CA2297671C - An intravascular stent having tapered strut - Google Patents

An intravascular stent having tapered strut Download PDF

Info

Publication number
CA2297671C
CA2297671C CA002297671A CA2297671A CA2297671C CA 2297671 C CA2297671 C CA 2297671C CA 002297671 A CA002297671 A CA 002297671A CA 2297671 A CA2297671 A CA 2297671A CA 2297671 C CA2297671 C CA 2297671C
Authority
CA
Canada
Prior art keywords
stent
struts
width
vessel
tubular member
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
CA002297671A
Other languages
French (fr)
Other versions
CA2297671A1 (en
Inventor
Thomas Duerig
Janet Burpee
Mark Mathis
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nitinol Development Corp
Original Assignee
Nitinol Development Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=22913003&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=CA2297671(C) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Nitinol Development Corp filed Critical Nitinol Development Corp
Publication of CA2297671A1 publication Critical patent/CA2297671A1/en
Application granted granted Critical
Publication of CA2297671C publication Critical patent/CA2297671C/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/82Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/86Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure
    • A61F2/90Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure characterised by a net-like or mesh-like structure
    • A61F2/91Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure characterised by a net-like or mesh-like structure made from perforated sheet material or tubes, e.g. perforated by laser cuts or etched holes
    • A61F2/915Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure characterised by a net-like or mesh-like structure made from perforated sheet material or tubes, e.g. perforated by laser cuts or etched holes with bands having a meander structure, adjacent bands being connected to each other
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/82Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/86Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure
    • A61F2/90Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure characterised by a net-like or mesh-like structure
    • A61F2/91Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure characterised by a net-like or mesh-like structure made from perforated sheet material or tubes, e.g. perforated by laser cuts or etched holes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/82Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/86Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure
    • A61F2/90Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure characterised by a net-like or mesh-like structure
    • A61F2/91Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure characterised by a net-like or mesh-like structure made from perforated sheet material or tubes, e.g. perforated by laser cuts or etched holes
    • A61F2/915Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure characterised by a net-like or mesh-like structure made from perforated sheet material or tubes, e.g. perforated by laser cuts or etched holes with bands having a meander structure, adjacent bands being connected to each other
    • A61F2002/91533Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure characterised by a net-like or mesh-like structure made from perforated sheet material or tubes, e.g. perforated by laser cuts or etched holes with bands having a meander structure, adjacent bands being connected to each other characterised by the phase between adjacent bands
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/82Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/86Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure
    • A61F2/90Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure characterised by a net-like or mesh-like structure
    • A61F2/91Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure characterised by a net-like or mesh-like structure made from perforated sheet material or tubes, e.g. perforated by laser cuts or etched holes
    • A61F2/915Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure characterised by a net-like or mesh-like structure made from perforated sheet material or tubes, e.g. perforated by laser cuts or etched holes with bands having a meander structure, adjacent bands being connected to each other
    • A61F2002/9155Adjacent bands being connected to each other
    • A61F2002/91558Adjacent bands being connected to each other connected peak to peak
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2250/00Special features of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof
    • A61F2250/0014Special features of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof having different values of a given property or geometrical feature, e.g. mechanical property or material property, at different locations within the same prosthesis
    • A61F2250/0036Special features of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof having different values of a given property or geometrical feature, e.g. mechanical property or material property, at different locations within the same prosthesis differing in thickness

Abstract

In accordance with the present invention, there is provided a stent, preferably a self--expanding Nitinol stent, for insertion into a vessel of a patient. The stent is made from a tubular member a thickness. front and back open ends, and a longitudinal axis extending therebetween. The member has a first smaller diameter for insertion into a vessel, and a second larger diameter for deployment into a vessel. The tubular member has a plurality of adjacent hoops extending between its front and back ends. The hoops are formed of a plurality of longitudinal struts, each having opposing ends and a center therebetween. The ends of the struts are shaped to form a plurality of loops which connect adjacent struts at the ends of the struts. The member further includes a plurality of bridges connecting adjacent hoops to one another. Each of the struts has a width which is greater at its ends than at its center. Preferably, the width continuously tapers from a greater width at the ends to a smaller width at the centers.

Description

AN INTRAVASCULAR STENT HAVING TAPERED STRUTS
Thomas Duerig Janet Burpee Mark Mathis FIELD OF THE INVENTION
The present invention relates to an expandable intraluminal grafts ("stents") for use within a body passageway or duct which are particularly useful for repairing blood vessels narrowed or occluded by disease. The present invention relates even further to such stents which are self-expanding and made from a superelastic material such as Nitinol.

BACKGROUND OF THE INVENTION
Percutaneous transiuminal coronary angioplasty (PTCA) is a therapeutic medical procedure used to increase blood flow through the coronary artery and can often be used as an alternative to coronary by-pass surgery. In this procedure, the angioplasty balloon is inflated within the stenosed vessel or body passageway, in order to shear and disrupt the wall components of the vessel to obtain an enlarged lumen. With respect to arterial stenosed lesions, the relatively incompressible plaque remains unaltered, while the more elastic medial and adventitial layers of the body passageway stretch around the plaque. This process produces dissection, or a splitting and tearing, of the body passageway wall layers, wherein the intima, or internal surface of the artery or body passageway, suffers fissuring. This dissection forms a "flap" of underlying tissue which may reduce the blood flow through the lumen, or block the lumen. Typically, the distending intraluminal pressure within the body passageway can hold the disrupted layer, or flap, in place. If the intimal flap created by the balloon dilation procedure is not maintained in place against the expanded intima, the intma flat can fold down into the lumen and close off the lumen, or may even become detached and enter the body passageway. When the intimal flap closes off the body passageway, immediate surgery is necessary to correct this problem.

Recently, transiuminal prostheses have been widely used in the medical arts for implantation in blood vessels, biliary, ducts, or other similar organs of the living body. These prostheses are commonly known as stents and are used to maintain, open, or dilate tubular structures. An example of a commonly used stent is given in US. Patent 4,733,665 filed by Palmaz on November 7, 1985. Such stents are often referred to as balloon expandable stents. Typically the stent is made from a solid tube of stainless steel.
Thereafter, a series of cuts are made in the wall of the stent. The stent has a first smaller diameter which permits the stent to be delivered through the human vasculature by being crimped onto a balloon catheter. The stent also has a second, expanded diameter, upon the application, by the balloon catheter, from the interior of the tubular shaped member of a radially, outwardly extending.
However, such stents are often impractical for use in some vessels such as the carotid artery. The carotid artery is easily accessible from the exterior of the human body, and is often visible by looking at ones neck. A
patient having a balloon expandable stent made from stainless steel or the like, placed in their carotid artery might be susceptible to sever injury through day to day activity. A sufficient force placed on the patients neck, such as by falling, could cause the stent to collapse, resulting in injury to the patient. In order to prevent this, self expanding stents have been proposed for use in such vessels. Self expanding stents act like springs and will recover to their expanded or implanted configuration after being crushed.
One type of self-expanding stent is disclosed in U.S. Patent 4,665,771, which stent has a radially and axially flexible, elastic tubular body with a predetermined diameter that is variable under axial movement of ends of the body relative to each other and which is composed of a plurality of individually rigid but flexible and elastic thread elements defining a radially self-expanding helix. This type of stent is known in the art as a "braided stent" and is so designated herein. Placement of such stents in a body vessel can be achieved by a device which comprise an outer catheter for holding the stent at its distal end, and an inner piston which pushes the stent forward once it is in position.
However, braided stents have many disadvantages. They typically do not have the necessary radial strength to effectively hold open a diseased vessel. In addition, the plurality of wires or fibers used to make such stents could become dangerous if separated from the body of the stent, where it could pierce through the vessel. Therefore, there has been a desire to have a self-expanding stent, which is cut from a tube of metal, which is the common manufacturing method for many commercially available balloon expandable stents. In order to 2a manufacture a self-expanding stent cut from a tube, the allov used would preferably be superelastic or psuedoelastic characteristics at body temperature, so that it is crush recoverable.

The prior art makes reference to the use of alloys such as Nitinol (Ni-Ti alloy) which have shape memory and/or superelastic characteristics in medical devices which are designed to be inserted into a patient's body. The shape memory characteristics allow the devices to be deformed to facilitate their insertion into a body lumen or cavity and then be heated within the body so that the device returns to its original shape. Superelastic characteristics on the other hand generally allow the metal to be deformed and restrained in the deformed condition to facilitate the insertion of the medical device containing the metal into a patient's body, with such deformation causing the phase transformation. Once within the body lumen the restraint on the superelastic member can be removed, thereby reducing t.be stress therein so that the superelastic member can return to its original un-deformed shape by the transformation back to the original phase.
Alloys having shape memory/superelastic characteristics generally have at least two phases. These phases are a martensite phase, which has a relatively low tensile strenath and which is stable at relatively low temperatures, and an austenite phase, which has a relatively high tensile strength and which is stable at temperatures higher than the martensite phase.
-- r Shape memory characteristics are imparted to the alloti by heating the metal at a temperature above which the transformation from the martensite phase to the austenite phase is complete, i.e. a temperature above which the austenite phase is stable (the Af temperature).
The shape of the metal during this heat treatment is the shape "remembered".
The heat treated metal is cooled to a temperature at which the martensite phase is stable, causing the austenite phase to transfotm to the martensite phase. The metal in the martensite phase is then plastically deformed, e.g. to facilitate the entry thereof into a patient's bod}=. Subsequent heating of the deformed martensite phase to a temperature above the martensite to austenite transformation temperature causes the deformed martensite phase to transform to the austenite phase and during this phase transformation the metal reverts back to its original shape if unrestrained. If restrained, the metal will remain martensitic unt7 the restraint is removed.
Methods of using the shape memory characteristics of these alloys in medical devices intended to be placed within a patient's body present operational diff culties. For example, with shape memory alloys having a stable martensite temperature below body temperature, it is frequently difficult to maintain the temperature of the medical device containing such an alloy sufficiently below body temperature to prevent the transformation of the martensite phase to the austenite phase when the device was being inserted into a patient's bod%- With intravascular devices fotmed of shape memory alloys having martensite-to-austenite transformation temperatures well above body temperature, the devices can be introduced into a patient's body with little or no problem, but they must be heated to the martensite-to-austenite transformation temperature which is frequently high enough to cause tissue damage and very high levels of pain.

