impart oil and water repellency and anti-soiling properties thereto. The fibers or filaments as such or in aggregated form, e.g., yarn, toe, web, or roving, or the fabricated textile, e.g., articles such as carpet and woven fabrics, can be treated with the fluorochemical. This treatment can be carried out by applying the fluorochemical or fluorochemical composition as organic solutions or as aqueous organic dispersions by known techniques customarily employed in applying fluorochemicals, e.g., fluorochemical acrylate copolymers, to fibers and fiber substrates. The fluorochemical treatment, for example, with the fluorochemical being in the form of an aqueous emulsion or organic solution, can be carried out by immersing the fiber substrates in a bath containing a cationic, anionic, or nonionic fluorochemical blend, padding the substrate or spraying the same with the fluorochemicaI emulsion or solution, or by foam, kiss-roll, or metering the applications, e.~ , spin finishing, and then drying the treated substrates if solvent is still present. If desired, the fluorochemicals or blends of fluorochemicals can be co-applied with conventional fiber treating agents, ~e.g., anti-static agents or non-aqueous fiber lubricants.
In addition to the use of the fluorochemicals of this invention in modifying the properties of fibers, e.g., carpet fibers, as described above, they also find utility as blend additives and blown microfibers for use in making non-woven fabrics having low surface energy, oil and water repellency, and/or resistance to soils.
Such non-woven webs or fabrics are readily prepared by processes used in the manufacture of either melt-blown or spunbonded webs. For example, a process similar to that described in Wente, Superfine Thermoplastic Fibers, 48 INnus.
ENG'G CHEM. 1342 (1956), or in WENTE ET AL., MANUFACTURE OF SUPERFINE
ORGANIC FIBERS, (Naval Research Laboratories Report No. 4364, 1954) can be used for the preparation of the nonwoven webs of this invention. Mufti-layer constructions made from non-woven fitbrics enjoy wide industrial and commercial utility and include uses as medical fabrics. The makeup of the constituent layers of such mufti-Layer constructions can be varied according to the desired end-use characteristics and can comprise two or more layers of melt-blown and spunbond wo mos3as PcTrt~s9~nz2i~
webs in many useful combinations such as described in U.S. Pat. Nos. 5,145,727 and 5,149,576, both of whose descriptions are incorporated herein by reference.
Amr of a wide variety of constructions may be made from the above-described fibers and fabrics, and such constructions will find utility in any application where some level of hydrophobicity, alcohol repellency, or ohphobicity is required. The fibers and fabrics of the invention may, for example, be used in woven and non-woven medical fabrics and related apparel, industrial apparel, outdoor fabrics (e.g., umbrellas, awnings, tents, etc.), raincoats and other outdoor apparel, as well as in home furnishings such as table linens and shower curtains and in myriad other related uses.
Films of the invention can be made from blends of synthetic organic polymer and the described fluorochemicals by any of the film making methods commonly employed in the art. Such films may be non-porous or porous (the latter including films that are mechanically perforated) where the presence and degree of porosity is selected according to desired performance characteristics.
The fluorochemicals of the invention also can find utility as additives to polymer coatings and articles, e.g., to improve water resistance, lower surface energy, improved dielectric properties, etc.
The following examples are offered to aid in the understanding of the present invention and are not to be construed as limiting the scope thereof.
Unless otherwise indicated, all parts and percentages are by weight.
TEST METHODS
Melt-Blown Extrusion Procedure - The melt-blown extrusion procedure is the same as described in U.S. Pat. 5,300,357, column 10, which is herein incorporated by reference. The extruder used is a Brabender 42 mm conical twin screw extruder, with maximum extrusion temperature of 270-280°C and distance to the collector of 12 inches (30 cm).
Fluorochemical and thermoplastic polymer mixtures are mixed by blending the fluorochemical and thermoplastic polymer in a paperboard container using a mixer head affixed to a liand drill for about one minute until a visually homogeneous mixture is obtained.
The process condition for each mixture is the same, including the melt blowing die construction used to blow the microfiber web, the basis weight of the web (SOtS g/m~ and the diameter of the microfibers (5-18 micrometers). Unless otherwise stated, the extrusion temperature is 270-280°C, the primary sir temperature is 210°C, the pressure is 124 kPa ( 18 psi), with a 0.076 cm air gap width, and the polymer throughput rate is about 180 g/hr/cm.
Spunbond Extrusion Procedure - The extruder used is a Reifenhauser Extruder Model Number RT 381 (available from Reifenhauser Co., Troisdorf, Nordrhein Westfalen, Germany). The extruder is driven by an infinitely variable 3e shunt wound DC motor, 37.3 kW & 2200 rev/min max. The maximum screw speed is reduced to 150 rev/min. The screw is 70 mm in diameter and 2100 mm in length.
The entire extruder is 2.3 m in length by 1.3 m in width by 1.6 m in height, weighing 2200 kg. There are five 220 V heating zones at a total of 22.1 kW of heating power, giving a maximum heating zone temperature of 210°C
The bonder is a Kusters Two-Bowl-Thermobonding-Calender (available from Kusters Corp., Nordrhein Westfalen, Germany). The effective bonding width is 1.2 m. The upper patterned metal roll has a 15% bonding area and a temperature of 270°F {132°C), while the lower rubber roll has a slick surface and a temperature of 265°F (129°C). The bonding nip pressure is 57-860 pounds force per linear inch (3000-46000 J/cm). The rolls are heated by convection from a continuously circulating furnace oil. The temperature range of the nips is 200-300°F
(93-149°C).
The bonder's speed is directly synchonized to the speed of the collection belt that has a range of 3.6 to 65 linear meters per minute.
The basis weight for the nonwoven web (g/m2) can be calculated by multiplying the speed of the spin pump (rev/m) times the constant 71.
Embossing Procedure - Nonwoven samples were embossed using a top roll with a 15% contact area diamond pattern metal top roll set at 98°C
and a WO 99/05345 PCTII1S9'7/22227 rubber bottom roll set at 104°C, with a gap between the rolls of less than 2 mil (SOp,), at a pressure of 30 psi (1550 ton) between the top and bottom rolls, and at a linear speed of 8.3 ft/min (2.5 m/min).
T6crmal Gravimetric Aualysia (TGA) Test - Unless otherwise stated, the sample is heated from room temperature at a rate of 10°C/min and the percent of the sample left when a given temperature is reached (usually 220°C, 280°C, 320°C
and 340°C) is reported in most tables. It is desirable to have at least about 90% of the sample remaining after heating to 320° C so that the fluorochemical is resistant to high temperature processing.
In a variant of this test, a sample of fluorochemical is heated at a rate of 100°C/min to 220°C, 280°C or 320°C and held at the respective temperatures. The percent of the sample left after different numbers of nunutes is measured and recorded as "% TGA Left."
Water Repellency Test - Nonwoven web samples were evaluated for water repellency using 3M Water Repellency Test V for Floorcoverings (February 1994), available from 3M Company. In this test, samples are challenged to penetrations by blends of deionized water and isopropyl alcohol (IPA). Each blend is assigned a rating number as shown below:

*rB

WO 99105345 PCTlUS97/22227 Water Repellencjr Ratin$ Number end l% by volume) 0 100% water 1 90/ 10 water/IPA

2 80/20 water/IPA

3 70/30 water/IPA

4 60/40 water/IPA

5 50/50 water/IPA

6 40/60 water/IPA
7 30/70 water/IPA
8 20/80 water/II'A
9 10/90 water/IPA
10 I00% IPA

In running the Water Repellency Test, a nonwoven web sample is placed on a flat, horizontal surface. Five small drops of water or a water/IPA mixture are gently placed at points at least two inches apart on the sample. If, after observing for ten seconds at a 45° angle, four of the five drops are visible as a sphere or a hemisphere, the nonwoven web sample is deemed to pass the test. The reported water repellency rating corresponds to the highest numbered water or water/IPA
mixture for which the nonwoven sample passes the described test.
It is desirable to have a water repellency rating of at least 4, preferably at least 6.
Oil Repellency Test - Nonwoven web samples were evaluated for oil repellency using 3M Oil Repellency Test III (February 1994), available from 3M
Company, St. Paul, Minnesota. In this test, samples are challenged to penetration by oil or oil mixtures of varying surface tensions. Oils and oil mixtures are given a rating corresponding to the following:

Oil Repellency Oil Rating Number Composition 0 (fails KaydolT"" mineral oil) 1 Kaydol'~'' mineral oil 2 65/35 (vol) mineral oil/n-hexadecane 3 n-hexadecane 4 n-tetradecane 5 n-dodecane 6 n-decane ? n-octane 8 n-heptane The Oil Repellency Test is run in the same manner as is the Water Repellency Test, with the reported oil repellency rating corresponding to the highest oil or oil mixture for which the nonwoven web sample passes the test.
It is desirable to have an oil repellency rating of at least 1, preferably at least 3.
GLOSSARY
Thermoalastic Polymers Escorene TM PP3505 polypropylene - polypropylene, having a 400 melt flow rate, commercially available from Exxon Chemical Company, Baytown, Texas.
Escorene T"' PP3445 polypropylene - polypropylene, having a 35 melt flow rate, commercially available from Exxon Chemical Company.
Escorene "" 3795 polypropylene - polypropylene, having an 800 melt flow rate, commercially available from Exxon Chemical Company.
Reilles FPO T"z D-100 polypropylene - polypropylene having a 15 melt flow rate, commerciaily available from Rexene Corp., Dallas, Texas.
Aspun'I'M 6806 polyethylene - polyethylene, having a melt index of 105 g/10 min (as measured by Test Method ASTM D-1238) and having a peak melting *rB

point of 124.8°C, commercially available from Dow Chemical Co., Nfidland, NGchigan.
DuraOeiTM polybutylene 8510 - polybutylene polymer, having a 45 melt index (as measured by ASTM D1238, Condition D) and having a Brooldeld viscosity of 640,000 cps (measured at 17?°C using a #29 spindle), commercially available from Shell Chemical Co., Houston, Texas.
Engage T~ 8400 poiy(ethylene%ctylene) - 76/24 ethylene/octene copolymer, having a 30 melt flow rate, commercially available from DuPont/Dow Elastomers, Wilmington, Delaware.
Ezact TM 4023 poly(ethylene/butylene) - ethylene/butylene copolymer, having a 35 melt flow rate, commercially available from Exxon Chemical Company.
MorthaneTM PS 400 polyurethane - a thermoplastic polyurethane resin, having a Shore A Hardness ( 1 sec delay) of 89 and having a melting point range of 140-210°C, commercially available from Shell Chemical Co.
MorthaneT" polyester-based polyurethane PS440-200 - a polyurethane resin, commercially available from Morton Thiokol Corp., Chicago, Illinois.
CelaneaTM 2002 polybutylene terephthalate - unfilled polybutylene terephthalate thermoplastic resin, medium flow, commercially available from Hoechst Celanese Corp., Chatham, New 3ersey.
PET 35 BASF polyethylene terephthalate - commercially available from BASF Corp., Mount Olive, New Jersey.
BASF UltramidTM B3 nylon - nylon 6 polyamide resin, having a melting point of 220°C, having a number average molecular mass of 15000 and having a melt viscosity of 140 Pas at 250°C (D = 1000 s-1), commercially available from BASF Corp., Parsippany, New Jersey.
Raw Materials Used for Synthesis of Fluoroalinhatic Groun-Containing Compositions POSF sulfonyl fluoride - C8Fi~S02F, perfluorooctanesulfonyl fluoride, commercially available as FluoradT"" FX-8 fluorochemical intermediate from 3M
Company.

