CA2333043A1 - Energy storage system - Google Patents

Energy storage system Download PDF

Info

Publication number
CA2333043A1
CA2333043A1 CA002333043A CA2333043A CA2333043A1 CA 2333043 A1 CA2333043 A1 CA 2333043A1 CA 002333043 A CA002333043 A CA 002333043A CA 2333043 A CA2333043 A CA 2333043A CA 2333043 A1 CA2333043 A1 CA 2333043A1
Authority
CA
Canada
Prior art keywords
battery
power
management system
control means
capacitor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
CA002333043A
Other languages
French (fr)
Inventor
Stephen Wayne Holtom
Goran Abrahamsson
Anna Norlin
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Farnow Technologies Pty Ltd
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from AUPP3992A external-priority patent/AUPP399298A0/en
Priority claimed from AUPP8260A external-priority patent/AUPP826099A0/en
Application filed by Individual filed Critical Individual
Publication of CA2333043A1 publication Critical patent/CA2333043A1/en
Abandoned legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L3/00Electric devices on electrically-propelled vehicles for safety purposes; Monitoring operating variables, e.g. speed, deceleration or energy consumption
    • B60L3/0023Detecting, eliminating, remedying or compensating for drive train abnormalities, e.g. failures within the drive train
    • B60L3/0046Detecting, eliminating, remedying or compensating for drive train abnormalities, e.g. failures within the drive train relating to electric energy storage systems, e.g. batteries or capacitors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/50Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells
    • B60L50/60Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells using power supplied by batteries
    • B60L50/64Constructional details of batteries specially adapted for electric vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/10Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles characterised by the energy transfer between the charging station and the vehicle
    • B60L53/11DC charging controlled by the charging station, e.g. mode 4
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/50Charging stations characterised by energy-storage or power-generation means
    • B60L53/55Capacitors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/60Monitoring or controlling charging stations
    • B60L53/65Monitoring or controlling charging stations involving identification of vehicles or their battery types
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/60Monitoring or controlling charging stations
    • B60L53/66Data transfer between charging stations and vehicles
    • B60L53/665Methods related to measuring, billing or payment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/12Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries responding to state of charge [SoC]
    • B60L58/14Preventing excessive discharging
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/16Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries responding to battery ageing, e.g. to the number of charging cycles or the state of health [SoH]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/18Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries of two or more battery modules
    • B60L58/22Balancing the charge of battery modules
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/04Construction or manufacture in general
    • H01M10/0431Cells with wound or folded electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/36Accumulators not provided for in groups H01M10/05-H01M10/34
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/007Regulation of charging or discharging current or voltage
    • H02J7/00711Regulation of charging or discharging current or voltage with introduction of pulses during the charging process
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/54Drive Train control parameters related to batteries
    • B60L2240/545Temperature
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/54Drive Train control parameters related to batteries
    • B60L2240/547Voltage
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/54Drive Train control parameters related to batteries
    • B60L2240/549Current
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2250/00Driver interactions
    • B60L2250/16Driver interactions by display
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2260/00Operating Modes
    • B60L2260/40Control modes
    • B60L2260/50Control modes by future state prediction
    • B60L2260/52Control modes by future state prediction drive range estimation, e.g. of estimation of available travel distance
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/44Methods for charging or discharging
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2250/00Fuel cells for particular applications; Specific features of fuel cell system
    • H01M2250/20Fuel cells in motive systems, e.g. vehicle, ship, plane
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0085Immobilising or gelification of electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M6/00Primary cells; Manufacture thereof
    • H01M6/04Cells with aqueous electrolyte
    • H01M6/06Dry cells, i.e. cells wherein the electrolyte is rendered non-fluid
    • H01M6/10Dry cells, i.e. cells wherein the electrolyte is rendered non-fluid with wound or folded electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/18Regenerative fuel cells, e.g. redox flow batteries or secondary fuel cells
    • H01M8/184Regeneration by electrochemical means
    • H01M8/188Regeneration by electrochemical means by recharging of redox couples containing fluids; Redox flow type batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/7072Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/12Electric charging stations
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/14Plug-in electric vehicles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/16Information or communication technologies improving the operation of electric vehicles
    • Y02T90/167Systems integrating technologies related to power network operation and communication or information technologies for supporting the interoperability of electric or hybrid vehicles, i.e. smartgrids as interface for battery charging of electric vehicles [EV] or hybrid vehicles [HEV]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/40Application of hydrogen technology to transportation, e.g. using fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S30/00Systems supporting specific end-user applications in the sector of transportation
    • Y04S30/10Systems supporting the interoperability of electric or hybrid vehicles
    • Y04S30/14Details associated with the interoperability, e.g. vehicle recognition, authentication, identification or billing

