CA2331139A1 - Laundry detergent and/or fabric care compositions comprising a modified antimicrobial protein - Google Patents

Laundry detergent and/or fabric care compositions comprising a modified antimicrobial protein Download PDF

Info

Publication number
CA2331139A1
CA2331139A1 CA002331139A CA2331139A CA2331139A1 CA 2331139 A1 CA2331139 A1 CA 2331139A1 CA 002331139 A CA002331139 A CA 002331139A CA 2331139 A CA2331139 A CA 2331139A CA 2331139 A1 CA2331139 A1 CA 2331139A1
Authority
CA
Canada
Prior art keywords
cbd
amino acid
fabric care
laundry detergent
enzyme
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
CA002331139A
Other languages
French (fr)
Inventor
Stanton Lane Boyer
Jean-Luc Philippe Bettiol
Johan Smets
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Procter and Gamble Co
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Publication of CA2331139A1 publication Critical patent/CA2331139A1/en
Abandoned legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y302/00Hydrolases acting on glycosyl compounds, i.e. glycosylases (3.2)
    • C12Y302/01Glycosidases, i.e. enzymes hydrolysing O- and S-glycosyl compounds (3.2.1)
    • C12Y302/01052Beta-N-acetylhexosaminidase (3.2.1.52)
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/435Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • C07K14/43504Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from invertebrates
    • C07K14/43563Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from invertebrates from insects
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/435Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • C07K14/46Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from vertebrates
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K7/00Peptides having 5 to 20 amino acids in a fully defined sequence; Derivatives thereof
    • C07K7/04Linear peptides containing only normal peptide links
    • C07K7/08Linear peptides containing only normal peptide links having 12 to 20 amino acids
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D3/00Other compounding ingredients of detergent compositions covered in group C11D1/00
    • C11D3/16Organic compounds
    • C11D3/38Products with no well-defined composition, e.g. natural products
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D3/00Other compounding ingredients of detergent compositions covered in group C11D1/00
    • C11D3/16Organic compounds
    • C11D3/38Products with no well-defined composition, e.g. natural products
    • C11D3/386Preparations containing enzymes, e.g. protease or amylase
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D3/00Other compounding ingredients of detergent compositions covered in group C11D1/00
    • C11D3/16Organic compounds
    • C11D3/38Products with no well-defined composition, e.g. natural products
    • C11D3/386Preparations containing enzymes, e.g. protease or amylase
    • C11D3/38636Preparations containing enzymes, e.g. protease or amylase containing enzymes other than protease, amylase, lipase, cellulase, oxidase or reductase
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D3/00Other compounding ingredients of detergent compositions covered in group C11D1/00
    • C11D3/48Medical, disinfecting agents, disinfecting, antibacterial, germicidal or antimicrobial compositions
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/0004Oxidoreductases (1.)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/14Hydrolases (3)
    • C12N9/24Hydrolases (3) acting on glycosyl compounds (3.2)
    • C12N9/2402Hydrolases (3) acting on glycosyl compounds (3.2) hydrolysing O- and S- glycosyl compounds (3.2.1)
    • C12N9/2405Glucanases
    • C12N9/2434Glucanases acting on beta-1,4-glucosidic bonds
    • C12N9/2437Cellulases (3.2.1.4; 3.2.1.74; 3.2.1.91; 3.2.1.150)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y302/00Hydrolases acting on glycosyl compounds, i.e. glycosylases (3.2)
    • C12Y302/01Glycosidases, i.e. enzymes hydrolysing O- and S-glycosyl compounds (3.2.1)
    • C12Y302/01004Cellulase (3.2.1.4), i.e. endo-1,4-beta-glucanase
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y302/00Hydrolases acting on glycosyl compounds, i.e. glycosylases (3.2)
    • C12Y302/01Glycosidases, i.e. enzymes hydrolysing O- and S-glycosyl compounds (3.2.1)
    • C12Y302/01011Dextranase (3.2.1.11)
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M16/00Biochemical treatment of fibres, threads, yarns, fabrics, or fibrous goods made from such materials, e.g. enzymatic
    • D06M16/003Biochemical treatment of fibres, threads, yarns, fabrics, or fibrous goods made from such materials, e.g. enzymatic with enzymes or microorganisms
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2319/00Fusion polypeptide

Abstract

The present invention relates to a modified protein which comprises a catalytically active amino acid sequence of an antimicrobial enzyme and/or an amino acid sequence of an antimicrobial peptide, linked to an amino acid sequence comprising a Cellulose Binding Domain (CBD), and to laundry detergent and/or fabric care compositions comprising such modified proteins for improved sanitisation benefits.

Description

LAUNDRY DETERGENT AND/OR FABRIC CARE COMPOSITIONS
COMPRISING A MODIFIED ANTIMICROBIAL PROTEIN
Field of the Invention The present invention relates to laundry delrergent and/or fabric care compositions comprising a modified protein which comprises a catalytically active amino acid sequence of an antimicrobiai enzyme andlor an amino acid sequence of an antimicrobial peptide, linked to an amino acid sequence comprising a Cellulose Binding Domain (CBD), for s~anitisation benefits.
Backgiround of the invention Modern laundry detergent and/or fabric care compositions contain various detergent ingredients having one or more purposE;s in obtaining fabrics which are not only clean but alsa have retained appearance and integrity. Therefore, detergent components such as perfumes, soil release agents, fabric brightening agents, fabric softeners, chelants, bleaching agents and catalysts, dye fixatives and enzymes, have been incorporated in laundry detergent and/or fabric care compositions. One of such specific example is the use of enzymes, especially proteases, lipases, amylases and/or cellulases. The use of enzymes to remove stains comprising proteins and/or carbohydrates, in combination with various detergent, is well known in the art of detergent formulations Moreover, laundry detergent andlor fabric care composition having antimicrobial activities are of interest to consumers. Efforts to formulate antimicrobial hand soaps and cleaning compositions are well known. Efforts to produce laundry compositions comprising enzymes having microbial properties are also known. In spite of such efforts, there continues to be a need for laundry detergent andlor fabric care compositions having antimicrobial activity.
However, it has been difficult to incorporate enzymes into modern detergents in an effective manner. In that regard, those skilled in the art have sought to use minimal amounts of enzyme to their fullest effectiveness by ensuring that most, if not all, of the enzyme comprised in the detergent composition deposits on the fabric. For example, the optimum cellulase would have a binding domain especially suitable for cellulose. In this way, most of the cellulase enzyme included in the detergent composition deposits. or otherwise binds to the fabric during the laundering cycle to achieve its desired results.
Similarly, it would be desirable to have laundry detergent and/or fabric care compositions in which its enzymatic and/or peptidic components are also modified to ensure deposition onto the fabrics for improved or new performances.
Accordingly, there remains a need far laundry detergent andlor fabric care compositions which provide improved sanitisation of the fabrics to be laundered.
There also remains a need for such antimicrobial enzymes andlor antimicrobial peptide which are suitable for use in modern laundry detergent andlor fabric care compositions to be formulated in an effective manner.
The above objectives have been met by formulating laundry detergent and/or fabric care compositions comprising a modified protein which comprises a catalytically active amino acid sequence of an antimicrobial enzyme and/or an amino acid sequence of an antimicrobial peptide, linked to an amino acid sequence comprising a Cellulose Binding Domain (CBD), for sanitisation benefits. It has been surprisingly found that said modified protein more readily attaches, affixes or otherwise comes into contact with the fabric, thereby resulting in increased or enhanced perfornnance of the enzyme andlor antimicrobial peptide. In particular, the Laundry detergent and/or fabric care compositions of the present invention when comprising proteins so modified, provide a higher effective concentration of the enzyme and/or antimicrobial peptide at its substrate location and therefore, improved sanitisation benefits.
Enzymes linked to Cellulose Binding Domains, are also described in the art:
WO91I10732 novel derivatives of cellulase enzymes combining a core region derived from an- endoglucanase producible by <~ strain of Bacillus spp., NICMB
40250 with a CBD derived from another cellufas~e enzyme or a combining a core region derived from another cellulase enzyme with a CBD derived from said endogiucanase, for improved binding properties. W094/07998 describes cellulose variants of a cellulose classified in family 45, comprising a CBD, a Catalytically Active Domain (CAD) and a region linking the CBD to the CAD, wherein one or more amino acid residues have been added, deleted or substituted and for another CBD is added at the opposite end of the CAD.
WO95116782 relates to the cloning and high level expression of novel truncated cellulose proteins or derivatives thereof in Trichoderma longibrachiatum comprising different core regions with several CBDs. W097/01fi29 describes cellulolytic enzyme preparation wherein the mobility of the cellulose component may be reduced by adsorption .to an insoluble or soluble carrier e.g. via the existing or newly introduced CBD. W097I2824c~ describes a process for removal or bleaching or soiling or stains from cellulosic fabrics wherein the fabric is contacted in aqueous medium with a modified enzyme which comprises a catalytically active amino acid sequence of a non-cellulolytic enzyme selected from amylases, proteases, lipases, pectinases and oxidoreductases, linked to an amino acid sequence comprising a cellulose binding domain and a detergent composition comprising such modified enzyme and a surfactant.
US 5,258,304 describes methods using Type Il endoglycosidases alone or in combination with other enzymes, detergents, surfactants and/or disulfide cleaving reagents to facilitate the removal of micro-organisms such as bacteria from the surface of materials such as fabric, contact lenses, metal, ceramics, cell tissue and the like. A method for cleaning a~ surface on which is bound a glycoside-containing substance such as blood or components thereof, fecal matter or components thereof or micro-organisms is described in US 5,238,843.
US 5,395,541 discloses cleaning compositions containing a first enzyme selected from Endo-D, Endo-H, Endo-L, Endo-C, Endo-CII, Endo-F-Gal type, Endo-F and/or PNGaseF; a second enzyme selected from protease, lipase, nuclease, glycosidase; a detergent surfactant and a builder. The substrates can be blood or components thereof, fecal matter or components thereof or micro-organisms and the surfaces can be fabrics, biological tissue, tooth enamel, contact lens, glass, ceramic, metal, metal alloy, plastic, plant, fruit and vegetables. US 5,356,803 describes an antimicrobial composition consisting essentially of a Type II endoglycosidase and antimicobial agent such as bactericide, fungicide and/or algicide, used in the form of personal care or household cleaning products such as laundry detergent. US 5;041236 is directed to an antimicrobial composition comprising endo-~i-N-acetylglucosaminidase and/or endoglycopeptidase and ruminant stomach lysozyme and a method for destroying or removing microbes by treatment with these enzymes.
US patent application SN60/045,756 filed June 5, 9 997 describes laundry or cleaning products comprising one or more hE;xosaminidase and methods for laundering fabrics and cleaning hard surfaces with an aqueous solution containing an effective amount of one or morE: hexosaminidase enzymes. US
patent application SN601045,826 filed May 5, 1997 describes laundry or cleaning products comprising one or more enzymes exhibiting endoglucanase activity specific for xyloglucan and methods for laundering fabrics and cleaning hard surfaces with an aqueous solution containing an effective amount of one or more enzymes exhibiting endoglucanase activity specific for xyloglucan.
Patent application PCT/US97102534 discloses cleaning compositions comprising an endo-dextranase enzyme, which provide enhanced overall cleaning and sanitisation of the treated surfaces together with malodour control.
Similarly, mycodextranases are described in the co-pending application PCT/US96/18572 filed on September 27, 1996.
However, none of these documents disclose a~ laundry detergent andlor fabric care compositions comprising a modified protein which comprises a cataiytically active amino acid sequence of an antimicrobial enzyme and/or an amino acid sequence of an antimicrobial peptide linkecl to an amino acid sequence comprising a Cellulose Binding Domain, thereby providing increased or enhanced performance of the laundry detergent, andlor fabric care composition.
Summar~r of the inmention The present invention relates to a modified protein comprising a catalytically active amino acid sequence of an antimicrobial enzyme and/or an amino acid sequence of an antimicrobial peptide linked to an amino acid sequence comprising a Cellulose Binding Domain (CBD). The present invention further relates to a laundry detergent andlor fabric care composition comprising said modified protein and to the use of these modified proteins for sanitisation benefits.

Detailed description of the invention The present invention relates to a modified protein which comprises a catalytically active amino acid sequence of an antimicrobial enzyme andlor an amino acid sequence of an antimicrobial p~eptidelinked to an amino acid sequence comprising a Cellulose Binding Domain for sanitisation benefits;
being referred to herein after as "Enzyme hybrid" andher "Antimicrobial peptide hybrid".
As used herein, "sanitisation" includes the removal, killing, inhibition of growth, change in gross morphology, protoplast formation andlor degradation of the cell wall of a microorganism. Also included are the removal of microorganisms from a surface and the prevention of microorganism attachment to surfaces.
Sanitisation includes all positive effects obtained by the inhibition or reduction of microbial activity on fabrics, such as the prevE;ntion of malodour development and bacteriallfungal growth. For example, it provides prevention of malodour development on stored and weared fabrics. In particular, the composition of the invention will inhibit or at least reduce the baci:erial and/or fungal development on moist fabric waiting for further laundry processing and thereby preventing the formation of malodour.
The sanitisation potential of the detergent compositions of the present invention can be enhanced by the addition of chemical sa~nitisers such as Triclosan and/or hexemidine. Parfums Cosmetiques Actualites No 125, Nov, 9995, 51-4 describes suitable chemical sanitisers also called antimicrobial agent). Such antimicrobial agents in general are antibiotic:. and include agents which kill micro-organism and those which inhibit microorganism growth. Examples of such antimicrobial agents include, bacteriocides, fungicides and algicides each of which are capable of killing or inhibiting the growth of bacteria, fungi or algae respectively. Bacteriacides include compounds such as chlorohexidine, 2,4,4'-trichloro-2'-hydrodiphenyl ether, triclocarban, penicillins, tetracycline and bacitracin. Fungicides include nystatin (Fungicidin~), amphotericin B
(Fungizone~), benomyl (Benlate~), captan (Merpan~), dichlorobenzalkonium chloride (Dichlorane~). [Merck index, 10t" Ed. (1983), Merck and Co., lnc., Rahway, N. J.] Other examples of antimicr~obial agents include detergent surfactant such as anionic, nonionic, zwitte~rionic, ampholytic and cationic surfactants known by those skilled in the art, in an amount sufficient to produce an antimicrobial effect.
Also suitable are substances capable of clE~aving disulfide bonds such as oxidising agents, reducing agents and some miiscellaneous compounds such as fumaric acid and sodium sulfite. Such substances capable of cleaving disulfide bonds are described in US 5,356,803.
The sanitisation benefits of the detergent compositions of the present invention can be evaluated by the Minimum Inhibitory Cancentration (MIC) as described in Tuber. Lung. Dis. 1994 Aug; 75(4):286-90; J. Clin. Microbiol. 1994 May;
32(5):1261-7 and J. Clin. Microbiol. 1992 Oct; 30{10):2692-7.
The antimicrobial peptide (antimicrobial peptide hybrid or modified peptide) Without wishing to be bound by theory, it is believed that the addition of a cellulose binding domain to an antimicrolbial peptide, allows a higher concentration of the antimicrobial peptide onto the fabric, i.e. a closer and/or more lasting contact, resulting in a more efficient antimicrobial activity.
Such modifed antimicrobial peptides have an increa:>ed affinity (relative to unmodified antimicrobial peptides) for binding to a celluiosic fabric or textile. It has been surprisingly found that said modified antimicnobial peptides when linked to a CBD provide improved sanitisation of the treated fabric or textile.
Suitable antimicrobial peptides are the bacterial pore-forming proteins alpha-hemolysin and streptolysin-O described in Scientific American September 1997, H. Bayley pp62-67. Other suitable antimicrobial peptides are grouped under the name Bioactive Proteins : Protoamines, Cecropins, Magainins and Defensins such as - the antimicrobial products developed by Biosource Technologies INC., known as defensins, especially lndolicidin. Also availabe from Sigma;
- the protoamines available from Sigma and Novo Nordisk, the Cecropin A, Cecropin B, Cecropin P1 available from Sigma, - Magainin l, Magainin I1, D-Magainin II amide., Ala-Magainin II amide available from Sigma, and the polamino acids Poly-L-Arginine, Poly-D/L-Lysine, Poly-L-Histidine and Demeter Peptide, available from Sigma.

Preferred antimicrobial peptides suitable for the purpose of the present invention are Protoamines, Cecropin B, Magainin ll, D-Magainin II amide from Sigma and Indoicidin from Biosource international. These antimicrobial peptide hybrids are generally included in the compositions of the .present inventions at a level of from 0.0001 % to 5%, preferably from 0.001 % toy 1 %, more preferably 0.001 %
to 0.05% by weight of the total composition.
The antimicrobial enzymes yEnzyme hybrid or modified enzyme) Without wishing to be bound by theory, it is believed that the addition of a cellulose binding domain to an antimicrobial enzyme, allows a higher concentration of the antimicrobial enzyme onto the fabric, i.e. a closer andlor more lasting contact, resulting in a more efficient enzymatic activity. Such modified antimicrobial enzymes have an increased affinity (relative to unmodified enzyme) for binding to a cellulosic fabric or textile. It has been surprisingly found that said modified antimicrobial enzymes when linked to a CBD provide improved sanitisation of the treated fabric or textile.
Furthermore, the below described antimicrobial enzymes also demonstrate a bleaching activity and a cleaning action. Therefore, it has been surprisingly found that such modified antimicrobial enzymes also provide improved cleaning properties and improved whitening of the treated fabrics.
Suitable antimicrobial enzymes include Endoglycosidase H, Dextranase (3.2.1.11), N-acetyl-beta-D-glucosaminidase (3.2.1.29) Alfa-Mannosidase (3.2.1.24), Lyticase (From Sigma), Lysozyme {3.2.1.17), Xanthine Oxidase (1.2.3.2), Type II Endo-glycosidase, Chitinase (3.2.1.14), Beta 1,fi-endoglucanases {3.2.1.33), N-acetyl-D-giucos;amine deacetyiase, Beta 1,3 glucanase, Neuraminidase (3.2.1.18), Beta Glucosidase (3.2.1.21 ), Beta galactosidase (3.2.1.23), Beta acetylglucosamini~dase (3.2.1.30).
Suitable are any bilirubin oxidase enzyme comprised by the enzyme classification {EC 1.3.3.5) or any monophe;nol monooxygenase enzyme comprised by the enzyme classification (EC 1.11.99.1). These enzymes may be derived from plants, bacteria or fungi (including filamentous fungi and yeasts).

g Said enzymes are normally incorporated in the; laundry detergent and/or fabric care composition at levels from 0.0001 % to ~'.% of pure modified enzyme by weight of the composition.
It has been surprisingly found that the launclry detergent andlor fabric care composition comprising said enzyme when linked to a CBD, provide improved cleaning of coloured and enhanced sanitisation of the treated surfaces.
Also suitable are cytochrome enzymes : Cytochrome a, Cytochrome b, Cytochrome c and Cytochrome d; preferably Cytochrome P450 EC 1.14.13, EC
1.14.14, EC 1.14.15 and EC 1.14.99. and the cytochrome P450 bm3 such as described in co-pending patent application US serial No. US 97/12446. The cytochrome based enzymatic bleaching system requires the presence of an electron transfer system comprising an elecirron donor compound such as NADH, NADPH and/or sodium sulphite and an electron carrier such as flavoproteins, proteins containing reducible disulfide groups, iron proteins, copper proteins, molybdenum proteins, nickel proteins , vanadium proteins and quino proteins.
In addition to their improved sanitisation benefiia, it has been surprisingly found that the laundry detergent and/or fabric care compositions comprising such modified cytochrome, demonstrate improved cleaning, i.e. effective and efficicent cleaning of coloured and/or everyday, body soils and improved whitening performance.
Also suitable for the purpose of the presE:nt invention, are the specific oxygenases described in the co-pending patent applications US serial Nos.
PCTIUS97112439, PCT/US97112280 and PCT/IJS97I12282, being polyphenol heterocyclic substrate based oxygenases, proteininc substrate based oxygenases and oxygenases directed to body soils.
Co-pending patent applications US serial No. PCT/US97/12439 describes as preferred polyphenol / heterocyclic substrate based oxygenase enzymes for the present invention : the decyclising and hydroxylating mono- and di-oxygenases and more preferred the following enzymes 1.13.11.3 protocatechuate 3,4-dioxygenase 1.13.11.14 2,3-dihydroxybenzoate 3,4-dio:Kygenase 1.13.11.17 indole 2,3-dioxygenase 1.13.11.22 caffeate 3,4-dioxygenase 1.13.11.24 quercetin 2,3-dioxygenase 1.13.11.35 pyrogalloll,2-oxygenase 1.14.11.9 naringenin 3-dioxygenase 1.14.12.7 phtalate 4,5 dioxygenase 1.14.12.10benzoate 1,2-dioxygenase 1.1.4.'!2.11toluene dioxygenase 1.14.13.2 4-hydroxybenzoate 3-monooxygenase f hydroxylase 1.14.13.12benzoate 4-monooxygenase 1.14.13.21flavonoid 3'-monooxygenase Some polyphenol / hetyerocyclic substrate based oxygenases require the presence of a cofactor. in this instance, the laundry detergent and/or fabric care compositions of the present invention will further comprise the corresponding enzymatic cofactor.
The polyphenol / heterocyclic substrate .based oxygenase enzyme is incorporated into the laundry detergent andnor fabric care compositions in accordance with the invention preferably at a level of from 0.0001 % to 2%, more preferably from 0.001 % to 0.5%, most preferably from 0.002% to 0.1 pure modified enzyme by weight of the composition.
It has been surprisingly found that the laundlry detergent and/or fabric care compositions comprising said modified polyphenol / heterocyclic substrate based oxygenase, provide improved sanitisation benefits,. In addition, they , demonstrate improved cleaning, i.e. effective and efficient cleaning of coloured andlor everdyday body soils and improvedf whitening performance while providing excellent fabric colour safety.
Co-pending patent application US serial No. PCTIUS97I12280 describes proteininc substrate based oxygenases such as 1.13.11.11 tryptophan 2,3-dioxygenase 1.13.11.20 cysteine dioxygenase 1.13.11.26 peptide-tryptophan 2,3-dioxygenase 1.13.11.29 stizolobate synthase 1.13.11.30 stizolobinate synthase 1.13.12.1 arginine 2-monooxygenase 1.13.12.2 lysine 2-monooxygenase 1.13.12.3 tryptophan 2-monooxygenase 1.13.12. 9 phenylalanine 2-monooxygenstse 1.13.12.10 lysine 6-monooxygenase 1.13.99.3 tryptophan 2'-dioxygenase 1.14.11.1 y-butyrobetaine dioxygenase 1.14.11.2 procollagen-prolin,2-oxoglutar;ate 4-dioxygenase 1.14.11.4 procollagen-lysine,2-oxoglutarate 5-dioxygenase 1.14.11.7 procollagen-prolin,2-oxogiutar;ate 3-dioxygenase 1.14.11.8 trimethyllysine,2-oxoglutarate ~dioxygenase 1.14.11.16 peptide-aspartate ~i-dioxygenase 1.14.16.1 phenylalanine 4-monooxygenase 1.14.16.2 tyrosine 3-monooxygenase 1.14.16.4 tryptophan 5-monooxygenase 1.14.17.3 peptidylglycine monooxygenase Some proteinic substrate based oxygenase enzyme require the presence of a cofactor. In this instance, the laundry detergent and/or fabric care compositions of the present invention will further comprise the corresponding enzymatic cofactor.
The proteinic substrate based oxygenase enzyme is incorporated into the laundry detergent andlor fabric care compositions in accordance with the invention preferably at a level of from 0.0001 % to 2%, more preferably from 0.001 % to 0.5%, most preferably from 0.002% to 0.9 % pure modified enzyme by weight of the composition.
It has been surprisingly found that the laundry detergent and/or fabric care compositions comprising said modified proteinic substrate based oxygenase, provide improved sanitisation benefits. In addition, they demonstrate improved cleaning, i.e. effective and efficient cleaning of proteinic based stains and/or soils such as food and everyday body soils and improved whitening performance.
Copending patent application Us serial No. PCTlUS97/12282 describes oxygenases directed to body soils such as are listed below 1.13.11.21 ~i-carotene 15,15'-dioxygenase 1.13.11.25 3,4-dihydroxy-9,10-secoandrosta-1,3,5(10)-tirene-9,17-dione 4,5-dioxygenase 1.14.13.15 cholestanetriol26-monooxygenase~
1.14.13.26 phosphatidylcholine 12-monooxyge~nase 1.14.13.43 leukotriene-e4 20-monooxygenase 1.14.15.3 alkane 1-monooxygenase 1.14.15.5 corticosterone 18-monooxygenase 1.14.99.3 heme oxygenase 1.14.99.4progesterone monooxygenase 1.14.99.7squalene monooxygenase 1.14.99.9steroid 17a-monooxygenase 1.14.99.10steroid 21-monooxygenase 1.14.99.11estradiol6b-monooxygenase 1.14.99.124-androstene-3,17-dioone monooxygenase 1.14.99.14progesterone 11 a-monooxygena~;e 1.14.99.16methylsterol monooxygenase 1.14.99.24steroid 9c~-monooxygenase Sorne oxygenases directed to body soils require the presence of a cofactor. In this instance, the laundry detergent and/or Fabric care compositions of the present invention will further comprise the corresponding enzymatic cofactor.
The oxygenase directed to body soils enzyme is incorporated into the laundry detergent and/or fabric care compositions in accordance with the invention preferably at a level of from 0.0001 % to 2%, more preferably from 0.001 % to 0.5%, most preferably from 0.002% to 0.1% pure modified enzyme by weight of the composition.
It has been surprisingly found that the laundry detergent andlor fabric care compositions comprising said modified oxydenase directed to body soils, provide improved sanitisation benefits. In addition, they demonstrate improved cleaning, i.e. effective and efficient everyday Ibody soil removal and improved whitening performance.
Other enzymes known for their sanitisation potential are the enzymes exhibiting endoglucanase activity specific for xyloglucan (Co-pending patent application US serial No. SN60/045,826, filed May 5, 199'7). The laundry detergent and/or fabric care products of the present invention, comprise one or more enzymes exhibiting endoglucanase activity specific for xyloglucan, preferably at a level of from 0.001 % to 1 %, more preferably from 0.01 % to 0.5%, by weight of the composition. As used herein, the term "endoglucanase activity" means the capability of the enzyme to hydrolyze 1,4-~3-D-glycosidic linkages present in any cellulosic material, such as cellulose, cellulose derivatives, lichenin, ~i-D-glucan, zz or xyioglucan. The endoglucanase activity may be determined in accordance with methods known in the art, examples ~ofi which are described in WO
94114953 and hereinafter. One unit of endoglucanase activity (e.g. CMCU, AVIU, XGU or BGU) is defined as the production of 1 p,mol reducing sugar/rnin from a glucan substrate, the glucan substrate being, e.g., CMC (CMCU), acid swollen Avicell (AVIU), xyloglucan (XGU) or cereal (i-glucan (BGU). The reducing sugars are determined as described iin WO 94114953 and hereinafter.
The specific activity of an endoglucanase towards a substrate is defined as units/mg of protein. More specifically, the laundry detergent andlor fabric care compositions of the present invention, comprise an enzyme exhibiting as its highest activity XGU endoglucanase activity (hereinafter "specific for xyloglucan"), which enzyme: , i) is encoded by a DNA sequence compri;>ing or included in at least one of the fiollowing partial sequences described in the Co-pending patent application US serial No. 5N60I045,826, filed May 5, 1997 or a sequence homologous thereto encoding a polypeptide specific for xyloglucan with endoglucanase activity, ii) is immunologically reactive with an antibody raised against a highly purified endoglucanase encoded by the DNA sequence defined in i) and derived from Aspergillus aculeatus, CBS 101.43, and is specific for xyloglucan.
More specifically, as used herein the term "specific for xyloglucan" means that the endoglucanse enzyme exhibits its higheat endoglucanase activity on a xyloglucan substrate, and preferably less than i'S% activity, more preferably less than 50% activity, most preferably less than about 25% activity, on other cellulose-containing substrates such as carbo:xymethyl cellulose, cellulose, or other glucans. Preferably, the specificity of an endoglucanase towards xyloglucan is further defined as a relative activity determined as the release of reducing sugars at optimal conditions obtained iby incubation of the enzyme with xyloglucan and the other substrate to be testedl, respectively. For instance, the specifcity may be defined as the xylaglucan '.to (3-glucan activity (XGUIBGU), xyloglucan to carboxy methyl cellulose activity (XGUICMCU), or xyloglucan to acid swollen Avicell activity (XGUIAVIU), which is preferably greater than about 50, such as 75, 90 or 100. The term "derived from" as used herein refers not only to an endoglucanase produced by strain CBS 101.43, but also an endoglucanase encoded by a DNA sequence isolated from strain CBS 101.43 and produced in a host organism transformed with said DNA sequence.