When stress is applied to a specimen of a metal such as Nitinol exhibiting superelastic characteristics at a temperature above which the austenite is stable (i.e. the teaiperatzre at which the transformation of martensite phase to the austenite phase is complete), the specimen deforms elastically until it reaches a particular stress level where the alloy then undergoes a stress-induced phase transformation from the austenite phase to the martensite phase. As the phase transformation proceeds, the alloy undergoes significant increases in strain but with little or no corresponding increases in stress. The strain increases while the stress remains essentially constant until the transformation of the austenite phase to the martensite phase is complete. Thereafter, further increase in stress are necessary to cause further deformation. The martensitic metal first deforms elastically upon the application of additional stress and then plastically with permanent residual deformation.
If the load on the specimen is removed before any permanent deformation has occurred, the martensitic specunen will elastically recover and transform back to the austenite phase. The reduction in stress first causes a decrease in strain. As stress reduction reaches the level at which the mactensite phase transforms back into the austenite phase, the stress level in the specicnea will remain essentially constant (but substantially less than the constaat stress level at which the austenite transforms to the martensite) until the transformation back to the austenite phase is complete, i.e. there is significant recovery in strain with only negligible corresponding stress reduction. After the transformation back to austenite is complete, further stress reduction results in elastic strain reduction. This ability to incur significant strain at relatively constant stress upon the application of a load and to recover from the deformation upon the removal of the load is commnonly referred to as superelasticity or pseudoelasticity. It is this property of the material which makes it useful in manufacttuing tube cut self-expanding stents. The prior art makes reference to the use of metal alloys having superelastic characteristics in medical devices which are intended to be inserted or otherwise used within a IvnC-io 4 patient's body. See for example, U.S. Pat. No. 4,665,905 (Jervis) and U.S.
Pat. No 4,925,445 (Sakamoto et al.).
Prior art stents designs consist of struts that bend as the stent expands and contracts. Bending forces on struts, or beams, produce the greatest moment at the anchoring point, or loops, and become smaller, in a linear fashion, further away from the anchored ends. In the case of a stent, the result is that the greatest force, and thus deformation, is found at or near the loop, and the smallest deformations are observed at the center of the struts.
This causes greater fatigue at the loops of the stent. In addition, because the amount of deformation occurs at the loops, the amount of force one can reasonably apply to the loops during its operation should be limited. This has the result of limiting the its minimum crimped diameter, for insertion into the body, and its maximum expanded diameter for deployment within the body.
The above problems are true for all materials, but is particularly problematic for self-expanding stents, and even more particularly for self-expanding superelastic Nitinol stents. Nitinol is capable of elastically recovering from deformations as high as about 9%. Superelastic devices, therefore, must be designed so that the areas of maximum deformation remain below this 9% limit. In the case of a stent, this means that the performance is limited by the deformations at the loops. The center sections of the struts are inactive, and not contributing to the overall superelastic process. Ideally, one would want uniform deformation along the entire strut.
thus increasing the macroscopic superelastic behavior and reducing the maximum deformation strains. A stent with more uniform strain along the strut length would have the advantages of an extended fatigue lifetime, a greater expansion ratio, a higher ductility, and a flatter stress-strain plateau.
The present invention provides for a self-expanding tube cut stent which overcomes many of the disadvantages associated with the prior art stents.

SUMMARY OF THE INVENTION
In accordance with the present invention, there is provided a stent, preferably a self-expanding Nitinol stent for insertion into a vessel of a patient.
The stent is made from a 5a tubular member a thickness. front and back open ends, and a longitudinal axis extending therebetween. The member has a first smaller diameter for i.zsertion into a vessel, and a second larger diameter for deplowment into a vessel. The tubular member has a plurality of adjacent hoops extending between its front and back ends. The hoops are formed of a plurality of longitudinal struts, each having opposing ends and a center therebetween. The ends of the struts are shaped to form a plurality of loops which connect adjacent struts at the ends of the struts. The member further includes a plurality of bridges connecting adjacent hoops to one another. Each of the struts has a width which is greater at its ends than at its center. Preferably, the width continuously tapers from a greater width at the ends to a smaller io width at the centers.

BRIEF DESCRIPTION OF DRAWD;GS

The foregoing and other aspects of the present invention will best be appreciated with reference to the detailed description of the invention in conjunction with the accompanying drawings, wherein:

Figure 1 is a simplified partial cross-sectional view of a suat deGvery apparatus having a stent loaded therein, which can be used with a stent made in accordance witb the present invention.

- -. Figure 2 is a view similar to that of figure 1 but showinQ an enlarged view of the distal end of the apparatus.

Figure 3 is a perspective view of a stent made in accordance with the present invention, showing the stent in its compressed state.
Figure 4 is a sectional, flat view of the stent shown in FQauQe 1.
Figure 4A is an enlarged view of section of the stent shown in Figure 4.
Figure 5 is a perspective view of the stent shown in Fnjure l but showing it in its expanded state.
Figure 6 is an enlarged sectional view of the stent shown in Figure 5.
Figure 7 is a view similar to that of Figure 4 but showinQ an alternative embodiment of the present invention.

DETAII.ED DESCRIPTION OF THE INVENTION
Referring now to the figures %%fierein like numerals indicate the same element throughout the views, there is shown in Figures 3 and 4, a stent 50 made in accordance with the present invention. Figures 3 and 4 show stent 50 in its un-e,.cpanded or compressed state.

Stent 50 is preferably made from a superelastic alloy such as Nitinol. Most preferably, stent 50 is made from an alloy compfising from about 50.5% (as used herein these percentages refer to atomic percentages) Ni to about 600/o Ni, and most preferably about 55% Nt, with the remainder of the alloy Ti. Preferably, the stent is such that it is superelastic at body temperature, and preferably has an Af in the range from about 24 C to about 37 C. The superelastic design of the stent makes it crush recoverable which, as discussed above, can be used as a stent or frame for any number of vascular devices for different applications.

Stent 50 is a tubular member having front and back open ends 81 and 82 and a longitudinal axis 83 extending therebetween. The tubular member has a first smaller diameter, figures 3 and 4, for insertion into a patient and navigation throu,gh the vessels, and a second larger diameter, figures 5 and 6, for deployment into the target area of a vessel. The tubular member is made from a plurality of adjacent hoops 52, figure 1 showing hoops 52(a) - 52(b), extending between the front and back ends 81 and 82. The hoops 52 include a plurality of longitudinal struts 60. As seen from figure 4A, each strut 60 has two opposing ends 90 and - 92 and a center 94 therebetween. Ttie ends 92 and 94 of the stnu.s 60 are curved or bent so as to form a plurality of loops 62, which connect adjacent stnrts. The struts are so connected at their opposite ends so as to form an S or Z shape pattern. The loops 62 are preferably curved substantially semi-circular and symmotrical sections.
Stent 50 further includes a phuality of bridges 70 which connect adjacent hoops 52 which can best be descnbed by referrnig to Figure 4. Each bridge has two ends, wherein one end is attached to one strut and/or loop, and another end attached to a strut and/or loop on an adjacent hoop. While the figures show the bridges connecting the a loop of one bridge to the nearest loop on the adjacent hoop, this does not need to be so_ The bridge could be longer and extend the length of many struts between its connection point on adjacent hoops. The bridges are curved, and are attached to loops at points off center of the radius of curvature of the loops.
The above described geometry helps to better distnbute strain throughout the stent, prevents metal to metal contact when the stent is bent, and minimizes the opening size NDC-lo 7 between the features, struts loops and bridges The number of and nature of the design of the struts, loops and bridges are important factors =xfien determining the working properties and fatigue life properties of the stent. It was prmiously thought that in order to improve the rigidity of the stent, that struts should be large. and therefore there should be fewer struts per hoop. However, it has now been discovered that stents having smaller struts and more struts per hoop actually improve the construction of the stent and provide greater rigidity.
Preferably, each hoop has between 24 to 36 or more struts. It has been deternzined that a stent having a ratio of number of struts per hoop to strut length L (in inches) which is greater than 400 has increased rigidity over prior art sttnts which typically had a ratio of under 200.

The length of a strut is measured in its compressed state parallel to the longitudinal axis 83 of the stent.