MeFOSE aicohoi - CsF,~S02N(CH3)CH2CH20H, having an equivalent weight of 540, made in two stages by reacting POSF with methylamine and ethylenechlorohydrin, using a procedure similar to that described in Example 1 of U.S. Pat. No. 2,803,656 (Ahlbrecht et al.).
EtFOSE alcohol - CsF,~SOZN(C2Hs)CH2CHZOH, commercially available as FluoradTM FC-10 fluorochemical alcohol from 3M Company.
FC-129 Acid - CgF"SOzN(C2Hs)CHZCOOH - prepared from FluoradTM
FC-129 Fluorochemical Surfactant by acidification with sulfuric acid followed by extraction with isopropyl ether and removal of ether solvent.
ZonylTM BA alcohol - F(CF2CF2~,CH2CHZOH, whose average molecular weight is 475, commercially available as from E.I du Pont de Nemours & Co., Wilmington, Delaware.
ZonylTM BA(N) alcohol - F(CF2CF2)nCFiZCH20H, whose average molecular weight is 514, commercially available as from E.I du Pont de Nemours &
Co CgF~7SO~N(CH3)C2H40CH2CHCH2 MeFOSG epoxide - O , having an epoxy equivalent weight of 640, made in two stages by reacting POSF with methylamine and epichlorohydrin, using a procedure similar to that described in Example 1 ofU.S. Pat. No. 5,380,778 (Buckanin).
MeFOS-NHz amine - C8F1~S02N(CH3)CHzCH2NH2, made from MeFOSE, methanesulfonyl chloride and triethylamine to give the intermediate methanesulfonyl chloride ester, followed by treatment with ammonia, using a procedure similar to that described in Examples 1 and 2 of U.S. Pat. No.
3,458,571 (Tokoli).
EtFOS-NHS amine - CsF,~S02N(CzHs)CH2CH2NH2, made from EtFOSE, methanesulfonyl chloride and triethylamine to give the intermediate methanesulfonyl chloride ester, followed by treatment with ammonia, using a procedure similar to that described in Examples 1 and 2 of U.S. Pat. No. 3,458,571 (Tokoli).

EtFOS-NHMe amine - CsF»SOiN(CzHs)CH2CH2NH(CH3), made in the same way as MeFOS-NHz, except that methylamine was substituted for ammonia.
EtFOS-NCO isocyanate - CsFI,SOZN(CZHs)CH2CHZNCO, prepared using the following procedure. To a 3-necked 500 mL flask equipped with overhead stirrer, thermometer and reflux condenser (connected to an empty washing trap which was in turn connected to a gas washing trap containing 20% aqueous NaOH) was charged 100 g (0.169 eq, based on an amine equivalent weight of 590) of C$F,7SO2(C2H5)HC2HeNH2 (EtFOS-NHZ amine) dissolved in 250 g of ethyl acetate.
Through the resulting mixture was bubbled about 7 g (0.192 eq) of hydrogen chloride gas, which produced as slushy mass. Next about 50 g (0.505 eq) of phosgene gas (COCIz) was added over about a 10 minute period, after which the reaction mixture was heated to 55°C. After 3 hours, an additional 36 g (0.364 eq) of phosgene was added and, after reacting overnight, the reaction mixture turned a translucent brown color. An additional 35 g of phosgene was added, but there was no further evidence of reaction. The reaction temperature was raised to 70°C, and excess phosgene and ethyl acetate were removed by distillation. After I hour, the reaction mixture was placed under reduced pressure (~90 torr) to remove completely any residual volatiles. The now tan-brown reaction mixture (104 g) was heated to 110°C, causing the mixture to clear up, and the now clear mixture was transferred to a 100 mL round-bottom flask equipped with a 14/20 standard taper joint. The mixture was distilled at 145°C and 0. i torr to yield 86.88 g of product which was identified as the desired compound using'H and ~3C NMR
spectroscopy, having a molecular weight of 596.
EmpolT'" 1008 acid - a distilled and hydrogenated dimer acid based on oleic acid, having an acid equivalent weight of 305 as determined by titration, commercially available from Henkel Corp./Emery Group, Cincinnati, Ohio.
EmpolT"" 1061 acid - a distilled dimer acid based on oleic acid, commercially available from Henkel Corp./Emery Group.
EmpolT'" 1040 acid - a trimer acid based on oleic acid, commercially available from Henkel Corp./Emery Group.

EmpolT"' 1043 acid - a trimer acid based on oleic acid, commercially available from Henkel Corp./Emery Group.
Empoh"" 1008 acid chloride - prepared using the following procedure.
To a 1-L 3-necked round-bottom flask equipped with overhead stirrer, thermometer, addition funnel and reflux condenser (attached to an empty gas washing vessel which in turn was attached to a gas washing vessel containing 25%
aqueous NaOH) and placed in an oil bath heated to 65°C was charged 500 g (1:68 eq, based on an acid equivalent weight of 295) of EmpolT"" 1008, and 221.8 g (1.86 eq) of thionyl chloride (99% pure, commercially available from Sigma-Aldrich Chemical Co.) was added over a period of about one hour via the addition funnel.
The contents in the flask were allowed to react for 72 hours at 65°C.
Then the reaction mixture was heated to 100°C at about 60 tort absolute pressure to remove volatiles. The product, a dark liquid, was characterized as containing the desired product by 'H and '3C NMR spectroscopy and was used without further purification.
EmpolT"" 1004 acid chloride - prepared using the same procedure as described for EmpolT"" 1008 dimer acid dichloride except that EmpolT"" 1004 dimer acid (commercially available from Henkel Corp./Emery Group) was substituted for EmpolT"" 1008 dimer acid.
EmpolT"' 1070 diol - a dimer diol based on oleic acid, commercially available from Henkel Corp./Emery Group.
EmpolT"" 1075 diol - a dimer diol based on oleic acid, having a hydroxyl equivalent weight of 303, commercially available from Henkel Corp./Emery Group.
PripoIT"" 1004 acid - a hydrogenated distilled dimer acid based on a Cz~
unsaturated acid, commercially available from Unichema North America, Chicago, Illinois.
PripoIT"" 1009 acid - a hydrogenated distilled dimer acid based on oleic acid, commercially available from Unichema North America, Chicago, Illinois.
PripolT''" 1048 acid - a hydrogenated distilled dimer/trimer acid based on oleic acid, commercially available from Unichema North America, Chicago, Illinois.

Kemamine'"" DP-3695 amine - a dimer amine based on oleic acid, having an amine equivalent weight of 290, commercially available from Witco Corp., Newark, New Jersey.
atearic acid - CaH3sCOOH, commercially available from Sigma/Aldrich Chemical Co., Milwaukee, Wisconsin.
stearoyl chloride - CnH3sCOCl, prepared by reacting stearic acid with thionyl chloride, having an equivalent weight of 3 51 as determined by titration.
stearyl alcohol - C,eH3~OH, commercially available from SigmalAldrich Chemical Co.
stearyl amine - C18H3~NH2, commercially available from Sigma/Aldrich Chemical Co.
stearyl isocyanate - C,$H3~NC0, commercially available from Sigma/Aldrich Chemical Co.

O=C ' ,C~
succinie anhydride - O , commercially available from Sigma/Aldrich Chemical Co.
C~sHsi . O O
ODSA - 2-octadecen-1-ylsuccinic anhydride - O , commercially available from Sigma/Aldrich Co.
dodecanoic acid - HOOC(CH2 ),oCOOH, commercially available from E. I.
DuPont de Nemours, Wilmington, Delaware.
adipie acid - HOOC(CH2 ),,COOH, commercially available from Sigma/AIdrich Chemical Co.
HN
piperazine - ~ , commercially available from Union Carbide Corp., Danbury, Connecticut.

benryltriethylanmonium chloride - commercially available from Sigma/Aldrich Chemical Co.
butyltiu oside hydroiide hydrate - commercially available from Sigma/Aldrich Chemical Co.
thionyl chloride - commercially available from Sigma/Aldrich Chemical Co.
Synthesis of Fluorochemical Esters Fluorochemicat Ester F-1 was prepared by esterifying MeFOSE alcohol with EmpolT"" 1008 dimer acid at a molar ratio of 2:1 using the following procedure. A
500 mL 2-necked round-bottom flask equipped with overhead condenser, thermometer and Dean-Stark trap wrapped with heat tape was charged with 57.8 g (0.190 eq) of EmpolTM 1008 dimer acid, 100 g (0.185 eq) of MeFOSE, 1 g ofp-toluenesulfonic acid and 50 g of toluene. The resulting mixture was placed in an oil bath heated to 150°C. The degree of esterification was monitored by measuring the amount of water collected in the Dean-Stark trap and also by using gas chromatography to determine the amount of unreacted fluorochemical alcohol.
After 18 hours of reaction, about 2.8 mL of water was collected and a negligible amount of fluorochemicat alcohol remained, indicating a complete reaction. The reaction mixture was then cooled to 100°C and was twice washed with 120 g aliquots of deionized water to a water pH of 3. The final wash was removed from the flask by suction, and the reaction mixture was heated to 120°C at an absolute pressure of about 90 torr to remove volatiles. The product, a brownish solid, was characterized as containing the desired product by'H and'3C NMR spectroscopy ZS and thermogravimetric analysis.
Fluorochemical Esters F-2 through F-22 were prepared using essentially the same procedure as was used for preparing Fluorochemical Ester F-1, except that the fluorochemical alcohol and carboxylic acid were varied as were their molar ratios.
Fluorochemical Ester F-23, a "reverse" ester made from a fluorochemical carboxylic acid and a dimer alcohol, was prepared using the following procedure.