Abstract

A power control system (10) for managing power output from a battery (11) includes an output terminal (12) for delivering power from the battery (11) to a load, control means (14) connected to the battery (11) to sense pre-selected operating parameters of the battery (11) and in a first mode of operation to provide power from the battery (11) to the output terminals (12). A first capacitor (15) which stores a predetermined quantity of power is connected between the control means (14) and the battery system (11) supplies its stored power to the battery (11) in response to a command signal from the control means (14) when the control means (14) is in a second mode of operation. A
second capacitor (16) which stores a predetermined quantity of power is connected between the control means (14) and the output terminals (12) supplies its stored power to the output terminals (12) in response to a command signal from the control means (14) when the control means (14) is in its second mode of operation.

Description

WO 99td5131 PCTIAU991~00469 ~LFLD9F ~ IL~'I~IFNTIDN
This invention relates to energy storage systems and more particularly to a battery management system for improving the performance of batteries.
~~,BQlIL~LD ART
The battery industry has seen increased demand for battery management technology, primarily due to the consumers' ever-increasing requirements for the convenience of battery-powered portable equipment such as cellular phones and laptop computers. Additionally, the battery industry is seeing s movement toward an increased emphasis on electric motor-driven toots and zero emission vehicles with the primary power source for these new generation vehicles being batteries. This rrtovement is due to rapidly increasing govemmerrt regulations and consumer concerns '15 about air end noise pollution. Another area which requtr~s high efficiency batteries is energy storage applications such as load-levelling, emergencylstandby power and power quality systems for sensitive electronic components.
As a result of the increasing demand of battery-powered equipment, the battery industry is under competitive pressure to produce an tdeal cell.
An ideal cell is a cell that weighs almost nothing, takes up no space, provides excellent cycle life and has ideal chargeldisaharge performance and ,does not itself produce an environmental hazard at the end of its life.
The mast popular technology utilised by the battery industry is the lead-acid battery, which is being challenged to meet higher energy density, smaller size, better performance levels, longer cycle life and guaranteed recyclabllity.