The present invention can best be understood by referring back to figure 4. As seen from that figure, each strut has a width W, measured in a substantially axial direction, which is greater at its ends 90 and 92. and points adjacent thereto, than in its center 94. Preferably, the width W tapers substantialh- continuously from the ends 90 and 92 to the center 94. The effect of this tapering will be to cause a greater resistance to deformation at the loops (where the bending moments are high). and to make the overall strain deformation more uniform. The ideal reduction in width is a complex function, driven by efforts to keep the bending radius - constant. Bending of rectangular beam is controlled by the formula:

1/R=12FL/(EbW3) where R is the radius of curvature of the loops (to remain constant), F is the applied force, L
the distance from the endpoint, E is Young's modulus, T the thickness of the stnrt (shown in Figure 3) and W the strut width. Thus as a guideline, the strut width W should vary as the cube root of the distance from the end, 90 or 92. That is, at any point along the center 94 of a strut 30 the width should be proportional to the cube root of the distance from the end that point is closest to, 90 or 92. However, any taper, even a simple linear tapered reduction in width would still represent a significant improvement over a constant width stnrt.

Because the stnns are wider at theu ends, the overall stem can handle greater compressive and expanding forces. Therefore, stents having smaller delivery diameters and N7DC-i0 g greater expanded diameters can be made. In addition. the stem can handle greater fatigue stresses, which could result in a longer lasting and stronger stent.

As seen from figure 5, the geometry of the stent changes quite significantly as a stent is deployed from its un-expanded state to its expanded state. As a stent undergoes diametric change, the strut angle and strain levels in the loops and bridges are effected. Preferably, all of the stent features will strain in a predictable manor so that the stent is reliable and uniform in strength. In addition, it is preferable to minimize the maximum strain experienced by struts loops and bridges, since Nitinol properties are more gencrally limited by strain rather than by stress as most materials are. As will be discussed in greater detail below, the stent sits in the deGvery system in its un-expanded state as shown in Fi~ure 3. As the stent is deployed, it is allowed to expand towards it's expanded state, as showa in Figure 5, which preferably has a diameter which is the same or larger than the diameter of the target vessel.
N"ttinol stents made from wire (as opposed to being cut from a tube) deploy in much the same manor and are dependent upon the same design constraints as laser cut stents. Stainless steel stents deploy similarly in terms of geometric changes as they are assisted with forces from balloons or other devices.

In trying to minimize the maximum strain experienced bv the features (struts, loops and bridges), the present invention utilizes structural geometrv's which distribute strain to areas of the stent which are less susceptible to faihue than otbars. For example, one of the most vulnerable areas of the stent is the inside radius of the connecting loops.
The connecting loops undergo the most deformation of all the stent fr,anures. The inside radius of the loop would normally be the area with the highest level of susin on the stent. This area is also critical in that it is usually the smallest radius on the staaL Sttess concenhations are generally controlled or minimized by maintaining the largest radii posmble, and by tapering the strut widths as disclosed above. Similarly, we want to minimize local strain concentrations on the bridge and bridge connection points. One way to accomplish this is to utilize the largest possible radii while maintaining feature widths which are consistent with applied forces.
Another consideration is to minimize the maximum open area of the stent.
Efficient utilization of the original tube from which the stent is cut increases stent strength and it's ability to trap embolic material.

As mentioned above bridge geometry changes as a stent is deployed from its compressed state to its expanded state and vise-versa_ As a steat undergoes diametric change, strut angle and loop strain is effected. Since the bridges are cr:mected to either the loops, struts or both, they are effected. twisting of one end of the stem with respect to the other, while loaded in the stent delivery system, should be avoided. Local torque delivered to the bridge ends displaces the bridge geometry. If the bridge design iS duplicated around the stent perimeter, this displacement causes rotational shifting of the two k---.ops being connected by the bridges. If the bridge design is duplicated throughout the steat as in the present invention, this shift will occur down the length of the stent. This is a ciumilative effect as one considers rotation of one end with respect to the other upon deployment. A stent delivery system, such as the one described below, will deploy the distal end first, thm aUow the proximal end to expand. It would be undesirable to allow the distal end to ancbor imo the vessel wall while holding the stent fixed in rotation, then release the proximal end_ this could cause the stent to twist or whip in rotation to equilibrium after it is at least partiaih-deployed within the vessel.
Such whipping action could cause damage to the vessel.
However, one embodiment of the present invention, as s;bowa in the figures, reduces the chance of such events from happening when deploying the steat. By mirroring the bridge geometry longitudinally down the stent, the rotational shift of the Z-sections can be made to alternate and will minimize large rotational changes between aav two points on a given stent during deployment or constraint. That is the bridges connecting loop 52(b) to loop 52(c) are - aAgled upwardly from left to right, while the bridges connecting loop 52(c) to loop 52(d) are angled downwardly from left to right. This atternating pattern is repeated down the length of the stent. This alternating pattern of bridge slopes improves the torsional characteristics of the stent so as to minimize any twisting or rotation of the stent with respect to any two hoops.
This alternating bridge slope is particailarly beneficial if the stem starts to twist in vivo. As the stexit twists, the diameter of the stent will change. tllternating bridge slopes tend to minimize this effect. The diameter of a stent having bridges which are aD sloped in the same direction will tend grow if twisted in one direction and shrink if twisted in the other direction. With alternating bridge slopes this effect is minimized and localized The feature is particularly advantageous for stents having large expansion ratios, which in turn requires them to have extreme bending requirements Rdiere large elastic strains are required. Nrtinol can withstand extremely large amounts of da.sac strain defomation, so the above features are well suited to stents made from this alloy. Ihss feature allows for maximum utilization of Ni-Ti or other material capabilities to enhance radial strength, improve stent strength uniformity, improves fatigue life by minimizing local strain levels, allows for smaller tvDC. to 10 open areas which enhance entrapment of embolic material, and improves stent apposition in irregular vessel wall shapes and curves.

Preferably, stents are laser cut from small diameter tubing. For prior art stents, this manufacturing process lead to designs with geometric features- such as struts, loops and bridges, having axial widths which are larger than the tube wall thicimess T(shown in Figure 1). When the stent is compressed, most of the bending occurs in the plane that is created if one were to cut longitudinally down the stent and flatten it out. However, for the individual bridges, loops and struts, which have widths greater than their thickness, they have a greater resistance to this in-plane bending than they do to out of plane bending.
Because of this, the bridges and struts tend to twist, so that the stent as a whole can bend more easily. This twisting is a buckling condition which is unpredictable and can cause potentially high strain.
However, this problem has been solved in a preferred embodiment of the present invention, shown in the figures. For the present invention, it is preferred that the maximum widths of the struts, hoops and bridges are equal to or less than the wall thickness of the tube.
Therefore, substantially aU bending and, therefore, all strains are "out of plane". This minimizes twisting of the stent which minimizes or eliminates buckling and unpredictable strain conditions. The feature is particularly advantageous for stents having large expansion ratios, which in turn requires them to have extreme bending requirements where large elastic strains - arre required. Nitinol can withstand extremely large amounts of elastic strain defonmation, so the above features are well suited to stents made from this alloy. This feature allows for maximum utilization of N-Ti or other material capabilities to enhance radial strength, improve stent strength uniformity, improves fatigue life by minimizing local strain levels, allows for smaller open areas which enhance entrapment of embolic material, and improves stent apposition in irregular vessel wall shapes and curves.

While the current invention can be either a self expanding or baIloon expandable stent, and can be made from any number of materials known in the art. including stainless steel, as mentioned above, it is preferred that the stent of the present invention be made from a superelastic alloy and most preferably made of an alloy material having greater than 50.5 atomic % Nickel and the balance titanium. Greater than 50.5 atomic % Nickel allows for an alloy in which the temperature at which the martensite phase traasfonms completely to the austenite phase (the Af temperature) is below human body temperature and preferably is about 24 C to about 37 C so that austenite is the only stable phase at body temperature.

rmC-1o I t In manufacturing the Nitinol stent, the material is first in the form of a tube. Nitinol tubing is commercially available from a number of suppliers including Nitinol Devices and Components, Fremont CA. The tubular member is then loaded into a machine which will cut the predetermined pattern of the stent, which was discussed above and is shown in the figures, into the tube. Machines for cutting patterns in tubular devices to make stents or the like are well known to those of ordinary skill in the art and are commercially available. Such machines typically hold the metal tube between the open ends while a cutting laser, preferably under microprocessor control, cuts the pattern. The pattern dimensions and styles, laser positioning requirements, and other information are programmed into a microprocessor which controls all aspects of the process. After the stent pattern is cut, the stent is treated and polished using any number of methods well known to those skilled in the art. Lastly, the stent is then cooled until it is completely martensitic, crimped down to its un-expanded diameter and then loaded into the sheath of the delivery apparatus.