It has been surprisingly found that the laundry detergent and/or fabric care compositions comprising said modified enzyme exhibiting endoglucanase activity specific for xyloglucan, provide improved cleaning and sanitisation of the treated surfaces.
Also encompassed in the present invention are the hexosaminidase enzymes described in Co-pending patent application U~~ serial No. SN60/045,75fi, filed June 5, 1997. The laundry detergent andlor fabric care products of the present invention comprise one or more hexosaminidas~e enzymes, preferably at a level of from about 0.001 % to about 1 %, more preferably from about 0.01 % to about 0.5%, by weight of the composition. More preferred are hexosaminidases having MIC for antimicrobial activity of less than about 0.125%, most preferably less than about 0.025%. As used herein, the term "hexosaminidase enzyme"
means those enzymes whose activity is for the hydrolysis of . terminal non-reducing N-acetyl-D-hexosamine residues iin N-acetyl-(3-D-hexosaminides, thereby acting on N-acetylglucosides and N-acetylgalactosides, and are classified under the class of enzymes EC .3.2.1.52 {also known as "~i-N-acetylhexosaminidase"). Hexosaminidases are known, for example those exzymes having the SEQ. ID No. 1-5 {Co-pending patent application US serial No. SN60/045,756, filed June 5, 1997) in thE: literature as hexosaminidases.
Furthermore, DNA sequences encoding for h~exosaminidases are known, for example those having the SEQ iD No. 6 and i' (Co-pending patent application US serial No. SN601045,756, filed June 5, 19!x7). In addition, a commercially available hexosaminidase is "exo-(i-N-acE~tylglucosaminidase" sold by Boehringer. Thus, more specifically, the laundlry detergent andlor fabric care compositions of the present invention comprise a hexosaminidase enzyme exhibiting antimicrobial activity, which enzyme:
i) is encoded by a DNA sequence comprising or included in at least one of the sequences of SEQ ID Nos 6 or 7 as dlescribed in Co-pending patent application US serial No. SN601045,756, f:lecl June 5, 1997, or a sequence homologous thereto encoding a hexosaminidasE; polypeptide, ii) is immunologically reactive with an antibody raised against a highly purified hexosaminidase encoded by the DNA sequence defined in i), arid is specific for hexosaminidase, iii) is immunologically reactive with an aintibody raised against a highly purified hexosaminidase having SEQ iD Nos 'I-5 as described in Co-pending patent application US serial No. SN60/045,T56, filed June 5, 199T, and is specific for hexosaminidase, or iv) is a hexosaminidase having SEQ ID Nos 1-5 as described in Co-pending patent application US serial No. SN60I'045,756, filed June 5, 1997, or a hexosaminidase polypeptide sequence homologous thereto.
It has been surprisingly found that the laundry detergent andlor fabric care composition comprising said modified hexosaminidase, provide improved cleaning and sanitisation of the treated surfaces.
Endo-dextranases are also suitable enzyme to be modified and included in the laundry detergent and/or fabric care compositions of the present invention. By endo-dextranase enzyme it is meant herein any enzyme which degrade, for instance hydrolyse andlor modify 1,6-alpha-gluc:osidic linkages in dextran based substrate; dextrans being high molecular weiight polysaccharides with a D-glucose backbone characterised by predominantly alpha-D(1-6) links. Endo-dextranases can be of fungal origin e.g. Penicillium species or can be expressed in any other suitable host organism via cloning techniques known in the art.
The naturally occurring endo-dextranase from Pe,nicillium lilacinum is especially suited for incorporation in neutral pH or granular detergents.
It has been surprisingly found that the laundry detergent andlor fabric care comprising said modified endo-dextranase, provide improved overall cleaning and enhanced sanitisation of the treated surfaces together with malodour control.
Similarly; mycodextranases are suitable enzymEa for the purpose of the present invention. These 1,3- 1,4-a-D-glucan 4-glucanohydrolase enzymes hydolysing 1, 4-a-D-glucosidic linkages in a-D-glucans containing both 1,3- and 1,4-bonds are described in the co-pending application PCTIUS96115572 filed on September 27, 1996.
It has been surprisingly found that the iaund~ry detergent andlor fabric care compositions comprising said modified mycodextranase, provide improved overall cleaning and enhanced sanitisation of the treated surfaces together with malodour control.
These endo-dextranase and mycodextranase enzymes are generally incorporated in the compositions of the present invention at a level of from 10-x% to 1 %, preferably from 10-5% to 0.5% pure modified enzyme by weight of the total composition.
Suitable enzymes for the purpose of the present invention comprise Type II
endoglycosidases. Type ll endoglycosidases are enzymes which are capable of cleaving linkages at or near the juncture of the protein and carbohydrate units of a glycoprotein. Preferably, such type II endoglycosidase are capable of cleaving at least one glycosidic linkage within about lthree glycosidic linkages of the protein-carbohydrate unit juncture (including the glycosidic linkage comprising the protein-carbohydrate junction). Most preferably, such glycosidic linkages are within about two glycosidic linkages of the protein-carbohydrate unit juncture.
Type il endoglycosidases are also defined by their specificities for the particular glycosidic linkages for the known core structure of N- and O- linked giycoproteins. The type II endoglycosidase enzymes are described in details in US 5,395, 541, US 5,041,236 and US 5,356,803 and encompass Endo-D, Endo-H, Endo-L, Endo-C, Endo-CII, Endo-F-Gal type, Endo-F and/or PNGaseF.
Method for cleaning a surface, on which is bound a glycoside-containing substance and method of removing microorganisms from surfaces with Type l( endoglycosidases are described respectively in US 5,238,843 and US, 5, 258,304.
It has been surprisingly found that the laundry detergent andlor fabric care compositions comprising said modified Type' II endoglycosidases, provide improved overall cleaning, especially the removal of glycoside-containing substances and provide enhanced sanitisation of the treated surfaces.
Another type of enzyme suitable for the purpose of the present invention is lysozyme. Lysozyme is a mucopeptide glycohydrolase enzyme which hydrolyses 1,4-~i links between N-acetyl-muramic acid and N-acetylglucosamine and is thus destructive to cell walls of certain microbes. Ruminant stomach lysozyme is a lysozyme characteristic of the stomach mucosa of mammals with foreguts.
It has been surprisingly found that the laundry detergent andlor fabric care compositions comprising said modified lysozyme enzyme, provide enhanced sanitisation of the treated surfaces.

Another suitable antimicrobial enzyme for the purpose of the present invention is the Lyticase enzyme sold by Sigma. This enzyme cleaves poly-~3-1,3- glucose in yeast cell walls.
It has been surprisingly found that the laundry detergent and/or fabric care compositions comprising said modified Lyticase enzyme, provide enhanced sanitisation of the treated surfaces.
Finally, the xanthine oxidase enzymes of the EC 1.1.3.22 are contemplated for the compositions of the present. invention. Xanthine oxidase is commercially available from Sigma. Xanthine oxidase is a flavoprotein containing iron and molybdenum and catalyses the oxidation of hyhoxanthine to xanthine and then to uric acid. Molecular oxygen is the oxidant for both reactions and is reduced to H202. Xanthine oxidase is active on a broad range of substrates including purin derivatives, pteridine and other heterocyclic coimpounds. The xanthine oxidase is preferably accompanied with an aldehyde enhancer.
It has been surprisingly found that the laundry detergent and/or fabric care compositions comprising said modified xanthine oxidase enzyme, provide improved cleaning, especially of carotenoid and polyphenolic stains and provide enhanced sanitisation of the treated surfaces.
Preferred enzymes to be included in the laundry detergent and/or fabric care compositions of the present invention are E=xo-a-N acetyl gluosaminidase {EC3.21.50); Endo-~3-N- acetyl glucosaminida;>e (EC 3.21.96); N-acetyl - ~3-glucosaminidase (EG.3.2.1.52); Dextranase (E=C.32.1.11); Lyticase; Xanthine oxidase (EC.1.1.3.22); the protocatechuate 3, 4~ oxidoreductase {EC.1.13.11.3);
Catechol dioxygenase (EC.1.13.11.1); lipoxyc~enases (EC. 1.13.11.12) and mixtures thereof.
The above-mentioned enzymes may be of any suitable origin, such as vegetable, animal, bacterial, fungal and yeast origin. Origin can further be mesophilic or extremophilic (psychrophilic, psychrotrophic, thermophilic, barophilic, aikalophilic, acidophilic, halophilic, etc;.). Purified or non-purified forms of these enzymes may be used. Nowadays, it is common practice to modify wild-type enzymes via protein / genetic engineering techniques in order to optimise their performance efficiency in the laundry detergent andlor fabric care compositions of the invention. For example, the variants may be designed such WO 99/57157 PCTIUS99/09a55 that the compatibility of the enzyme to comn-~only encountered ingredients of such compositions is increased. Alternatively, tlhe variant may be designed such that the optimal pH, bleach or chelant stability;, catalytic activity and the like, of the enzyme variant is tailored to suit the particular cleaning application.
In particular, attention should be focused on amino acids sensitive to oxidation in the case of bleach stability and on surface charges for the surfactant compatibility. The isoelectric point of such enzymes may be modified by the substitution of some charged amino acids, e.gi. an increase in isoelectric point may help to improve compatibility with anionic: surfactants. The stability of the enzymes may be further enhanced by the creation of e.g, additional salt bridges and enforcing metal binding sites to increase chelant stability.
Said modified enzymes are normally incorporated in the laundry detergent and/or fabric care composition at levels from 0.0001 % to 2% of pure modied enzyme by weight of the composition. The enzymes can be added as separate single ingredients (grills, granulates, stabilisssd liquids, etc. containing one enzyme ) or as mixtures of two or more enzymes ( e.g. cogranulates ).
The catalytically active amino acid sequencE~ in question may comprise or consist of the whole of - or substantially the whole of - the full amino acid sequence of the mature enzyme in question, or it may consist of a portion of the full sequence which retains substantially tlhe same catalytic (enzymatic) properties as the full sequence.
Modified proteins {enzyme hybrids or antimicrobial peptide hybrids) of the type in question, as well as detailed descriptions of the preparation and purification thereof, are known in the art [see, e.g., WO 90/006x9, WO 94124158 and WO
95/16782, as well as Greenwood et al., Biotechnoloay and Bioenr~ineering~ 44 (1994) pp. 1295 - 1305]. The production of Enzymes hybrid is given in WO
91/10732 wherein novel derivatives of cellulase enzymes combining a core region derived from a Bacillus NICB 40250 endoglucanase with a CBD derived from another cellulase enzyme or a combining a core region derived from another celiulase enzyme with a CBD derived from a Bacillus N1CB 40250 endoglucanase, are constructed. WO 95/16782 describes the combinations of different core regions with several CBD and the cloning and high level expression of these novel truncated cellulase proteins or derivatives thereof, in Trichoderma Iongibrachiatum.
They may, e.g., be prepared by transforming into a host cell a DNA construct comprising at least a fragment of DNA encoding the cellulose-binding domain ligated, with or without a linker, to a DNA sequence encoding the enzyme of interest, and growing the transformed host cell to express the fused gene. One relevant, but non-limiting, type of recombinant product (enzyme hybrid andlor antimicrobial peptide hybrid) obtainable in this matter - often referred to in the art as a "fusion protein°' - may be described by one of the following general formulae:
A-CBD-MR-X-B
A-X-MR-CBD-B
In the latter formulae, CBD is an amino acid sequence comprising at least the cellulose-binding domain (CBD) per se.
MR (the middle region; a linking region) may be a bond, or a linking group comprising from 1 to about 100 amino acid residues, in particular of from 2 to amino acid residues, e.g. from 2 to '15 amino acid residues. MR may, in principle, alternatively be a non-amino-acid linker (See below).
X is an amino acid sequence comprising the' above-mentioned, cataiytically (enzymatically) active sequence of amino acid residues of a poiypeptide encoded by a DNA sequence encoding the antimicrobial enzyme of interest and/or is an amino acid sequence comprising the above-mentioned sequence of amino acid residues of a poiypeptide encoding the antimicrobial peptide of interest.
The moieties A and B are independently optional. When present, a moiety A or B constitutes a terminal extension of a CE~D or X moiety, and normally comprises one or more amino acid residues.
It will thus, inter alia, be apparent from the above that a CBD in an enzyme hybrid andlor antimicrobial peptide hybrid of the type in question may be positioned C-terminally, N-terminally or internally in the enzyme hybrid and/or antimicrobial peptide hybrid. Correspondingly, an X moiety in an enzyme hybrid and/or antimicrobial peptide hybrid of the type ins question may be positioned N-terminally, C-terminally, or internally in the enzyme hybrid and/or antimicrobial peptide hybrid.
Enzyme hybrids and/or antimicrobial peptide hybrid of interest in the context of the invention include enzyme hybrids and/or a.ntimicrobial peptide hybrid which comprise more than one CBD, e.g. such that two or more CBDs are linked directly to each other, or are separated from one another by means of spacer or linker sequences {consisting typically of a sequence of amino acid residues of appropriate length}. Two CBDs in an enzyme hybrid and/or antimicrobial peptide hybrid of the type in question may, for example, also be separated from one another by means of an -MR-X- moiety as defined above. One or more cellulose binding domain can be linked to the N-terminal and/or C-terminal parts of the cellulase core region. Any part of a t~BD can be selected, modified, truncated etc.
Preferably, attention will be paid in the construction of enzyme hybrids andlor antimicrobial peptide hybrid of the type in question to the stability towards protealytic degradation. Two- and multi-domain proteins are particularly susceptible towards proteolytic cleavage of linker regions connecting the domains. Proteases causing such cleavage may, for example, be subtilisins, which are known to often exhibit broad substrai:e specificities [see, e.g. :
Grr~n et al., Biochemistry 31 (1992), pp. 6011-6018; Teplyakov et al., Protein Engineering 5 (1992}, pp. 413-420]. Glycosyiation of linker residues in eukaryotes is one Nature's ways of preventing proteolytic degradation. Another is to employ amino acids which are less favoured by the surrounding proteases.
The length of the linker also plays a rote in relation to accessibility by proteases.
Which "solution" is optimal depends on the environment in which the enzyme hybrid and/or antimicrobial peptide hybrid is to function. When constructing new enzyme hybrid andlor antimicrobial peptide hybrid molecules, preferably, attention will be paid to the linker stability.
Plasmids Preparation of plasmids capable of expressing fusion proteins having the amino acid sequences derived from fragments of more than one polypeptide is well known in the art (see, for example, WO 90100609 and WO 95/16782). The WO 99!57157 PCTIUS99/09455 expression cassette may be included within a replication system far episomal maintenance in an appropriate cellular host or may be provided without a replication system, where it may become integrated into the host genome. The DNA may be introduced into the host in accordance with known techniques such as transformation, microinjection or the like.
Once the fused gene has been introduced into the appropriate host, the host may be grown to express the fused gene. Normally it is desirable additionally to add a signal sequence which provides far secretion of the fused gene. Typical examples of useful genes are:
1) Signal sequence -- (pro-peptide) -- carbohydrate-binding domain -- linker --antimicrobial enzyme or antimicrobial peptide sequence of interest, or 2) Signal sequence -- (pro-peptide) -- antirnicrobial enzyme or antimicrobial peptide sequence of interest -- linker -- carbohydrate-binding domain, in which the pro-peptide sequence normally contains 5-100, e.g. 5-25, amino acid residues. The recombinant product rnay be glycosylated or non-g lycosylated.
Cellulose Binding Domain (CBD) In the present context, the terms "amino acid sequence comprising a CBD or Cellulose Binding Domain or CBD" are intended to indicate an amino acid sequence capable of effecting binding of the c~ellulase to a cellulosic substrate (e.g. as described in P. Kraulis et al., Determination of the three-dimensional structure of the C terminal domain of cellobiohydrolase I from Trichoderma reesei. A study using nuclear magnetic resonance and hybrid distance geometry-dynamically simulated annealing. Biochemistry 28:7241-7257, 1989).
The classification and properties of cellulose binding domains are presented in P. Tomme et al., in the symposium "Enzyimatic degradation of insoluble polysaccharides" (ACS Symposium Series 618, edited by J.N. Saddler and IUI.H.
Penner, ACS, 1995).
Cellulose-binding (and other carbohydrate-binding) domains are polypeptide amino acid sequences which occur as integral parts of large polypeptides or proteins cansisting of two or more polypeptidE; amino acid sequence regions, especially in hydrolytic enzymes (hydrolases) which typically comprise a catalytic domain containing the active site for substrate hydrolysis and a carbohydrate-binding domain for binding to the carbohydrate substrate in question. Such enzymes can comprise more than one catalytic domain and one, two or three carbohydrate-binding domains, and they may further comprise one or more polypeptide amino acid sequence regions linking the carbohydrate-binding domains) with the catalytic domain(s), a region of the latter type usually being denoted a "linker".
Examples of hydrolytic enzymes comprising a cellulose-binding domain are cellulase, xylanases, mannanases, arabinofuranasidases, acetylesterases and chitinases. "Cellulose-binding domains" have also been found in algae, e:g. in the red alga porphyra purpurea in the form of a non-hydrolytic polysaccharide-binding protein [see P. Tomme et al., Cellulose-binding domains -Classification and Properties in Enzymatic Degradation of Insoluble Carbohydrates , John N.
Saddler and Michael H. Penner (Eds.), ACS Symposium Series, No. 618 (1996)]. However, most of the known CBDs (which are classified and referred to by P. Tomme et al. (op. cit.) as "cellulose-binding domains"] derive from celluiases and xylanases.
In the present context, the term "cellulose-binding domain°' is intended to be understood in the same manner as in the latter reference {P. Tomme et al., op.
cit. ) The P. Tomme et al. reference classifies more than 120 "cellulose-binding domains" into 10 families (I-X) which may have different functions or roles in connection with the mechanism of substrate binding. However, it is to be anticipated that new family representatives and additional families will appear in the future.
In proteinslpolypeptides in which CBDs occur (E3.g, enzymes, typically hydrolytic enzymes such as cellulases), a CBD may be located at the N or C terminus or at an internal position.
The part of a polypeptide or protein (e.g. hydrolytic enzyme) which constitutes a CBD per se typically consists of more than about 30 and less than about 250 amino acid residues. For example, those CBDa listed and classified in Family I