To a 250 mL 3-necked round bottom flask equipped with overhead stirrer, nitrogen inlet adapter and open vertical tube was charged 60 g (0.115 eq) of CgF1~S02N{C2Hs~HzCOOH, 34.1 g (0.118 eq) of EmpolT"" 1070 dimer diol and 0.1 g of butyltin oxide hydroxide hydrate. The reaction was then heated to 170°C
S under a gentle nitrogen flow for 4 hours. After this time, analysis of the reaction mixture by 'H and'3C NMR showed about 15-17 mole percent unreacted hydroxyl groups, and analysis by gas chromatographic analysis showed some unreacted fluorochemical carboxylic acid. Next, 4 g (estimated 6.7 mole percent) of additional CsF"S02N(C2Hs)CH2COOH was added to the reaction mixture, which was heated to 170°C for an additional 3 hours. GC analysis showed no unreacted fluorochemical carboxylic acid, but NMR analysis showed about 4 mole percent of dimer diol hydroxyl groups left. Then 4 mole percent of C$F1~S02N(C2Hs)CH2COOH was added to the reaction mixture, which was heated to 170°C for an additional 4 hours. GC analysis showed no fluorochemical carboxylic acid remained, and NMR analysis showed about only a very small amount of dimer diol hydroxyl groups remaining.
Table 1 shows the various alcohols and acids used to make the esters and their approximate molar ratios.

WO 99/05345 PCTlUS97122227 _ Table 1 Fluorochemical Carboxylic Molar Ratio of r Alcohol Acid Alcohol to Acid F-1 MeFOSE EmpolT"" 1008 2 : 1 F-2 MeFOSE EmpolTM 1008 1 : 1 F-3 MeFOSE EmpoITM 1061 2 : 1 F-4 MeFOSE EmpolTM 1061 1 : 1 F-5 ZonylT"" BA EmpolT"" 1008 2 : 1 F-6 ZonylT"" BA{N)EmpolT"" 1008 2 : 1 F-7 MeFOSE EmpolTM 1040 3 : 1 F-8 MeFOSE EmpolT"" 1043 3 : 1 F-9 MeFOSE PripolT"" 1004 2: 1 F-10 ZonylT"" BA(1~PripolT"" 1004 2 : 1 F-11 MeFOSE PripolT"" 1004 2: 1 F-12 ZonylT"" BA(N)PripolT"" 1009 2 : 1 F-13 ZonylT"" BA(I~PripolT"" 1009 1 : 1 F-14 MeFOSE PripolT'" 1048 2: 1 F-I S ZonylTM BA(l~ PripolT"" 1048 1 : 1 F-16 MeFOSE dodecanoic acid2 : 1 F-17 MeFOSE dodecanoic acid1 : 1 F-18 ZonylT"" BA(I~dodecanoic acid2 : 1 F-19 MeFOSE adipic acid 2 : 1 F-20 ZonylTM BA(1~ adipic acid 2 : I

F-21 MeFOSE succinic anhydride2 : 1 F-22 ZonylT"" BA(1~succinic anhydride2 : 1 F-23 EmpolT"" 1070 FC-129 acid 1 : 2 diol Fluorochemical Ester F-24 was prepared by esterifying MeFOSE alcohol with EmpolT'" 1008 dimer acid dichloride at a molar ratio of 2:1 using the following procedure. A 1-L 3-necked round-bottom flask equipped with overhead stirrer, i thermometer and oil bath heated to 55°C was charged with 100 g (0.185 eq) of MeFOSE, 15.6 g (0.197 eq) of pyridine and 95.9 g of chloroform. To this was added 56.5 g (0.180 eq) of EmpolTM 1008 dimer acid dichloride over a 20 minute period. After mixing for about one hour in the oil bath, the contents in the flask were allowed to react by heating to 80°C, then were washed first with 150 mL of 2% aqueous HZSO~, followed by washing with 150 mL of deionized water. The washed reaction mixture was stripped in a rotary evaporator set at 80°C
and about 90 torn to yield 142. S g of a solid product, characterized by 'H and '3C NMR
spectroscopy and thermogravimetric analysis to be the desired product.
Fluorochemical Esters F-25 through F-27 were prepared using essentially the same procedure as was used for preparing Fluorochemical Ester F-24, except that the alcohol and acid chloride were varied as were their molar ratios.
Table 2 shows the various alcohols and acid chlorides used to make the esters and their approximate molar ratios.

Fluorochemical Acid Molar Ratio of Ester Alcohol Chloride Alcohol to Acid F-24 MeFOSE EmpolT"" 1008 2 : 1 F-25 MeFOSE EmpoIT"" 1004 2 : 1 F-26 MeFOSE C"H3sCOC1 1:1 F-27 ZonylT"" BA C"H3sCOC1 1 : 1 Synthesis of Fluoroch~~ical Ester Alcohots Fluorochemical Ester Alcohol F-28 was prepared by MeFOSG epoxide with Empolr"" 1008 dimer acid at a molar ratio of 2:1 using the following procedure. A
250 mL 3-necked round-bottom flask equipped with overhead stirrer, thermometer and oil bath was charged with 38.4 g (0.15 eq) of EmpolTM 1048 dimer acid and 0.42 g of benzyltrimethylammonium chloride, and the contents were heated to a temperature of 96°C. Over a 5 minute period, 83.2 g (0.15 eq) of molten MeFOSG

was added via a dropping funnel, lowering the reaction temperature to 80°C. After 16 minutes, the reaction temperature increased to 107°C, then fell to 100° after an additional hour. After 1 hour and 51 minutes, the reaction mixture was clear and homogeneous, and the reaction was allowed to continue for an additional 68 hours.
After this time, analysis using gas chromatography showed no residual epoxide, and the product was characterized by ~H and ~3C NMR and thermogravimetric analysis to be the desired product.
Fluorochemical Ester Alcohols F-29 through F-31 were prepared using essentially the same procedure as was used for preparing Fluorochemical Ester Alcohol F-28, except that the carboxylic acid was varied as was the molar ratio of epoxide to carboxylic acid.
Table 3 shows the various epoxides and carboxylic acids used to make the ester alcohols and their approximate molar ratios.

FluorochemicalFluorochemicalCarboxylic Molar Ratio of Ester AlcoholE_poxide Aci Epoxide to Acid F-28 MeFOSG EmpoIT"" 10082 : 1 F-29 MeFOSG EmpolT"" 10612 : 1 F-30 MeFOSG succinic acid2 : 1 F-31 MeFOSG C,~H35COOH 1:1 Synthesis of Fluorochemical Ether Alcohols Fluorochemical Ether Alcohol F-32 was prepared by reacting MeFOSG
epoxide with EmpolT"" 1075 dimer alcohol at a molar ratio of 2:1 using the following procedure. A 500 mL 2-necked round-bottom flask equipped with overhead stirrer and 70°C oil bath was charged with 49.3 (0.163 eq) of EmpolT""
1075 dimer alcohol and 0.b12 g (0.53 mL) of boron trifluoride etherate, and 100 g (0.156 eq) of molten MeFOSG was added dropwise via an addition funnel. The reaction mixture was allowed to react for a S hour period, after which time analysis using gas chromatography showed no residual epoxide. The resulting material, which solidified upon standing, was characterized by'H and'3C NMR and thermogravimetric analysis to be the desired product.
Fluorochemical Ether Alcohol F-33 was prepared using essentially the same procedwe as was used for preparing Fluorochemical Ether Alcohol F-32, except that stearyl alcohol was used instead of EmpolT'" 1075 dimer alcohol and the molar ratio of epoxide to alcohol was 1:1 rather than 2:1.
Table 4 shows the epoxides and alcohols used to make the ether alcohols and their approximate molar ratios.

Fluorochemical Molar Ratio of Ether Alcohols E xi a AI_cohol l~oxide to Alcohol F-32 MeFOSG EmpolT"" 1075 2 : 1 F-33 MeFOSG C,sH370H 1 : 1 Synthesis of Fluorochemical Amino Alcohols Fluorochemical Amino Alcohol F-34 was prepared by reacting MeFOSG
epoxide with Kemaminet'" DP-3695 dimer amine at a molar ratio of 2:1 using the following procedure. A 250 mL 2-necked round-bottom flask equipped with overhead stirrer and 80°C oil bath was charged with 45.0 (0.155 eq) of KemamineT""
DP-3695 dimer amine and 0.42 g (0.37 mL) of boron trifluoride etherate, and 95 g (0.148 eq) of MeFOSG was added dropwise via an addition funnel over about a 20 minute period. After reacting for a 5 hour 20 minute period, the reaction mixture showed no residual epoxide from analysis using gas chromatography. iH and 13C
NMR and thermogravimetric analysis showed the resulting solid to be the desired product.
Fluorochemical Amino Alcohols F-35 and F-36 were prepared using essentially the same procedure as was used for preparing Fluorochemical Amino Alcohol F-34, except that stearyl amine was used instead of KemamineT"" DP-dimer amine and the molar ratio of epoxide to amine was 2:1 and 1:1 respectively.
Table 5 shows the various.epoxides and amines used to make the amino alcohols and their approximate molar ratios.