wo 99165131 PGTIAtl94106469 z Several manufacturers are researching exotic batteries, including nickel-metal-hydride, lithium-ion and the like but gener$!ly these types of batteries are too expensive to make their use economically viable at this stage, particularly for one of the fast~st growing rinarkets on earth, twohhree wheeled passenger vehicles. It is well recognised that battery performance, even that of the existing Isad-acid battery, can be improved through proper management of the operating conditions of the'battery.
There are several aspects of battery management that are not being adequately addressed at this stage, these include;
14 (i) protection asainst overcharge during recharge or regeneration opetations, Iii) protection against over discharge during high power draw or long duration operations, (iii) minimisation of the negative effects of internal i~esiatartce of 16 the battery, and (ivl the ability to monitor, corrcrol and protect Individual cells of a battery system, Lead-acid battery chargers typically have two tasks to accomplish.
The first is to ieatore capacity, often as puickly es possible, and the 20 second is to maintain capacity by compensating for self-dlscharps, In both instances, optimal operation requires accurate sensing of battery voltage and temperature. When a typical lead-acid eels is .charged, the lead sulphate is converted to lead and lead dioxide on the battery's negative and positive plates respectively. Over-charge reactions begin when the majority of the ~6 lead sulphate has been converted, typically resulting in the formation of hydrogen and or oxygen gas due to the breakdown of the electrolyte, this is typically referred to as "gassing". In vented or valve regulated batteries WO 99165131 . . 1'GT/AU991001d9 this leads to a loss of electrolyte and dehydration of the electrolyte will occur, thereby affecting the cycle life of the battery.
The onset of over-charge can be detected by monitoring battery voltage. Over-charge reactions are indicated by a sharp rise in the cell's vohtage. The point at which over-charge reaction$ begin is dependent on the charge rate, and as charge rats is increased, the percent of return capacity at the onset of over charge diminishes ie. The energy used in overcharging can not be recovered from the battery. Controlled over-charging is typically employed to return full capacity as soon as possible TO and to attempt to bring an unbalanced battery back into balance, however, at the price of reducing cycle life.
Although severaf methods are used to recharge batteries, all methods consider the group of individual cells as one unit and do riot actually monitor each Individual cell of a particular battery, which is v'rtai to provide a true balance within the group of cells. A typical 12 volt battery is comprised of 8 individual Z volt tails connected in series, within a casing with a main terminal for the primary connections. Typically, battery cells do not perform identically 8nd during charge and discharge functions the cells eventually degenerate to an "out of balance" state.
2Q ~ Two cr'rticai aspects of cell life are the upper and lower voltage levels. If a 2 volt cell of a lead-acid battery exceeds approximately 2.B
volts during recharge or regeneration functions it will gas which causes electrolyte dehydration and affects cell life. If the cell voltage drops below approximately 1.6 volts during discharge functions then permanent damage to the surface of the plates can occur. With most conventional charging systems, the battery charger is only connected to the first and last terminal of the series of cells and therefore cannot accurately monitor arid protect the individual cells from damage. Typically, a charger only sees and reacts to the accumulated voltage with the result that the good cells are actually over-charged to bring one weak cell up to a high enough voltage for the accumulated total to meet the charger's predetermines reauirements. This over charging, dehydrates the electrolyte and starves the good cells, seriously affecting the cycle life of not only the tails, but the total battery.
The internal resistance of a battery is another factor which greatly affects the charge and discharge capabilities of the battery system.
Batteries suffer a number of problems, which result in a loss of performance, however, one of the train limitations i8 overcoming the internal resistance. Every battery system has an internal resistance but the aim is to minimise the internal resist2~nce and at the same time store the maxime~m amount of energy per unit weight. When a load is applied to a battery system the required current flows and a drop in battery voltage 7 b results due to the internal resistance of the battery. The lower the resistance the lower the voltage drop of the battery. This is due to the total internal resistance of the battery, which comprises of the physic~i resistance of the components and the resistance due to polarisation such as activation and concEntratlon polarisation.
A significant Contribution to the total Entemal resistance of any battery system is polarisation. in its simplistic form, concentretlon polarisation involves a build up of reactants or products at an electrode's surface, which limit the diffusion of reactants to the electrodes and products away from the electrodes. The higher the current the hEgher the polarisation losses that can be experienced by a battery system. Therefore, the highest current that can be extracted from battery systems is limited by the degree of polarisation within a battery system. However, if the wo 9s~ssm ~crmu~mo4s~
polarisation losses can be cantroiled, much higher currents at minimal ' voltage losses should be obtainable from most battery systems.
It is, therefore, an object of the present invention to provide e~ power control device for providing a predetermined power output from a battery a which significantly reduces the internal resistance losses experienced with most types of batteries.
Si 1MMARY OE ]'HE INVENTION
According to one aspect of the invention there is provided a power control system for providing a predetermined power output from a battery 9 a system comprising:-(i) ~ output means for deiiverirt$ power from the system to a load, (ii) control means adapted to be connected to the battery system to sense pre-selected operating parameters of the battery system and in a first mode of operation to provide power trorrs 15 the battery system to the output means, ;iii) first capacitor means adapted to store a predetermined quantity of ppwer connected between the control means and the battery system adapted to supply. its stored power to the battery system in response to a command signs! from the 20 control means when the control means is in a second mode of operation, (iv) second capacitor means adapted to store a predetermined quantity connected between the cantroi means and the output means adapted to supply its stored power to the output 25 means in response to a command signal trom the control means when the control means is in its second mode of operation.