It is believed that many of the advantages of the present invention can be better understood through a brief description of a deGvery apparatus for the stent, as shown in Figures 1 and 2. Figures 1 and 2 show a self-expanding stent delivery apparatus I for a stent made in accordance with the present invention. Apparatus I comptises inner and outer coaxial tubes. The inner tube is called the shaft 10 and the outer tube is called the sheath 40.
Shaft 10 has proximal and distal ends 12 and 14 respectively. the distal end 14 of the shaft terminates at a luer lock hub 5. Preferably, shaft 10 has a proximal portion 16 which is made from a relatively stiff material such as stainless steel, N'rtinol, or any other suitable material, and an distal portion 18 which is made from a polyethylene, polyimide, pellethane, Pebax, Vestanud, Cristamid, Grillanzid or any other suitable material known to those of ordinary skill in the art.. The two portions are joined together by any number of means known to those of ordinary skill in the art. The stainless steel proximal end gives the shaft the necessary rigidity or stiffiess it needs to effectively push out the stent, while the polymeric distal portion provides the necessary flexibility to navigate tortuous vessels.
The distal portion 18 of the shaft has a distal tip 20 attached thereto. The distal tip 20 has a proximal end 34 whose diameter is substantially the same as the outer diameter of the sheath 40. The distal tip tapers to a smaller diameter from its proximal end to its distal end, wherein the distal end 36 of the distal tip has a diameter smaller than the inner diameter of the sheath. Also attached to distal portion 18 of shaft 10 is a stop 22 which is proximal to the distal tip 20. Stop 22 can be made from any number of materials known in the art, including tvnC-10 12 stainless steel, and is even more preferably made from a highly radiopaque material such as platinum, gold tantalum. The diameter of stop 22 is substantially the same as the inner diameter of sheath 40, and would actually make frictional contact with the inner surface of the sheath. Stop 22 helps to push the stent out of the sheath during deployment, and helps the stent from migrating proximally into the sheath 40.
A stent bed 24 is defined as being that portion of the shaft between the distal tip 20 and the stop 22. The stem bed 24 and the stent 50 are coaxial so that the portion of shaft 18 comprising the stent bed 24 is located within the lumen of the stent 50. However, the stent bed 24 does not make any contact with stem 50 itself. Lastly, shaft 10 has a guidewire lumen 28 extending along its length from its proximal end 12 and exiting through its distal tip 20.
This allows the shaft 10 to receive a guidewire much in the same way that an ordinary balloon angioplastly catheter receives a guidewire. Such guidewires are well known in art and help guide catheters and other medical devices through the vasculature of the body.
Sheath 40 is preferably a polymeric catheter and has a proximal end 42 terminating at a hub 52. Sheath 40 also has a distal end 44 which erminates at the proximal end 34 of distal tip 20 of the shaft 18, when the stent is in its fully un-deployed position as shown in the figures. The distal end 44 of sheath 40 includes a radiopaque marker band 46 disposed along its outer surface. As will be explained below, the stent is fully deployed when the marker band 46 is lined up with radiopaque stop 22, thus indicating to the physician that it is now safe to remove the apparatus 1 from the body. Sheath 40 preferably comprises an outer polymeric reinforcing layer. Braided reinforcing layer is preferably made from stainless steel. The use of braided reinforcing layers in other types of medical devices can be found in U.S.
patents 3,585,707 issued to Stevens on June 22, 1971, 5,045,072 issued to Castillo et al. on September 3, 1991, and 5,254,107 issued to Soltesz on October 19, 1993.
Figures 1 and 2 show the stent 50 as being in its fully un-deployed position. This is the position the stent is in when the appratus 1 is inserted into the vasculature and its distal end is navigated to a target site. Stent 50 is disposed around stent bed 24 and at the distal end 44 of sheath 40. The distal tip 20 of the shaft 10 is distal to the distal end 44 of the sheath 40, and the proximal end 12 of the shaft 10 is proximal to the proximal end 42 of the sheath 40. The stent 50 is in a compressed state and makes frictional contact with the inner surface 48 of the sheath 40.

13a When being inserted into a patient, sheath 40 and shaft 10 are locked together at their proximal ends by a Touhy Borst valve 8. This prevents any sliding movement between the shaft and sheath which could result in a premature deployment or partial deployment of the stent. When the stent 50 reaches its target site and is ready for deployment, the Touhy Borst ~ valve 8 is opened so that that the sheath 40 and shaft 10 are no longer locked together.

The method under which apparatus 1 deploys stent 50 should be readily apparent. The apparatus I is first inserted into a vessel so that the stent bed 24 is at a target diseased site.
Once this has occurred the physician would open the Touhy Borst valve 8. The physician would then grasp the proximal end 12 of shaft 10 so as to hold it in place.
Thereafter, the physician would grasp the proximal end 42 of sheath 40 and slide it proximal, relative to the shaft 40. Stop 22 prevents the stecrt 50 from sliding back with the sheath 40, so that as the sheath 40 is moved back, the stent 50 is pushed out of the distal end 44 of the sheath 40.
Stent deployment is complete when the radiopaque band 46 on the sheath 40 is proximal to radiopaque stop 22. The apparatus I can now be withdrawn through stent 50 and removed from the patient.

Although particular embodiments of the present invemion have been shown and described, modification may be made to the device and/or method without departing from the spirit and scope of the present invention. The terms used in describing the invention are used - imtheir descriptive sense and not as terms of limitations.

NnC- t o 14

Claims (16)

1. A stent for insertion into a vessel of a patient, said stent comprising:

a) a tubular member having a thickness and having front and back open ends and a longitudinal axis extending therebetween, said member having a first smaller diameter for insertion into said vessel, and a second larger diameter for deployment into said vessel; and b) said tubular member comprising a plurality of adjacent hoops extending between said front and back ends, said hoops comprising a plurality of longitudinal struts each having opposing ends and a center therebetween, said ends of said struts are shaped to form a plurality of loops connecting adjacent struts at said ends of said struts, said member further comprising a plurality of bridges connecting adjacent hoops to one another, said struts having a width measured in an axial direction, said width of said struts being greater at its ends than at its center and wherein said width of said struts at a given point along their center varies in proportion to the cube root of the distance from an end of said strut closest to said given point.
2. The stent according to claim 1 wherein said struts continuously taper from a greater width at its ends to a smaller width at said center.
3. The stent according to claim 1 wherein said stent is a self-expanding stent.
4. The stent according to claim 3 wherein said stent is made from a Nickel Titanium alloy which exhibits superelastic properties at body temperature.
5. The stent according to claim 4 wherein said alloy comprises from about 50.5 percent to about 60 percent Nickel and the remainder comprising Titanium.
6. The stent according to claim 1 wherein said maximum width of said struts are less than said thickness of said tubular member.
7. The stent according to claim 2 wherein said width of said struts at a given point along its center varies in proportion to the cube root of its distance from an end of said strut that said point is closest to.
8. A self-expanding stent for insertion into a vessel of a patient, said stent comprising:

a) a tubular member made from an elastic material, said tubular material having a thickness and having front and back open ends and a longitudinal axis extending therebetween, said member having a first smaller diameter for insertion into said vessel, and a second larger diameter for deployment into said vessel; and b) said tubular member comprising a plurality of adjacent hoops extending between said front and back ends, said hoops comprising a plurality of longitudinal struts each having opposing ends and a center therebetween, said ends of said struts are shaped to form a plurality of loops connecting adjacent struts at said ends of said struts, said member further comprising a plurality of bridges connecting adjacent hoops to one another, said struts having a width measured in an axial direction, said width of said struts continuously taper from a greater width at said ends to a smaller width at said centers.
9. The stent according to claim 8 wherein said stent is made from a Nickel Titanium alloy which exhibits superelastic properties at body temperature.
10. The stent according to claim 9 wherein said alloy comprises from about 50.5 percent to about 60 percent Nickel and the remainder comprising Titanium.
11. The stent according to claim 8 wherein a maximum width of said struts are less than said thickness of said tubular member.
12. The stent according to claim 8 wherein said width of any strut at a given point along its center varies in proportion to the cube root of its distance from an end of said strut that said point is closest to.
13. A stent for insertion into a vessel of a patient, said stent comprising:

a) a tubular member having a thickness and having front and back open ends and a longitudinal axis extending therebetween, said member having a first smaller diameter for insertion into said vessel, and a second larger diameter for deployment into said vessel; and b) said tubular member comprising a plurality of adjacent hoops extending between said front and back ends, said hoops comprising a plurality of longitudinal struts each having opposing ends and a center therebetween, said ends of said struts are shaped to form a plurality of loops connecting adjacent struts at said ends of said struts, said member further comprising a plurality of bridges connecting adjacent hoops to one another, said struts having a width measured in an axial direction, said width of said struts continuously taper from a greater width at said ends to a smaller width at said centers such that a width of any strut at a given point along its center varies in proportion to the cube root of its distance from an end of said strut that said point is closest to.
14. The stent according to claim 13 wherein said stent is made from a Nickel Titanium alloy which exhibits superelastic properties at body temperature.
15. The stent according to claim 14 wherein said alloy comprises from about 50.5 percent to about 60 percent Nickel and the remainder comprising Titanium.
16. The stent according to claim 13 wherein a maximum width of said struts are less than said thickness of said tubular member.
CA002297671A 1999-02-02 2000-02-01 An intravascular stent having tapered strut Expired - Lifetime CA2297671C (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US09/241,985 US6190406B1 (en) 1998-01-09 1999-02-02 Intravascular stent having tapered struts
US09/241,985 1999-02-02

Publications (2)

Publication Number Publication Date
CA2297671A1 CA2297671A1 (en) 2000-08-02
CA2297671C true CA2297671C (en) 2008-11-18

Family

ID=22913003

Family Applications (1)

Application Number Title Priority Date Filing Date
CA002297671A Expired - Lifetime CA2297671C (en) 1999-02-02 2000-02-01 An intravascular stent having tapered strut

Country Status (6)