Fluorochemica! . Molar Ratio of Amino Alcohol Enoxide Amine E~xide to Amine F-34 MeFOSG KemamineT"" DP-3695 2 : 1 F-35 MeFOSG ClsH3~NH2 2 : 1 F-36 MeFOSG C,sH37NH2 1:1 Synthesis of Fluorochemical Urethanes Fluorochemical Urethane F-37 was prepared by reacting EtFOS-NCO
isocyanate with EmpolT"" 1075 dimer alcohol at a molar ratio of 2:1 using the following procedure. A 500 mG 3-necked round-bottom flask equipped with overhead stirrer and 65°C oil bath v~ras charged with 50.0 g (0.165 eq) of EmpolTM
1075 dimer alcohol and 2 drops of dibutyltin dilaurate, and 98.3 g (0.165 eq) of molten EtFOS-NCO was added dropwise via an addition funnel. The reaction mixture, at first whitish in color, cleared and thickened after reacting for 1.5 hours.
After 3.5 hours, infrared analysis at 2265 cm'' showed no remaining isocyanate.
The resulting solid was found to be the desired product by 1H and'3C NMR and thermogravimetric analysis.
Fluorochemical Urethane F-38 was prepared using essentially the same procedure as described for preparing Fluorochemical Urethane F-37, except that a 1:1 mole ratio of isocyanate to alcohol was used.
Fluorochemical Urethane F-39 was prepared using essentially the same procedure as described for preparing Fluorochemical Urethane F-38, except that stearyl alcohol was used instead of EmpolT"" 10?5 dimer alcohol.

*rB

Fluorochemical Urethane F-40, a "reverse" urethane, was prepared by reacting EtFOSE alcohol with stearyl isocyanate at a molar ratio of 1:1 using essentially the same procedure as described for preparing Fluorochemical Urethane F-37.
Table 6 shows the various isocyanates and alcohols used to make the urethanes and their approximate molar ratios.
le 6 Fluorochemical Molar Ratio of Urethane Isocyanate Alcohol Isocyanate to Alcohol F-37 EtFOS-NCO EmpolT"" 1075 2 : 1 F-38 EtFOS-NCO EmpolT"" 1075 1 : 1 F-39 EtFOS-NCO ClgH3,OH 1:1 F-40 C,$H3~NC0 EtFOSE 1:1 Svnth~sis of Fluorochemical Ureas Fluorochemical Urea F-41 was prepared by reacting EtFOS-NCO
isocyanate with KemamineT"" DP-3695 dimer amine at a molar ratio of 2:1 using the following procedure. A 250 mL 3-necked round-bottom flask equipped with overhead stirrer, thermometer and 100°C oil bath was charged with 29.0 g (0.10 eq) of Kemamine DP-3695T"" 1075 dimer amine, and 57.2 g (0.096 eq) of molten EtFOS-NCO was added in one portion. The reaction mixture was stirred overnight at 100°C, after which infrared analysis at 2265 cm'' showed no remaining isocyanate. The resulting solid was found to be the desired product by'H
and'3C
NMR and thermogravimetric analysis.
Fluorochemical Urea F-42 was prepared using essentially the same procedure as described for preparing Fluorochemical Urea F-41, except that stearyl amine was substituted for KemamineTM DP-3695 dimer amine and the molar ratio of isocyanate to amine was 1:1.

i Fluorochemical Urea F-43, a "reverse" urea, was prepared by reacting EtFOS-NHMe with stearyl isocyanate at a molar ratio of 1:1 using essentially the same procedure as described for preparing Fluorochemical Urea F-41.
Table 7 shows the various isocyanates and amines used to make the areas and their approximate molar ratios.
Table 7 Fluorochemical Molar Ratio of Urea Isocvanate 'ne Is~anate to Amine F-41 EtFOS-NCO KemamineT"" DP-3695 2 : 1 F-42 EtFOS-NCO C,8H3~NHz 1:1 F-43 C,8H3~NC0 EtFOS-NHMe 1:1 Synthesis of Fluorochemical Amides Fluorochemical Amide F-44 was prepared by reacting EtFOS-NHZ amine with EmpolT"" 1008 dichloride at a molar ratio of 2:1 using the following procedure.
A 500 mL 3-necked round-bottom flask equipped with overhead stirrer, thermometer and 65°C oil bath was charged with 40.0 g (0.0642 eq) of EtFOS-NH2 amine, 40 g of chloroform (ethanol-free) and 5.59 g (0.0706 eq) of pyridine.
Once the reaction mixture was homogeneous, 20.2 g (0.0642 eq) of EmpolT"" 1008 dimer acid chloride and 20 g additional chloroform were added via an addition funnel.
After a total reaction time of 2.5 hours, the oil bath temperature was raised to 80°C, and the reaction mixture was washed with 126 g of 2% aqueous sulfuric acid.
The reaction mixture was then poured into a separatory funnel and the layers were allowed to separate. The lower organic layer was saved, was washed with 126 g of hot water, was allowed to separate, and was concentrated by stripping on a rotary evaporator set at 90°C to give a yield of 52.0 g of a dark solid which was found to be the desired product by'H and'3C NMR and thermogavimetric analysis.

Fluorochemical Amide F-45 was prepared by reacting EtFOS-NH2 amine with stearoyl chloride at a 1:1 molar ratio using the following procedure. A

mL 3-necked round-bottom flask equipped with overhead stirrer and 120°C
oil bath was charged with 22.5 g (0.064 eq) of stearoyl chloride, followed by 40.0 g (0.64 eq) of molten EtFOS-NH2 amine. The reaction mixture was allowed to react for about 6 hours, after which 58.3 g of solid was isolated, which was found to be the desired product by 'H and '3C NMR and thermogravimetric analysis.
Fluorochemical Amide F-46 was prepared using essentially the same procedure as described for preparing Fluorochemical Amide F-44, except that EtFOS-NHMe amine was substituted for EtFOS-NHZ amine, and the molar ratio of amine to dichloride was 2:1.
Fluorochemical Amide F-47 was prepared using essentially the same procedure as described for preparing Fluorochemical Amide F-45, except that EtFOS-NHMe amine was substituted for EtFOS-NH2 amine.
Fiuorochemical Amide F-48 was prepared by reacting POSF sulfonyl fluoride with piperazine in a 2:1 molar ratio, using the procedure described in Example 7 ofU.S. Pat. No. 5,451,622.
Fluorochemical Amide F-49 was prepared by reacting POSF sulfonyi fluoride, stearoyl chloride and piperazine in a 1:1:1 molar ratio, using the procedure described in Example 6 of U.S. Pat. No. 5,451,622.
Table 8 shows the various acid derivatives and amines used to make the amides and their approximate molar ratios.

Table 8 Fluorochemical Molar Ratio of Amide Amine' Acid Derivative Amine to Acid Der.

F-44 EtFOS-NHz EmpolT"" 1008 dichloride2 : 1 F-45 EtFOS-NH2 C,~H3sCOC1 1:1 F-46 EtFOS-NHMe EmpolTM 1008 dichloride1 : 2 F-47 EtFOS-NHMe Cl~H3sCOC1 1:1 F-48 piperazine POSF 1:2 F-49 piperazine POSE / C,7H3sCOCl 1 : 2 Synthesis of Fluorochemical Oxazolidinones Fluorochemical Oxazolidinone F-50 was prepared by reacting fluorochemical chlorohydrin CeF,~SO2N(Me)CH(OH)CHZCI with stearyl isocyanate at a 1:1 molar ratio followed by ring closure using essentially the same procedure as described in Scheme I ofU.S. Pat. No. 5,025,052 (Crater et al.).
Fluorochemical Oxazolidinone F-51 was prepared by reacting CeFmSO2N(Me)CH(OH)CHzCI with hexamethylene diisocyanate at a 2:1 molar ratio followed by ring closure using essentially the same procedure as described in Scheme I ofU.S. Pat. No. 5,025,052 (Crater et al.).
Table 9 shows the various isocyanates and amines used and their approximate molar ratios.
T le 9 Fluorochemical Molar Ratio of Oxazolidinone Is n ~g Chlorol~drin to Isoc3ranate F-50 Cyi3~NC0 1 : 1 F-51 OCN(CHz~NCO 2 : 1 Synthesis of Fluorocheinical Amide Urea. Amic Acids Fluorochemical amide urea F-52 was prepared by reacting POSF, piperazine and ClsH3~NC0 in a 1:1:1 molar ratio, using the procedure described in Example ofU.S. Pat. No. 5,451,622.
Fluorochemical amic acid F-53 was prepared using the following procedure.
A 250 mL 3-necked flask equipped with overhead stirrer and placed in a 120°C oil bath was charged with 22.51 g (0.064 eq) of octadecen-1-ylsuccinic anhydride (ODSA) followed by 40.0 g (0.064 eq) of molten CaF"SOZN(CZHs)CZH,NH2 (EtFOS NHZ). After about 6 hours of reaction, 58.3 g of solid was isolated and was determined to be the desired amic acid product from'H and'3C NMR analysis.
Fluorochemical amic acid F-54 was prepared using the following procedure.
A 250 mL 3-necked flask equipped with overhead stirrer was charged with 62.49 g (0.107 eq) Of C8F'ISO2N(CZHs)C2H4NHCH3 (EtFOS-NHMe), 37.51 g (0.107 eq) of octadecen-1-ylsuccinic anhydride (ODSA) and 0.187g of benzyltriethylammonium chloride. The contents of the flask were heated 75°C for 3 days, followed by heating to 100°C for an additional day. The reaction product was determined to be the desired amic acid product from 'H and '3C NMR
analysis.
Table 10 Fluorochemic~lBase ~ Acid Molar Ratio F-52 piperazine POSF, C,8H3~NC0 1 : 1 : 1 F-53 EtFOS-NH2 ODSA 1:1 F-54 EtFOS-NHMe ODSA 1:1 EXAMPLES
Fxamnles 1-25 and Comparative Exam~es C1-C30 In Examples 1-25 and Comparative Examples C1-C30, thermal stabilities of the various fluorochemicals listed in Table 1 through Table 10 (F-1 through F-54) were determined at 220°C, 280°C, 320°C and 340°C
using the Thermogravimetric Analysis Test. The same fluorochemicals from Table 1 through Table 10 were then blended with EscoreneT"" PP3505 polypropylene chips at 1.00% (wt) solids, and the blends were thermally extruded into nonwoven webs using the Melt-Blown Extrusion Procedure. The nonwoven webs were evaluated for repellency using the Water Repellency Test and the Oil Repellency Test immediately, after 1-2 weeks at room temperature, and after the Embossing Procedure.
Results of these thermal resistance and repellency tests are shown in Table 11.
Table 11 E~,. Fluoro- TGA, % left at (°C): Water Re~ellenc,L Oil Re lpe lend:, them. 220 280 320 340 Init. 1-2w Emb. Init. 1-2w Fib.
PP3505 Alone yNo Fluorochemical):