WO 99/57157 PC'f/US99/09455 in accordance with P. Tomme et al. (op. cit") consist of 33-37 amino acid residues, those listed and classified in Family Ila consist of 95-108 amino acid residues, those listed and classified in Family VI consist of 85-92 amino acid residues, whilst one CBD (derived from a cellulase from Clostridium thermocellum} listed and classified in Family 'VII consists of 240 amino acid residues. Accordingly, the molecular weight of an amino acid sequence constituting a CBD per se will typically be in the range of from about 4kD to about 40kD, and usually below about 35kD.
Cellulose binding domains can be produced by recombinant techniques as described in H. Stalbrand et al., Applied and Environmental Microbiology, Mar.
1995, pp. 1090-1097; E. Brun et al., (1995) Eur~. J. Biochem. 237, pp. 142-148;
J.B. Coutinho et al., (1992) Molecular Microbiology fi(9), pp. 1243-1252 In order to isolate a cellulose binding domain of, e.g. a celluiase, several genetic engineering approaches may be used. One method uses restriction enzyme to remove a portion of the gene and then to fuse the remaining gene-vector fragment in frame to obtain a mutated gene that encodes a protein truncated for a particular gene fragment. Another method involves the use of exonucleases such as Ba131 to systematically delete nucleotides either externally from the 5' and the 3' ends of the DNA or internally from ai restricted gap within the gene.
These gene-deletion methods result in a mutai:ed gene encoding a shortened gene molecule whose expression product may i~hen be evaluated for substrate-binding (e.g. cellulose-binding) ability. Appropri<~te substrates for evaluating the binding ability include cellulosic materials such as Avicel ~"" and cotton fibres.
Other methods include the use of a selective or specific protease capable of cleaving a CBD, e.g. a terminal CBD, from the remainder of the polypeptide chain of the protein in question.
As already indicated (vide supra), once a nucleotide sequence encoding the substrate-binding (carbohydrate-binding) region has been identified, either as cDNA or chromosomal DNA, it may then be manipulated in a variety of ways to fuse it to a DNA sequence encoding the enzyme or enzymatically active amino acid sequence of interest. The DNA fragment encoding the carbohydrate-binding amino acid sequence, and the DNA encoding the enzyme or enzymatically active amino acid sequence of interest are then ligated with or without a linker. The resulting ligated DNA may then be manipulated in a variety of ways to achieve expression. Preferred microbial expression hosts include certain Aspergillus species (e.g. A. niger or A.. oryzae), Bacillus species, and organisms such as Escherichia coli or Saccharo:myces cerevisiae.
Preferred CBDs for the purpose of the present invention are selected from the group consisting of : CBDs CBHII from Trichod~:rma reesei, CBDs CenC, CenA
and Cex from Cellulomonas frmi, CBD CBHI from Trichoderma reesei, CBD
Cellulozome from Clostridium cellulovorans, CBD E3 from Thennonospora fusca, CBD-dimer from Clostridium sfecorarium (NCIMB11754) XynA, CBD from Bacillus agaradherens (NCIMB40482) and/or CBD family 45 from Humicola insolens. More preferred CBDs for the purpose of the present invention are the CBD CenC from Cellulomonas fimi, CBD Cellulozome from Clostridium cellulovorans and the CBD originating from the fungal Humicola lnsolens cellulase sold under the tradename "Carezyrne" by Novo Nordisk A/S. Carezyme is an endoglucanase from family 45, derived from Humicola insolens DSM1800, having a molecular weight of about 43kDa and exhibiting cellulolytic activity Linking region The term "linker" or "linking region"' or "Middle region - MR" is intended to indicate a region that might adjoin the CBD and connect it to the catalytically active amino acid sequences of the antimicrobial enzyme andlor to the amino acid sequence of the antimicrobial peptide. When present, this linking can be achieved chemically or by recombinant techniques.
An example of the recombinant technique dfacribing the expression of an enzyme with the CBD of different origin is described in S. Karita et al., (1996) Journal of Fermentation and Bioengineering, Vol. 81, No. 6, pp. 553-556.
Preferred linking regions are amino acid linking region (peptides), some examples thereof are described in N.R. Gllkes ~et al., Microbiol. Rev. 55, 1991, pp. 303-315. The linking region can comprise iFrom 1 to about 100 amino acid residues, in particular of from 2 to 40 amino acid residues, e.g. from 2 to 15 amino acid residues. As stated above, it is preferred to use amino acids which are less favoured by the surrounding proteases. Suitable amino acid linking regions are the Humicola insolens family 45 cE;llulase linker, the NifA gene of Klebsiella pneumoniae-CiP linker, the E. coli OmpA gene-CiP linker, the E3 cellulase Them~omonospora fusca linker and the CenA cellulase linker.;
preferably the Humicola insolens family 45 cellulase linker and the E3 cellulase Thermomonospora fusca linker.
Non amino acid/proteinic compounds, referred to as "non-amino acid" can also be used for the linking of the catalytically active amino acid sequence to the CBD
1 ) Suitable non-amino acid linking regions are the polyethylene glycol derivatives described in the Shearwater polymers, inc. catalog of January 1996, such as the nucleophilic PEGs, the carboxyl PEGs, the electrophilically activated PEGs, the sulfhydryl-selective PEGs, the heterofunctional PEGs, the biotin PEGs, the vinyl derivatives, the PEG siianes and the PEG phospholipids. In particular, suitable non-amino acid finking regions are the heterofunctional PEG, {X-PEG-Y) polymers from Shearwater such a:> PEG(NPC)2, PEG-(NH2)2, t-BOC-NH-PEG-NH2, t-BOC-NH-PEG-C02NHS, OH-PEG-NH-tBOC, FMOC-NH-PEG-COZNHS or PEG(NPC)2 MW 3400 from Sigma, glutaric diaidehyde 50 wt% solution in water from Aldrich, disuccinimidyil suberate (DSS) form Sigma, y-maleimidobutyric acid N-hydroxysuccinimide ester (GMBS) from Sigma, 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide hydrochloride (EDC) from Sigma and dimethyl suberimidate hydrochloride (DMS) from Sigma.
2) Other suitable non-amino acid linking regions are 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide, N-ethyl-5-ph~enylisoaxolium-3-sulphonate, 1-cyclohexyl-3(2morpholinoethyl) carbodide metho-p-toluene sulphonate, N-ethoxycarbonyl-2-ethoxy 1,2, dihydroquinoline or glutaraldehyde.
3) Also suitable are the crosslinkers described in the 1999/2000 Pierce Products Catalogue from the Pierce Company, under the heading "Cross linking reagents the SMPH, SMCC, LC-SMCC compounds, and preferably the Sulfo-KMUS
compound.
Preferred chemical linking regions are PEG(NF'C)2, (NH2)2-PEG, t-BOC-NH-PEG-NH2, MAL-PEG-NHS, VS-PEG-NHS polymers from Shearwater andlor the Sulfo-KMUS compound from Pierce.

Detergient components The laundry detergent and/or fabric care compositions of the invention must contain at least one additional detergent and/or fabric care components. The precise nature of these additional components, and levels of incorporation thereof will depend on the physical form of the composition, and the nature of the cleaning operation for which it. is to be used.
The laundry detergent andlor fabric care compositions of the present invention preferably further comprise a detergent ingredient selected from cationic, anionic and/or nonionic surfactants and/or bleaching agent.
The laundry detergent and/or fabric care compositions according to the invention can be liquid, paste, gels, bars, tablets, spray, ifoam, powder or granular forms.
Granular compositions can also be in "compac:t" form, the liquid compositions can also be in a "concentrated'° form.
The compositions of the invention may for example, be formulated as hand and machine laundry detergent compositions including laundry additive compositions and compositions suitable for use in the soaking and/or pretreatment of stained fabrics, rinse added fabric softener composition;>. Fire-or post treatment of fabric include gel, spray and liquid fabric care compositions. A rinse cycle with or without the presence of softening agents is also contemplated.
When formulated as compositions suitable for use in a laundry machine washing method, the compositions of the invention preferably contain both a surfactant and a builder compound and additionally one or more detergent components preferably selected from organic polymeric compaunds, bleaching agents, additional enzymes, suds suppressers, dispersants, lime-soap dispersants, soil suspension and anti-redeposition agents and corrosion inhibitors. Laundry compositions can also contain softening agents, as additional detergent components.

The compositions of the invention can also be used as detergent additive products in solid or liquid form. Such additive products are intended to supplement or boost the performance of conventional detergent compositions and can be added at any stage of the cleaning process.
If needed the density of the laundry detergent compositions herein ranges from 400 to 1200 gllitre, preferably 500 to 950 gllitre of composition measured at 20°C.
The "compact" form of the compositions herein is best reflected by density and, in terms of composition, by the amount of inorganic filler salt; inorganic filler salts are conventional ingredients of detergent compositions in powder form; in conventional detergent compositions, the filler salts are present in substantial amounts, typically 17-35% by weight of the total composition. In the compact compositions, the filler salt is present in amounts not exceeding 7 5% of the total composition, preferably not exceeding 10%, most preferably not exceeding 5%
by weight of the composition. The inorganic filler salts, such as meant in the present compositions are selected from the alkali and alkaline-earth-metal salts of sulphates and chlorides. A preferred filler salt is sodium sulphate.
Liquid laundry detergent and/or fabric care compositions according to the present invention can also be in a "concentrated form", in such case, the liquid laundry detergent and/or fabric care compositions according the present invention will contain a lower amount of water, compared to conventional liquid detergents. Typically the water content of the concentrated liquid detergent is preferably less than 40%, more preferably less than 30%, most preferably less than 20% by weight of the detergent composition.
Surfactant system The laundry detergent andJor fabric care compositions according to the present invention preferably comprise a surfactant system wherein the surfactant can be selected from cationic, nonionic andlor ani~pnic surfactants. It has been surprisingly found that the laundry detergent and/or fabric care compositions of the present invention further comprising a cationic, anionic andlor nonionic surfactant provide improved sanitisation and improved cleaninglwhitening benel=fts.
The surfactant is typically present at a level of from 0.1 % to 60% by weight.
More preferred levels of incorporation are 1% tc> 35% by weight, most preferably from 1 % to 30% by weight of laundry detergenir andlor fabric care compositions in accord with the invention.
The surfactant is preferably formulated to be compatible with enzyme components present in the composition. In liquid or gel compositions the surfactant is most preferably formulated such tlhat it promotes, or at least does not degrade, the stability of any enzyme in these: compositions.
Cationic detersive surfactants suitable for use in the laundry detergent and/or fabric care compositions of the present invention are those having one long-chain hydrocarbyl group. Examples of such .cationic surtactants include the ammonium surfactants such as alkyltrimethylamrnonium halogenides, and those surfactants having the formula [RZ(OR3)ylIR4(OR3)y~2'.R5N+X_ wherein R2 is an alkyl or alkyl benzyl group having from about 8 to about 18 carbon atoms in the alkyl chain, each R3 is selected from the group consisting of -CH2CH2-, -CH2CH(CH3)-, -CH2CH(CH20H)-, -CH2CH2CH2-, and mixtures thereof; each R4 is selected from the group c~ansisting of C1-C4 alkyl, C1-C4 hydroxyalkyl, benzyl ring structures formed by joining the two R4 groups, -CH2CHOH-CHOHCOR6CHOHCH20H wherein R6 is any hexose or hexose polymer having a molecular weight less than about 1000, and hydrogen when y is not 0; R5 is the same as R4 or is an alkyl chain wherein the total number of carbon atoms of R2 plus R5 is not more than about 18; each y is from 0 to about 7 0 and the sum of the y values is from 0 to about 15; and X is any compatible anion.
Quaternary ammonium surfactant suitable for the present invention has the formula (I):

R R2 ~+ N',,,,,,,Ra ~O ERs X_ Formula I
whereby R1 is a short chainlength alkyl (C6-C10) or alkylamidoalkyl of the formula (II) Cs C.~ N
~CH~~
O
Formula II
y is 2-4, preferably 3.
whereby R2 is H or a C1-C3 alkyl, whereby x is 0-4, preferably 0-2, most preferably 0, whereby R3, R4 and R5 are either the same or different and can be either a short chain alkyl (C1-C3) or alkoxylated alkyl of t;he formula III, whereby X- is a counterion, preferably a halide, e.g. chloride or methylsulfate.
~H
O z Formula 111 R6 is C1-C4 and z is 1 or 2.
Preferred quat ammonium surfactants are those as defined in formula I whereby R1 is Cg, C10 or mixtures thereof, x=o, R3, R4 = CH3 and Rb = CH2CH20H.
Highly preferred cationic surfactants are the water-soluble quaternary ammonium compounds useful in the present connposition having the formula R1 R2R3R4N~X- (,i) wherein R1 is Cg-C1g alkyl, each of R2, Rg and R4 is independently C1-C4 alkyl, C1-Cq, hydroxy alkyl; benzyl, and -(C2H40)xH where x has a value from 2 to 5, and X is an anion. Not more than one of R2, R3 or R4 should be benzyl.

WO 99/5715? PCT/U~99/09455 The preferred alkyl chain length for R1 is C12-~C15 particularly where the alkyl group is a mixture of chain lengths derived from coconut or palm kernel fat or is derived synthetically by olefin build up or OXO alcohols synthesis. Preferred groups for R2R3 and R4 are methyl and hydroxyethyl groups and the anion X
may be selected from halide, methosulphate, acetate and phosphate ions.
Examples of suitable quaternary ammonium compounds of formulae {i) for use herein are coconut trimethyl ammonium chloride or bramid~:;
coconut methyl dihydroxyethyl ammonium chloride or bromide;
decyl methyl ammonium chloride;
decyl dimethyl hydroxyethyl ammonium chloride or bromide;
C12-15 dimethyl hydroxyethyl ammonium chloride or bromide;
coconut dimethyl hydroxyethyl ammonium chloride or bromide;
myristyl trimethyl ammonium methyl sulphate;
lauryl dimethyl benzyl ammonium chloride or bromide;
lauryi dimethyl (ethenoxy)4 ammonium chloride ~or bromide;
choline esters (compounds of formula (i) wherein R1 is CH2-CH2-O-C-C12_14 alkyl and R2R3R4 are methyl).
I I
O
di-alkyl imidazolines [compounds of formula (i}].
Other cationic surfactants useful herein are atso described in U.S. Patent 4,228,044, Cambre, issued October 14, 1980 and in European Patent Application EP 000,224.
Polyethylene, polypropylene, and pofybutylene oxide condensates of alkyl phenols are suitable for use as the nonionic suri~actant of the surfactant systems of the present invention, with the polyethylene oxide condensates being preferred. These compounds include the condensation products of alkyl phenols having an alkyl group containing from about 6 to about 14 carbon atoms, preferably from about 8 to about 14 carbon atoms, in either a straight-chain or branched-chain configuration with the alkylene oxide. In a preferred embodiment, the ethylene oxide is present in ain amount equal to from about 2 to about 25 moles, more preferably from about :3 to about 15 motes, of ethylene oxide per mole of alkyl phenol. Commercially available nonionic surfactants of this type include IgepaITM CO-630, marketed by the GAF Corporation; and TritonTM X-45, X-114, X-100 and X-102, all marketed by the Rohm & Haas Company. These surfactants are commonly referred to as alkylphenol alkoxylates {e.g., alkyl phenol ethoxylates).
The condensation products of primary and secondary aliphatic alcohols with from about 1 to about 25 moles of ethylene oxide are suitable for use as the nonionic surfactant of the nonionic surfactant systems of the present invention.
The alkyl chain of the aliphatic. alcohol can either be straight or branched, primary or secondary, and generally contains from about 8 to about 22 carbon atoms. Preferred are the condensation products of alcohols having an alkyl group containing from about 8 to about 20 carbon atoms, more preferably from about 10 to about 18 carbon atoms, with fronn about 2 to about 10 moles of ethylene oxide per mole of alcohol. About 2 to about 7 moles of ethylene oxide and most preferably from 2 to 5 moles of ethylene oxide per mole of alcoh~I
are present in said condensation products. Examples of commercially available nonionic surfactants of this type include TergitoITM 15-S-9 (the condensation product of C11-C15 linear alcohol with 9 mole~~ ethylene oxide), TergitoITM 24-L-6 NMW (the condensation product of C12-C14 primary alcohol with 6 moles ethylene oxide with a narrow molecular weight distribution), both marketed by Union Carbide Corporation; NeodoITM 45-9 (the condensation product of C14-C15 linear alcohol with 9 moles of ethylene oxide), NeodoITM 23-3 {the condensation product of C12-C13 linear alcohol with 3.0 moles of ethylene oxide), NeodoITM 45-7 (the condensation product of C14-C15 linear alcohol with 7 moles of ethylene oxide), NeodoITM 45-5 {the condensation product of C14-C15 linear alcohol with 5 moles of ethylene oxide) marketed by Shell Chemical Company, KyroTM EOB (the condensation product of C13-C15 alcohol with 9 moles ethylene oxide), marketed by The Procter & Gamble Company, and Genapol LA 030 or 050 (the condensation product of C12-C14 alcohol with 3 or 5 moles of ethylene oxide) marketed by Hoechst. Preferred range of HLB in these products is from 8-11 and most preferred from 8-10.
Also useful as the nonionic surfactant of the surfactant systems of the present invention are the alkylpolysaccharides disclosed in U.S. Patent 4,565,647, Llenado, issued January 21, 1986, having a hydrophobic group containing from about f to about 30 carbon atoms, preferably from about 10 to about 16 carbon atoms and a polysaccharide, e.g. a polyglycoside, hydrophilic group containing from about 1.3 to about 10, preferably from about 1.3 to about 3, most preferably from about 1.3 to about 2.7 saccharide units. Any reducing saccharide containing 5 or 6 carbon atoms can be used, e.g., glucose, galactose and galactosyl moieties can be substituted for the glucosyl moieties (optionally the hydrophobic group is attached at the 2-, 3-, 4-, etc. positions thus giving a glucose or galactose as opposed to a glucoside or galactoside): The intersaccharide bonds can be, e:g., between tile one position of the additional saccharide units and the 2-, 3-, 4-, and/or fi- positions on the preceding saccharide units.
The preferred alkylpolyglycosides have the formula R2~(CnH2n~)t(9lYc~osYl)x wherein R2 is selected from the group consisting of alkyl, alkylphenyl, hydroxyalkyl, hydroxyalkylphenyl, and mixtures thereof in which the alkyl groups contain from about 10 to about 18, preferably from about 12 to about 14, carbon atoms; n is 2 or 3, preferably 2; t is from 0 to about 10, preferably 0; and x is from about 1.3 to about 10, preferably from about 1.3 to about 3, most preferably from about 1.3 to about 2.7. The glycosyl is preferably derived from glucose.
To prepare these compounds, the alcohol or alkylpolyethoxy alcohol is formed first and then reacted with glucose, or a source of glucose, to form the glucoside (attachment at the 1-position). The additional giycosyl units can then be attached between their 1-position and the prE:ceding glycosyl units 2-, 3-, 4-andlor 6-position, preferably predominately the .?-position.
The condensation products of ethylene oxide with a hydrophobic base formed by the condensation of propylene oxide with propylene glycol are also suitable for use as the additional nonionic surfactant systems of the present invention.
The hydrophobic portion of these compounds will preferably have a molecular weight of from about 1500 to about 1800 and will exhibit water insolubility.
The addition of polyoxyethylene moieties to this hydrophobic portion tends to increase the water solubility of the molecule as a whole, and the liquid character of the product is retained up to the point where the polyoxyethylene content is about 50% of the total weight of the condensation product, which corresponds to condensation with up to about 40 moles of ethylene oxide. Examples of compounds of this type include certain of the commercially-available PlurafacTM
LF404 and PluronicTM surfactants, marketed by BASF.
Also suitable for use as the nonionic surfactant of the nonionic surfactant system of the present invention, are the condensation products of ethylene oxide with the product resulting from the reaction of propylene oxide and ethylenediamine.
The hydrophobic moiety of these products consists of the reaction product of ethylenediamine and excess propylene oxide, and generally has a molecular weight of from about 2500 to about 3000. This hydrophobic moiety is condensed with ethylene oxide to the extenit that the condensation .product contains from about 40% to about 80% by weic,~ht of polyoxyethylene and has a molecular weight of from about 5,000 to about 11,000. Examples of this type of nonionic surfactant include certain of the commercially available TetronicTM
compounds, marketed by BASF.
Preferred for use as the nonionic surfactant of the surfactant systems of the present invention are polyethylene oxide condensates of alkyl phenols, condensation products of primary and secondary aliphatic alcohols with from about 1 to about 25 moles of ethylene oxide, alkylpolysaccharides, and mixtures thereof. Most preferred are Cg-C14 alkyl phenol ethoxylates having from 3 to ethoxy groups and Cg-C1g alcohol ethoxylat~es (preferably C10 avg.) having from 2 to 10 ethoxy groups, and mixtures thereof.
Highly preferred nonionic surfactants are polyhydroxy fatty acid amide surfactants of the formula.
R2-C-N-Z, II I

wherein R1 is H, or R1 is C1_4 hydrocarbyi, 2-hydroxy ethyl, 2-hydroxy propyl or a mixture thereof, R2 is C5_3~ hydrocarbyl, and Z is a polyhydroxyhydrocarbyl having a linear hydrocarbyl chain with at least 3 hydroxyls directly connected to the chain, or an alkoxylated derivative thereof. Preferably, R1 is methyl, R2 is a straight C11-15 alkyl or C1g_1g alkyl or alkenyl chain such as coconut alkyl or mixtures thereof, and Z is derived from a reducing sugar such as glucose, fructose, maltose, lactose, in a reductive amination reaction.
Suitable anionic surfactants to be used are linear alkyl benzene sulfonate, alkyl ester sulfonate surfactants including linear esters of Cg-C2p carboxylic acids (i.e., fatty acids) which are sulfonated with gaseous S03 according to "The Journal of the American Oil Chemists Society", .52 (1975), pp. 323-329.
Suitable starting materials would include natural fatty substances as derived from tallow, palm oil, etc.
The preferred alkyl ester sulfonate surfactant, e:>pecially for laundry applications, comprise alkyl ester sulfonate surfactants of the structural formula O
II

wherein R3 is a Cg-C2p hydrocarbyl, preferably an alkyl, or combination thereof, R4 is a C1-Cg hydrocarbyl, preferably an alkyl, .or combination thereof, and M
is a cation which forms a water soluble salt with the alkyl ester sulfonate.
Suitable salt-forming cations include metals such as sodium, potassium, and lithium, and substituted or unsubstituted ammonium cations, such as monoethanolamine, diethanoiamine, and triethanolamine. Preferably, R3 is C1p-C1g alkyl, and R4 is methyl, ethyl or isopropyl. Especially preferred are the methyl ester sulfonates wherein R3 is C1p-C1g alkyl.
Other suitable anionic surfactants include the alkyl sulfate surfactants which are water soluble salts or acids of the formula RO:i03M wherein R preferably is a C10-C24 hYdrocarbyl, preferably an alkyl or hydroxyalkyl having a C1p-C2p alkyl component, more preferably a C12-C1g alkyl o~r hydroxyalkyl, and M is H or a cation, e.g., an alkali metal cation (e.g. sodium, potassium, lithium), or ammonium or substituted ammonium (e.g. methyl-, dimethyl-, and trimethyl ammonium cations and quaternary ammoniunn cations such as tetramethyl-ammonium and dimethyl piperdinium cations anal quaternary ammonium cations derived from alkylamines such as ethylamine, diethylamine, triethylamine, and mixtures thereof, and the like). Typically, alkyl chains of C12-C1g are preferred for lower wash temperatures (e.g. below about, 50°C) and C1g-1g alkyl chains are preferred for higher wash temperatures (e.g, above about 50°C).
Other anionic surfactants useful for detersive purposes can atso be included in the laundry detergent and/or fabric care compositions of the present invention.
These can include salts (including, for example, sodium, potassium, ammonium, and substituted ammonium salts such as mono-, di- and triethanolamine salts) of soap, Cg-C22 primary of secondary alkanesulfonates, C8-C24 olefinsulfonates, sulfonated polycarboxylic acids prepared by sulfonation of the pyrolyzed product of alkaline earth metal citrates, e.g., as described in British patent specification No. 1;082,179, Cg-C24 alkylpolyglycolethersulf~ates (containing up to 10 motes of ethylene oxide}; alkyl glycerol sulfonates, fatty aryl glycerol sulfonates, fatty oteyl glycerol sulfates, alkyl phenol ethylene oxide ether sulfates, paraffin sulfonates, alkyl phosphates, isethionates such as the acyl isethionates, N-acyl taurates, alkyl succinamates and sulfosuccinates, monoesters of sulfosuccinates (especially saturated and unsaturated C12-C1g monoesters) and diesters of sulfosuccinates (especially saturated and unsaturated Cg-C12 diesters), acyl sarcosinates, sulfates of alkyipoiysaccharidE~s such as the sulfates of alkylpolyglucoside (the nonionic nonsuifated compounds being described below), branched primary alkyl sulfates, and alkyl polyethoxy carboxylates such as those of the formula RO(CH2CH20}k-CH2C00-M+ wherein R is a Cg-C22 alkyl, k is an integer from 1 to 10, and M is a soluble salt-forming cation.
Resin acids and hydrogenated resin acids are <~Iso suitable, such as rosin, hydrogenated rosin, and resin acids and hydrogenated resin acids present in or derived from tall oil.
Further examples are described in "Surface Active Agents and Detergents" {Vol.
I and II by Schwartz, Perry and Berch). A variety of such surfactants are also generally disclosed in U.S. Patent 3,929,678, issued December 30, 1975 to Laughlin, et al. at Column 23, fine 58 through Column 29, line 23 {herein incorporated by reference).
When included therein, the laundry laundry detergent and/or fabric care compositions of the present invention typically comprise from about 1 % to about 40%, preferably from about 3% to about 20% by weight of such anionic surfactants.