Country Link
US (1) US6190406B1 (en)
EP (1) EP1025812B1 (en)
JP (1) JP4623792B2 (en)
AU (1) AU758490B2 (en)
CA (1) CA2297671C (en)
DE (1) DE60025302T2 (en)

Families Citing this family (252)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7204848B1 (en) 1995-03-01 2007-04-17 Boston Scientific Scimed, Inc. Longitudinally flexible expandable stent
US20070073384A1 (en) * 1995-03-01 2007-03-29 Boston Scientific Scimed, Inc. Longitudinally flexible expandable stent
US6796997B1 (en) 1996-03-05 2004-09-28 Evysio Medical Devices Ulc Expandable stent
CA2192520A1 (en) 1996-03-05 1997-09-05 Ian M. Penn Expandable stent and method for delivery of same
CA2248718A1 (en) * 1996-03-05 1997-09-12 Divysio Solutions Ulc. Expandable stent and method for delivery of same
US6235053B1 (en) * 1998-02-02 2001-05-22 G. David Jang Tubular stent consists of chevron-shape expansion struts and contralaterally attached diagonal connectors
JP4636634B2 (en) * 1996-04-26 2011-02-23 ボストン サイエンティフィック サイムド,インコーポレイテッド Intravascular stent
US5954743A (en) * 1996-04-26 1999-09-21 Jang; G. David Intravascular stent
US6241760B1 (en) * 1996-04-26 2001-06-05 G. David Jang Intravascular stent
US20040106985A1 (en) * 1996-04-26 2004-06-03 Jang G. David Intravascular stent
EP0884029B1 (en) 1997-06-13 2004-12-22 Gary J. Becker Expandable intraluminal endoprosthesis
US6269819B1 (en) * 1997-06-27 2001-08-07 The Trustees Of Columbia University In The City Of New York Method and apparatus for circulatory valve repair
DK174814B1 (en) * 1998-02-25 2003-12-01 Cook William Europ stent device
US5938697A (en) * 1998-03-04 1999-08-17 Scimed Life Systems, Inc. Stent having variable properties
US6132461A (en) * 1998-03-27 2000-10-17 Intratherapeutics, Inc. Stent with dual support structure
US6558415B2 (en) * 1998-03-27 2003-05-06 Intratherapeutics, Inc. Stent
US20050033399A1 (en) * 1998-12-03 2005-02-10 Jacob Richter Hybrid stent
US20070219642A1 (en) * 1998-12-03 2007-09-20 Jacob Richter Hybrid stent having a fiber or wire backbone
US20060122691A1 (en) * 1998-12-03 2006-06-08 Jacob Richter Hybrid stent
US20060178727A1 (en) * 1998-12-03 2006-08-10 Jacob Richter Hybrid amorphous metal alloy stent
US8382821B2 (en) * 1998-12-03 2013-02-26 Medinol Ltd. Helical hybrid stent
US6743252B1 (en) * 1998-12-18 2004-06-01 Cook Incorporated Cannula stent
AU772969B2 (en) * 1999-04-15 2004-05-13 Smart Therapeutics, Inc. Intravascular stent and method of treating neurovascualr vessel lesion
US6899730B1 (en) 1999-04-15 2005-05-31 Scimed Life Systems, Inc. Catheter-stent device
US6280466B1 (en) 1999-12-03 2001-08-28 Teramed Inc. Endovascular graft system
US6423090B1 (en) 2000-02-11 2002-07-23 Advanced Cardiovascular Systems, Inc. Stent pattern with staged expansion
US8496699B2 (en) * 2000-03-01 2013-07-30 Medinol Ltd. Longitudinally flexible stent
US7758627B2 (en) * 2000-03-01 2010-07-20 Medinol, Ltd. Longitudinally flexible stent
US8202312B2 (en) * 2000-03-01 2012-06-19 Medinol Ltd. Longitudinally flexible stent
US7828835B2 (en) * 2000-03-01 2010-11-09 Medinol Ltd. Longitudinally flexible stent
US6723119B2 (en) * 2000-03-01 2004-04-20 Medinol Ltd. Longitudinally flexible stent
US7141062B1 (en) * 2000-03-01 2006-11-28 Medinol, Ltd. Longitudinally flexible stent
US7621947B2 (en) * 2000-03-01 2009-11-24 Medinol, Ltd. Longitudinally flexible stent
US8920487B1 (en) 2000-03-01 2014-12-30 Medinol Ltd. Longitudinally flexible stent
EP1132058A1 (en) 2000-03-06 2001-09-12 Advanced Laser Applications Holding S.A. Intravascular prothesis
US6423091B1 (en) 2000-05-16 2002-07-23 Cordis Corporation Helical stent having flat ends
US6805704B1 (en) 2000-06-26 2004-10-19 C. R. Bard, Inc. Intraluminal stents
US6540775B1 (en) * 2000-06-30 2003-04-01 Cordis Corporation Ultraflexible open cell stent
US6799637B2 (en) 2000-10-20 2004-10-05 Schlumberger Technology Corporation Expandable tubing and method
DE10044043A1 (en) * 2000-08-30 2002-03-14 Biotronik Mess & Therapieg Repositionable stent
GB0022097D0 (en) * 2000-09-08 2000-10-25 Cathnet Science S A Expandable stent
US7766956B2 (en) * 2000-09-22 2010-08-03 Boston Scientific Scimed, Inc. Intravascular stent and assembly
US6699278B2 (en) * 2000-09-22 2004-03-02 Cordis Corporation Stent with optimal strength and radiopacity characteristics
US7037330B1 (en) * 2000-10-16 2006-05-02 Scimed Life Systems, Inc. Neurovascular stent and method
DK2311411T3 (en) 2000-12-11 2015-11-02 Orbusneich Medical Inc Stent having helical elements
NO335594B1 (en) * 2001-01-16 2015-01-12 Halliburton Energy Serv Inc Expandable devices and methods thereof
EP1364676A4 (en) * 2001-02-01 2007-10-31 Kaneka Corp Stent
US8038708B2 (en) 2001-02-05 2011-10-18 Cook Medical Technologies Llc Implantable device with remodelable material and covering material
US6562066B1 (en) 2001-03-02 2003-05-13 Eric C. Martin Stent for arterialization of the coronary sinus and retrograde perfusion of the myocardium
EP1370193A2 (en) * 2001-03-20 2003-12-17 GMP Cardiac Care, Inc. Rail stent
US6602283B2 (en) 2001-04-06 2003-08-05 Scimed Life Systems, Inc. Stent design
US20050021123A1 (en) * 2001-04-30 2005-01-27 Jurgen Dorn Variable speed self-expanding stent delivery system and luer locking connector
US6676702B2 (en) * 2001-05-14 2004-01-13 Cardiac Dimensions, Inc. Mitral valve therapy assembly and method
US6800090B2 (en) * 2001-05-14 2004-10-05 Cardiac Dimensions, Inc. Mitral valve therapy device, system and method
US7087088B2 (en) * 2001-05-24 2006-08-08 Torax Medical, Inc. Methods and apparatus for regulating the flow of matter through body tubing
US6824560B2 (en) 2001-06-13 2004-11-30 Advanced Cardiovascular Systems, Inc. Double-butted superelastic nitinol tubing
US7175655B1 (en) * 2001-09-17 2007-02-13 Endovascular Technologies, Inc. Avoiding stress-induced martensitic transformation in nickel titanium alloys used in medical devices
US20030055485A1 (en) 2001-09-17 2003-03-20 Intra Therapeutics, Inc. Stent with offset cell geometry
US7172623B2 (en) * 2001-10-09 2007-02-06 William Cook Europe Aps Cannula stent
US7311729B2 (en) 2002-01-30 2007-12-25 Cardiac Dimensions, Inc. Device and method for modifying the shape of a body organ
US6824562B2 (en) 2002-05-08 2004-11-30 Cardiac Dimensions, Inc. Body lumen device anchor, device and assembly
US6949122B2 (en) * 2001-11-01 2005-09-27 Cardiac Dimensions, Inc. Focused compression mitral valve device and method
US7635387B2 (en) * 2001-11-01 2009-12-22 Cardiac Dimensions, Inc. Adjustable height focal tissue deflector
US7682387B2 (en) * 2002-04-24 2010-03-23 Biosensors International Group, Ltd. Drug-delivery endovascular stent and method for treating restenosis
US6939376B2 (en) 2001-11-05 2005-09-06 Sun Biomedical, Ltd. Drug-delivery endovascular stent and method for treating restenosis
US6908478B2 (en) * 2001-12-05 2005-06-21 Cardiac Dimensions, Inc. Anchor and pull mitral valve device and method
US6976995B2 (en) * 2002-01-30 2005-12-20 Cardiac Dimensions, Inc. Fixed length anchor and pull mitral valve device and method
US7179282B2 (en) * 2001-12-05 2007-02-20 Cardiac Dimensions, Inc. Device and method for modifying the shape of a body organ
US6793673B2 (en) 2002-12-26 2004-09-21 Cardiac Dimensions, Inc. System and method to effect mitral valve annulus of a heart
US6893413B2 (en) * 2002-01-07 2005-05-17 Eric C. Martin Two-piece stent combination for percutaneous arterialization of the coronary sinus and retrograde perfusion of the myocardium
US7037329B2 (en) * 2002-01-07 2006-05-02 Eric C. Martin Bifurcated stent for percutaneous arterialization of the coronary sinus and retrograde perfusion of the myocardium
US6981985B2 (en) 2002-01-22 2006-01-03 Boston Scientific Scimed, Inc. Stent bumper struts
US6960229B2 (en) * 2002-01-30 2005-11-01 Cardiac Dimensions, Inc. Device and method for modifying the shape of a body organ
US20050209690A1 (en) * 2002-01-30 2005-09-22 Mathis Mark L Body lumen shaping device with cardiac leads
US7004958B2 (en) * 2002-03-06 2006-02-28 Cardiac Dimensions, Inc. Transvenous staples, assembly and method for mitral valve repair
US6797001B2 (en) 2002-03-11 2004-09-28 Cardiac Dimensions, Inc. Device, assembly and method for mitral valve repair
DE10213369A1 (en) * 2002-03-21 2003-10-02 Biotronik Mess & Therapieg Stent for treating or preventing aneurysms comprises a lattice-like peripheral wall including a hollow chamber open on its front sides
US20040024450A1 (en) * 2002-04-24 2004-02-05 Sun Biomedical, Ltd. Drug-delivery endovascular stent and method for treating restenosis
US7695427B2 (en) 2002-04-26 2010-04-13 Torax Medical, Inc. Methods and apparatus for treating body tissue sphincters and the like
WO2003092549A2 (en) * 2002-05-06 2003-11-13 Abbott Laboratories Endoprosthesis for controlled contraction and expansion
AU2003228890A1 (en) * 2002-05-08 2003-11-11 Abbott Laboratories Endoprosthesis having foot extensions
WO2003094801A1 (en) * 2002-05-08 2003-11-20 Cardiac Dimensions, Inc. Device and method for modifying the shape of a body organ
US6969402B2 (en) * 2002-07-26 2005-11-29 Syntheon, Llc Helical stent having flexible transition zone
US7086476B2 (en) * 2002-08-06 2006-08-08 Schlumberger Technology Corporation Expandable devices and method
EP1528901A1 (en) * 2002-08-15 2005-05-11 GMP Cardiac Care, Inc. Stent-graft with rails
US6878162B2 (en) * 2002-08-30 2005-04-12 Edwards Lifesciences Ag Helical stent having improved flexibility and expandability
US9561123B2 (en) 2002-08-30 2017-02-07 C.R. Bard, Inc. Highly flexible stent and method of manufacture
AU2003272682C1 (en) * 2002-09-20 2009-07-16 Nellix, Inc. Stent-graft with positioning anchor
US7223283B2 (en) * 2002-10-09 2007-05-29 Boston Scientific Scimed, Inc. Stent with improved flexibility
AU2003290881A1 (en) * 2002-11-15 2004-06-15 Gmp Cardiac Care, Inc. Rail stent
EP1560548A2 (en) * 2002-11-15 2005-08-10 GMP Cardiac Care, Inc. Rail stent-graft for repairing abdominal aortic aneurysm
US7837729B2 (en) * 2002-12-05 2010-11-23 Cardiac Dimensions, Inc. Percutaneous mitral valve annuloplasty delivery system
US7316708B2 (en) * 2002-12-05 2008-01-08 Cardiac Dimensions, Inc. Medical device delivery system
US8105373B2 (en) * 2002-12-16 2012-01-31 Boston Scientific Scimed, Inc. Flexible stent with improved axial strength
US7314485B2 (en) * 2003-02-03 2008-01-01 Cardiac Dimensions, Inc. Mitral valve device using conditioned shape memory alloy
US20040158321A1 (en) * 2003-02-12 2004-08-12 Cardiac Dimensions, Inc. Method of implanting a mitral valve therapy device
US20040181186A1 (en) * 2003-03-13 2004-09-16 Scimed Life Systems, Inc. Medical device
US20050079132A1 (en) * 2003-04-08 2005-04-14 Xingwu Wang Medical device with low magnetic susceptibility
US7625399B2 (en) * 2003-04-24 2009-12-01 Cook Incorporated Intralumenally-implantable frames
DE602004023708D1 (en) 2003-04-24 2009-12-03 Cook Inc ARTIFICIAL FLAP FLAP WITH IMPROVED FLOW BEHAVIOR
US7717952B2 (en) * 2003-04-24 2010-05-18 Cook Incorporated Artificial prostheses with preferred geometries
US7658759B2 (en) * 2003-04-24 2010-02-09 Cook Incorporated Intralumenally implantable frames
US20040220654A1 (en) 2003-05-02 2004-11-04 Cardiac Dimensions, Inc. Device and method for modifying the shape of a body organ
US20060161169A1 (en) * 2003-05-02 2006-07-20 Cardiac Dimensions, Inc., A Delaware Corporation Device and method for modifying the shape of a body organ
US7625401B2 (en) * 2003-05-06 2009-12-01 Abbott Laboratories Endoprosthesis having foot extensions
US7625398B2 (en) * 2003-05-06 2009-12-01 Abbott Laboratories Endoprosthesis having foot extensions
US8048146B2 (en) 2003-05-06 2011-11-01 Abbott Laboratories Endoprosthesis having foot extensions
US7887582B2 (en) * 2003-06-05 2011-02-15 Cardiac Dimensions, Inc. Device and method for modifying the shape of a body organ
US7351259B2 (en) * 2003-06-05 2008-04-01 Cardiac Dimensions, Inc. Device, system and method to affect the mitral valve annulus of a heart
US9155639B2 (en) * 2009-04-22 2015-10-13 Medinol Ltd. Helical hybrid stent
US9039755B2 (en) 2003-06-27 2015-05-26 Medinol Ltd. Helical hybrid stent
US7794496B2 (en) * 2003-12-19 2010-09-14 Cardiac Dimensions, Inc. Tissue shaping device with integral connector and crimp
US7837728B2 (en) * 2003-12-19 2010-11-23 Cardiac Dimensions, Inc. Reduced length tissue shaping device
US20050137449A1 (en) * 2003-12-19 2005-06-23 Cardiac Dimensions, Inc. Tissue shaping device with self-expanding anchors
US20050137450A1 (en) * 2003-12-19 2005-06-23 Cardiac Dimensions, Inc., A Washington Corporation Tapered connector for tissue shaping device
US9526616B2 (en) 2003-12-19 2016-12-27 Cardiac Dimensions Pty. Ltd. Mitral valve annuloplasty device with twisted anchor
DE102004022044B4 (en) * 2004-05-03 2008-12-18 Qualimed Innovative Medizinprodukte Gmbh stent
US20050261757A1 (en) * 2004-05-21 2005-11-24 Conor Medsystems, Inc. Stent with contoured bridging element
US20050273151A1 (en) * 2004-06-04 2005-12-08 John Fulkerson Stent delivery system
US7763064B2 (en) * 2004-06-08 2010-07-27 Medinol, Ltd. Stent having struts with reverse direction curvature
WO2006005026A2 (en) * 2004-06-30 2006-01-12 Cordis Corporation Stent having asymetrical members of unequal length
US20060009837A1 (en) * 2004-06-30 2006-01-12 Robert Burgermeister Intraluminal medical device having asymetrical members and method for optimization
US8048145B2 (en) 2004-07-22 2011-11-01 Endologix, Inc. Graft systems having filling structures supported by scaffolds and methods for their use
EP1789107B1 (en) 2004-08-30 2009-05-27 Interstitial Therapeutics Medical stent provided with inhibitors of atp synthesis
US7780721B2 (en) 2004-09-01 2010-08-24 C. R. Bard, Inc. Stent and method for manufacturing the stent
US20060064155A1 (en) * 2004-09-01 2006-03-23 Pst, Llc Stent and method for manufacturing the stent