FluorochemicalDimerlTrimer Acid Eslgr~:

i 12 F-12 97 '96 94 90 8 N/R 8 1 N/R 0 lb F-24 95 94 92 89 8 8 8 2 1 3 Fluorochemicalers t on cids) Est (No BasedDimer/Trimer A

23 F-26. 85 68 24 4 4 N/R 9 0 N/R 3 ~

Fluorochemicaler hols:
Est Alco C? F-29 93 86 82 N/R 5 N/R 4 0 N/R 0 Fluorochemical Ether Alcohols:

Fluorochemicalino cohols:
Am Al C12 F-34 9Z 81 b3 47 5 N/R 5 0 N/R 1 Z

Fl~ emic~l :
U

I

u ~,hemicalUreas:
rg Fl~

' F-41 94 77 43 25 2 NlR 4 1 N/R 1 Fl~~nicalAmides:

25 F-46 97 93 86 83 4 N/R N/R 0 NlR N/R

25AF.47 97 87 56 21 0 N/R N/R 2 N/R N/R

FluorochemicalOxazolidinones:

C26'F-50 96 86 65 45 9 10 10 2 3 5 Fluorochemicals with Mixed Functional Grog C30 F-54 96 83 66 50 2 N/R N/R 0 N/R NlR
N/R: Experiment was not run 1 Fluorochemical melt additive described in U.S. Pat. No. 5,459,188 z Fluorochemical melt additive described in U.S. Pat. No. 5,380,778 ' Fluorochemical melt additive described in U.S. Pat. No. 5,451,622 ° Fluorochemical melt additive described in U.S. Pat. No. 5,025,052 The data in Table 11 show that the fluorochemical esters derived from fluorochemical sulfonamido alcohols or acids and all carboxylic acids or alcohols, respectively (Examples 1-4, 7-9, 11, 14, 16, 17, 19, 21 and 23-26), the fluorochemical esters derived from fluorochemical telomer alcohols and dimer/trimer acids (Examples 5, 6, 10, 12, 13, and 15) and fluorochemical amides derived from fluorochemical amines and dimer acids (Examples 24, 24A, 25, and 25A) each exhibited a balance of good to excellent thenmal stability and good repellency when blended with the polypropylene resin. Among fluorochemical esters not based on dimer/trimer acids, those having sulfonamide goups (Examples 19, 21, 22, and 23) exhibit better thermal stability than those corresponding materials not containing sulfonamide groups (Comparative Examples C2, C3, C4, and CS).
Additionally, the data show that for the pairs of fluorochemical esters of Examples 1 and 2, 3 and 4, and 12 and 13, which differ in that the first member of each pair contains statistically two fluorochemical esters per molecule while the second member contains statistically one fluorochemical ester per molecule, that the member containing two esters per molecule imparts better oil and water repellency than the member containing one ester per molecule.
Exacnnles 26-37 ComQara~ive Exam~rles C31-C40 In Examples 26-37, fluorochemical dimer acid ester F-1 was blended with various thermoplastic polymers at 1.00% (wt) solids, and the blends were thermally extruded into nonwoven webs using the Melt-Blown Extrusion Procedure. The nonwoven webs were evaluated for repellency using the Water Repellency Test and the Oil Repellency Test immediately, after 1-2 weeks at room temperature, and after embossing.
In Comparative Examples C31-C40, the same experiments were run as described in Examples 26-37 respectively except that no fluorochemical melt additive was blended with the thermoplastic resins.
Results from the evaluations of Examples 26-37 and Comparative Examples C31-C40 are presented in Table 12.
T le 12 Ex. Fluorc~hr,~nical: Water Repellence Oil Rnnellencv:
Nag %% (w<1 h i . 1-2 w Emb. Init. I-2 w Emu EsooreneT" PP3505 Polyprowlene:
26 F-I 1.00 8 8 9 2 1 2 Agmn~ 6806 Polvet vlene:

i WO 99/05345 PCT/US9'7/22227 Mortha neT"" PS 400 Pol, 28 F-1 1.00 7 8 8 4 5 6 ~c T~' 2002 PQl_vbuylencalate:
Terenhth 29 F-1 1.00 3 4 4 1 2 2 PET Po veth l~~rephthalate 30 F-1 1.00 2 2 2 0 0 0 31 F-1 1.50 2 2 2 0 0 0 BASF ltramidT"" B3 U Nylon:

32 F-1 1.00 1 1 I 0 0 0 33 F-1 1.50 1 1 1 0 0 0 EnlgBgeT""

Polv lEthlOct):

34 F-1 1.00 9 N/R N/R 4 N/R N/R

C37 --- 1.00 2 N/R N/R 0 N1R N/R

~~tT"' Polv (EthlBut)::

35 F-1 1.00 9 N/R N/R 3 N/R N/R

C38 -- 1.00 5 N/R N/R 0 N/R N/R

RexeneT""

Polypropylene:

36 F-1 1.00 9 N/R N/R 3 N/R N/R

C39 --- 1.00 3 N/R N!R 0 N/R N/R

90% exeneT'" D-100 proov_lene:
R Po~protivlene + 10% 3795 Poly 37 F-1 1.00 9 N/R N/R 4 N/R N/R

C40 - 1.00 3 N/R N/R 0 N1R NlR

N/R: Experiment was not ran The data in Tahle F-1 12 show that fluorochemical dimer acid ester improves astic evaluated the polymers as oil and water repellency of all the thermopl melt blown construction's, though the improvement for the PET 35 polyethylene terephthalate and the BASF UltramidT"' B-3 nylon were not as dramatic.
Examples 38-46 and Comparative Examples C41-C42 In Examples 38-46, fluorochemical dimer acid ester F-1 was blended with EscoreneTM PP3505 polypropylene chips at weight percent solids varying from 0.50 1.25%, and the blends were thermally extruded into nonwoven webs at various basis weights using the Spunbond Extrusion Procedure. The nonwoven webs were evaluated for repeUency using the Water Repeliency Test and the Oil Repellency Test after time periods of 5 minutes, 2 hours (120 min) and 17-22 hours (reported as 1320 min) at ambient temperature after web formation.
In Comparative Examples C41-C42, the same experiment was run as described in Examples 38-46, except that no fluorochemical melt additive was blended with the polypropylene resin and two basis weights were run.
Results from the evaluations of Examples 37-45 and Comparative Examples C41-C42 are presented in Table 13.

1~ Fluorochemical: Bas. Water (mintil~R
Wt., Repel. xl.
lminl:

Name % ~WI)m~) 5 1,~0X320 5 X20 1320 , 38 F-1 0.50 19.5 3 4 2 0 0 0 39 F-1 0.75 20.1 5 4 4 0 0 0 40 F-1 1.00 20.1 7 6 7 0 0 0 41 F-1 1.25 19.5 7 6 7 0 0 0 42 F-1 1.00 49.2 8 8 N/R 2 1 N/R

43 F-1 1.25 49.9 7 N/R 7 0 N/R 0 44 F-1 1.00 98.6 7 N/R 6 1 N/R 0 45 F-1 1.25 96.8 7 N/R 7 2 N/R 2 46 F-1 1.50 177.7 8 8 9 3 3 3 C41--- -- 19.5 2 N/R 2 0 N/R 0 C42- - 98.3 1 N/R 1 0 N/R 0 wo moss pcr~s~nzzz~
The data in Table 13 show that fluorochemical dimer acid ester F-1 imparted excellent water repellency to all of the polypropylene spunbonded webs at all concentrations and basis weights evaluated. Good oil repellency was achieved at higher F-1 concentrations.
S
Examnles 47-SO and Com~Examnles C43-C46 In Examples 47-SO and Comparative Examples C43-46 , fluorochemical dimer acid ester F-1 was evaluated for weight loss using the Thermogravimetric Analysis Test as in Example 1, except this time the test was run under isothermal conditions (at 220, 250, 280 or 320°C) and the amount of F-1 left was measured after time periods of S, 20 and 60 minutes.
In Comparative Examples C43-C46 , the same experiments were run as in Examples 47-SO , except that fluorochemicai oxazoiidinone F-SO was substituted for Fluorochemical Ester F-1.
1S Results of these weight loss evaluations are presented in Table 14.

F~c.Fluoro- Temp. % Fluo rochemical fter Left A (miry;

chemical ~ S 20 60 N/R:Experiment was not run The data in Table 14 show that at every temperature run, fluorochemical ester F-1 exhibited superior thermal stability to fluorochemical oxazolidinone F-S0.

Exam,nle 51 and ~m_narative Exam~l 47 Films were made from spunbond polypropylene nonwoven webs with and without fluorochemical dimer acid ester. These films were evaluated for oil and water repellency.
In Example 51, a film was pressed from spunbond EscoreneT"~ PP3505 polypropylene containing 1.25 ~b of fluorochemical dimer acid ester F-1 (from Example 45 of Table 13) using the following procedure. A sandwich construction was assembled consisting of a rectangular steel plate of 25.4 cm length and 15.3 cm width, a copper foil of dimensions similar to those of the steel plate, and a rectangular steel shim of 25.4 cm length, 15.3 cm width and 254 ~t thickness in which a centered rectangular cutout of 10.1 cm by 8.7 cm was made. Next, 2.5 g of spunbond polypropylene was folded into the center of the cutout area with approximate open margin border of approximately 1 cm on each side. The fabric was covered with more copper foil and another rectangular steel plate of the same dimensions used in the rest of the construction. Next, the sandwich construction was placed between the plates of a press, each plate being heated to 200 °C, and the plates were brought together with a force of 5 tons for a 4 inch (10.2 cm) diameter circle (587,000 kg/m2) for 2 minutes. Afterwards, ZO the sandwich construction was removed from the heated plates and was placed between two unheated plates on the press at a much lower pressure to cool for minute. The construction was disassembled, the film was extracted. The film was then evaluated for repellency using the Water Repeliency Test and the Oil Repellency Test; the same test liquids and rating scale were used as with the nonwoven web repellency test, with the reported value corresponding to the highest number test liquid for which a drop, when placed on the surface of the film, would not spread.
In Comparative Example C47, the same polypropylene film preparation and evaluation was run as described in Example 51, except that the fluorochemical dimer acid ester F-1 was omitted.