Highly preferred anionic surfactants include alkyl alkoxylated sulfate surfactants hereof are water soluble salts or acids of the fom~ula RO(A)mS03M wherein R
is an unsubstituted C1 ~-C24 alkyl or hydroxyal~;yl group having a C10-C24 alkyl component, preferably a C12-C20 alkyl or hydroxyalkyl, more preferably C12-C1 g alkyl or hydroxyalkyl, A is an ethoxy or propoxy unit, m is greater than zero, typically between about 0.5 and about 6, more preferably between about 0.5 and about 3, and M is H or a ration which can be, for example, a metal ration {e.g., sodium, potassium, lithium, calcium, magnesium, etc.), ammonium or substituted-ammonium ration. Alkyl ethoxyl;ated sulfates as well as alkyl propoxylated sulfates are contemplated herein. Specific examples of substituted ammonium rations include methyl-, dimethyl, trimethyl-ammonium rations and quaternary ammonium rations such as tetrarnethyl-ammonium and dimethyl piperdinium rations and those derived from alkylamines such as ethylamine, diethylamine, triethylamine, mixtures thereof, and the like. Exemplary surfactants are C12-C1g alkyl polyethoxylate (1.0) sulfate (C12-CIgE(1.0)M), C12-C1g alkyl polyethoxylate {2.25) sulfate (C12-CIgE(2.25)M), C12-C1g alkyl poiyethoxylate (3.0) sulfate (C12-CIgE(3.0)M), and C12-C1g ;alkyl polyethoxylate (4.0) sulfate (C12-CIgE(4.0)M), wherein M is convenieni:ly selected from sodium 'and potassium.
Bleaching agent The laundry detergent and/or fabric care compositions according to the present invention preferably comprise a bleaching agent. It has been surprisingly found that the laundry detergent andlor fabric care compositions of the present invention further comprising a bleaching agent provide improved sanitisation and cleaninglwhitening and benefits.
Suitable bleaching agents are hydrogen peroxide, PB1, PB4 and percarbonate with a particle size of 400-g00 microns. These t~leaching agent components can include one or more oxygen bleaching agents and, depending upon the bleaching agent chosen, one or more bleach a<;tivators. When present oxygen bleaching compounds will typically be present at levels of from about 1 % to about 25%.

The bleaching agent component for use herein can be any of the bleaching agents useful for laundry detergent andlor fak>ric care compositions including oxygen bleaches as well as others known in the art. The bleaching agent suitable for the present invention can be an activated or non-activated bleaching agent.
One category of oxygen bleaching agent that can be used encompasses percarboxylic acid bleaching agents and salts thereof. Suitable examples of this class of agents include magnesium monoperoxyphthalate hexahydrate, the magnesium ~ salt of meta-chloro perbenzoic acid, 4-nonyiamino-4-oxoperoxybutyric acid and diperoxydodecanedioic acid. Such bleaching agents are disclosed in U.S. Patent 4,483,781, U.S. Patent Application 740,446, European Patent Application 0,133,354 and U.S. Patent 4,412,934. Highly preferred bleaching agents also include 6-nonylamino-6-oxoperoxycaproic acid as described in U.S. Patent 4,634,551.
Another category of bleaching agents that can be used encompasses the halogen bleaching agents. Examples of hypohalite bleaching agents, for example, include trichloro isocyanuric acid and the sodium and potassium dichloroisocyanurates and N-chloro and N-bronno alkane sulphonamides. Such materials are normally added at 0.5-10% by weight of the finished product, preferably 1-5% by weight.
The hydrogen peroxide releasing agents can be used in combination with bleach activators such as tetraacetylethylenediamine (TAED), nonanoyloxybenzene-sulfonate (NOBS, described in US 4,412,934), 3,5,-trimethylhexanoloxybenzenesulfonate (ISON08S, described in EP 120,591) or pentaacetylglucose (PAG)or Phenolsulfonate ester of N-nananoyl-fi-aminocaproic acid (NACA-OBS, described in W094128106), which are perhydrolyzed to form a peracid as the activea bleaching species, leading to improved bleaching effect. Also suitable activators are acylated citrate esters such as disclosed in Copending European Patent Application No. 91870207.7.
Useful bleaching agents, including peroxyacids and bleaching systems comprising bleach activators and peroxygen bleaching compounds for use in detergent compositions according to the invention are described in our co-pending applications USSN 08/136,626, PnT/US95/07823, W095127772, W095/27773, WO95/27774 and W095/27775.
The hydrogen peroxide may also be present by adding an enzymatic system (i.e. an enzyme and a substrate therefore) uvhich is capable of generating hydrogen peroxide at the beginning or during the washing and/or rinsing process. Such enzymatic systems are disclosed in EP Patent Application 91202655.6 fled October 9, 1991.
Metal-containing catalysts for use in bleach compositions, include cobalt-containing catalysts such as Pentaamine acetate cobalt(///) salts and manganese-containing catalysts such as those described in EPA 549 271; EPA
549 272; EPA 458 397; US 5,246,621; EPA 4'58 398; US 5,194,416 and US
5,114,611. Bleaching composition comprising a peroxy compound, a manganese-containing bleach catalyst and a chelating agent is described in the patent application No 94870206.3.
Bleaching agents other than oxygen bleaching agents are also known in the art and can be utilized herein. One type of non-oxygen bleaching agent of particular interest includes photoactivated bleaching agents such as the sulfonated zinc and/or aluminum phthalocyanines. These materials can be deposited upon the substrate during the washing process. Upon irradiation with light, in the presence of oxygen, such as by hanging clothEa out to dry in the daylight, the sulfonated zinc phthalocyanine is activated andl, consequently, the substrate is bleached. Preferred zinc phthalocyanine and a photoactivated bleaching process are described in U.S. Patent 4;,033,718. Typically, detergent compositions wil! contain about 0.025% to aboui:1.25%, by weight, of sulfonated zinc phthalocyanine.
Other surfactant system The laundry detergent andlor fabric care compc>sitions according to the present invention generally comprise a surFactant system wherein the surfactant can be selected from other cationic and/or ampholytic andlor zwitterionic and/or semi-polar surfactants.

WO 99lS7157 PCT/~7599/09455 The surfactant is typically present at a level of from 0.1 % to 60% by weight.
More preferred levels of incorporation are 1 % to 35% by weight, most preferably from 1 % to 30% by weight of laundry detergenit andlor fabric care compositions in accord with the invention.
The surfactant is preferably formulated to be compatible with enzyme components present in the composition. In liquid or gel compositions the surfactant is most preferably formulated such that it promotes, or at least does not degrade, the stability of any enzyme in these: compositions.
Typical cationic fabric softening components include the water-insoluble quaternary-ammonium fabric softening actives or the corresponding amine precursor, the most commonly used having been di-long alkyl chain ammonium chloride or methyl sulfate.
Preferred cationic softeners among these include the following:
1 ) ditallow dimethylammonium chloride (DTDIVIAC);
2) dihydrogenated tallow dimethylamrnonium chloride;
3) dihydrogenated tallow dimethylammonium methylsulfate;
4} distearyl dimethylarnmonium chloride;
5) diofeyl dimethylammonium chloride;
fi) dipalmityl hydroxyethyl methylammoniurn chloride;
7) stearyl benzyl dimethylammonium chloride;;
8) tallow trimethylammonium chloride;
9) hydrogenated tallow trimethylammonium chloride;
10) C12-14 alkyl hydroxyethyl dimethylammonium chloride;
11) C12-18 alkyl dihydroxyethyl methylammonium chloride;
12) di(stearoyloxyethyl) dimethylammonium chlloride (DSOEDMAC};
13) di{tallow-oxy-ethyl) dimethylammonium chloride;
14) ditallow imidazolinium methylsulfate; , 15) 1-(2-tallowylamidoethyl)-2-tallowyl imidazolinium methylsulfate.
Biodegradable quaternary arnmonium compounds have been presented as alternatives to the traditionally used di-long alkyl chain ammonium chlorides and methyl sulfates. Such quaternary ammonium compounds contain long chain alk(en}yl groups interrupted by functional groupa such as carboxy groups. Said materials and fabric softening compositions containing them are disclosed in numerous publications such as EP-A-0,040,562, and EP-A-0;239,910.
The quaternary ammonium compounds and amine precursors herein have the formula (I) or {II), below R R
+ N 2~CH2h'1-Q-'T 1 X' + N'-~CHZ)n-CH -CHz X -I R3 Q (?
R1 T~ T2 or wherein Q is selected from -O-C(O)-, -C(O)-O-, -O-C(O)-O-, -NR4-C{O)-, -C{O)-N R4-;
R1 is (CH2)n-Q-T2 or T3;
R2 is {CH2)m-Q-T4 or T~ or R3;
R3 is C1-C4 alkyl or C1-C4 hydroxyalkyl or H;
R4 is H or C1-C4 alkyl or C1-C4 hydroxyalkyl;
T1, T2, T3, T4, T5 are independently C11-C22 alkyl or alkenyl;
n and m are integers from 1 to 4; and X- is a softener-compatible anion.
Non-limiting examples of softener-compatible anions include chloride or methyl sulfate.
The alkyl, or alkenyl, chain T1, T2, T3, T4, Tb must contain at least 11 carbon atoms, preferably at least 16 carbon atoms. The chain may be straight or branched.
Tallow is a convenient and inexpensive source of long chain alkyl and alkenyl material. The compounds wherein T1, T2, T3, T4, Tb represents the mixture of long chain materials typical for tallow are particularly preferred.

Specific examples of quaternary ammonium compounds suitable for use in the aqueous fabric softening compositions herein include 1) N,N-di(tallowyl-oxy-ethyl)-N,N-dimethyl ammonium chloride;
2) N,N-di(tallowyl-oxy-ethyl)-N-methyl, N-(2-hydroxyethyl} ammonium methyl sulfate;
3) N,N-di(2-tallowyl-oxy-2-oxo-ethyl)-N,N-dimethyl ammonium chloride;
4) N,N-di(2-tallowyl-oxy-ethylcarbonyl-oxy-ethyl}-N,N-dimethyl ammonium chloride;
5) N-(2-tallowyl-oxy-2-ethyl}-N-(2-tallowyl-oxy-2-oxo-ethyl)-N,N-dimethyl ammonium chloride;
6) N,N,N-tri(tallowyl-oxy-ethyl)-N-methyl ammonium chloride;
7) N-(2-tailowyl-oxy-2-oxo-ethyl)-N-(tallowyl-~J,N-dimethyl-ammonium chloride; and 8) 1,2-ditallowyl-oxy-3-trimethylammoniopropane chloride;
and mixtures of any of the above materials.
When included therein, the laundry detergent andlor fabric care compositions of the present invention typically comprise from 0.2% to about 25%, preferably from about 1 % to about 8% by weight of such cationic surfactants.
The laundry detergent and/or fabric care compositions of the present invention may also contain ampholytic, zwitterionic, and semi-polar surfactants.
Ampholytic surfactants are also suitable for use! in the laundry detergent and/or fabric care compositions of the present invention. These surfactants can be broadly described as aliphatic derivatives of ~~econdary or tertiary amines, or aliphatic derivatives of heterocyclic secondary .and tertiary amines in which the aliphatic radical can be straight- or branched-chain. One of the aliphatic substituents contains at least about 8 carbon .atoms, typically from about 8 to about 18 carbon atoms, and at least one contains an anionic water-solubilizing group, e.g. carboxy, sulfonate, sulfate. See U.S. Patent No. 3,929,678 to Laughlin et al., issued December 30, 1975 at column 19, lines 18-35, for examples of amphoLytic surfactants.

When included therein, the laundry detergent andlor fabric care compositions of the present invention typically comprise from ~D.2% to about 15%, preferably from about 1 % to about 10% by weight of such a~mpholytic surfactants.
Zwitterionic surfactants are also suitable for use in laundry detergent andlor fabric care compositions. These surfactants can be broadly described as derivatives of secondary and terkiary amines, derivatives of heterocyclic secondary and tertiary amines, or derivatives of quaternary ammonium, quaternary phosphonium or tertiary sulfonium compounds. See U.S. Patent No.
3,929,678 to Laughlin et al., issued December 30, 1975 at column 19, line 38 through column 22, line 48, for examples of zwitterionic surfactants.
When included therein, the laundry detergent and/or fabric care compositions of the present invention typically comprise from 0.2% to about 15%, preferably from about 1 % to about 10% by weight of such zwitterionic surfactants.
Semi-polar nonionic surfactants are a special category of nonionic surfactants which include water-soluble amine oxides coat<aining one alkyl moiety of from about 10 to about 18 carbon atoms and 2 moieties selected from the group consisting of alkyl groups and hydroxyalkyi groups containing from about 1 to about 3 carbon atoms; water-soluble phosphirye oxides containing one alkyl moiety of from about 10 to about 18 carbon atoms and 2 moieties selected from the group consisting of alkyl groups and hydro~xyalkyl groups containing from about 1 to about 3 carbon atoms; and water-soluble sulfoxides containing one alkyl moiety of from about 10 to about 18 carbon atoms and a moiety selected from the group consisting of alkyl and hydroxyalkyl moieties of from about 1 to about 3 carbon atoms.
Semi-polar nonionic detergent surfactants include the amine oxide surfactants having the formula T
R3(OR4)xN(R5)2 wherein R3 is an alkyl, hydroxyalkyl, or alkyl phenyl group or mixtures therof containing from about 8 to about 22 carbon atoms; R4 is an alkylene or hydroxyalkyfene group containing from about ~>_ to about 3 carbon atoms or mixtures thereof; x is from 0 to about 3; and each R5 is an alkyl or hydroxyalkyl group containing from about 1 to about 3 carbon atoms or a polyethylene oxide group containing from .about 1 to about 3 ethylene oxide groups. The R5 groups can be attached to each other, e.g., through an oxygen or nitrogen atom, to form a ring structure.
These amine oxide surfactants in particular include C1 p-C1 g alkyl dimethyl amine oxides and Cg-C12 alkoxy ethyl dihydrox!y ethyl amine oxides.
When included therein, the cleaning compositions of the present invention typically comprise from 0.2% to about 15%, prE~ferabiy from about 1 % to about 10% by weight of such semi-polar nonionic surfactants.
The laundry detergent and/or fabric care composition of the present invention may further comprise a cosurfactant selected from the group of primary or tertiary amines.
Suitable primary amines for use herein include .amines according to the formula R1 NH2 wherein R1 is a Cg-C12~ preferably Cg-C10 alkyl chain or R4X(CH2}n, X
is -O-,-C(O}NH- or -NH-, R4 is a Cg-C12 all';yl chain n is between 1 to 5, preferably 3. R1 alkyl chains may be straight or branched and may be interrupted with up to 12, preferably less than 5 ethylene oxide moieties.
Preferred amines according to the formula herein above are n-alkyl amines.
Suitable amines for use herein may be sE:lected from 1-hexylarnine, 1-octylamine, 1-decylamine and laurylamine. Other preferred primary amines include C8-C10 oxypropyiamine, octyloxypropylamine, 2-ethylhexyl-oxypropylamine, lauryl amido propylamine and a~mido propylamine.
Suitable tertiary amines for use herein include tertiary amines having the formula R1R2R3N wherein R1 and R2 are C1-Cg alkyichains or Rs -~ CHZ-CH-O ~H
R3 is either a Cg-C12, preferably Cg-C10 alkyl chain, or R3 is R4X(CH2)n, whereby X is -O-, -C(O)NH- or -NH-,R4 is a C4-C12, n is between 1 to 5, preferably 2-3. R5 is H or C1-C2 alkyl and x is bEaween 1 to 6 .
Rg and R4 may be linear or branched ; R3 alkyl chains may be interrupted with up to 12, preferably less than 5, ethylene oxide rnoieties.

Preferred tertiary amines are R1 R2R3N where R1 is a C6-C12 alkyl chain, R2 and R3 are C1-C3 alkyl or -C Cl-IZ-CH-O ~H
where R5 is H or CH3 and x = 1-2.
Also preferred are the amidoamines of the formula:

l l R1-C-NH-( CH2 ~ N-( R2 2 wherein R1 is C6-C12 alkyl; n is 2-4, preferably n is 3; R2 and R3 is C1-Cq.
Most preferred amines of the present invention include 1-octylamine, 1-hexylamine, 1-decylamine, 1-dodecylamine,CB-1aoxypropylamine, N coco 1-3diaminopropane, coconutalkyldimethylamine, lauryldimethylamine, lauryl bis(hydroxyethyl)amine, coco bis(hydroxyehtyl)amine, lauryl amine 2 moles propoxylated, octyl amine 2 moles propoxylated, lauryl amidopropyldimethylamine, C8-10 amidopropyldimethylamine and C1p amidopropyldimethylamine.
The most preferred amines for use in the compositions herein are 1-hexylamine, 1-octylamine, 1-decylamine, 1-dodecylamine. Especially desirable are n-dodecyldimethylamine and bishydroxyethylcoconutalkylamine and oleylamine 7 times ethoxylated, lauryl amido propylamine andf cocoamido propylamine.
Conventional detergent enzymes In addition to the modified enzymes of the present invention, the laundry detergent andlor fabric care compositions may further one or more enzymes which provide cleaning performance, fabric care and/or sanitisation benefits.
Said enzymes include enzymes selected from cellulases, ~ hemicellulases, peroxidases, proteases, gluco-amylases, aamylases, xylanases, lipases, phospholipases, esterases, cutinases, pectinases, keratanases, reductases, oxidases, phenoloxidases, lipoxygenases, ligninases, pullulanases, tannases, pentosanases, malanases, 13-glucanases, arabinosidases, hyaiuronidase, chondroitinase, laccase or mixtures thereof.
A preferred combination is a laundry detergent: andlor fabric care composition having cocktail of conventional applicable enzymes Pike protease, amylase, lipase, cutinase andlor cellulose in conjunction with one or more plant cell wall degrading enzymes.
The cellulases usable in the present invention include both bacterial or fungal cellulases. Preferably, they will have a pH optimum of between 5 and 12 and a specific activity above 50 CEVUImg (Cellulose Viscosity Unit). Suitable cellulases are disclosed in U.S. Patent 4,435,307, Barbesgoard et al, J61078384 and W096102653 which discloses fungal cellulose produced respectively from Humicola insolens, Trichoderrna, Thielavia and Sporotrichum.
EP 739 982 describes cellulases isolated from novel Bacillus species. Suitable cellulases are also disclosed in GB-A-2.075.CI28; GB-A-2.095.275; DE-OS-2.247.832 and WO95I26398.
Examples of such celluiases are cellulases produced by a strain of Humicola insolens (Humicola grisea var. thermoidea), particularly the Humicoia strain DSM
1800.
Other suitable cellulases are cellulases originated from Humicola insolens having a molecular weight of about 50KDa, .an isoelectric point of 5.5 and containing 415 amino acids; and a "43kD endogllucanase derived from Humicola insolens, DSM 1800, exhibiting cellulose activity; a preferred endoglucanase component has the amino acid sequence disclosed in PCT Patent Application No. WO 91117243. Also suitable cellulases are the EGIII cellulases from Trichoderma longibrachiatum described in WO!~412180'1, Genencor, published September 29, 1994. Especially suitable cellulases are the cellulases having color care benefits. Examples of such cellulases are cellulases described in European patent application No: 91202879.2, filed November 6, 1991 (Novo).
Carezyme and Celluzyme (Novo Nordisk A/S) are especially useful. See also W091/17244 and W091/21801. Other suitable celluiases for fabric care and/or cleaning properties are described in W0~96I34092, W096117994 and W095124471.