US7901451B2 (en) 2004-09-24 2011-03-08 Biosensors International Group, Ltd. Drug-delivery endovascular stent and method for treating restenosis
WO2006079000A1 (en) 2005-01-20 2006-07-27 Cardiac Dimensions, Inc. Tissue shaping device
US9107899B2 (en) 2005-03-03 2015-08-18 Icon Medical Corporation Metal alloys for medical devices
US7540995B2 (en) 2005-03-03 2009-06-02 Icon Medical Corp. Process for forming an improved metal alloy stent
US8435280B2 (en) * 2005-03-31 2013-05-07 Boston Scientific Scimed, Inc. Flexible stent with variable width elements
US7803180B2 (en) 2005-04-04 2010-09-28 Flexible Stenting Solutions, Inc. Flexible stent
WO2006138548A1 (en) * 2005-06-15 2006-12-28 Med Institute, Inc. Intraluminal device with unsymmetric tapered beams
AU2006259292B2 (en) * 2005-06-15 2012-02-09 Cook Medical Technologies Llc Intraluminal device with improved tapered beams
US7666220B2 (en) * 2005-07-07 2010-02-23 Nellix, Inc. System and methods for endovascular aneurysm treatment
US8790396B2 (en) * 2005-07-27 2014-07-29 Medtronic 3F Therapeutics, Inc. Methods and systems for cardiac valve delivery
EP1915113B1 (en) * 2005-08-17 2010-03-03 C.R. Bard, Inc. Variable speed stent delivery system
US20070150041A1 (en) * 2005-12-22 2007-06-28 Nellix, Inc. Methods and systems for aneurysm treatment using filling structures
US8808346B2 (en) * 2006-01-13 2014-08-19 C. R. Bard, Inc. Stent delivery system
US11026822B2 (en) 2006-01-13 2021-06-08 C. R. Bard, Inc. Stent delivery system
US9456911B2 (en) * 2006-02-14 2016-10-04 Angiomed Gmbh & Co. Medizintechnik Highly flexible stent and method of manufacture
US7503932B2 (en) * 2006-04-11 2009-03-17 Cardiac Dimensions, Inc. Mitral valve annuloplasty device with vena cava anchor
US10219884B2 (en) 2006-07-10 2019-03-05 First Quality Hygienic, Inc. Resilient device
JP5490533B2 (en) 2006-07-10 2014-05-14 マクニール−ピーピーシー・インコーポレイテッド Elastic device
US10004584B2 (en) 2006-07-10 2018-06-26 First Quality Hygienic, Inc. Resilient intravaginal device
US8613698B2 (en) * 2006-07-10 2013-12-24 Mcneil-Ppc, Inc. Resilient device
US8047980B2 (en) * 2006-07-10 2011-11-01 Mcneil-Ppc, Inc. Method of treating urinary incontinence
WO2008008291A2 (en) * 2006-07-13 2008-01-17 Icon Medical Corp. Stent
US11285005B2 (en) 2006-07-17 2022-03-29 Cardiac Dimensions Pty. Ltd. Mitral valve annuloplasty device with twisted anchor
GB0615658D0 (en) 2006-08-07 2006-09-13 Angiomed Ag Hand-held actuator device
US7988720B2 (en) * 2006-09-12 2011-08-02 Boston Scientific Scimed, Inc. Longitudinally flexible expandable stent
US7854849B2 (en) * 2006-10-10 2010-12-21 Multiphase Systems Integration Compact multiphase inline bulk water separation method and system for hydrocarbon production
US20080097591A1 (en) 2006-10-20 2008-04-24 Biosensors International Group Drug-delivery endovascular stent and method of use
US8067055B2 (en) * 2006-10-20 2011-11-29 Biosensors International Group, Ltd. Drug-delivery endovascular stent and method of use
US20080103584A1 (en) * 2006-10-25 2008-05-01 Biosensors International Group Temporal Intraluminal Stent, Methods of Making and Using
CN101641061B (en) 2006-12-06 2013-12-18 美顿力科尔瓦有限责任公司 System and method for transapical delivery of annulus anchored self-expanding valve
US20080195193A1 (en) * 2007-02-01 2008-08-14 Cook Incorporated Covered balloon expandable stent design and method of covering
US8333799B2 (en) 2007-02-12 2012-12-18 C. R. Bard, Inc. Highly flexible stent and method of manufacture
US8328865B2 (en) * 2007-02-12 2012-12-11 C. R. Bard, Inc. Highly flexible stent and method of manufacture
US8211162B2 (en) * 2007-05-25 2012-07-03 Boston Scientific Scimed, Inc. Connector node for durable stent
GB0713497D0 (en) 2007-07-11 2007-08-22 Angiomed Ag Device for catheter sheath retraction
US7988723B2 (en) 2007-08-02 2011-08-02 Flexible Stenting Solutions, Inc. Flexible stent
KR100930167B1 (en) * 2007-09-19 2009-12-07 삼성전기주식회사 Ultra wide angle optical system
US8091455B2 (en) 2008-01-30 2012-01-10 Cummins Filtration Ip, Inc. Apparatus, system, and method for cutting tubes
EP2242454A1 (en) * 2008-02-13 2010-10-27 Nellix, Inc. Graft endoframe having axially variable characteristics
WO2009132309A1 (en) 2008-04-25 2009-10-29 Nellix, Inc. Stent graft delivery system
US10028747B2 (en) 2008-05-01 2018-07-24 Aneuclose Llc Coils with a series of proximally-and-distally-connected loops for occluding a cerebral aneurysm
US10716573B2 (en) 2008-05-01 2020-07-21 Aneuclose Janjua aneurysm net with a resilient neck-bridging portion for occluding a cerebral aneurysm
JP2011522615A (en) * 2008-06-04 2011-08-04 ネリックス・インコーポレーテッド Sealing device and method of use
JP2011522614A (en) * 2008-06-04 2011-08-04 ネリックス・インコーポレーテッド Docking device and method of use
US8006594B2 (en) * 2008-08-11 2011-08-30 Cardiac Dimensions, Inc. Catheter cutting tool
US20100057187A1 (en) * 2008-08-26 2010-03-04 Caldarise Salvatore G Intravascular stent having imrproved design for loading and deploying
JP5796763B2 (en) * 2008-09-10 2015-10-21 株式会社カネカ Stent
US9149376B2 (en) * 2008-10-06 2015-10-06 Cordis Corporation Reconstrainable stent delivery system
US8734502B2 (en) 2008-12-17 2014-05-27 Cook Medical Technologies Llc Tapered stent and flexible prosthesis
US9168161B2 (en) * 2009-02-02 2015-10-27 Cordis Corporation Flexible stent design
AU2010238636A1 (en) * 2009-04-24 2011-11-17 Flexible Stenting Solutions, Inc. Flexible devices
US8226705B2 (en) * 2009-09-18 2012-07-24 Medtronic Vascular, Inc. Methods for forming an orthogonal end on a helical stent
EP2485688B1 (en) * 2009-10-06 2019-09-04 Sahajanand Medical Technologies Private Limited Bioresorbable vascular implant having homogenously distributed stresses under a radial load
WO2011053693A1 (en) * 2009-10-30 2011-05-05 Cordis Corporation Intraluminal device with improved flexibility and durability
US9358140B1 (en) 2009-11-18 2016-06-07 Aneuclose Llc Stent with outer member to embolize an aneurysm
US20110152604A1 (en) * 2009-12-23 2011-06-23 Hull Jr Raymond J Intravaginal incontinence device
US20110276078A1 (en) 2009-12-30 2011-11-10 Nellix, Inc. Filling structure for a graft system and methods of use
US8206434B2 (en) 2010-03-02 2012-06-26 Medtronic Vascular, Inc. Stent with sinusoidal wave form and orthogonal end and method for making same
US20110218615A1 (en) * 2010-03-02 2011-09-08 Medtronic Vascular, Inc. Stent With Multi-Crown Constraint and Method for Ending Helical Wound Stents
US8398916B2 (en) 2010-03-04 2013-03-19 Icon Medical Corp. Method for forming a tubular medical device
US8328072B2 (en) 2010-07-19 2012-12-11 Medtronic Vascular, Inc. Method for forming a wave form used to make wound stents
MX2013001444A (en) * 2010-08-02 2013-03-12 Cordis Corp Flexible helical stent having different helical regions.
WO2012018840A1 (en) * 2010-08-02 2012-02-09 Cordis Corporation Flexible helical stent having intermediated non-helical region
EP2600802B1 (en) * 2010-08-02 2019-05-29 Cardinal Health Switzerland 515 GmbH Flexible helical stent having intermediate structural feature
EP2600801B1 (en) * 2010-08-02 2017-07-19 Cordis Corporation Flexible helical stent having intermediate structural feature
US9233014B2 (en) * 2010-09-24 2016-01-12 Veniti, Inc. Stent with support braces
GB201017834D0 (en) 2010-10-21 2010-12-01 Angiomed Ag System to deliver a bodily implant
JP2014508559A (en) 2010-12-30 2014-04-10 ボストン サイエンティフィック サイムド,インコーポレイテッド Multi-stage open stent design
US10166128B2 (en) 2011-01-14 2019-01-01 W. L. Gore & Associates. Inc. Lattice
US9839540B2 (en) 2011-01-14 2017-12-12 W. L. Gore & Associates, Inc. Stent
EP2680797B1 (en) 2011-03-03 2016-10-26 Boston Scientific Scimed, Inc. Low strain high strength stent
WO2012119037A1 (en) 2011-03-03 2012-09-07 Boston Scientific Scimed, Inc. Stent with reduced profile
US9028540B2 (en) 2011-03-25 2015-05-12 Covidien Lp Vascular stent with improved vessel wall apposition
US9744033B2 (en) 2011-04-01 2017-08-29 W.L. Gore & Associates, Inc. Elastomeric leaflet for prosthetic heart valves
EP2693980B1 (en) 2011-04-06 2022-07-13 Endologix LLC System for endovascular aneurysm treatment
US9296034B2 (en) 2011-07-26 2016-03-29 Medtronic Vascular, Inc. Apparatus and method for forming a wave form for a stent from a wire
US9554806B2 (en) 2011-09-16 2017-01-31 W. L. Gore & Associates, Inc. Occlusive devices
US20130123905A1 (en) * 2011-11-15 2013-05-16 Abbott Cardiovascular Systems Inc. Offset peak-to-peak stent pattern
US9510935B2 (en) 2012-01-16 2016-12-06 W. L. Gore & Associates, Inc. Articles including expanded polytetrafluoroethylene membranes with serpentine fibrils and having a discontinuous fluoropolymer layer thereon
WO2013120082A1 (en) 2012-02-10 2013-08-15 Kassab Ghassan S Methods and uses of biological tissues for various stent and other medical applications
US9242290B2 (en) 2012-04-03 2016-01-26 Medtronic Vascular, Inc. Method and apparatus for creating formed elements used to make wound stents
US8992595B2 (en) * 2012-04-04 2015-03-31 Trivascular, Inc. Durable stent graft with tapered struts and stable delivery methods and devices
US9238260B2 (en) 2012-04-18 2016-01-19 Medtronic Vascular, Inc. Method and apparatus for creating formed elements used to make wound stents
US9364351B2 (en) 2012-04-23 2016-06-14 Medtronic Vascular, Inc. Method for forming a stent
NZ701992A (en) 2012-05-14 2016-03-31 Bard Inc C R Uniformly expandable stent
US9283072B2 (en) 2012-07-25 2016-03-15 W. L. Gore & Associates, Inc. Everting transcatheter valve and methods
US9254205B2 (en) 2012-09-27 2016-02-09 Covidien Lp Vascular stent with improved vessel wall apposition
US9931193B2 (en) 2012-11-13 2018-04-03 W. L. Gore & Associates, Inc. Elastic stent graft
US9101469B2 (en) 2012-12-19 2015-08-11 W. L. Gore & Associates, Inc. Prosthetic heart valve with leaflet shelving
US10279084B2 (en) 2012-12-19 2019-05-07 W. L. Gore & Associates, Inc. Medical balloon devices and methods
US9968443B2 (en) 2012-12-19 2018-05-15 W. L. Gore & Associates, Inc. Vertical coaptation zone in a planar portion of prosthetic heart valve leaflet
US9144492B2 (en) 2012-12-19 2015-09-29 W. L. Gore & Associates, Inc. Truncated leaflet for prosthetic heart valves, preformed valve
US10617517B2 (en) 2013-01-14 2020-04-14 Medtronic CV Luxembourg S.a.r.l. Valve prosthesis frames
US20140200647A1 (en) * 2013-01-14 2014-07-17 Abbott Cardiovascular Systems Inc. Stent with enhanced profile
EP2953580A2 (en) 2013-02-11 2015-12-16 Cook Medical Technologies LLC Expandable support frame and medical device
CN103169557A (en) * 2013-02-27 2013-06-26 湖南瑞康通科技发展有限公司 Self-expandable stent system and manufacturing method thereof
USD723165S1 (en) 2013-03-12 2015-02-24 C. R. Bard, Inc. Stent
BR112015022688B1 (en) 2013-03-14 2020-10-06 Endologix, Inc. METHOD FOR FORMING A MATERIAL IN SITU THROUGH INCREASING THE VOLUME OF AN EXPANDABLE MEMBER OF A MEDICAL DEVICE
US9259335B2 (en) 2013-03-15 2016-02-16 Covidien Lp Stent
US9180031B2 (en) 2013-03-15 2015-11-10 Covidien Lp Stent with varying radius between struts
BR112015026756A8 (en) * 2013-04-24 2019-12-24 Vascular Dynamics Inc implantable vascular device having longitudinal supports
US9907684B2 (en) 2013-05-08 2018-03-06 Aneuclose Llc Method of radially-asymmetric stent expansion
US11911258B2 (en) 2013-06-26 2024-02-27 W. L. Gore & Associates, Inc. Space filling devices
EP3065674A4 (en) * 2013-11-08 2017-11-22 Palmaz Scientific, Inc. Monolithic medical devices and methods of use
US10842918B2 (en) 2013-12-05 2020-11-24 W.L. Gore & Associates, Inc. Length extensible implantable device and methods for making such devices
CA2942277C (en) 2014-03-18 2018-08-14 Boston Scientific Scimed, Inc. Reduced granulation and inflammation stent design
CN106535826A (en) 2014-06-24 2017-03-22 怡康医疗股份有限公司 Improved metal alloys for medical devices
US9827094B2 (en) 2014-09-15 2017-11-28 W. L. Gore & Associates, Inc. Prosthetic heart valve with retention elements
CN107847232B (en) 2015-05-14 2022-05-10 W.L.戈尔及同仁股份有限公司 Device for occluding an atrial appendage
US11766506B2 (en) 2016-03-04 2023-09-26 Mirus Llc Stent device for spinal fusion
CN109069257B (en) 2016-04-21 2021-08-24 W.L.戈尔及同仁股份有限公司 Adjustable diameter endoprosthesis and related systems and methods
US10905572B2 (en) 2016-11-14 2021-02-02 Covidien Lp Stent
US10258488B2 (en) 2016-11-14 2019-04-16 Covidien Lp Stent
US10449069B2 (en) 2016-11-14 2019-10-22 Covidien Lp Stent
US10390953B2 (en) 2017-03-08 2019-08-27 Cardiac Dimensions Pty. Ltd. Methods and devices for reducing paravalvular leakage
CN115177403A (en) 2017-09-27 2022-10-14 W.L.戈尔及同仁股份有限公司 Prosthetic valves with expandable frames and associated systems and methods
US11173023B2 (en) 2017-10-16 2021-11-16 W. L. Gore & Associates, Inc. Medical devices and anchors therefor
CA3205219A1 (en) 2017-10-31 2019-05-09 Edwards Lifesciences Corporation Medical valve and leaflet promoting tissue ingrowth
GB201718299D0 (en) 2017-11-03 2017-12-20 Ab Wasstand Dev Stents
CN108670509A (en) * 2018-04-20 2018-10-19 江苏大学 A kind of self-expansion type taper coronary stent
CN108578025A (en) * 2018-04-20 2018-09-28 江苏大学 A kind of balloon-expandable intravascular stent for taking into account compliance and supportive
US11497601B2 (en) 2019-03-01 2022-11-15 W. L. Gore & Associates, Inc. Telescoping prosthetic valve with retention element
CA3133857A1 (en) 2019-03-20 2020-09-24 inQB8 Medical Technologies, LLC Aortic dissection implant
EP4259045A1 (en) 2020-12-14 2023-10-18 Cardiac Dimensions Pty. Ltd. Modular pre-loaded medical implants and delivery systems
KR102586295B1 (en) * 2021-05-13 2023-10-11 전남대학교산학협력단 Bioresorbable scaffold stent and its manufacturing method
CN115944356A (en) * 2023-02-10 2023-04-11 上海珩畅医疗科技有限公司 Bracket component for removing thrombus