WO 99/05345 PCT/US97/2222'7 Results from Example 51 and Comparative Example C47 are presented in Table 15.
Composition Thiclrness, Water Oil ~,,, of Film mils (u) ~:,~~ ~: elg~lencw 51 PP 3445 + 1.25 96 F-1 11.2 (280) 9 1 C47 PP 3445 only 10.2 (255) 4 0 The data in Table 15 show that the film made from polypropylene having fluorochemicai dimer acid ester F-1 added thereto exhibited improved water and oil repellency relative to the film made from polypropylene only.
Examy~le 52 and Comparative Example C48 Molded castings were made from a two-part, room temperature-curable;
thermoset epoxy resin system (3M Scotch-WeldT"" 2158 B/A Epoxy Adhesive Tube Kit) with and without fluorochemical dimer acid ester. After curing, the castings were evaluated for water and oil repeilency.
In Example 52, 2.45 g of Part A, 2.45 g of Part B and 0.10 g of fluorochemical dimer acid ester F-1 were mixed together in an approximately 60 mm diameter aluminum weighing pan. The sample was cured for 1 hour at 80°C
and was left overnight at room temperature. The Water Repellency Test and the Oil Repellency Test were then run on the surface of the cured casting; the same test liquids and rating scale were used as with the nonwoven web repellency test, with the reported value corresponding to the highest number test liquid for which a drop, when placed on the surface of the film, would not spread.
In Com~rative Example C48, the same epoxy resin preparation and evaluation was run as described in Example 52, except that the fluorochemical dimer acid ester F-1 was omitted.
Results are presented in Table 16.

Composition Water Oil 8a.. Q~.E~xx.li~x 52 2158 + 1.259b F-1 10 7 C48 2158 only 2 1 The data in Table 16 show that the casting made from epoxy resin having fluorochemical dimer acid ester F-1 added thereto exhibited dramatically improved water and oil repellency relative to the casting made from epoxy resin only.
Exam»les 53-S4 and Colrinarative Exam»le C49-C50 Molded castings were made from a one-part, moisture-curable, thermoset polyurethane resin system (found in 3M EC-5200 Marine Adhesive Sealant) with and without fluorochemical dimer acid ester. After curing, the castings were evaluated for water and oil repellency.
9.8 g of EC-5200 sealant and 0.2 g of fluorochemical dimer acid ester F-1 were mixed together in a vial, and the mixture was heated with a heat gun and stirred until a homogeneous mixture resulted. Equal portions were then poured into two approximately 60 mm diameter aluminum weighing pans. For Example 53, the resin system in the first pan was allowed to cure overnight under ambient conditions (roughly 50 96 relative humidity). For Example 54, the resin system in the second pan was baked for 15 hours at 50°C above a pan of water. The Water Repellency Test and the Oil Repellency Test were then run on the surface of each cured resin; the same test liquids and rating scale were used as with the nonwoven web repellency test, with the reported value corresponding to the highest number test liquid for which a drop, when placed on the surface of the film, would not spread.

WO 99/05345 PCTlUS97/22227 In Comparative )$xamples C49-C50, the same moisture-cured polyurethane resin preparation and evaluation was run as described in Example 53-54, respectively, except that the fluorochemical dimer acid ester F-1 was omitted.
Results are presented in Table 17.
Composition Ambient Water Oil Fay. Qf~F~~Y ~~ ~X ls~x .

53 5200 + 1.259b Ambient 10 8 C49 5200 only Ambient 3 1 54 5200 + 1.25 ~O Bake 10 7 C50 5200 only Bake 3 0 The data in Table 17 show that the casting made from moisture-cured polyurethane resin having fluorochemical dimer acid ester F-1 added thereto exhibited dramatically improved water and oil repellency to the casting made from moisture-cured polyurethane resin only, cured either under ambient conditions or baked.
Various modifications and alterations of this invention will be apparent to those skilled in the art without departing from the scope and spirit of this invention, and it should be understood that this invention is not limited to the illustrative embodiments set forth herein.

Claims (16)

We claim:
1. A hydrophobic and oleophobic composition prepared by forming a slead comprising synthetic organic polymer and one or more fluorochemicals selected from the group consisting of compounds depicted by the formulas:

[(R f)n-Q-O-C(O)]p-A

[(R f)n-Q-C(O)-O]p-A' [(R f)n-Q-N(R)-C(O)]p-A

[(R f)n-Q-C(O)-N(R)]p-A' wherein:
R f is a fluorinated alkyl group bonded through carbon;
n is 1 or 2;
Q is a divalent or trivalent linking group, where the divalent linking group can be a covalent bond;
p is 2 or many, up to the valency of A or A';
R is a hydrogen atom or is a substituted or unsubstituted alkyl group;
A is the residue of a dimer or trimer acid; and A' is the residue of a dimer diol, a dimer diamine, a trimer triol, or a trimer triamine.
2. A fiber comprising the composition of Claim 1.
3. The fiber of claim 2 wherein said fiber is spunbond or is a blown microfiber.
4. A multilayer article comprising a first layer composed of spunbond fabric, a second layer composed of meltblown fabric, and a third layer composed of spunbond fabric wherein at least one of said layers comprises the fiber of claim 2
5. A film comprising the composition of claim 1.
6. The film of claim 5 wherein said film is microporous.
7. A method of rendering synthetic organic polymer hydrophobic and oleophobic comprising the step of forming a blend of the polymer and one or more fluorochemicals selected from the group consisting of compounds depicted by the formulas:
[(R f)n-Q-O-C(O)]p-A
[(R f)n-Q-C(O)-O]p-A' [(R f)n-Q-N(R)-C(O)]p-A
((R f)n-Q-C(O)-N(R)]p-A' wherein:
R f is a fluorinated alkyl group bonded through carbon;
n is 1 or 2;
Q is a divalent or trivalent linking group, where the divalent linking group can be a covalent bond;
p is 2 or many, up to the valency of A or A';
R is a hydrogen atom or is a substituted or unsubstituted alkyl group;
A is the residue of a dimer or trimer acid; and A' is the residue of a dimer diol, a dimer diamine, a trimer triol, or a trimer triamine.
8. A molded article comprising the composition of claim 1.
9. A fabric comprising the fiber of claim 2.
10. Filter media comprising the fabric of Claim 9.
11. The composition fiber, film, method molded article, fabric, or filter media according to any of the preceding claims wherein said fluorochemicals are selected from the group consisting of compounds depicted by the formulas:
[(R f)n-Q-O-C(O)]p-A
[(R f)n-Q-C(O)-O]p-A' [(R f)n-Q-N(R)-C(O)]p-A
[(R f)n-Q-C(O)-N(R)]p-A' wherein:

R f is a fluorinated alkyl group bonded through carbon that may be substituted or unsubstituted, cyclic or acyclic, linear or branched (or any combination thereof) that optionally may contain one or more catenary heteroatoms; R f may contain one or more hydrogen atoms or one or more other halogen atoms provided that at least 75% of the atoms attached to the carbon backbone are fluorine atoms;
n is 1 or 2;
Q is a divalent or trivalent linking group that can be an organic moiety containing from 1 to about 20 atoms and that optionally can contain oxygen-, nitrogen- or sulfur-containing groups or any combination thereof;
p is equal to 2 or many, up to the valency of A or A';
R is a hydrogen atom or is a substituted or unsubstituted alkyl group;
A is the residue of a dimer or trimer acid, representing an aliphatic moiety containing from 30 to 170 carbon atoms; and A' is the residue of a dimer diol, a dimer diamine, a trimer triol, or a trimer triamine, said residue representing an aliphatic moiety containing from 30 to 170 carbon atoms.
12. The composition, fiber, film, method, molded article, fabric, or filter media of Claim 11 wherein said Q is selected from the group consisting of -SO2N(R')(CH2)k-, -(CH2)k-, -CON(R')(CH2)k- and -(CH2)k SO2N(R')(CH2)k-, where R' is hydrogen, a phenyl group or is a short chain substituted or unsubstituted alkyl group and where each k is independently an integer from 1 to 20; said A is the residue of a dimer acid;
and said A' is the residue of a dimer diol or a dimer diamine.
13. The composition, fiber, film, method, molded article, fabric, or filter media of Claim 12 wherein said R' is methyl or ethyl.
14. The composition fiber, film, method, molded article, fabric, or filter media according to any of the preceding claims wherein said synthetic organic polymer is thermoplastic or thermoset.
15. The composition fiber, film, method, molded article, fabric, or filter media according to any of the preceding claims having a fluorine content in the range from about 100 to 20,000 ppm based on the weight of the composition fiber, film, molded article, fabric, or filter media.
16. The composition, fiber, film, method, molded article, fabric, or fitter media according to any of the preceding claims wherein said blend is formed by melt extrusion.
CA 2297145 1997-07-28 1997-12-05 High temperature-stable fluorochemicals as hydrophobic and oleophobic additives to synthetic organic polymers Abandoned CA2297145A1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US08/901363 1997-07-28
US08/901,363 US6127485A (en) 1997-07-28 1997-07-28 High temperature-stable fluorochemicals as hydrophobic and oleophobic additives to synthetic organic polymers
PCT/US1997/022227 WO1999005345A1 (en) 1997-07-28 1997-12-05 High temperature-stable fluorochemicals as hydrophobic and oleophobic additives to synthetic organic polymers

Publications (1)

Publication Number Publication Date
CA2297145A1 true CA2297145A1 (en) 1999-02-04

Family

ID=25414025

Family Applications (1)

Application Number Title Priority Date Filing Date
CA 2297145 Abandoned CA2297145A1 (en) 1997-07-28 1997-12-05 High temperature-stable fluorochemicals as hydrophobic and oleophobic additives to synthetic organic polymers

Country Status (9)

Country Link
US (2) US6127485A (en)
EP (1) EP1000184B1 (en)
JP (1) JP4025015B2 (en)
KR (1) KR100473674B1 (en)
AU (1) AU5372798A (en)
CA (1) CA2297145A1 (en)
DE (1) DE69724287T2 (en)
HK (1) HK1028796A1 (en)
WO (1) WO1999005345A1 (en)