Said celluiases are normally incorporated in they laundry detergent andlor fabric care composition at levels from 0.0001 % to 2% of pure enzyme by weight of the composition.
Peroxidase enzymes are used in combination with oxygen sources, e.g.
percarbonate, perborate, persulfate, hydrogen peroxide, etc and with a phenolic substrate as bleach enhancing molecule. They acre used for "solution bleaching", i.e. to prevent transfer of dyes or pigments rE:moved from substrates during wash operations to other substrates in the wash solution. Peroxidase enzymes are known in the art, and include, for example, horseradish peroxidase, figninase and haloperoxidase such as chloro- and bromo-peroxidase. Peroxidase-containing detergent compositions are disclosed, for example, in PCT
International Application WO 89/099813, W089./09813 and in European Patent application EP No. 91202882.6, filed on November 6, 1991 and EP No.
96870013.8, filed February 20, 1996. Also suitable is the laccase enzyme.
Enhancers are generally comprised at a level of from 0.1 % to 5% by weight of total composition. Preferred enhancers are substituted phenthiazine and phenoxasine 10-Phenothiazinepropionicacid (I'PT), 10-ethylphenothiazine-4-carboxylic acid {EPC), 10-phenoxazineprop~ionic acid (POP) and 10-methylphenoxazine (described in WO 94112621 ) and substituted syringates (C3-C5 substituted alkyl syringates) and phenols. Sodium percarbonate or perborate are preferred sources of hydrogen peroxide.
Said peroxidases are normally incorporated in the laundry detergent and/or fabric care composition at levels from 0.0001 % t~o 2% of pure enzyme by weight of the composition.
Other preferred enzymes that can be included in the laundry detergent andlor fabric care compositions of the present invention include lipases. Suitable lipase enzymes for detergent usage include those procluced by microorganisms of the Pseudomonas group, such as Pseudomonas stutzeri ATCC 19.154, as disclosed in British Patent 1,372,034. Suitable lipases include those which show a positive imrnunological cross-reaction with the antibody of the lipase, produced by the microorganism Pseudomonas fluoresc~snt IAI1A 1057. This lipase is available from Amano Pharmaceutical Co. Ltd., Nagoya, Japan, under the trade name Lipase P "Amano," hereinafter referred to as "Amano-P". Other suitable commercial lipases include Amano-CES, IipasEa ex Chromobacfer viscosum, e.g. Chromobacter viscosum var. lipolyticum NF;RLB 3673 from Toyo Jozo Co., Tagata, Japan; Chromobacter viscosum lipase from U.S. Biochemical Corp., U.S.A. and Disoynth Co., The Netherlands, and lipases ex Pseudomanas gladioli. Especially suitable lipases are lipas~es such as M1 LipaseR and LipomaxR (Gist-Brocades) and LipolaseR and Lipolase UItraR(Novo) which have found to be very effective when used in combination with the compositions of the present invention. Also suitables are the lipolytic enzymes described in EP
258 068, WO 92/05249 and WO 95/22615 by Novo Nordisk and in WO
94/03578, WO 95/35381 and WO 96100292 by llnilever.
Also suitable are cutinases [EC 3.1.'1.50] which can be considered as a special kind of lipase, namely lipases which do not requiire interfacial activation.
Addition of cutinases to detergent compositions have been described in e.g. WO-A-88109367 (Genencor); WO 90/09446 (Plant Genetic System) and WO 94114963 and WO 94/14964 (Unilever).
The lipases and/or cutinases are normally incorporated in the laundry detergent and/or fabric care composition at levels from 0.0001 % to 2% of pure enzyme by weight of the composition.
Suitable proteases are the subtilisins which are obtained from particular strains of B. subtilis and B. licheniformis (subtitisin E3PN and BPN'). One suitable protease is obtained from a strain of Bacillus, having maximum activity throughout the pH range of 8-12, developed and sold as ESPERASE~ by Novo Industries AlS of Denmark, hereinafter "Novo". The preparation of this enzyme and analogous enzymes is described in GB 1,2.43,784 to Novo. Other suitable proteases include ALCALASE~, DURAZYM~ and SAVINASE~ from Novo and MAXATASE~~ MAXACAL~, PROPERASEt~ and MAXAPEM~ (protein engineered Maxacal) from Gist-Brocades. Proteolytic enzymes also encompass modified bacterial serine proteases, such as those described in European Patent Application Serial Number 87 303761.8, filed April 28, 1987 (particularly pages 17, 24 and 98), and which is tailed hereirt "Protease B", and in European Patent Application 199,404, Venegas, published October 29, 198fi, which refers to a modified bacterial serine protealytic enzyme which is called "Protease A"
herein. Suitable is the protease called herein "Protease C", which is a variant of an alkaline serine protease from Bacillus in which lysine replaced arginine at position 27, tyrosine replaced valine at position '104, serine replaced asparagine at position 123, and alanine replaced threonine at position 274. Protease C is described in EP 90915958:4, corresponding to WO 91/06637, Published May 16, 1991. Genetically modified variants, particularly of Protease C, are also included herein.
A preferred protease referred to as "Protease D"' is a carbonyl hydrolase variant having an amino acid sequence not found in nature, which is derived from a precursor carbonyl hydrolase by substituting a different amino acid for a plurality of amino acid residues at a position in said carbonyl hydrolase equivalent to position +76, preferably also in combination with one or more amino acid residue positions equivalent to those selected from the group consisting of +99, +101, +103, +104, +107, +123, +27, +105, +109, +126, +128, +135, +156, +166, +195, +197, +204, +206, +210, +216, +217, +218, +222, +260, +265, and/or +274 according to the numbering of Bacillus amyloliquefaciens subtilisin, as described in W095/10591 and in the patent application of C. Ghosh, et al, "Bleaching Compositions Comprising Protease Enzymes" having US Serial No. 08/322,677, filed October 13, 1994. Also suitable is a carbonyl hydrolase variant of the protease described in W095/10591, having an amino acid sequence derived by replacement of a plurality of amino acid residues replaced in the precursor enzyme corresponding to position +210 in combination with one or more of the following residues : +33, +62, +67, +76, +100, -+-101, +103, +104, +107, +128, +129, +130, +132, +135, +156, +158, +164, +166, +167, +170, +209, +215, +217, +218, and +222, where the numbered position corresponds to naturally-occurring subtilisin from Bacillus amyloliquefacis~ns or to equivalent amino acid residues in other carbonyl hydrolases or subtilisins, such as Bacillus lenfus subtilisin (co-pending patent application US Seriail No. 60/048,550, filed June 04, 1997).
Also preferred proteases are multiply-substituted protease variants. These protease variants comprise a substitution of an amino acid residue with another naturally occurring amino acid residue at an amino acid residue position corresponding to position 103 of Bacillus ,~myloliquefaciens subtilisin in combination with a substitution of an amino acid n~esidue positions corresponding to positions 1, 3, 4, 8, 9, 10, 12, 13, 16, 17, 18, 19, 20, 21, 22, 24, 27, 33, 37, 38, 42, 43, 48, 55, 57, 58, 61, 62, 68, 72, 75, 76, 77, 78, 79, 86, 87, 89, 97, 98, 99, 101, 102, 104, 106, 107, 109, 111, 114, 116, 117, 119, 121, 123, 126, 128, 130, 131, 133, 134, 137, 140, 141, 142, 146, 14 i', 158, 159, 160, 166, 167, 170, 173, 174, 177, 181, 182, 183, 184, 185, 188, 192, 194, 198, 203, 204, 205, 206, 209, 210, 211, 212, 213, 214, 215, 216, 217, 218, 222, 224, 227, 228, 230, 232, 236, 237, 238, 240, 242, 243, 244, 245, 246, 247, 248, 249, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 261, 262, 263, 2135, 268, 269, 270, 271, 272, and 275 of Bacillus amyloliquefaciens subtilisin; wherein when said protease variant includes a substitution of amino acid residues at positions corresponding to positions 103 and 76, there is also a substitution of an amino acid residue at one or more amino acid residue positions other than amino acid residue positions corresponding to positions 27, 99, 101, 104, 107, 109, 123, 128, 166, 204, 206, 210, 216, 217, 218, 222, 2E30, 265 or 274 of Bacillus amyloliquefaciens subtilisin and/or multipiy~-substituted protease variants comprising a substitution of an amino acid residue with another naturally occurring amino acid residue at one or more amino acid residue positions corresponding to positions 62, 212, 230, 2329 252 and 257 of Bacillus amyloliquefaciens subtilisin as described in PCT application Nos.
PCTIUS98122588, PCTIUS98/22482 and PCTIUS98/22486 all filed on October 23, 1998 from The Procter & Gamble Company.
Also suitable for the present invention are proteases described in patent applications EP 251 446 and WO 91106637, protease BLAP~ described in W091 /02792 and their variants described in WC) 95123221.
See also a high pH protease from Bacillus sp. NCIMB 40338 described in WO
93118140 A to Novo. Enzymatic detergents comprising protease, one or more other enzymes, and a reversible protease iinhibitor are described in WO
92103529 A to Novo. When desired, a protease having decreased adsorption and increased hydrolysis is available as described in WO 95107791 to Procter &
Gamble. A recombinant trypsin-like protease 'for detergents suitable herein is described in WO 94/25583 to Novo. Other suitable proteases are described in EP 516 200 by Unilever.
The proteolytic enzymes are incorporated in thE; laundry detergent andlor fabric care compositions of the present invention a level of from 0.0001 % to 2%, preferably from 0.001 % to 0.2%, more preferably from 0.005% to 0.1 % pure enzyme by weight of the composition.
Amylases (a andlor 13) can be included for removal of carbohydrate-based stains. W094/02597, Novo Nordisk AIS published February 03, 1994, describes cleaning compositions which incorporate mutant amylases. See also W095110603, Novo Nordisk AIS, published April 20, 1995. Other amylases known for use in cleaning compositions include both a- and ~i-amylases. a-WO 99!57157 PCTIUS99/09455 Amylases are known in the art and include tlhose disclosed in US Pat. no.
5,003,257; EP 252,666; W0191I00353; FR 2,67fi,456; EP 285,123; EP 525,610;
EP 368,341; and British Patent specification no. 1,296,839 (Novo). Other suitable amylases are stability-enhanced amylases described in WO94118314, published August 18, 1994 and W096/05295, Genencor, published February 22, 1996 and amylase variants having additional modification in the immediate parent available from Novo Nordisk A/S, disclosed in WO 95/10603, published April 95. Also suitable are amylases described in EP 277 216, W095/2fi397 and W09fi/23873 (all by Novo Nordisk).
Examples of commercial a-amylases product:, are Purafect Ox Am~ from Genencor and Termamyl~, Ban~ ,Fungamyl~ and Duramyl~, all available from Novo Nordisk AlS Denmark. W095/2fi397 describes other suitable amylases : a -amylases characterised by having a speciftc activity at least 25% higher than the specific activity of Termamyl~ at a temperature range of 25°C to 55°C and at a pH value in the range of 8 to 10, measured by the Phadebas~ ~c-amylase activity assay. Suitable are variants of the above enzymes, described in W096/23873 (Novo Nordisk). Other amylollytic enzymes with improved properties with respect to the activity level and the combination of thermostabifity and a higher activity level are described in W09;i/35382.
The amylolytic enzymes are incorporated in the laundry detergent andlor fabric care compasitions of the present invention a level of from 0.0001 % to 2%, preferably from 0.00018% to 0.06%, more preferably from 0.00024% to 0.048%
pure enzyme by weight of the composition.
The above-mentioned enzymes may be of any suitable origin, such as vegetable, animal, bacterial, fungal and yeast origin. Origin can further be mesophilic or extremophilic (psychrophiiic, psychrotrophic, thermophilic, barophilic, alkalophilic, acidophilic, halophilic, etc.). Purified or non-purified forms of these enzymes may be used. Nowadays, it is common practice to modify wild-type enzymes via protein l genetic engineering techniques in order to optimise their performance efficiency in the laundry detergent andlor fabric care compositions of the invention. For example, the variants may be designed such that the compatibility of the enzyme to commonly encountered ingredients of such compositions is increased. Alternatively, the variant may be designed such that the optimal pH, bleach or chelant stability, catalytic activity and the like, of the enzyme variant is tailored to suit the particular cleaning application.

In particular, attention should be focused on amino acids sensitive to oxidation in the case of bleach stability and on surface charges for the surfactant compatibility. The isoelectric point of such enzymes may be modified by the substitution of some charged amino acids, e.g, an increase in isoelectric point may help to improve compatibility with anionic surfactants. The stability of the enzymes may be further enhanced by the creatilon of e.g. additional salt bridges and enforcing calcium binding sites to increase chelant stability. Special attention must be paid to the cellulases as moss: of the cellulases have separate binding domains (CBC~). Properties of such enzymes can be altered by modifications in these domains.
Said enzymes are norrnaily incorporated in the laundry detergent and/or fabric care composition at levels from 0.0001 % to 2% of pure enzyme by weight of the composition. The enzymes can be added as sE~parate single ingredients (grills, granulates, stabilized liquids, etc. containing orne enzyme) or as mixtures of two or more enzymes ( e.g. cogranulates ).
Other suitable detergent ingredients that can be added are enzyme oxidation scavengers which are described in Copending European Patent application 92870018.6 filed on January 31, 1992. Examples of such enzyme oxidation scavengers are ethoxylated tetraethylene polyarnines.
A range of enzyme materials and means for i:heir incorporation into synthetic detergent compositions is also disclosed in WO 9307263 A and WO 9307260 A
to Genencor International, WO 8908694 A to Novo, and U.S. 3,553,139, January 5, 1971 to McCarty et al. Enzymea are .further disclosed in U.S.
4,101,457, Place et al, July 18, 1978, and in U.S. 4,507,219, Hughes, March 26, 1985. Enzyme materials useful for liquid detergent formulations, and their incorporation into such formulations, are disclosed in U.S. 4;261,868, Hora et al, April 14, 1981. Enzymes for use in detergents can be stabilised by various techniques. Enzyme stabilisation techniques are disclosed and exemplified in U.S. 3,600,319, August 17, 1971, Gedge et al, EP 199,405 and EP 200,586, October 29, 1986, Venegas. Enzyme stabilisairion systems are also described, for example, in U.S. 3,519,570. A useful Baciillus, sp. AC13 giving proteases, xylanases and cellulases, is described in WO 94101532 A to Novo.

Colour care and fabric care benefits Technologies which provide a type of colour care benefit can also be included.
Examples of these technologies are metallo caitalysts for colour maintenance.
Such metallo catalysts are described in copending European Patent Application No. 92870181.2. Dye fixing agents, polyolefin .dispersion for anti-wrinkles and improved water absorbency, perfume and amino-functional polymer for colour care treatment and perfume substantivity are further examples of colour care fabric care technologies and are described in the co-pending Patent Application No. 9fi870140.9, filed November 07, 1996.
Fabric softening agents can also be incorporated into laundry detergent andlor fabric care compositions in accordance with the present invention. These agents may be inorganic or organic in type. inorganic softening agents are.
exemplified by the smectite clays disclosed in GB-A-1 400 898 and in USP 5,019;292.
Organic fabric softening agents include the wa?ter insoluble tertiary amines as disclosed in GB-A1 514 276 and EP-BO 011 340 and their combination with mono C12-C14 quaternary ammonium salts arcs disclosed in EP-B-0 026 527 and EP-B-0 026 528 and di-long-chain amides ass disclosed in EP-B-0 242 919.
Other useful organic ingredients of fabric softening systems include high molecular weight polyethylene oxide materials ats disclosed in EP-A-0 299 575 and 0 313 146.
Levels of smectite clay are normally in the range from 2% to 20%, more preferably from 5% to 15% by weight, with the material being added as a dry mixed component to the remainder of the formulation. Organic fabric softening agents such as the water-insoluble tertiary aimines or dilong chain amide materials are incorporated at levels of from 0.5% to 5% by weight, normally from 1 % to 3% by weight whilst the high molecular weight polyethylene oxide materials and the water soluble cationic materials are added at levels of from 0.1% to 2%, narmally from 0.15% to 1.5% by weight. These materials are normally added to the spray dried portion of the composition, although in some instances it may be more convenient to add them as a dry mixed particulate, or spray them as molten liquid on to other solid components of the composition.

Builder system The compositions according to the present invention may further comprise a builder system.
Any conventional builder system is suitable for use herein including aluminositicate materials, silicates, polycarboxylates, alkyl- or alkenyl-succinic acid and fatty acids, materials such as ethylenediamine tetraacetate, diethylene triamine pentamethyleneacetate, metal ion sequestrants such as aminopolyphosphonates, particularly ethylenediamine tetramethylene phosphonic acid and diethylene triamine pe:ntamethylenephosphonic acid.
Phosphate builders can also be used herein.
Suitable builders can be an inorganic ion exchange material, commonly an inorganic hydrated aluminosilicate material, more particularly a hydrated synthetic zeolite such as hydrated zeoiite A, X, B, HS or MAP.
Another suitable inorganic builder material i:a layered silicate, e.g. SKS-6 (Hoechst). SKS-6 is a crystalline layered silicate consisting of sodium silicate (Na2Si205).
Suitable polycarboxylates containing one carb~oxy group include lactic acid, glycolic acid and ether derivatives thereof as diisclosed in Belgian Patent Nos.
831,368, 821,369 and 821,370. Poiycarboxylates containing two carboxy groups include the water-soluble salts of succinic acidl, malonic acid, (ethylenedioxy) diacetic acid, malefic acid, diglycollic acid, tartaric; acid, tartronic acid and fumaric acid, as well as the ether carboxylates described in German Offeniegenschrift 2,446,686, and 2,446,687 and U.S. Patent I~do. 3,935;257 and the sulfinyl carboxylates described in Belgian Patent No. 840,623. Polycarboxylates containing three carboxy groups include, in particular, water-soluble citrates, aconitrates and citraconates as well as succinate derivatives such as the carboxymethyloxysuccinates described in Biritish Patent No. 1,379,241, iactoxysuccinates described in Netherlands Application 7205873, and the oxypolycarboxylate materials such as 2-oxa-1,1,3-propane tricarboxylates described in British Patent No. 1,387,447.

WO 99/57157 PCT/US99/094~5 Polycarboxylates containing four carboxy groups include oxydisuccinates disclosed in British Patent No. 1,261,829, 1,1,2,2-ethane tetracarboxylates, 1,1,3,3-propane tetracarboxylates and 1,1;:2,3-propane tetracarboxylates.
Polycarboxylates containing sutfo substituen~ts include the sulfosuccinate derivatives disclosed in British Patent Nos. 1,398,421 and 1,398,422 and in U.S.
Patent No. 3,936,448, and the sulfonated pyrolysed citrates described in British Patent No. 1,082,1T9, while polycarboxylates containing phosphone substituents are disclosed in British Patent No. 1,439,000.
Alicyclic and heterocyclic polycarboxylates include cyclopentane-cis,cis,cis-tetracarboxylates, cyclopentadienide pentacarbo:Kylates, 2,3,4,5-tetrahydro-furan - cis, cis, cis-tetracarboxylates, 2,5-tetrahydro-furan -cis - dicarboxylates, 2,2,5,5-tetrahydrofuran - tetracarboxylates, 1,2,3,4,5,6-hexane -hexacar-boxylates and and carboxymethyl derivatives of polyhydric alcohols such as sorbitol, mannitol and xylitol. Aromatic poly-carboxylates include mellitic acid, pyromellitic acid and the phthalic acid derivatives disclosed in British Patent No.
1,425,343.
Of the above, the preferred polycarboxylates are hydroxycarboxylates containing up to three carboxy groups per molecule, mare p;~rticularly citrates.
Preferred builder systems for use in the present compositions include a mixture of a water-insoluble aluminosilicate builder sucll as zeolite A or of a layered silicate (SKS-6), and a water-soluble carboxylate chelating agent such as citric acid.
Preferred builder systems include a mixture of a water-insoluble aluminosilicate builder such as zeolite A, and a watersoluble carboxylate chelating agent such as citric acid. Preferred builder systems for use in liquid laundry detergent andlor fabric care compositions of the present invention are soaps and polycarboxylates.
Other builder materials that can form part of the builder system for use in granular compositions include inorganic materials such as alkali metal carbonates, bicarbonates, silicates, and organic materials such as the organic phosphonates, amino polyalkylene phosphonates and amino polycarboxylates.

Other suitable water-soluble organic salts are the homo- or co-polymeric acids or their salts, in which the polycarboxylic acid .comprises at least two carboxyl radicals separated from each other by not more than two carbon atoms.
Polymers of this type are disclosed in GB-A-1,5'96,756. Examples of such salts are polyacrylates of MW 2000-5000 and their copolymers with malefic anhydride, such copolymers having a molecular weight of from 20,000 to 70,000, especially about 40,000.
Detergency builder salts are normally included in amounts of from 5% to 80% by weight of the composition preferably from 10% to 70% and most usually from 30% to 60% by weight.
CheJating Agents The laundry detergent and/or fabric care compositions . herein may also optionally contain one or more iron and/or manctanese chelating agents. Such chelating agents can be selected from the' group consisting of amino carboxylates, amino phosphonates, polyfunctionally-substituted aromatic chelating agents and mixtures therein, all as hereinafter defined. Without intending to be bound by theory, it is believed that the benefit of these materials is due in part to their exceptional ability to remove iron and manganese ions from washing solutions by formation of soluble chelates.
Amino carboxylates useful as optional chelating agents include ethylenediaminetetracetates, N-hydroxyE~thylethytenediaminetriacetates, nitrilotriacetates, ethylenediamine tetraproprionates, triethylenetetraamine-hexacetates, diethylenetriaminepentaacetates, and ethanoldiglycines, alkali metal, ammonium, and substituted ammoniurn salts therein and mixtures therein.
Amino phosphonates are also suitable for use as chelating agents in the compositions of the invention when at lease low levels of total phosphorus are permitted in detergent compositions, and include ethyienediaminetetrakis (methylenephosphonates) as DEQUEST. Preferred, these amino phosphonates to not contain alkyl or alkenyl groups with more than about 6 carbon atoms.