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3585707A (en) 1966-04-13 1971-06-22 Cordis Corp Method of making tubular products
CA1232814A (en) * 1983-09-16 1988-02-16 Hidetoshi Sakamoto Guide wire for catheter
US4665771A (en) 1984-10-15 1987-05-19 Mitchell Frank R Hypocyclic drive
US4733665C2 (en) 1985-11-07 2002-01-29 Expandable Grafts Partnership Expandable intraluminal graft and method and apparatus for implanting an expandable intraluminal graft
US4665905A (en) 1986-06-09 1987-05-19 Brown Charles S Dynamic elbow and knee extension brace
US5045072A (en) 1989-06-13 1991-09-03 Cordis Corporation Catheter having highly radiopaque, flexible tip
CA2026604A1 (en) * 1989-10-02 1991-04-03 Rodney G. Wolff Articulated stent
US5254107A (en) 1991-03-06 1993-10-19 Cordis Corporation Catheter having extended braid reinforced transitional tip
CA2380683C (en) * 1991-10-28 2006-08-08 Advanced Cardiovascular Systems, Inc. Expandable stents and method for making same
US5733303A (en) * 1994-03-17 1998-03-31 Medinol Ltd. Flexible expandable stent
DE69637527D1 (en) * 1995-03-01 2008-06-26 Boston Scient Scimed Inc Longitudinally flexible and expandable stent
EP0734698B9 (en) * 1995-04-01 2006-07-05 Variomed AG Stent for transluminal implantation into hollow organs
US5776161A (en) * 1995-10-16 1998-07-07 Instent, Inc. Medical stents, apparatus and method for making same
US5830179A (en) * 1996-04-09 1998-11-03 Endocare, Inc. Urological stent therapy system and method
FR2764794B1 (en) * 1997-06-20 1999-11-12 Nycomed Lab Sa EXPANDED TUBULAR DEVICE WITH VARIABLE THICKNESS
US6042606A (en) * 1997-09-29 2000-03-28 Cook Incorporated Radially expandable non-axially contracting surgical stent