Families Citing this family (88)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6476114B2 (en) * 1997-11-19 2002-11-05 3M Innovative Properties Company Thermoplastic polymer film comprising a fluorochemical compound
US6342456B1 (en) * 1999-02-01 2002-01-29 Burlington Industries, Inc. Polypropylene outdoor fabric
US6391807B1 (en) 1999-09-24 2002-05-21 3M Innovative Properties Company Polymer composition containing a fluorochemical oligomer
US6235824B1 (en) 1999-05-11 2001-05-22 3M Innovative Properties Company Polish composition and method of use
US6525127B1 (en) 1999-05-11 2003-02-25 3M Innovative Properties Company Alkylated fluorochemical oligomers and use thereof in the treatment of fibrous substrates
US6288157B1 (en) 1999-05-11 2001-09-11 3M Innovative Properties Company Alkylated fluorochemical oligomers and use thereof
US6193791B1 (en) 1999-09-24 2001-02-27 3M Innovative Properties Company Polish composition and method of use
US6174964B1 (en) 1999-09-24 2001-01-16 3M Innovative Properties Company Fluorochemical oligomer and use thereof
US6592988B1 (en) 1999-12-29 2003-07-15 3M Innovative Properties Company Water-and oil-repellent, antistatic composition
KR100679898B1 (en) * 2000-02-29 2007-02-07 아사히 가라스 가부시키가이샤 Fluorine compounds and water- and oil-repellant compositions
US6638610B1 (en) * 2000-03-06 2003-10-28 Porex Technologies Corp. Water and oil repellent porous materials and processes for making the same
DE10101627B4 (en) * 2001-01-16 2005-06-02 C. Cramer, Weberei, Heek-Nienborg, Gmbh & Co. Kg Textile fiber material with permanent phobic effect
US6753380B2 (en) * 2001-03-09 2004-06-22 3M Innovative Properties Company Water-and oil-repellency imparting ester oligomers comprising perfluoroalkyl moieties
DE10127362C2 (en) * 2001-06-06 2003-05-15 Siemens Ag Ignition system for an internal combustion engine
US6924329B2 (en) 2001-11-05 2005-08-02 3M Innovative Properties Company Water- and oil-repellent, antistatic compositions
KR100482671B1 (en) * 2002-02-05 2005-04-13 주식회사 태평양 The derivatives of dilinoleic acid and a method for preparation thereof and complex containing it
US7138450B2 (en) * 2002-05-09 2006-11-21 Cph Innovations Corp. Vulcanized rubber composition with a liquid adhesion promoter containing an adhesive resin and ester
US7144937B2 (en) * 2002-05-09 2006-12-05 Cph Innovations Corp. Adhesion promoters for sealants
US6884832B2 (en) * 2002-05-09 2005-04-26 The C.P. Hall Company Adhesion promoter for cord-reinforced rubber and metal or polymer substrate/rubber composites
US7122592B2 (en) * 2002-05-09 2006-10-17 Cph Innovations Corp. Adhesion promoters for cord-reinforced thermoplastic polymeric materials and substrate/thermoplastic polymeric material composites
US20030220427A1 (en) * 2002-05-09 2003-11-27 Gary Wentworth Adhesion promoter for cord-reinforced rubber and metal or polymer substrate/rubber composites
US6858290B2 (en) 2002-05-29 2005-02-22 3M Innovative Properties Company Fluid repellent microporous materials
US7232855B2 (en) 2002-07-17 2007-06-19 Cph Innovations Corp. Low polarity dimerate and trimerate esters as plasticizers for thermoplastic polymer/elastomer composites
WO2004009693A1 (en) * 2002-07-17 2004-01-29 Cph Innovations Corporation Low polarity dimerate and trimerate esters as plasticizers for elastomers
JP2004106228A (en) 2002-09-13 2004-04-08 Three M Innovative Properties Co Method for manufacturing water-repellent sheet with protection film, anti-snow coating sheet and water-repellent substrate
WO2004087800A1 (en) * 2003-03-28 2004-10-14 Cph Innovations Corporation Low polarity dimerate and trimerate esters as plasticizers for thermoplastic compositions
US20050058779A1 (en) * 2003-09-12 2005-03-17 Goldbaum Richard H. Suppression of repellency in polyolefins
CA2539560A1 (en) * 2003-09-25 2005-03-31 Dario Lazzari Romp with fluorinated groups
US7422791B2 (en) * 2003-11-19 2008-09-09 Hallstar Innovations Corp. Joint assemblies, methods for installing joint assemblies, and jointing compositions
US7811949B2 (en) * 2003-11-25 2010-10-12 Kimberly-Clark Worldwide, Inc. Method of treating nonwoven fabrics with non-ionic fluoropolymers
US7931944B2 (en) 2003-11-25 2011-04-26 Kimberly-Clark Worldwide, Inc. Method of treating substrates with ionic fluoropolymers
MY145571A (en) 2003-12-19 2012-02-29 Ciba Holding Inc Fluorocarbon terminated oligo-and poly-carbonates as surface modifiers
US7521410B2 (en) * 2004-03-26 2009-04-21 Arrowstar, Llc Compositions and methods for imparting odor resistance and articles thereof
US20080039558A1 (en) * 2004-05-25 2008-02-14 Dario Lazzari Perfluorinated Esters, Polyester, Ethers and Carbonates
US7399807B2 (en) * 2004-07-09 2008-07-15 Unitex Chemical Corporation Hydrophobic, oleophobic and alcohol-resistant fluorochemical additive
US20060013983A1 (en) 2004-07-15 2006-01-19 3M Innovative Properties Company Adhesive delivery of oil and water repellents
EP1781732B1 (en) * 2004-08-25 2008-09-03 Ciba Holding Inc. Surface modifiers
US7230043B2 (en) 2004-09-07 2007-06-12 3M Innovative Properties Company Hydrophilic polymer composition
US20060110997A1 (en) * 2004-11-24 2006-05-25 Snowden Hue S Treated nonwoven fabrics and method of treating nonwoven fabrics
US7396866B2 (en) * 2004-12-15 2008-07-08 3M Innovative Properties Company Fluorochemical diesters as repellent polymer melt additives
US20060135673A1 (en) * 2004-12-15 2006-06-22 Temperante John A Fluorochemical esters blends as repellent polymer melt additives
MY145424A (en) * 2005-02-07 2012-02-15 Ciba Holding Inc Functionalized esters, amides or urethanes of perfluorinated alcohols or amines as surface modifiers
EP1851270B1 (en) * 2005-02-25 2009-12-23 Basf Se Fluorinated compounds
US7906057B2 (en) * 2005-07-14 2011-03-15 3M Innovative Properties Company Nanostructured article and method of making the same
US20070014997A1 (en) * 2005-07-14 2007-01-18 3M Innovative Properties Company Tool and method of making and using the same
US7651863B2 (en) * 2005-07-14 2010-01-26 3M Innovative Properties Company Surface-enhanced spectroscopic method, flexible structured substrate, and method of making the same
WO2007144283A1 (en) * 2006-06-14 2007-12-21 Ciba Holding Inc. S-perfluoroalkyl substituted hydroxybenzylthioethers and derivatives as surface modifiers
US20080057019A1 (en) * 2006-09-06 2008-03-06 Collier Robert B Compositions and methods for imparting odor resistance and articles thereof
JP2010502798A (en) * 2006-09-07 2010-01-28 チバ ホールディング インコーポレーテッド Phenol derivatives substituted with perfluoroalkyl groups as surface modifiers
US8603070B1 (en) 2013-03-15 2013-12-10 Angiodynamics, Inc. Catheters with high-purity fluoropolymer additives
US20140276470A1 (en) 2006-11-07 2014-09-18 Raymond Lareau Dialysis Catheters with Fluoropolymer Additives
EP2203537A4 (en) * 2007-09-14 2014-03-26 3M Innovative Properties Co Composition and method for imparting increased water repellency to substrates and substrates treated with same
US20090203276A1 (en) * 2008-02-13 2009-08-13 Goulston Technologies, Inc. Polymer additive for providing an alcohol repellency for polypropylene nonwoven medical barrier fabrics
CN102105625B (en) 2008-06-12 2015-07-08 3M创新有限公司 Melt blown fine fibers and methods of manufacture
WO2009152345A1 (en) 2008-06-12 2009-12-17 3M Innovative Properties Company Biocompatible hydrophilic compositions
ES2854798T3 (en) * 2008-08-28 2021-09-22 Evonik Canada Inc Thermally stable isocyanurate and biuret-based surface modifying macromolecules and uses of these
US20100079055A1 (en) * 2008-09-30 2010-04-01 General Electric Company Providing an improved thermal path to electronics by overmolding in a lighting source
MX347301B (en) 2009-03-31 2017-04-21 3M Innovative Properties Co Dimensionally stable nonwoven fibrous webs and methods of making and using the same.
WO2010112395A1 (en) 2009-04-02 2010-10-07 Basf Se S-perfluoroalkyl substituted hydroxybenzylthioethers and derivatives as surface modifiers
PL2295132T3 (en) * 2009-05-15 2017-02-28 Interface Biologics Inc. Antithrombogenic hollow fiber membranes, potting material and blood tubing
WO2011084670A1 (en) * 2009-12-17 2011-07-14 3M Innovative Properties Company Dimensionally stable nonwoven fibrous webs and methods of making and using the same
WO2011075619A1 (en) 2009-12-17 2011-06-23 3M Innovative Properties Company Dimensionally stable nonwoven fibrous webs, melt blown fine fibers, and methods of making and using the same
EP2539496B1 (en) 2010-02-23 2016-02-10 3M Innovative Properties Company Dimensionally stable nonwoven fibrous webs and methods of making and using the same
KR20130018732A (en) 2010-03-03 2013-02-25 쓰리엠 이노베이티브 프로퍼티즈 컴파니 Dispensable face mask and method of making the same
US8936111B2 (en) 2010-03-06 2015-01-20 Halliburton Energy Services, Inc. Invert drilling fluids having enhanced rheology and methods of drilling boreholes
TW201221714A (en) 2010-10-14 2012-06-01 3M Innovative Properties Co Dimensionally stable nonwoven fibrous webs and methods of making and using the same
BR112013015923A2 (en) * 2010-12-21 2018-06-05 3M Innovative Properties Co method for treating hydrocarbon containing formations with fluorinated amine.
US9206283B1 (en) 2013-03-15 2015-12-08 Angiodynamics, Inc. Thermoplastic polyurethane admixtures
US8784402B1 (en) 2013-03-15 2014-07-22 Angiodynamics, Inc. Catheters with fluoropolymer additives
US10166321B2 (en) 2014-01-09 2019-01-01 Angiodynamics, Inc. High-flow port and infusion needle systems
US9447257B2 (en) 2014-02-10 2016-09-20 Eastman Chemical Company Polymers combined with certain additives and devices made thererom
WO2016054733A1 (en) 2014-10-06 2016-04-14 Interface Biologics, Inc. Packaging materials including a barrier film
RU2687436C2 (en) 2014-10-28 2019-05-13 3М Инновейтив Пропертиз Компани Spray application system components with hydrophobic surface and methods
EP3368618B1 (en) 2015-10-28 2020-11-25 3M Innovative Properties Company Articles subject to ice formation comprising a repellent surface
CA3003259A1 (en) 2015-10-28 2017-05-04 3M Innovative Properties Company Spray application system components comprising a repellent surface & methods
WO2017100045A1 (en) 2015-12-11 2017-06-15 3M Innovative Properties Company Fluorinated piperazine sulfonamides
US10907070B2 (en) 2016-04-26 2021-02-02 3M Innovative Properties Company Articles subject to ice formation comprising a repellent surface comprising a siloxane material
WO2017210006A1 (en) 2016-05-31 2017-12-07 3M Innovative Properties Company Fluorochemical piperazine carboxamides
CN109415392A (en) 2016-06-27 2019-03-01 3M创新有限公司 Fluorochemical piperazines formamide
WO2018048675A1 (en) 2016-09-09 2018-03-15 3M Innovative Properties Company Partially fluorinated aromatic esters
CN110167995B (en) 2016-10-18 2022-07-01 界面生物公司 Plasticized PVC compounds having surface-modified macromolecules and articles made therefrom
EP3652229A1 (en) 2017-07-14 2020-05-20 Fresenius Medical Care Holdings, Inc. Method for providing surface modifying composition with improved byproduct removal
KR20200088915A (en) 2017-12-13 2020-07-23 도날드슨 컴파니, 인코포레이티드 Oleophobic polyamide microfibers, methods, filter media, and filter elements
CN108357783B (en) * 2018-03-16 2020-02-14 中塑新材料科技(杭州)有限公司 Oil-stain-resistant heat-sealing high-barrier membrane
DE102018110246B4 (en) 2018-04-27 2020-12-31 Johann Borgers GmbH Nonwoven molded part
CN109912468B (en) * 2019-02-26 2021-06-08 武汉松石科技股份有限公司 Preparation method of acrylic acid (1-chloromethyl, 2-N-methyl perfluorohexyl sulfonamide) ethyl ester
CN112940396B (en) * 2021-02-03 2023-04-07 珠海格力新材料有限公司 Melt-blown polypropylene with amphiphobic effect and preparation method and application thereof
CA3219766A1 (en) * 2021-05-18 2022-11-24 Edwards Lifesciences Corporation Implantable fibers, yarns and textiles