Polyfunctionaily-substituted aromatic chelating agents are also useful in the compositions herein. See U.S. Patent 3,812,~D44, issued May 21, 1974, to Connor et al. Preferred compounds of this type in acid form are dihydroxydisulfobenzenes such as 1,2-dihydroxy-3,5-disulfobenzene.
A preferred biodegradable chelator for use herein is ethylenediamine disuccinate ("EDDS"), especially the [S,S] isomer as described in U.S. Patent 4,704,233, November 3, 1987, to Hartman and Perkins.
The compositions herein may also contain water-soluble methyl glycine diacetic acid (MGDA) salts (or acid form) as a chelant or co-builder useful with, for example, insoluble builders such as zeolites, iaye~red silicates and the like.
If utilized, these chelating agents will generally comprise from about 0.1 %
to about 15% by weight of the laundry detergent andlor fabric care compositions herein. More preferably, if utilized, the chelating agents will comprise from about 0.1 % to about 3.0% by weight of such compositions.
Suafs suppresser Another optional ingredient is a suds suppresser, exemplified by silicones, and silica-silicone mixtures. Silicones can be generally represented by alkylated polysiloxane materials while silica is normally used in finely divided forms exemplified by silica aerogels and xerogels and hydrophobic silicas of various types. These materials can be incorporated as particulates in which the suds suppresser is advantageously releasably incorporated in a water-soluble or water-dispersible, substantially non-surface-active detergent impermeable carrier. Alternatively the suds suppresser can be dissolved or dispersed in a liquid carrier and applied by spraying on t~o one or more of the other components.
A preferred silicone suds controlling agent is disclosed in Bartollota et al.
U.S.
Patent 3 933 672. Other particularly useful :suds suppressers are the self emulsifying silicone suds suppressers, described in German Patent Application DTOS 2 646 126 published April 28, 1977. An example of such a compound is DC-544, commercially available from Dow Conning, which is a siloxane-glycol copolymer. Especially preferred suds controlling agent are the suds suppresser system comprising a mixture of silicone oils and 2-alkyl-alcanols. Suitable 2-alkyl-alkanols are 2-butyl-octanol which are commercially available under the trade name isofol 12 R.
Such suds suppressor system are described ins Copending European Patent application N 92870174.7 filed 10 November, 1992.
Especially preferred silicone suds controlling agents are described in Copending European Patent application N°92201649.8. Said compositions can comprise a silicone/silica mixture in combination with furred nonporous silica such as AerosilR.
The suds suppressors described above are nornnally employed at levels of from 0.001 % to 2% by weight of the composition, preferably from 0.01 % to 1 % by weight.
Others Other components such as soil-suspending agents, soil-release agents, optical brighteners, abrasives, bactericides, tarnish inhibitors, coloring agents, and/or encapsulated or non-encapsulated perfumes many be employed.
Especially suitable encapsulating materials are water soluble capsules which consist of a matrix of polysaccharide and pollyhydroxy compounds such as described in GB 1,464,616.
Other suitable wafer soluble encapsulating matf~rials comprise dextrins derived from ungelatinized starch acid-esters of substituted dicarboxylic acids such as described in US 3,455,838. These acid-ester d~extrins are,preferably, prepared from such starches as waxy maize, waxy sorghum, sago, tapioca and potato.
Suitable examples of said encapsulating materi<als include N-Lok manufactured by National Starch. The N-Lok encapsulating material consists of a modified maize starch and glucose. The starch is modified by adding monofunctional substituted groups such as octenyl succinic acid anhydride.
Antiredeposition and soil suspension agents suitable herein include cellulose derivatives such as methylcellulose, carboxymethylcellulose and hydroxyethylcellulose, and homo- or co-polymeric polycarboxylic acids or their salts. Polymers of this type include the polyaciylates and malefic anhydride-acrylic acid copolymers previously mentioned as builders, as well as copolymers of malefic anhydride with ethylene, rnethylvinyl .ether or methacrylic acid, the malefic anhydride constituting at least 20 mole peircent of the copolymer.
These materials are normally used at levels of from 0.5% to 10% by weight, more preferably from 0.75% to 8%, most preferably from 1 % to 6% by weight of the composition.
Preferred optical brighteners are anionic in character, examples of which are disodium 4,4'-bis-(2-diethanolamino-4-anilino -s- triazin-6-ylamino)stilbene-2:2' disulphonate, disodium 4, - 4'-bis-(2-morpholino-4-anilino-s-triazin-6-ylamino-stilbene-2:2' - disulphonate, disodium 4,4' - bis-(2,4-dianilino-s-triazin-6-ylamino)stilbene-2:2' - disulphonate, monosodiuim 4',4" -bis-(2,4-dianilino-s-tri-azin-fi ylamino)stilbene-2-sulphonate, disodium 4,4' -bis-(2-anilino-4-(N-methyl-N-2-hydroxyethylamino)-s-triazin-6-ylamino)stilbene-2,2' - disulphonate, di-sodium 4,4' -bis-(4-phenyl-2,1,3-triazol-2-yl)-stilk~ene-2,2' disulphonate, di-so-dium 4,4'bis(2-anilino-4-(1-methyl-2-hydroxyetlhylamino)-s-triazin-6- ylami-no)stilbene-2,2'disulphonate, sodium 2(stilbyl~-4"-(naphtho-1',2':4,5)-1,2,3 -triazole-2"-sulphonate and 4,4'-bis{2-sulphostyryl)biphenyl. Highly preferred brighteners are the specific brighteners of copending European Patent application No. 95201943.8.
Other useful polymeric materials are the polyethylene glycols, particularly those of molecular weight 1000-10000, more particularly 2000 to 8000 and most preferably about 4000. These are used at levels of from 0.20% to 5% more preferably from 0.25% to 2.5% by weight. These polymers and the previously mentioned homo- or co-polymeric polycarboxylate salts are valuable for improving whiteness maintenance, fabric as,h deposition, and cleaning performance on clay, proteinaceous and oxidizable soils in the presence of transition metal impurities.
Soil release agents useful in compositions of the present invention are conventionally copolymers or terpolymers of terephthalic acid with ethylene glycol and/or propylene glycol units in various arrangements. Examples of such polymers are disclosed in the commonly assigned US Patent Nos. 4116885 and WO 99!57157 PCT/US99109455 4711730 and European Published Patent Application No. 0 272 033. A
particular preferred polymer in accordance with EIP-A-0272 033 has the formula (CH3(PEG)43)0.75(POH)0.25CT-PO)2.,8(T-PEG)0.41T(PO
H)0.25((PEG)43CH3)t).75 where PEG is -(OC2H4)O-,PO is (OC3H60) and 'T is (pcOC6H4C0).
Also very useful are modified polyesters as random copolymers of dimethyl terephthalate, dimethyl sulfoisophthalate, ethylene glycol and 1-2 propane diol, the end groups consisting primarily of sulphoben.zoate and secondarily of mono esters of ethylene glycol and/or propane-diol. The target is to obtain a polymer capped at both end by sulphobenzoate groups, "primarily", in the present context most of said copolymers herein will be e:nd-capped by sulphobenzoate groups. However, some copolymers will be less than fully capped, and therefore their end groups may consist of monoester of ethylene glycol and/or propane 1-2 diol, thereof consist "secondarily" of such speciEa.
The selected polyesters herein contain about 46% by weight of dimethyl terephthalic acid, about 16% by weight of propane -1.2 diol, about 10% by weight ethylene glycol about 13% by weight of dimethyi sulfobenzoic acid and about 15% by weight of sulfoisophthalic acid, and have a molecular weight of about 3.000. The polyesters and their method of preparation are described in detail in EPA 311 342.
It is well-known in the art that free chlorine in tap water rapidly deactivates the enzymes comprised in detergent compositions. Therefore, using chlorine scavenger such as perborate, ammonium sulfate, sodium sulphite or polyethyleneimine at a level above 0.1% by weight of total composition, in the formulas will provide improved through the wash stability of the detergent enzymes. Compositions comprising chlorine scavenger are described in the European patent application 92870018.6 filed January 31, 1992.
Alkoxylated polycarboxylates such as those prepared from polyacrylates are useful herein to provide additional grease removal performance: Such materials are described in WO 91108281 and PCT 90/018'15 at p. 4 et seq., incorporated WO 991S7i57 PCT/US99/09455 herein by reference. Chemically, these materials comprise polyacrylates having one ethoxy side-chain per every 7-8 acrylate units. The side-chains are of the formula -(CH2CH20)m(CH2)nCH3 wherein m is 2-~ and n is 6-12. The side-chains are ester-linked to the polyacrylate "backbone" to provide a "comb"
polymer type structure. The molecular weight c:an vary, but is typically in the range of about 2000 to about 50,000. Such alkoxylated polycarboxylates can comprise from about 0.05% to about 10%, by weight, of the compositions herein.
Dispersants The laundry detergent and/or fabric care composition of the, present invention can also contain dispersants : Suitable water-soluble organic salts are the homo-or co-polymeric acids or their salts, in which the p~olycarboxylic acid comprises at least two carboxyl radicals separated from each other by not more than two carbon atoms.
Polymers of this type are disclosed in GB-A-1,596,75fi. Examples of such salts are polyacrylates of MW 2000-5000 and their cod>olymers with malefic anhydride, such copolymers having a molecular weight of from 1,000 to 100,000.
Especially, copolymer of acrylate and methylacrylate such as the 480N having a molecular weight of 4000, at a level from 0.5-20°,'~o by weight of composition can be added in the laundry detergent andlor fabric care compositions of the present invention.
The compositions of the invention may contain a. lime soap peptiser compound, which has preferably a Time soap dispersing power (LSDP), as defined hereinafter of no more than 8, preferably no more than 7, most preferably no more than 6. The lime soap peptiser compound is preferably present at a level from 0% to 20% by_weight.
A numerical measure of the effectiveness of a lime soap peptiser is given by the lime soap dispersant power (LSDP) which is determined using the lime soap dispersant test as described in an article by H.C. Borghetty and C.A. Bergman, J. Am. Oil. Chem. Soc., volume 27, pages E38-90, (1950). This Time soap dispersion test method is widely used by practitioners in this art field being referred to, for example, in the following review articles; W.N. Linfield, Surtactant science Series, Volume 7, page 3; W.N. Linfield, Tenside surf. det., volume 27, pages 159-163, (1990); and M.K. Nagarajan, W.F. Masler, Cosmetics and Toiletries, volume 104,. pages 71-73, (19$9). Thc~ LSDP is the % weight ratio of dispersing agent to sodium oleate required to dlisperse the lime soap deposits formed by 0.025g of sodium oleate in 30m1 of water of 333ppm CaCo3 (Ca:Mg=3:2) equivalent hardness.
Surfactants having good lime soap peptiser capability will include certain amine oxides, betaines, sulfobetaines, alkyl ethoxysulfates and ethoxylated alcohols.
Exemplary surfactants having a LSDP of no more than 8 for use in accord with the present invention include C1g-C1g dimethy! amine oxide, C12-C1g alkyl ethoxysulfates with an average degree of ethoxylation of from 1-5, particularly C12-C15 alkyl ethoxysulfate surfactant with a degree of ethoxylation of amount 3 (LSDP=4), and the C14-C15 ethoxylated alcohols with an average degree of ethoxylation of either 12 -(LSDP=6) or 30, sold under the tradenames Lutensol A012 and Lutensol A030 respectively, by BASF ~GmbH.
Polymeric lime soap peptisers suitable for use herein are described in the article by M.K. Nagarajan, W.F. Masier, to be found in Cosmetics and Toiletries, volume 104, pages 71-73, (1989).
Hydrophobic bleaches such as 4-[N-oct;anoyl-6-aminohexanoyl]benzene sulfonate, 4-[N-nonanoyl-6-aminohexanoyl]benz.ene sulfonate, 4-[N-decanoyl-6-aminohexanoyl]benzene sulfonate and mixtures thereof; and nonanoyloxy benzene sulfonate together with hydrophilic / Hydrophobic bleach formulations can also be used as lime soap peptisers compounds.
Dye transfer inhibition The laundry detergent and/or fabric care compositions of the present invention can also include compounds for inhibiting dye transfer from one fabric to another of solubilized and suspended dyes encountered during fabric laundering operations involving colored fabrics.
Polymeric dye transfer inhibiting agents The laundry detergent andlor fabric care compo~~itions according to the present invention may also comprise from 0.001 % to 10 °/o, preferably from 0.011 % to 2%, more preferably from 0.05% to 1 % by weight of f>olymeric dye transfer inhibiting agents. Said polymeric dye transfer inhibiting agents are normally incorporated into laundry detergent andlor fabric care compositions in order to inhibit the transfer of dyes from colored fabrics onto fabrics washed therewith. These polymers have the ability to complex or adsorb the fugitive dyes washed out of dyed fabrics before the dyes have the opportunity to become attached to other articles in the wash.
Especially suitable polymeric dye transfer inhibiting agents are poiyamine N-oxide polymers, copolymers of N-vinylpyrrolidone and N-vinylimidazole, polyvinylpyrrolidone polymers, polyvinyloxazolidones and polyvinylimidazoles or mixtures thereof.
Addition of such polymers also enhances the performance of the enzymes according the invention.
a) Polyamine N-oxide polymers The poiyamine N-oxide polymers suitable for use contain units having the following structure formula P
I
(~) Ax I
R
wherein P is a polymerisable unit, whereto the R-N-O group can be attached to or wherein the R-N-O group forms part of the polyrnerisable unit or a combination of both.
O O O
I1 Il II
A is NC, CO, C, -O-,-S-, -N- ; x is O or 1;

WO 99/57157 PCT/U~99/09455 R are aliphatic, ethoxylated aliphatics, aromatic, heterocyclic or alicyclic groups or any combination thereof whereto the nitrogen of the N-O group can be attached or wherein the nitrogen of the N-O group is part of these groups.
The N-O group can be represented by the following general structures O O
i l (R1 )x -N- (R2)y =N- (R1 )x I
(R3)z ~niherein R1, R2, and R3 are aliphatic groups, aromatic, hEaerocyclic or alicyclic groups or combinations thereof, x or/and y orland z is 0 or 1 and wherein the nitrogen of the N-O group can be attached or wherein the nitrogen of the N-O group forms part of these groups.
The N-O group can be part of the polymerisable~ unit (P) or can be attached to the polymeric backbone or a combination of both.
Suitable polyamine N-oxides wherein the N~-O group forms part of the polymerisable unit comprise polyamine N-oxides wherein R is selected from aliphatic, aromatic, alicyclic or heterocyclic group;.
One class of said polyamine N-oxides comprises the group of polyamine N-oxides wherein the nitrogen of the N-O group forms part of the R-group.
Preferred polyamine N-oxides are those wherein R is a heterocyclic group such as pyrridine, pyrrole, imidazole, pyrrolidine, piperidine, quinoline, acridine and derivatives thereof.
Another class of said polyarnine N-oxides comprises the group of polyamine N-oxides wherein the nitrogen of the N-O group is attached to the R-group.
Other suitable polyamine N-oxides are the poly.amine oxides whereto the N-O
group is attached to the polymerisable unit.

Preferred class of these polyamine N-oxides are t:he polyamine N-oxides having the general formula (I) wherein R is an aromatic, heterocyclic or alicyclic groups wherein the nitrogen of the N-0 functional group is part of said R group.
Examples of these classes are polyamine oxides wherein R is a heterocyclic compound such as pyrridine, pyrrole, imidazole and derivatives thereof.
Another preferred class of polyamine N-oxides are the polyamine oxides having the general formula (I) wherein R are aromatic, heterocyclic or alicyclic groups wherein the nitrogen of the N-0 functional group is attached to said R groups.
Examples of these classes are polyamine oxides wherein R groups can be aromatic such as phenyl.
Any polymer backbone can be used as long as the amine oxide polymer formed is water-soluble and has dye transfer inhibiting properties. Examples of suitable polymeric backbones are poiyvinyls, polyalkyl~enes, polyesters, polyethers, polyamide, polyimides, polyacrylates and mixtures thereof.
The amine N-oxide polymers of the present invention typically have a ratio of amine to the amine N-oxide of 10:1 to 1:1000000. However the amount of amine oxide groups present in the polyamine oxide polymer can be varied by appropriate copolymerization or by appropriate degree of N-oxidation.
Preferably, the ratio of amine to amine N-oxide is from 2:3 to 1:1000000. More preferably from 1:4 to 1:1000000, most preferablly from 1:7 to 1:1000000. The polymers of the present invention actually encompass random or block copolymers where one monomer type is an amine N-oxide and the other monomer type is either an amine N-oxide or noi:. The amine oxide unit of the palyamine N-oxides has a PKa < 10, preferably F'Ka < 7, more preferred PKa <
6.
The polyamine oxides can be obtained in almost any degree of polymerisation.
The degree of polymerisation is not critical provided the material has the desired water-solubility and dye-suspending power.
Typically, the average molecular weight is within the range of 500 to 1000,000;
preferably from 1,000 to 50,000, more preferably from 2,000 to 30,000, most preferably from 3,000 to 20,000.
b) Copolymers of N-vinylpyrrolidone and N-vinylimidazole The N-vinylimidazole N-vinylpyrrolidone polymer;> used in the present invention have an average molecular weight range from 5,000-1,000,000, preferably from 5,000-200,000.
Highly preferred polymers for use in laundry detergent andlor fabric care compositions according to the present invention comprise a polymer selected from N-vinylimidazole N-vinylpyrrolidone copolymers wherein said polymer has an average molecular weight range from 5,000 i.o 50,000 more preferably from 8,000 to 30,000, most preferably from 10,000 to 2!0,000.
The average molecular weight range was dete~rrnined by light scattering as described in Barth H.G. and Mays J.W. Chemical Analysis Vol 113,"Modern Methods of Polymer Characterization".
Highly preferred N-vinylimidazole N-vinylpyrrolidone copolymers have an average molecular weight range from 5,000 to 50,000; more preferably from 8,000 to 30,000; most preferably from 10,000 to 20,000.
The N-vinylimidazole N-vinylpyrrolidone copolymers characterized by having said average molecular weight range provide excellent dye transfer inhibiting properties while not adversely affecting the cleaning performance of laundry detergent and/or fabric care compositions formulated therewith.
The N-vinylimidazole N-vinylpyrrolidone copolymer of the present invention has a molar ratio of N-vinylimidazole to N-vinylpyrrolidone from 1 to 0.2, more preferably from 0.8 to 0.3, most preferably from 0.6 to 0.4 .
c) Polyvinylpyrrolidone The laundry detergent and/or fabric care compositions of the present invention may also utilize polyvinyipyrrolidone ("PVP") having an average molecular weight of from about 2,500 to about 400,000, preferalbly from about 5,000 to about 200,000, more preferably from about 5,000 to about 50,000, and most preferably from about 5,000 to about 15,000. Suitable polyvinylpyrrolidones are commercially vailable from ISP Corporation, I~ew York, NY and Montreal, Canada under the product names PVP K-15 (viscosity molecular weight of 10,000), PVP K-30 (average molecular weight of 40,000), PVP K-60 (average molecular weight of 160,000), and PVP K-90 (average molecular weight of 360,000). Other suitable polyvinylpyrrolidones which are commercially available from BASF Cooperation inciude Sokalan HF' 165 and Sokalan HP 12;

polyvinyipyrrolidones known to persons skilled in the detergent field (see for example EP-A-262,897 and EP-A-256,696).
d) Polyvinyloxazolidone The laundry detergent andlor fabric care compositions of the present invention may also utilize palyvinyloxazolidone as a polymeric dye transfer inhibiting agent. Said polyvinyloxazolidones have an average molecular weight of from about 2,500 to about 400,000, preferably from .about 5,000 to about 200,000, more preferably from about 5,000 to about 50,IJ00, and most preferably from about 5,000 to about 15,000.
e) Polyvinylimidazole The laundry detergent andlor fabric care compositions of the present invention may also utilize polyvinylimidazole as polymeric; dye transfer inhibiting agent.
Said polyvinylimidazoles have an average about 2,500 to about 400,000, preferably from .about 5,000 to about 200,000, more preferably from about 5,000 to about 50,000, and most preferably from about 5,000 to about 15,000.
f) Cross-linked polymers Cross-linked polymers are polymers whose backbone are interconnected to a certain degree; these links can be of chemical or physical nature, possibly with active groups n the backbone or on branches; cross-linked polymers have been described in the Journal of Polymer Science, volume 22, pages 1035-1039.
In one embodiment, the cross-linked polymers are made in such a way that they form a three-dimensional rigid structure, which can entrap dyes in the pores formed by the three-dimensional structure. In another embodiment, the cross-linked polymers entrap the dyes by swelling.
Such cross-linked polymers are described in thE: co-pending patent application 94870213.9 Method ~f washing The compositions of the invention may be used in essentially any washing, cleaning andlor fabric care methods, including :soaking methods, pre-treatment WO 99/57157 PCTIU~99109455 methods, methods with rinsing steps for which a separate rinse aid composition may be added and post-treatment methods.
The process described herein comprises contacting fabrics with a laundering solution in the usual manner and exemplified her~eunder. A conventional laundry method comprises treating soiled fabric with an aqueous liquid having dissolved or dispensed therein an efFective amount of the :laundry detergent andlor fabric care composition. The process of the invention is conveniently carried out in the course of the cleaning process. The method of cleaning is preferably carried out at 5°C to 95°C, especially between 10°C and X60°C.
The pH of the treatment solution is preferably from 7 to 12.
The following examples are meant to exemplifly compositions of the present invention, but are not necessarily meant to limit or otherwise define the scope of the invention. In the laundry detergent and/or fabric care compositions, the enzymes levels are expressed by pure enzyme by weight of the total composition and unless otherwise specified, irhe detergent ingredients are expressed by weight of the total compositions. The abbreviated component identifications therein have the following meanings:
~qS : Sodium linear C11-13 alkyl benzene sulphonate.

TAS : Sodium tallow alkyl sulphate.

CxyAS : Sodium C1x - C1y alkyl aulfate.

CxySAS : Sodium C1x - C1y secondary (2,3) alkyl sulfate.

CxyEz : C1x - C1y predominantly linear primary alcohol condensed with an average of z moles of ethylene oxide.
CxyEzS : C1x - C1y sodium alkyl ;>ulfate condensed with an average of z moles of ethylene oxide.
QAS : R2.N+(CH3)2(C2H40H) with R2 = C12-C14~
QAS 1 : R2~N+(CH3)2(C2H4~H) with R2 = Cg-C11, APA : C8-10 amido propyl dimethyl amine.
Soap : Sodium linear alkyl carboxylate derived from a 80120 mixture of tallow and coconut fatty acids.
STS : Sodium toluene sulphonate.
CFAA : C12-C14 alkyl N-methyl glucamide.
TFAA ; C15-C1g alkyl N-methyl glucamide.

WO 99/57157 PCT/U~99/09455 TPKFA : C12-C14 topped whole cut fatty acids.

DEQA : Di-(tallow-oxy-ethyl) dimethyl ammonium chloride.

DEQA (2) : Di-(soft-tallowyloxyethyl;y hydraxyethyl methyl ammonium methylsulfate.

DTDMAMS : Ditalllow dimethyl ammonium methylsulfate.

SDASA : 1:2 ratio of stearyldimethyl amineariple-pressed stearic acid.

Silicate a Amorphous Sodium Silicate (Si02:Na20 ratio = 1.6-3.2).

Zeolite A : Hydrated Sodium Aluminosilicate of formula Nal2(A102Si02)12~ 27~H2~ having a primary particle size in the range from 0.1 to 19 micrometers (Weight expressed on an anhydirous basis).

Na-SKS-6 ; Crystalline layered silicate of formula 8-Na2Si205.

Citrate : Tri-sodium citrate dihydrate of activity 86.4%
with a particle size distribution between 425 and 850 micrometres.

Citric : Anhydrous citric acid.

Borate : Sodium borate Carbonate : Anhydrous sodium carbonate with a particle size between 200 and 900 micrametres.

Bicarbonate : Anhydrous sodium hydrogen carbonate with a particle size distribution between 400 and 1200 micrometres.

Sulphate : Anhydrous sodium sulphate.

Mg Sulphate : Anhydrous magnesium sulfate:

STPP : Sodium tripolyphosphate.

TSPP : Tetrasadium pyrophosphate.

MAIAA : Random copolymer of 4~:1 acrylatelmaleate, average molecular weight about 70,000-80,000.

MA/AA 1 : Random copolymer of Ei:4 acrylatelmaleate, average molecular weight about 10,000.

AA : Sodium poiyacrylate polymer of average molecular weight 4,500.

PB1 : Anhydrous sodium perborate monohydrate of nominal formula NaB02.H202.

PB4 : Sodium perbarate tetrahydrate of nominal formula NaB02.3H20.H202.

Percarbonate : Anhydrous sodium percarbonate of nominal formula 2Na2C03.3H202 .

TAED : Tetraacetylethylenediamine.

NOBS : Nonanoyloxybenzene suilfonate in the form of the sodium salt.

NACA-OBS : (6-nonamidocaproyi) oxybenzene sulfonate.

DTPA : Diethylene triamine pent:aacetic acid.

HEDP : 1,1-hydroxyethane diphosphonic acid.

DETPMP : Diethyltriamine yenta (methylene) phosphonate, marketed by Monsanto under the Trade name bequest 2060.

EDDS : Ethylenediamine-N,N'-diauccinic acid, (S,S) isomer in the form of its sodium salt Photoactivated : Sulfonated zinc phtalocyanine encapsulated in dextrin Bleach soluble polymer.

Photoactivated : Sulfonated alumino phtalocyanine encapsulated in Bleach 1 dextrin soluble polymer:

Protease : Proteolytic enzyme sold under the tradename Savinase, Alcalase, Durazym by Novo Nordisk AIS, Maxacal, Maxapem sold by Gist-Brocades and proteases described in patents W0~91106637 and/or W095110591.

Amylase : Amyloiytic enzyme sold under the tradename Purafact Ox AmR described in WO 94/18314, W096I05295 sold by Genencor9 Termamyl'~, Fungamyl~ and Duramyl~, all available from Novo Nordisk A/S and those described in W095/26397.
Lipase : Lipolytic enzyme sold under the tradename Lipolase, Lipolase Ultra by Novo Nordisk AlS and Lipomax by Gist-Brocades.

WO 99!57157 PCT/US99/09455 CBD-Dextranase : Dextranase enzyme sold by Fluka, linked by PEG(NPC)2 MW 3400 to the CBD cellulozome from Clostridium cellulovorans, sold under the tradename CeIluNose Binding Domain by Sigma; andlor Dextranase enzyme solcl by Fluka linked by the Humicola Insolens family 45 cellulase linker to the CBD
of the cellulytic enzyme sold under the tradename Carezyme by Novo Nordlisk A/S.
CBD- : N-acetyl-~i-D-glucosamiinidase sold by Boehringer Hexosaminidase Mannheim, linked by PEG(NPC}2 MW 3400 to the CBD

cellulozome from Clostridium cellulovorans, sold under the tradename Cellulose Binding Domain by Sigma.

CBD- : Protocatechuate 3,4-dio:Kygenase (EC.1.13.11.3) sold by Protocatechuate Sigma linked by PEG(NPC)2 MW 3400 to the CBD

cellulozome from Clostridium cellulovorans, sold under the tradename Cellulose Binding Domain by Sigma.

CBD-Protamine : Protoamine from Sigma linked by PEG(NPC)2 to the CBD celluiozome from Clostridium celluiovoraris, sold under the tradename Cellulose Binding Domain by Sigma; and/or Protoamine from Sigma linked directly to the CBD of the E4 dual CBD system of Thermomonospora fusca.
CBD-Cecropin : Cecropin B from Sigma (linked by PEG(NPC)2 MW 3400 to the CBD cellulozome from Clostridium cellulovorans, sold under the tradename Cellulose Binding Domain by Sigma.
CBD-Indolicidin : D-Indolicidin from Biosource technologies INC linked by PEG(NPC}2 MW 3400 to the CBD cellulozome from Clostridium cellulovoran,s, sold under the tradename Cellulose Binding Domain by Sigma.
Cellulase : Cellulytic enzyme sold under the tradename Carezyme, Celluzyme and/or Endol;ase by Novo Nordisk I~IS.
CMC : Sodium carboxymethyl cellulose.
PVP : Polyvinyl polymer, with an average molecular weight of 60,000.