Also Published As

Publication number Publication date
JP4623792B2 (en) 2011-02-02
AU1487800A (en) 2000-08-03
JP2000245848A (en) 2000-09-12
CA2297671A1 (en) 2000-08-02
AU758490B2 (en) 2003-03-20
DE60025302D1 (en) 2006-03-30
DE60025302T2 (en) 2006-09-28
EP1025812A1 (en) 2000-08-09
EP1025812B1 (en) 2006-01-04
US6190406B1 (en) 2001-02-20

Similar Documents

Publication Publication Date Title
CA2297671C (en) An intravascular stent having tapered strut
EP0928605B1 (en) An intravascular stent having an improved strut configuration
EP0928606B1 (en) An intravascular stent having curved bridges for connecting adjacent hoops
AU2002303157B2 (en) Radiopaque intraluminal medical device
US6503271B2 (en) Intravascular device with improved radiopacity
CA2426332C (en) Low profile improved radiopacity intraluminal medical device
CA2467940C (en) Improved radiopacity intraluminal medical device
EP2158880B1 (en) Intravascular stent having improved design for loading and deploying
AU2002303157A1 (en) Radiopaque intraluminal medical device
AU2015243099B2 (en) Intraluminal device with improved flexibility and durability

Legal Events

Date Code Title Description
EEER Examination request
MKEX Expiry

Effective date: 20200203