Family Cites Families (35)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2809990A (en) * 1955-12-29 1957-10-15 Minnesota Mining & Mfg Fluorocarbon acids and derivatives
US2803656A (en) * 1956-01-23 1957-08-20 Minnesota Mining & Mfg Fluorocarbonsulfonamidoalkanols and sulfates thereof
US3398182A (en) * 1962-06-22 1968-08-20 Minnesota Mining & Mfg Fluorocarbon urethane compounds
US3923715A (en) * 1973-07-26 1975-12-02 Du Pont Aqueous dispersions of perfluoroalkyl esters and vinyl polymers for treating textiles
US4001305A (en) * 1974-02-04 1977-01-04 Ciba-Geigy Corporation Rf-glycols containing two perfluoroalkylthio groups and useful compositions therefrom
US4029585A (en) * 1975-07-26 1977-06-14 E. I. Du Pont De Nemours And Company Aqueous dispersions of perfluoroalkyl esters for treating textiles
US4215205A (en) * 1977-01-12 1980-07-29 Minnesota Mining And Manufacturing Company Fluoroaliphatic radical and carbodiimide containing compositions for fabric treatment
US4264484A (en) * 1979-01-24 1981-04-28 Minnesota Mining And Manufacturing Company Carpet treatment
US4426466A (en) * 1982-06-09 1984-01-17 Minnesota Mining And Manufacturing Company Paper treatment compositions containing fluorochemical carboxylic acid and epoxidic cationic resin
US4539006A (en) * 1983-09-13 1985-09-03 Minnesota Mining And Manufacturing Company Leather treatment
US4566981A (en) * 1984-03-30 1986-01-28 Minnesota Mining And Manufacturing Company Fluorochemicals and fibrous substrates treated therewith: compositions of cationic and non-ionic fluorochemicals
US4668406A (en) * 1984-04-02 1987-05-26 Minnesota Mining And Manufacturing Company Fluorochemical biuret compositions and fibrous substrates treated therewith
US4606737A (en) * 1984-06-26 1986-08-19 Minnesota Mining And Manufacturing Company Fluorochemical allophanate compositions and fibrous substrates treated therewith
JP2502059B2 (en) * 1986-02-05 1996-05-29 旭硝子株式会社 Water and oil repellent with high stain removal
GB8607803D0 (en) * 1986-03-27 1986-04-30 Kimberly Clark Ltd Non-woven laminated material
US5025052A (en) * 1986-09-12 1991-06-18 Minnesota Mining And Manufacturing Company Fluorochemical oxazolidinones
JPH0341160A (en) * 1989-07-07 1991-02-21 Kao Corp Thermoplastic resin composition of excellent liquid repellency
US5143963A (en) * 1989-12-06 1992-09-01 Res Development Corp. Thermoplastic polymers with dispersed fluorocarbon additives
US5410073A (en) * 1989-12-29 1995-04-25 E. I. Du Pont De Nemours And Company Manufacture of polyfluoro nitrogen containing organic compounds
IT1243747B (en) * 1990-10-24 1994-06-21 Sviluppo Settori Impiego Srl OIL-REPELLENT POLYMERIC COMPOSITIONS AND THEIR USE IN THE PREPARATION OF BODIES FORMED WITH SURFACES OF HIGH RESISTANCE TO SOLVENTS AND HIGH REPELLENCE TO DIRT.
US5145727A (en) * 1990-11-26 1992-09-08 Kimberly-Clark Corporation Multilayer nonwoven composite structure
US5149576A (en) * 1990-11-26 1992-09-22 Kimberly-Clark Corporation Multilayer nonwoven laminiferous structure
US5314959A (en) * 1991-03-06 1994-05-24 Minnesota Mining And Manufacturing Company Graft copolymers containing fluoroaliphatic groups
US5459188A (en) * 1991-04-11 1995-10-17 Peach State Labs, Inc. Soil resistant fibers
US5244951A (en) * 1991-05-02 1993-09-14 Minnesota Mining And Manufacturing Company Durably hydrophilic, thermoplastic fiber
ES2082514T3 (en) * 1991-11-12 1996-03-16 Minnesota Mining & Mfg DERIVATIVES OF FLUOROALIFATIC DIMERIC ACIDS AND THEIR USE.
US5451622A (en) * 1992-09-30 1995-09-19 Minnesota Mining And Manufacturing Company Composition comprising thermoplastic polymer and fluorochemical piperazine compound
US5380778A (en) * 1992-09-30 1995-01-10 Minnesota Mining And Manufacturing Company Fluorochemical aminoalcohols
AU669420B2 (en) * 1993-03-26 1996-06-06 Minnesota Mining And Manufacturing Company Oily mist resistant electret filter media
SE9400437D0 (en) * 1994-02-10 1994-02-10 Pharmacia Lkb Biotech Filter well and process during its manufacture
US5798402A (en) * 1995-12-21 1998-08-25 E. I. Du Pont De Nemours And Company Fluorinated sulfone melt additives for thermoplastic polymers
TW376397B (en) * 1995-12-21 1999-12-11 Du Pont Fluorinated ester melt additives for thermoplastic fibers
TW426712B (en) * 1995-12-21 2001-03-21 Du Pont Fluorinated diester melt additives for thermoplastic polymers and their uses
JPH09323956A (en) * 1996-05-31 1997-12-16 Wako Pure Chem Ind Ltd New succinic derivative
US5981614A (en) * 1996-09-13 1999-11-09 Adiletta; Joseph G. Hydrophobic-oleophobic fluoropolymer compositions

Also Published As

Publication number Publication date
EP1000184A1 (en) 2000-05-17
KR100473674B1 (en) 2005-03-07
EP1000184B1 (en) 2003-08-20
DE69724287T2 (en) 2004-05-27
US6127485A (en) 2000-10-03
JP2001511477A (en) 2001-08-14
HK1028796A1 (en) 2001-03-02
DE69724287D1 (en) 2003-09-25
JP4025015B2 (en) 2007-12-19
WO1999005345A1 (en) 1999-02-04
US6262180B1 (en) 2001-07-17
AU5372798A (en) 1999-02-16
KR20010022322A (en) 2001-03-15

Similar Documents

Publication Publication Date Title
EP1000184B1 (en) High temperature-stable fluorochemicals as hydrophobic and oleophobic additives for synthetic organic polymers
CA2590639C (en) Fluorochemical diesters as repellent polymer melt additives
US5451622A (en) Composition comprising thermoplastic polymer and fluorochemical piperazine compound
US20070051915A1 (en) Hydrophobic, Oleophobic and Alcohol-Resistant Fluorochemical Additive
CA2255645C (en) Fluorochemical and hydrocarbon surfactant blends as hydrophilic additives to thermoplastic polymers
CA2066012C (en) Durably hydrophilic, thermoplastic fiber
EP0876342B1 (en) Fluorinated melt additives for thermoplastic polymers
US20030162903A1 (en) High temperature stable fluorochemical graft polymers as hydrophobic, oleophobic and alcohol-resistant additives to synthetic organic polymers
AU603604B2 (en) Fluorochemical oxazolidinones
WO2006065481A1 (en) Fluorochemical esters blends as repellent polymer melt additives
US6380289B1 (en) Thermoplastic composition comprising fluoroaliphatic radical-containing surface-modifying additive

Legal Events

Date Code Title Description
EEER Examination request
FZDE Discontinued
FZDE Discontinued

Effective date: 20100712