WO 99/5'715y ~ PCT/US99/09455 PVNO : Polyvinylpyridine-N-Oxide, with an average molecular weight of 50,000.
PVPVI : Copolymer of vinylimidazole and vinylpyrrolidone, with an average molecular weight of 20,000.
Brightener 1 : Disodium 4,4'-bis(2-sulp~hostyryl)biphenyl.
Brightener 2 : Disodium 4,4'-bis(4-anilino-6-morpholino-1.3.5-triazin-2-yl) stilbene-2:2'-disulfon;aten Silicone antifoam : Polydimethylsiloxane foam controller with siloxane-oxyalkylene copolymer as dispersing agent with a ratio of said foam controller to said dispersing agent of 10:1 to 100:1.
Suds Suppressor : 12% Silicone/silica, 18°/~ stearyl alcoho1,70%
starch in granular form.
Opacifier : Water based monostyrene latex mixture, sold by BASF
Aktiengesellschaft under the tradename Lytron 621.
SRP 1 : Anionically end capped poly esters.
SRP 2 : Diethoxylated poly (1,2 propylene terephtalate) short block polymer.
QEA : bis((C2H50)(C2H40)n)~(CH3) -N+-C6H12-N+-(CH3) bis((C2H50)-(C2H40))r~, wherein n = from 20 to 30.
PEI : Polyethyleneimine with .an average molecular weight of 1800 and an average ethoxylation degree of 7 ethyleneoxy residues pe:r nitrogen.
SCS : Sodium cumene sulphoinate.
HMWPEO : High molecular weight polyethylene oxide.
PEGx : Polyethylene glycol, of a molecular weight of x .
PEO : Polyethylene oxide, with an average molecular weight of 5,000.
TEPAE : Tetreaethylenepentaamine ethoxylate.
Example 1 The following high density laundry detergent compositions were prepared according to the present invention I II III IV V VI

LAS 8.0 8.0 8.0 2.0 6.0 fi.0 TAS - 0.5 - 0.5 1.0 0.1 C46(S)AS 2.0 2.5 - - - -C25AS - - - 7.0 4.5 5.5 Cfi8AS 2.0 5.0 7.0 - - -C25E5 - - 3.4 10.0 4.6 4.6 C25E7 3.4 3.4 1.0 - - -C25E3S - - - 2.0 5.0 4.5 QAS - 0.8 - - -QAS 1 - - - 0.8 0.5 1.0 Zeolite A 18.1 18.0 14.1 18.1 20.0 18.1 Citric - - - 2.5 - 2.5 Carbonate 13.0 13.0 27.0 10.0 10.0 13.0 Na-SKS-6 - - - 10.0 - 10.0 Silicate 1.4 1.4 3.0 0.3 0.5 0.3 Citrate - 1.0 - 3.0 - -Sulfate 26.1 26.1 26.1 6.0 - -Mg sulfate 0.3 - - 0.2 - 0.2 MA/AA 0.3 0.3 0.3 4.0 1.0 1.0 CMC 0.2 0.2 0.2 0.2 0.4 0.4 PB4 9.0 9.0 5.0 - _ _ Percarbonate - - - - 18.0 18.0 TAED 1.5 0.4 1.5 - 3.9 4.2 NACA-~BS - 2.0 1.0 - - -DETPMP 0.25 0.25 0.25 0.25 - -SRP 1 - - - 0.2 - 0.2 EDDS - 0.25 0.4 - 0.5 0.5 CFAA - 1.0 - 2.0 - _ HEDP 0.3 0.3 0.3 0.3 0.4 0.4 QEA - _ _ 0.2 - 0.5 Protease 0.009 0.009 0.01 0.04 0.05 0.03 Amylase 0.002 0.002 0.002 0.006 0.008 0.008 Cellulase 0.0007 0.0006 0.000'70.0008 0.0007 0.001 Lipase 0.006 - - 0.01 0.01 0.01 CBD-Dextranase 0.05 0.01 - - - _ I II III IV V VI

CBD- - 0.01 0.05 0.05 - 0.01 Protocatechuate CBD-lndolicidin - - 0.01 - 0.05 -Photoactivated 15 15 15 - 20 20 bleach (ppm) PVNOIPVPVI - - - 0.1 - -Brightener 1 0.09 0.09 0.09 - 0.09 0.09 Perfume 0.3 0.3 0.3 0.4 0.4 0.4 Silicone antifoam 0.5 0.5 0.5 - 0.3 0.3 Density in g/litre 850 850 850 850 850 850 Miscellaneous and minors l.lp to 100%

Example 2 The following granu lar laundrydetergent utility compositions under of particular European machine wash prepared the present conditions according were to invention LAS 5.5 7.5 5.0 5.0 6.0 7.0 TAS 1.25 1.9 - 0.8 0.4 0.3 C24AS/C25AS - 2.2 5.0 5.0 5.0 2.2 C25E3S - 0.8 1.0 1.5 3.0 1.0 C45E7 3.25 - - - - 3.0 TFAA - - 2.0 - _ C25E5 - 5.5 - - -QAS 0.8 - - - - -QAS 1 - 0.7 1.0 0.5 1.0 0.7 STPP 19.7 - - - - -Zeolite A - 19.5 25.0 19.5 20.0 17.0 NaSKS-6lcitric acid - 10.6 - 10.fi - -(79:21 }

Na-SKS-6 - - 9.0 - 10.0 10.0 Carbonate 6.1 21.4 9.0 10.0 10.0 18.0 Bicarbonate - 2.0 7.0 5.0 - 2.0 WO 991571ST PCT/U~99109455 I II Ill IV V VI

Silicate 6.8 - - 0.3 0.5 -Citrate - - 4.0 4.0 - -Sulfate 39.8 - - 5.0 - 12.0 Mg sulfate - - 0.1 0.2 0.2 -MAIAA 0.5 1.6 3.0 4.0 1.0 1.0 CMC 0.2 0.4 1.0 1.0 0.4 0.4 PB4 5.0 12.7 - - - -Percarbonate - - - - 18.0 15.0 TAED 0.5 3.1 - - 5.0 -NACA-OBS 1.0 3.5 - - - 2.5 DETPMP 0.25 0.2 0.3 0.4 - 0.2 HEDP - 0.3 - 0.3 0.3 0.3 QEA - - 1.0 1.0 1.0 -Protease 0.009 0.03 0.03 0.05 0.05 0.02 Lipase 0.003 0.003 0.006 0.006 0.006 0.004 Cellulase 0.0006 0.0006 0.0005 0.0005 0.0007 0.0007 Amylase 0.002 0.002 0.006 0.006 0.01 0.003 CBD- - - 0.03 0.01 0.01 0.05 Hexosaminidase CBD- 0.05 - - - - 0.01 Protocatechuate CBD-Protamine - 0.08 - - - -PVNOIPVPVI - - 0.2 0.2 - -PVP 0.9 1.3 - - - 0.9 SRP 1 - - 0.2 0.2 0.2 -Photoactivated 15 27 - - 20 20 bleach {ppm) Photoactivated 15 - - - - -bleach 1 {ppm) Brightener 1 0.08 0.2 - - 0.09 0.15 Brightener 2 - 0.04 - - - -Perfume 0.3 0.5 0.4 0.3 0.4 0.3 ~

Silicone antifoam0.5 2.4 0.3 0.5 0.3 2.0 Density in g/litre750 750 750 750 750 750 Miscellaneous Up to 100%
and minors Example 3 The following detergent formulations of particular utility under European machine wash conditions were prepared according to the present invention I ~ 11 III IV/

Blown Powder .

LAS 6.0 5.0 11.0 6.0 TAS 2.0 - - 2.0 Zeolite A 24.0 - - 20.0 STPP - 27.0 24.0 -Sulfate 4.0 6.0 13.0 MAIAA 1.0 4.0 6.0 2.0 Silicate 1.0 7.0 3.0 3.0 CMC 1.0 1.0 0.5 0.6 Brightener 1 0.2 0.2 0.2 0.2 Silicone antifoam 1.0 1.0 1.0 0.3 DETPMP 0.4 0.4 0.2 0.4 Spray On Brightener 0:02 - - 0.02 C45E7 - - - 5.0 C45E2 2.5 2.5 2.0 C45E3 2.6 2.5 2.0 Perfume 0.5 0.3 0.5 0.2 Silicone antifoam 0.3 0.3 0.3 Dry additives QEA, - _ - 1.0 EODS 0.3 - - -Sulfate 2.0 3.0 5.0 10.0 Carbonate 6.0 13.0 15.0 14.0 Citric 2.5 - - 2.0 QAS 1 0.5 - - 0.5 Na-SKS-6 10.0 - - -Percarbonate 18.5 - - -WO 99/5715 PCT/U~99/09455 I II III IV

PB4 - 18.0 10.0 21.5 TAED 2.0 2.0 - 2.0 NACA-OBS 3.0 2.0 4.0 CBD-Hexosaminidase 0.05 0.05 0.02 0.02 CBD-Protamine - - 0.02 .-Cellulase 0.0004 0.0006 0.0006 0.0008 Protease 0.03 0.03 0.03 0.03 Lipase 0.008. 0.008 0.008 0.004 Amylase 0.003 0.003 0.003 0.000 Brightener 1 0.05 - - 0.05 Miscellaneous and Up to 100%
minors Example 4 The following granular detergent formulations were prepared according to the present invention I II III IV V VI
Blown Powder LAS 23.0 8.0 7.0 9.0 7.0 7.0 TAS - _ _ _ 1.0 -C45AS fi.0 6.0 5.0 8.0 - -C45AES - 1.0 1.0 1.0 - -C45E35 - - - - 2.0 4.0 Zeolite A 10.0 18.0 14.0 12.0 10.0 10.0 MAIAA - 0.5 - _ - 2.0 MA/AA 1 7.0 - - _ _ _ AA - 3.0 3.0 2.0 3.0 3.0 Sulfate 5.0 fi.3 14.3 11.0 15.0 19.3 Silicate 10.0 1.0 1.0 1.0 1.0 1.0 Carbonate 15.0 20.0 10.0 20.7 8.0 6.0 PEG 4000 0.4 1.5 1.5 1.0 1.0 1.0 DTPA - 0.9 0.5 - - 0.5 Brightener 2 0.3 0.2 0.3 - 0.1 0.3 Spray On I II III IV V VI

C45E7 - 2.0 - - 2.0 2.0 C25E9 3.0 - - - - -C23E9 - - 1.5 2.0 - 2.0 Perfume 0.3 0.3 0.3 2.0 0.3 0.3 Agglomerates C45AS - 5.0 5.0 2.0 - 5.0 LAS - 2.0 2.0 - - 2.0 Zeolite A - . 7.5 7.5 8.0 - 7.5 Carbonate - 4.0 4.0 5.0 - 4.0 PEG 4000 - 0.5 0.5 - - 0.5 Misc ('UVater - 2.0 2.0 2.0 - 2.0 etc.) Dry additives QAS - _ _ _ 1.0 -Gitric - - - - 2.p PB4 - - _ - 12.0 1.0 PB1 4.0 1.0 3.0 2.0 - -Percarbonate - - - - 2.0 10.0 Carbonate - 5.3 1.8 - 4.0 4.0 NOBS 4.0 - 6.0 - - 0.6 Methyl cellulose0.2 - - - -Na-SKS-6 8.0 - - _ - -STS - - 2.0 - 1.0 -Culmene sulfonic- 1.0 - - - 2.0 acid Protease 0.02 0.02 0.02 0.01 0.02 0.02 Lipase 0.004 - 0.004 - 0.004 0.008 Amylase 0.003 - 0.00:? - 0.003 -Cellulase 0.0003 0.0005 0.0005 0.0007 0.0005 0.0008 CBD-Dextranase 0.05 0.001 0.05 0.03 - -CBD-Cecropin - - - 0.001 0.07 0.03 PVPVI - - - - 0.5 0.1 PVP - _ - _ 0.5 -PVNO - - 0.5 0.3 - -QEA - - _ _ 1.0 -SRP 1 0.2 0.5 0.3 - 0.2 WO 99/57157 PCTIU~99109455 I II III IV V VI
Silicone antifoam 0.2 0.4 0.2 0.4 0.1 -Mg sulfate - - 0.2 - 0.2 -MisceNaneous and minors Up to 100%
Example 5 The following nil bleach-containing detergent compositions of particular use in the washing of coloured clothing were prepared according to the present invention Blown Powder Zeolite A 15.0 15.0 -Sulfate - 5.0 -L.AS 3.0 3.0 -DETPMP 0.4 0.5 -CMC 0.4 0.4 -MAIAA 4.0 4.0 -Agglomerates C45AS - - 11.0 L.AS 6.0 5.0 -TAS 3.0 2.0 -Silicate 4.0 4.0 -Zeolite A 10.0 15.0 13.0 CMC - - 0.5 M~~ - - 2.0 Carbonate 9.0 7.0 7.0 Spray-on Perfume 0.3 0.3 0.5 C45E7 4.0 4.0 4.0 C25E3 2.0 2.0 2.0 D .ry additives M~~ - - 3.0 Na-SKS-6 - - 12.0 Citrate 10.0 - 8.0 Bicarbonate 7.0 3.0 5.0 Carbonate 8.0 5.0 7.0 PVPVIIPVNO 0.5 0.5 0.5 Protease 0.03 0.02 0.05 Lipase 0.008 ~D.008 0.008 Amylase 0.01 0.01 0.01 Cellulase 0.001 ~D.001 0.001 CBn-Hexosaminidase - 0.05 0.05 CBD-Indolicidin 0.008 - -Silicone antifoam 5.0 5.0 5.0 Sulfate - 9.0 -Density (g/litre) 700 700 700 Miscellaneous and minors Up to 100%

Example ~
The following detergent compositions were prepared according to the present invention I Il Ill BV
Base granule Zeolite 30.0 22.0 24.0 1 ~D.O
A

Sulfate 10.0 5.0 10.0 7.0 MAIAA 3.0 - - -AA - 1.6 2.0 -MAIAA 1 - 12.0 - E.0 LAS 14.0 10.0 9.0 20.0 C45AS 8.0 7.0 9.0 7.0 C45AES - 1.0 1.0 -Silicate - 1.0 0.5 10.0 Soap - 2.0 - -Brightener 0.2 0.2 0.2 0.2 Carbonate 6.0 9.0 10.0 10.0 I II ill iV

PEG 4000 - 1.0 1.5 DTPA - 0.4 - -Spray On C25E9 - - - 5.0 C45E7 1.0 1.0 - -C23E9 - 1.0 2.5 -Perfume 0.2 0.3 0.3 -Dry additives Carbonate 5.0 10.0 18.0 8.0 PVPVI/PVNO 0.5 - 0.3 -CBD-Protocatechuate 0.005 0.05 0.03 -CBD-Hexosaminidase - - 0.001 0.002 CBD-cecropin - - - 0.002 Protease 0.03 0.03 0.03 0.02 Lipase 0.008 - - 0.008 Amylase 0.002 - - 0.002 Cellulase 0.0002 0.0005 0.0005 0.0002 NOBS - 4.0 - 4.5 PB1 1.0 5.0 1.5 5.0 Sulfate 4.0 5.0 - 5.0 SRP 1 - 0.4 -Suds suppressor - 0.5 0.5 -Miscellaneous and minors U~~ to 100%

Example ~

The following granular detergent compositions were prepared according to the present invention Blown Powder Zeolite A 20.0 - 15.0 STPP - 20.0 Sulfate - - 5.0 Carbonate - - 5.0 Bicarbonate 7.0 3.0 5.0 Carbonate 8 $0 Spray On Dry additives TAS - - 1.0 LAS 6.0 6.0 6.0 C68AS 2.0 2.0 Silicate 3.0 8.0 -MArAA 4.0 2.0 2.0 cMC o.s o.s o.2 Brightener 1 0.2 0.2 0.1 DETPMP . 0.4 0.4 0.1 STS - - 1.0 C45E7 5.0 5.0 4.0 Silicone antifoam0.3 0.3 0.1 Perfume 0.2 0.2 0.3 QEA - - 1.0 Carbonate 14.0 9.0 10.0 PB1 1.5 2:0 -PB4 18.5 13.0 13.G

TAE D 2.0 2.0 2.0 QAS - - 1.0 Photoactivated bleach 15 ppm 15 ppm 15 ppm Na-SKS-6 - - 3.0 CBD-Dextranase 0.1 0.05 0.001 Protease 0.03 0.03 0.00'7 Lipase 0.004 0.004 0.004 Amylase 0.006 0.006 0.003 Cellulase 0.0002 0.0002 0.0005 Sulfate 10.0 20.0 5.0 Density (gllitre) 700 700 700 Miscellaneous and minors Up to 100%

Example 8 The following detergent compositions were prepared according to the present invention WO 99/57157 PCT/Ua99/09455 Blown Powder Zeolite A 15.0 15.0 15.0 Sulfate - 5.0 -LAS 3.0 3.0 3.0 GtAS - 1.5 1.5 DETPMP 0.4 0.2 0.4 EDDS - 0.4 0.2 CMC 0.4 0.4 0.4 MAIAA 4.0 2.0 2.0 Agglomerate LAS 5.0 5.0 ~ 5.0 IfAS 2.0 2.0 1.0 Silicate 3.0 3.0 4.0 Zeolite A 8.0 8.0 8.0 Carbonate 8.0 8.0 4.0 Spray On Perfume 0.3 0.3 0.3 C45E7 2.0 2.0 2:0 C25E3 2.0 - -Dry Additives C itrate 5.0 - 2.0 Bicarbonate - 3.0 -Carbonate 8.0 15.0 10.0 TAED 6.0 2.0 5.0 PB1 14.0 7.0 10.0 PEO - - 0.2 Bentonite clay - - 10,0 CBD-Dextranase 0.03 - -CBD-Protamine - 0.03 -CBD-Indolicidin - - 0.03 Protease 0.03 0.03 0.03 Lipase 0.008 0.008 0.008 Cellulase 0.001 0.001 0.001 Amylase 0.01 0.01 0.01 Silicone antifoam 5.0 5.0 5.0 Sulfate - 3.0 Density (g/litre) 850 850 850 Miscellaneous and minors Up to 100%

Example 0 The following detergent compositions were prep;gyred according to the present invention I II III IV

LAS 18.0 14.0 24.0 20.0 QAS 0.7 1.0 - 0.7 TFAA - 1.0 - -.

C23E56.5 - - 1.0 C45E7 - 1.0 - -.

C45E3S 1.0 2.5 1.0 -STPP 32.0 18.0 30.0 22.0 Silicate 9.0 5.0 9.0 8.0 Carbonate 11.0 7.5 10.0 5.0 Bicarbonate - 7.5 - -PB1 3.0 1.0 - -.

PB4 - 1.0 - _.

NOBS 2.0 1.0 - ..

DETPMP - 1.0 - -.

DTPA 0.5 - 0.2 0.3 SRP 1 0.3 0.2 - 0.1 MAIAA 1.0 1.5 2.0 0.5 CMC 0.8 0.4 0.4 0.2 PEI - - 0.4 _.

WO 991S71S7 PCT/U~99/09455 i II III IV

Sulfate 20.0 10.0 20.0 30.0 Mg sulfate 0.2 - 0.4 0.9 CBD-Hexosaminidase 0.01 0.005 0.05 -CBD-Protocatechuate - 0.002 - 0.01 Protease 0.03 0.03 0.02 0.02 Amylase 0.008 0.007 - 0.004 Lipase 0.004 - 0.002 -Cellulase 0.0003 - - 0.0001 Photoactivated bleach 30 ppm 20 p~>m - 10 ppm Perfume 0.3 0.3 0.1 0.2 Brightener 112 0.05 0.0:7 0.08 0.1 Miscellaneous and minors up to 100%

Example 10 The following liquid detergent formulations wen~e prepared according to the present invention (Levels are given in parts per wE:ight; enzyme are expressed in pure enzyme) I II III IV V

LAS 11.5 8.8 - 3.9 -C25E2.5S - 3.0 18.0 - 16.0 C45E2.25S 11.5 3.0 - 15.7 -C23E9 - 2.7 1.8 2.0 1.0 C23E7 3.2 - - - -CFAA - - 5.2 - 3.1 TPKFA 1.6 - 2.0 0.5 2.0 Citric (50%) 6.5 1.2 2.5 4.4 2.5 Ca formats 0.1 0.06 0.1 - -Na formats 0.5 0.06 0.1 0.05 0.05 SCS 4.0 1.0 3.0 1.2 -Borate 0.6 - 3:0 2.0 2.9 Na hydroxide 5.8 2.0 3.5 3.7 2.7 Ethanol 1.75 1.0 3.6 4.2 2.9 1,2 Propanediol 3.3 2.0 8.0 7.9 5.3 Monoethanolamine 3.0 1.5 1.3 2.5 0.8 TEPAE 1.fi - 1.3 1.2 1.2 CBD-Hexosaminidase 0.005 - 0.03 0.07 -CBD-Cecropin 0.005 0.01 - - 0.05 , Protease 0.03 0.01 0.03 0.02 0.02 Lipase - - 0.002 - -Amylase - - - 0.002 Cellulase - - 0.0002 0.0005 0.0001 SRP 1 0.2 - 0.1 - -DTPA - - 0.3 - -PVNO - - 0.3 - 0.2 Brightener 1 0.2 0.07 0.1 - -Silicone antifoam 0.04 0.02 0.1 0.1 0.1 Miscellaneous and water Example 11 The following liquid detergent formulations were prepared according to the present invention (Levels are given in parts per w~:ight, enzyme are expressed in pure enzyme) I II ill IV

LAS 10.0 13.0 9.0 -C25AS 4.0 1.0 2.0 10.0 ~

C25E3S 1.0 - - 3.0 C25E7 6.0 8.0 13.0 2.5 TFAA - - - 4.5 APA - 1.4 - -TPKFA 2.0 - 13.0 7.0 Citric 2.0 3.0 1.0 1.5 Dodecenyl / tetradecenyl 12.0 10.0 - -succinic acid Rapeseed fatty acid 4.0 2.0 7.0 -Ethanol 4.0 4.0 7.0 2.0 1,2 Propanediol 4.0 4.0 2.0 7.0 Monoethanofamine - - - 5.0 WO 99/57157 PCT/U~99/09455 I II III IV

Triethanolamine - - 8.0 -TEPAE 0.5 - 0.5 0.2 DETPMP 1.0 1.0 0.5 1.0 CBD-Dextranase - 0.05 0.03 0.1 CBD-Protamine 0.05 - - -Protease 0.02 0.02 0.01 0.008 Lipase - 0.002 - 0.002 Amylase 0.004 0.004 0.01 0.008 Celiulase - - - 0.002 SRP 2 0.3 - 0.3 0.1 Boric acid 0.1 0.2 1.0 2.0 Ca chloride - 0.02 - 0.01 Brightener 1 - 0.4 - -Suds suppressor 0.1 0.3 - 0.1 Opacifier 0.5 0.4 - 0.3 NaOH up to pH 8.0 8.0 7.6 7.7 Miscellaneous and water Example 12 The following liquid detergent compositions were prepared according to the present invention (Levels are given in parts per weight, enzyme are expressed in pure enzyme) I II III IV

LAS 25.0 - _ _ C25AS - 13.0 18.0 15.0 C25E3S - 2.0 2.0 4.0 C25E7 - - 4.0 4.0 TFAA - 6.0 8.0 8.0 APA 3.0 1.0 2.0 -TPKFA - 15.0 11.0 11.0 Citric 1.0 7.0 1.0 1.0 Dodecenyl I tetradecenyl 15.0 - - -succinic acid Rapeseed fatty acid 1.0 - 3.5 I II III IV

Ethanol 7.0 2.0 3.0 2.0 1,2 Propanediol 6.0 8.0 10.0 13.0 Monoethanolamine - - 9.0 9.0 TEPAE - - 0.4 0.3 DETPMP 2.0 1.2 1.0 -CBD-Cecropin 0.05 0.05 0.01 0.0005 Protease 0.08 0.02 0.01 0.02 Lipase - - 0.003 0.003 Amylase 0.004 0.01 0.01 0.01 Cellulase - - 0.004 (1.003 SRP 2 - - 0.2 0.1 Boric acid 1.0 1.5 2.5 2.5 Bentonite clay 4.0 4.0 - -Brightener 1 0.1 0.2 0.3 -Suds suppressor 0.4 - - -Opacifier 0.8 0.7 - -NaOH up to Ph 8.0 7.5 8.0 8.2 Miscellaneous and water Example 13 The following liquid detergent compositions were prepared according to the present invention (Levels are given in parts by wE:ight, enzyme are expressed in pure enzyme):
I II III
LAS 27.6 18.9 18.9 C45AS 7 3.8 5.9 ~ 5.9 C13E8 3.0 3.1 3.1 Oleic acid 3.4 2.5 2.5 Citric 5.4 5.4 5.4 Na hydroxide 0.4 3.6 3.6 Ca Formate 0.2 0.1 0.1 Na Formate - 0.5 0.5 Ethanol 7.0 - -WO 99!57157 PCTIUS99/09455 I II III
Monoethanolamine 16.5 8.0 8.0 1,2 propanediol 5.9 5.5 5.5 Xylene sulfonic acid - 2.4 2.4 TEPAE 1.5 0.8 0.8 Protease 0.05 0.02 0.02 CBD-Protocatechuate 0.008 0.05 -CBD- Indolicidin 0.001 - 0.05 PEG . - 0.7 0.7 Brightener 2 0.4 0.1 0.1 Perfume 0.5 0.3 0.3 Water and Minors Example 14 The following granular fabric detergent compositions which provide "softening through the wash" capability were prepared according to the present invention f II
C45AS - 10.0 LAS 7.6 -C68AS 1.3 C45E7 4.0 C25E3 - 5.0 Coco-alkyl-dimethyl hydroxy-1.4 1.0 ethyl ammonium chloride Citrate 5.0 3.0 N a-S KS-fi - 11.0 Zeolite A 15.0 15.0 MA/AA 4.0 4.0 DETPMP 0.4 0.4 PB1 15.t) -WO 9915715'1 PCT/U~99/09455 I II
Percarbonate - 15.0 TAED 5.C1 5.0 Smectite clay 10.0 10.0 HMWPE~ - 0.1 CBD-Protamine O.OC15 0.01 Protease 0.02 0.01 Lipase 0.02 0.01 Amylase 0.03 0.005 Cellulase O.OCt1 -Silicate 3.CI 5.0 Carbonate 10.0 10.0 Suds suppressor 1.CI 4.0 CMC 0.2 0.1 Miscellaneous and minors Up to 100%

Example 15 The following rinse added fabric softener compositions were prepared according to the present invention DEQA (2) 20.0 20.0 20.0 CBD-Hexosaminidase 0.05 - -CBD-Protamine - 0.03 -CBD-Indolicidin - - 0.05 Cellulase 0.0011 0.001 0.001 HCL 0.03 0.03 0.03 Antifoam agent 0.01 0.01 0.01 Blue dye 25pprn 25ppm 25ppm CaCl2 0.20 0.20 0.20 Perfume 0.90 0.90 0.90 Miscellaneous and water Up to 100%

Example 16 The following fabric softener and dryer added fabric conditioner compositions were prepared according to the present invention I Ir III Iv v DEQA 2.6 19.0 - - -DEQA(2) - . _ _ -51.8 DTMAMS - - - 26.0 -SDASA - - 70.0 42.0 40.2 Stearic acid of IV=00.3 - - _ _ Neodol45-13 - - 13.0 - -Hydrochloride acid 0.02 0.02 - - -Ethanol - - 1,0 CBD-Cecropin 0:05 0.008 0.002 0.0'I 0.05 Perfume 1.0 1.0 0.75 3.0 1.5 Glycoperse S-20 - - - - 15.4 Glycerol monostearate- - , - 26.0 -Digeranyl Succinate - 0.38 _ _ Silicone antifoam 0.01 0.01 - - -Electrolyte - 0.1 - -Clay - _ - 3.0 Dye 10ppm 25ppm 0.01 - -Water and minors 100% '! 00% - - -Example 17 The following laundry bar detergent composition:> were prepared according to the present invention (Levels are given in parts per weight, enzyme are expressed in pure enzyme) I I) tll VI V III VI V
LAS - - 19.0 15.0 21.0 6.75 8.8 -C28AS 30.0 13.5 - - - 15.75 11.2 22.5 Na Laurate 2.5 9.0 - - - _ - _ I II III VI V ill VI V

Zeolite A 2.0 1.25 - - - 1.25 1.25 1.25 Carbonate 20.0 3.0 13.0 8.0 10.0 15.0 15.0 10.0 Ca Carbonate27.5 39.0 35.0 - - 40.0 - 40.0 Sulfate 5.0 5.0 3.0 5.0 3.0 - - 5.0 TSPP 5.0 - - - - 5.0 2.5 -STPP 5.0 15.0 7 0.0 - - 7.0 8.0 10.0 Bentonite - 10.0 - - 5.0 - - -clay DETPMP - 0.7 0.6 - 0.6 0.7 0.7 0.7 CMC - 1.0 1.0 1.0 1.0 - - 1.0 Talc - - 10.0 15.0 10.0 - - -Silicate - - 4.0 5.0 3.0 - - -PVNO 0.02 0.03 - 0.01 - 0.02 - -MAlAA 0.4 1.0 - - 0.2 0.4 0.5 0.4 SRP 1 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 CBD-Cecropin0.05 0.05 0.01 0.005 - - 0.01 0.05 CBD- - - - - 0.05 0.007 - -Dextranase Amylase - - 0.01 - - - 0.002 -Protease - 0.004 - 0.003 0.003 - - 0.003 Lipase - 0.002 - 0.002 - - - -Cellulase - .0003 - - .0003 .0002 - -PEO - 0.2 - 0.2 0.3 - - 0.3 Perfume 1.0 0.5 0.3 0.2 0.4 - - 0.4 Mg sulfate - - 3.0 3.0 3.0 - - -Brightener 0.15 0.1 0.15 - - - - 0.1 Photoactivated- 15.0 15.0 15.0 15.0 - - 15.0 bleach (ppm) Example 18 The following detergent additive compositions wE:re prepared according to the present invention I II III
~S - 5.0 5.0 WO 99/57157 PCT/U~99/09455 I II III
STPP 30.0 - 20.0 Zeolite A - 35.0 20.0 PB1 20.0 15.0 -TAED 10.0 8.0 -CBD-Hexosaminidase 0.03 0.05 CBD-Protamine - 0.05 0.05 Protease - 0.3 0.3 Amylase - 0.06 0.06 Minors, water and miscellaneous Up to 100%

Claims (14)

92
1. A modified protein which comprises a catalytically active amino acid sequence of an antimicrobial enzyme and/or an amino acid sequence of an antimicrobial peptide, linked to an amino acid sequence comprising a cellulose binding domain.
2. A modified protein according to claim 1 wherein said amino acid sequence of an antimicrobial peptide is selected from Protoamines, Cecropin B, Magainin II, D-Magainin II amide, Indolcidin, and/or mixtures thereof.
3. A modified protein according to claim 1 wherein said catalytically active amino acid sequence derives from an antimicrobial enzyme selected from Exo-a-N acetyl gluosaminidase, Endo-.beta.-N- acetyl glucosaminidase, N- acetyl - .beta.-glucosaminidase, Dextranase, Lyticase; Xanthine oxidase, Protocatechuate 3, 4 oxidoreductase, Catechol dioxygenase, Lipoxygenases, Hexosaminidase and/or mixtures thereof.
4. A modified protein wherein the cellulose binding domain is selected from the group consisting of CBD CenC, CenA, Cex from Cellulomonas fimi, CBD CBHI from Trichoderma reesei, CBD Cellulozome from Clostridium cellulovorans, CBD E3 from Thermonospora fusca, CBD-dimer from Clostridium stecorarium XynA, CBD from Bacillus agaradherens, CBD
family 45 from Humicola insolens andlor mixtures thereof.
5. A modified protein according to claim 4 wherein the amino acid sequence comprising a cellulose binding domain is CBD family 45 from Humicola insolens, CBD CenC from Cellulomonas firm and/or CBD Cellulozome from Clostridium cellulovorans.
6. A modified protein to any of the preceding claims wherein said catalytically active amino acid sequence of an antimicrobial enzyme and/or amino acid sequence of an antimicrobial peptide is linked to said amino acid sequence comprising a cellulose binding domain, via a linking region.
7. A modified protein according to claim 6 wherein said linking region is a non-amino acid linking region, preferably a polymer selected from PEG(NPC)2, (NH2)2-PEG, t-BOC-NH-PEG-NH2, MAL-PEG=NHS, and/or VS-PEG-NHS polymers.
8. A modified protein according to claim 6 wherein said linking region is an amino acid linking region.
9. A laundry detergent and/or fabric care composition comprising a laundry detergent and/or fabric care ingredient and a modified protein according to any of the preceding claims.
10. A laundry detergent and/or fabric care composition according claim 9 wherein the laundry detergent and/or fabric care ingredient is a surfactant selected from cationic, anionic, nonionic surfactants and/or mixtures thereof.
11. A fabric care composition according to claim 10 wherein the cationic surfactant comprises two long alkyl chain lengths.
12. A laundry detergent and/or fabric care composition according claims 9-10 wherein the laundry detergent and/or fabric care ingredient a bleaching agent.
13. Use of a laundry detergent and/or fabric care composition according to claim 9-12 for sanitisation.
14. Use of a laundry detergent and/or fabric care compositions according to claims 9-12 for fabric cleaning and/or fabric stain removal and/or fabric whiteness maintenance.
CA002331139A 1998-05-01 1999-04-30 Laundry detergent and/or fabric care compositions comprising a modified antimicrobial protein Abandoned CA2331139A1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
USPCT/US98/08858 1998-05-01
PCT/US1998/008858 WO1999057155A1 (en) 1998-05-01 1998-05-01 Laundry detergent and/or fabric care compositions comprising a modified antimicrobial protein
PCT/US1999/009455 WO1999057157A1 (en) 1998-05-01 1999-04-30 Laundry detergent and/or fabric care compositions comprising a modified antimicrobial protein

Publications (1)

Publication Number Publication Date
CA2331139A1 true CA2331139A1 (en) 1999-11-11

Family

ID=22266958

Family Applications (1)

Application Number Title Priority Date Filing Date
CA002331139A Abandoned CA2331139A1 (en) 1998-05-01 1999-04-30 Laundry detergent and/or fabric care compositions comprising a modified antimicrobial protein

Country Status (7)

Country Link
EP (1) EP1076666A1 (en)
JP (1) JP2002513808A (en)
CN (1) CN1321168A (en)
AU (1) AU7275698A (en)
BR (1) BR9910158A (en)
CA (1) CA2331139A1 (en)
WO (2) WO1999057155A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005085322A1 (en) * 2004-03-05 2005-09-15 Bioartificial Gel Technologies Inc. Process for the preparation of activated polyethylene glycols
US7125558B2 (en) 2001-08-22 2006-10-24 Bioartificial Gel Technologies Inc, Process for the preparation of activated polyethylene glycols

Families Citing this family (51)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001046364A2 (en) 1999-12-22 2001-06-28 Unilever Plc Method of delivering a benefit agent
BR0016659A (en) 1999-12-22 2002-09-03 Unilever Nv Method for releasing a beneficial agent to the fabric to exert a predetermined activity, and detergent composition
DE60036959T2 (en) * 1999-12-22 2008-08-07 Unilever N.V. TENSID COMPOSITIONS, CONTAINING IMPROVEMENT AGENTS
ES2218278T3 (en) 1999-12-22 2004-11-16 Unilever N.V. PROCEDURE FOR THE TREATMENT OF FABRICS AND APPLIANCE USED IN THE SAME.
GB0013643D0 (en) 2000-05-31 2000-07-26 Unilever Plc Targeted moieties for use in bleach catalysts
EP1174027A1 (en) * 2000-07-17 2002-01-23 HOM Consultancy B.V. Uses of antimicrobial peptides
JP4537060B2 (en) * 2001-10-03 2010-09-01 ユニリーバー・ナームローゼ・ベンノートシヤープ Carbohydrate binding domain-containing fusion proteins for delivery of therapeutic and other agents, and compositions containing them
US9828597B2 (en) 2006-11-22 2017-11-28 Toyota Motor Engineering & Manufacturing North America, Inc. Biofunctional materials
DK2268806T3 (en) 2008-02-11 2013-07-15 Danisco Us Inc Enzyme with microbial light activity from Trichoderma reesei
MY155377A (en) 2008-07-16 2015-10-15 Baylor Res Inst Hiv vaccine based on targeting maximized gag and nef to dendritic cells
US8796009B2 (en) 2010-06-21 2014-08-05 Toyota Motor Engineering & Manufacturing North America, Inc. Clearcoat containing thermolysin-like protease from Bacillus stearothermophilus for cleaning of insect body stains
MX2012015174A (en) 2010-07-02 2013-05-09 Procter & Gamble Filaments comprising an active agent nonwoven webs and methods for making same.
WO2012003365A1 (en) 2010-07-02 2012-01-05 The Procter & Gamble Company Filaments comprising an ingestible active agent nonwoven webs and methods for making same
CA2803636C (en) 2010-07-02 2017-05-16 The Procter & Gamble Company Detergent product and method for making same
JP5324709B2 (en) * 2010-07-02 2013-10-23 ザ プロクター アンド ギャンブル カンパニー Filaments containing an activator nonwoven web and methods for making the same
MX2012015187A (en) 2010-07-02 2013-05-09 Procter & Gamble Method for delivering an active agent.
CA2803371C (en) 2010-07-02 2016-04-19 The Procter & Gamble Company Process for making films from nonwoven webs
WO2012035103A1 (en) * 2010-09-16 2012-03-22 Novozymes A/S Lysozymes
EP2570475A1 (en) * 2011-09-13 2013-03-20 The Procter and Gamble Company Detergent composition comprising peptidoglycan-digesting enzyme
JP5894457B2 (en) * 2012-02-22 2016-03-30 株式会社Adeka Peptide-containing antibacterial composition
RU2737535C2 (en) * 2014-04-11 2020-12-01 Новозимс А/С Detergent composition
EP3194554A4 (en) * 2014-05-12 2018-04-25 The Procter and Gamble Company Anti-microbial cleaning composition
EP3399031B1 (en) 2014-12-15 2019-10-30 Henkel AG & Co. KGaA Detergent composition comprising subtilase variants
US10995304B2 (en) 2014-12-15 2021-05-04 Novozymes A/S Subtilase variants
JP2018521149A (en) * 2015-04-29 2018-08-02 ザ プロクター アンド ギャンブル カンパニー Detergent composition
CN107667166B (en) * 2015-04-29 2021-01-15 宝洁公司 Method for treating fabric
US20170044222A1 (en) * 2015-08-14 2017-02-16 Worcester Polytechnic Institute Anti-Microbial Coatings and Devices
EP3448979A1 (en) 2016-04-29 2019-03-06 Novozymes A/S Detergent compositions and uses thereof
WO2017186943A1 (en) * 2016-04-29 2017-11-02 Novozymes A/S Detergent compositions and uses thereof
DE102016207760A1 (en) * 2016-05-04 2017-11-09 Henkel Ag & Co. Kgaa Detergents and cleaning agents containing antimicrobially active enzymes
EP3464537A1 (en) 2016-06-03 2019-04-10 Novozymes A/S Cleaning compositions comprising enzymes
US20170355933A1 (en) * 2016-06-09 2017-12-14 The Procter & Gamble Company Cleaning compositions including nuclease enzyme and malodor reduction materials
CN110167639B (en) 2017-01-27 2022-10-14 宝洁公司 Composition in the form of a soluble solid structure comprising effervescent agglomerated granules
CA3058520A1 (en) * 2017-04-06 2018-10-11 Novozymes A/S Detergent compositions and uses thereof
DE102017125560A1 (en) * 2017-11-01 2019-05-02 Henkel Ag & Co. Kgaa CLEANSING COMPOSITIONS CONTAINING DISPERSINE III
CN111527190A (en) * 2017-11-01 2020-08-11 诺维信公司 Polypeptides and compositions comprising such polypeptides
CN111479919A (en) * 2017-11-01 2020-07-31 诺维信公司 Polypeptides and compositions comprising such polypeptides
DE102017125558A1 (en) * 2017-11-01 2019-05-02 Henkel Ag & Co. Kgaa CLEANING COMPOSITIONS CONTAINING DISPERSINE I
JP7110356B2 (en) 2018-01-26 2022-08-01 ザ プロクター アンド ギャンブル カンパニー Water soluble unit dose article containing perfume
KR20200086739A (en) 2018-01-26 2020-07-17 더 프록터 앤드 갬블 캄파니 Water soluble unit dose article containing enzyme
KR102433420B1 (en) 2018-01-26 2022-08-18 더 프록터 앤드 갬블 캄파니 Water-Soluble Articles and Related Methods
US11053466B2 (en) 2018-01-26 2021-07-06 The Procter & Gamble Company Water-soluble unit dose articles comprising perfume
WO2019168829A1 (en) 2018-02-27 2019-09-06 The Procter & Gamble Company A consumer product comprising a flat package containing unit dose articles
EP3781660A1 (en) * 2018-04-17 2021-02-24 Novozymes A/S Polypeptides comprising carbohydrate binding activity in detergent compositions and their use in reducing wrinkles in textile or fabric
US10982176B2 (en) 2018-07-27 2021-04-20 The Procter & Gamble Company Process of laundering fabrics using a water-soluble unit dose article
US11666514B2 (en) 2018-09-21 2023-06-06 The Procter & Gamble Company Fibrous structures containing polymer matrix particles with perfume ingredients
WO2020159860A1 (en) 2019-01-28 2020-08-06 The Procter & Gamble Company Recycleable, renewable, or biodegradable package
EP3712237A1 (en) 2019-03-19 2020-09-23 The Procter & Gamble Company Fibrous water-soluble unit dose articles comprising water-soluble fibrous structures
JP7381613B2 (en) 2019-06-28 2023-11-15 ザ プロクター アンド ギャンブル カンパニー Dissolvable solid fibrous article containing anionic surfactant
WO2022027067A1 (en) 2020-07-31 2022-02-03 The Procter & Gamble Company Water-soluble fibrous pouch containing prills for hair care
GB2622884A (en) * 2022-10-01 2024-04-03 Murphy Daniel Neoprene wash bath bomb

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5041236A (en) * 1989-10-27 1991-08-20 The Procter & Gamble Company Antimicrobial methods and compositions employing certain lysozymes and endoglycosidases
DE69333454T2 (en) * 1992-10-06 2005-01-20 Novozymes A/S CELLULOSE DERIVATIVES
DK0675951T3 (en) * 1992-12-23 2003-09-08 Novozymes As Enzyme with endoglucanase activity
WO1994029460A1 (en) * 1993-06-11 1994-12-22 Midwest Research Institute Active heteroconjugates of cellobiohydrolase and beta-glucosidase
GB9409387D0 (en) * 1994-05-11 1994-06-29 Unilever Plc Glucan-binding domains (gbp's) and hybird proteins containing gbd's as novel active systems targeted to dental plaque
EP0778733B1 (en) * 1994-09-01 2000-12-20 Novo Nordisk A/S A basic protein composition for killing or inhibiting microbial cells
AU4690796A (en) * 1995-12-29 1997-07-28 Procter & Gamble Company, The Detergent compositions comprising immobilized enzymes
CN1109740C (en) * 1996-01-29 2003-05-28 诺沃奇梅兹有限公司 Process for removing or bleaching soilng or stains from cellulosic fabric
AU720405B2 (en) * 1996-02-16 2000-06-01 Regents Of The University Of California, The Antimicrobial peptides and methods of use
BR9707789A (en) * 1996-02-29 1999-07-27 Procter & Gamble Cleaning compositions comprising endo-dextranase
AU2382197A (en) * 1996-04-19 1997-11-12 Novo Nordisk A/S Fabric treated with a cellulase and a hybrid enzyme comprising a phenol oxidizing enzyme

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7125558B2 (en) 2001-08-22 2006-10-24 Bioartificial Gel Technologies Inc, Process for the preparation of activated polyethylene glycols
WO2005085322A1 (en) * 2004-03-05 2005-09-15 Bioartificial Gel Technologies Inc. Process for the preparation of activated polyethylene glycols
US7351787B2 (en) 2004-03-05 2008-04-01 Bioartificial Gel Technologies, Inc. Process for the preparation of activated polyethylene glycols
US7662908B2 (en) 2004-03-05 2010-02-16 Rba Pharma Inc. Process for the preparation of activated polythylene glycols

Also Published As

Publication number Publication date
EP1076666A1 (en) 2001-02-21
WO1999057155A1 (en) 1999-11-11
CN1321168A (en) 2001-11-07
AU7275698A (en) 1999-11-23
JP2002513808A (en) 2002-05-14
BR9910158A (en) 2001-01-09
WO1999057157A1 (en) 1999-11-11

Similar Documents

Publication Publication Date Title
CA2331139A1 (en) Laundry detergent and/or fabric care compositions comprising a modified antimicrobial protein
US6468955B1 (en) Laundry detergent and/or fabric care compositions comprising a modified enzyme
EP1115828B1 (en) Laundry detergent and/or fabric care compositions comprising a chemical entity which contains a deposition aid with a high affinity for cellulose, a surfactant and a protease
US6465410B1 (en) Laundry detergent and/or fabric care composition comprising a modified antimicrobial protein
CA2330488A1 (en) Laundry detergent and/or fabric care compositions comprising a modified transferase
EP1073724B1 (en) Laundry detergent and/or fabric care compositions comprising a modified enzyme
CA2282352A1 (en) Cleaning compositions comprising xylan degrading alkaline enzyme and non-plant cell walls degrading enzyme
US6410498B1 (en) Laundry detergent and/or fabric care compositions comprising a modified transferase
US6541438B1 (en) Laundry detergent and/or fabric care compositions comprising a modified cellulase
CA2386440A1 (en) Mimic cellulose binding domain
CA2330394A1 (en) Laundry detergent and/or fabric care compositions comprising a modified cellulase
EP1073725A1 (en) Laundry detergent and/or fabric care compositions comprising a modified cellulase
CA2295949A1 (en) Detergent compositions comprising a specific cellulase and an alkyl poly glucoside surfactant
MXPA00010651A (en) Laundry detergent and/or fabric care compositions comprising a modified antimicrobial protein
JP2002513565A (en) Laundry detergent and / or fabric care composition containing modified cellulase
MXPA00010654A (en) Laundry detergent and/or fabric care compositions comprising a modified cellulase
JP2002513564A (en) Laundry detergent and / or fabric care composition containing modified cellulase
MXPA00010650A (en) Laundry detergent and/or fabric care compositions comprising a modified cellulase
MXPA00010647A (en) Laundry detergent and/or fabric care compositions comprising a modified transferase
MXPA00000452A (en) Detergent compositions comprising a specific cellulase and an alkyl poly glucoside surfactant

Legal Events

Date Code Title Description
EEER Examination request
FZDE Discontinued