WO 99/65733 1'CTIAU99I00469 preferably, the first and second capacitor means are adapted to store a small percentage of the power being transferred out of the battery.
in one embodiment of the invention, the control means provides the cammend signals to the first capacitor means and the second capacitor means at a predetermined time interval after the commencement of supply of power from the power control system.
In another embodiment of the invention, the control means is adapted to sense the polarisation level in the battery and the control signals to the first capmcttor means and the second capacitor means are initiated when the polarisation level in the battery exceeds the predetermined limit.
The stored power in the first capacitor rneens induces a reverse charge or pulse to excite the electrodes within the battery system at a rate that is proportional to the internal resistance of the battery system as sensed by the control means. The excitation of the surfaces of the electrodes permits greater current flow into and out of the battery and thereby permits greeter Current draw, faster re-charge and longer Cycle life for the battery system.
The control system can be adapted to sense the pre-selected operating parameters of the battery system as a whole or the individual cells comprising the barttery system.
The power control device may be adapted to monitor automatically the current flow, temperature, internal resistarlCe and operating performance of the battery. The power control device may be further adapted to monitor each individual cell of the battery system duritlg both the charge and discharge cycles.

WO 9916531 PCT/ArJ99I0W69 According to another aspect of the invention, the power control system as described above may be used to provide s predetermined power input to a battery system from a battery charger.
According to another aspect of the invention there is provided a management system for a battery having at least one cell that has at least a pair of electradas and which is susceptible to polarisation, said battery management system comprisirrg:-(i) means for monitoring a predetermined parameter of the or each cal( that is indicative of the level of polarisation, (ii) means for storing a predetermined amount of the power bslng transferred into or out of the battery, and (iii) means for inducing a reverse charge or pulse to the .
electrodes so as to reduce the polarisation, 1 b BR1FF DESCRiPTICN QF THE CRAW)i~
Fig. 1 is a block diagram of a specific power control device for providing a predetermined power output from the battery system according to one embodiment cf the invention, Fig. 2 is a block diagram of a generalised power control device according to a second embodiment of tfie invention, Fig. 3 is a block diagram of the power control system shown in Fig. ~ applied to a lead-acid battery system, Fig. 4 is a graph of cycle numbers against battery capacity for a lead acid battery with and without the power control system of the invention, and Fig. 6 is a block diagram of the power control device shown in Fig. i , applied to a Redox-Gel battery system:

WO 99l65I31 pCTlAU99l00469 MODES OF PERF RMINC THE iNyi=i1(TION
Tha power control system 10 shown in Fig. 1 is adapted *o provide a predetermined power output from a battery system 11 at the terminals ar output means 12 to which a toad such as an electrical vehicle is~ connected.
Between the output termlrials 12 and the terminals 13 of the battery system i 1 there is a control means 14 which senses predetermined operating parameters ~of the battery system 17 . The control means 7 4 supplies power from the battery system 1 i to the output terminals 12 during a first mode of operation.
Fret capacitor means 15 connected between the battery system 9 1 and the control means 14 stores a predetermined puantity of power from the battery system 11 during the first mode of operation of the control means i 4 and supplies its stored power to the battery system 11 in response to a command signs! from the control means 14 when tfie control means is in a second mode of operation.
Second capecitar means 16 which is connected between the output terminals 7 2 and the control means i 4 stores a predetermined amount of power from the battery system 11 when the control means 14 is in its first mode of operation and supplies its stored power to the output terminals 1 2 2Q in response to a command signal from the control means 14 when the control mecns 14 is in its second mode of operation.
Thus, the power control system incorporates two capacitor networks and when the control means senses, for example, that the potarisation level in the battery system 1 1 is too high or that a pre-set time interval has 26 elapsed since power was first supplied to the load, it initiates a back charge to the battery system 17 , tn this discharge cycle, the control means 14 allows the energy stored tn the first capacitor network 16 to charge the WO 99/6Si3~ PGT/A099Ibe469 battery system 11 and at the earns time the second capacitor means 7 8 supplies uninterrupted power to the output terminals 12. The time intervt~f for this reverse cycle or discharge cycle is very small and as it is very efficient it can be performed at regu#ar #ntervals.
The reverse charge has the ability to disrupt and minimise the effects end associated losses of po#arisation within the battery system.
The power control system may also work in conjuration with a charger~to provide optimum performance and battery care at alt tames during its operation. The power control system may be adapted to prevent 9 0 an unauthorised type of charger being connected to the battery system thereby preventing a potential abuse and ensuring that the vehicle owner does not attempt to charge the battery system with an incorrect charger at home.
The power control system, the charger and the vehicle may incorporate indiv#dual electron#c signatures so that the entire system can be tracked and monitored with a high degree of accuracy, Each t#me a battery system is installed into a charger unit, the power control system will identify #tself, the vehicle from which it has been removed as well as the user.
2Q The charger unh may monitor the energy level of the battery and credit the users for this value, add the cast of the exchange, the electricity and a monthly rental for the battery. Upon receipt of this payment either by cash or credit card, a new battery is released and installed into the vehicl9. If the client has abused or tampered with the battery anyway this will be identified by the charger.
The control system can be adapted to not only identify the energy level of the battery, but it can also assess the driving range left based on WO 99I66I3I P~C'IyAU991bW69 1~
current energy usage levels. Thus, the vehicle driver will know how many kilometres can be travefled on the remaining level of energy.
Each charger unit may be finked via a telemetry system to an operation centre which enables constant monitoring of all stations in the network of charging stations.
The power control system may include the functions and features of speed control modules which means that the vehict8 manager fan eliminate a speed control device from the vs~hicle and simply control the output via the power control system. This reduces vehicle costs, reduces 7 4 manufacturer warranty exposure end can provide canfinuous performance monitorin8 via the telem~try communication system.
Tire power control system may be applied to various battery systems such as valve-regulated lead acid batteries, nickel metal hydride batteries and redox-gel batteries with each system having its benefits and specific 7 5 target applications.
The power control system may also be used to improve the standby performance of remote area power system, load levelling and emergency back-up battery systems. stationary battery systems used in remote area power systems and emergency back-up applications may be left fully 20 charged for extended periods. As cells self-discharge at different rates the power control system can be programmed to scan the individual cell conditions periodically and use calf-balancing techniques to balance the cells internally. Alternatively, the charging system maybe left on standby and be controlled by the power control system as required.
25 A preferred embodiment of the power control system which is shown in Fig. 2 in block form includes a microprocessor 4p and associated software 57 that manages all of the 'Following described functions. In this WO 99/6513x PGT/AU99I00469 i7 instance the microprocessor is 8 bit running at BMIiz, however 4.16, 32 or 84 bit processors can be used. The processor speed could be 4M1; lz to i 66MHa. Altemativeiy a Digital Signal Processing Chip could be used depending on the individual battery requirements. The microprocessor has EEPROM, ROM and RAM Memory. Alternatively an ASIC (Application Specific Integrated Circuit) could be used.
The individuai~ Cell voltage measurement module 41 utilises is separate wire connected to the junction of each cell. This wire is used solely for the measurement of voltage. The voltage of each cell is 1 O measured with reference to ground for batteries up to 24 Volts. This can also be accomplished using direct measurement of each cell voltage as the needs and accuracy requirements dictate.
Individual cell voltage measurement conditioning is achieved by module 42 which includes a circuit in which the cell voltages are divided by 7 5 a resistor network and smoothed by a filter capacitor connected across the ground resistor in the divider. Active fihering using operational amplifiers or other filtering means could be used.. The voltages are scoffed by the divider and filter to a voltage suitt~ble for analog to digital conversion. In this case A~.95 Volts represents the expected maximum voltage of each connection 20 to the battery. A i 2 bit analog to dig'rtai converter is .used for each calf voltage to be measured. The analog to digits! converter is controlled saris#ly by the microprocessor which converts each measured voltage to the cell voltage by scaling each voltage and subtracting the voltage flf the negative side of each cell from the voltage of the positive'side of the cell. This is 25 done for each cell and this method is applicable for cell voltages up to 24 or 30 Volts.

w0 99r65i3i pcTrA,U99roo~s~

Above 24 or 30 Volts muhiple stages of the above method can be used by transmitting the serial digital data by means of optically coupled serial communications thus isolating the veil voltages. Also applicable would be the use of a Voltage to Frequency Converter connected across each calf to directly measure the cell voltage and send this information as a frequency to the microprocessor. These Voltage to !=reduency converters can ba galvanically or optically coupled to the microprocessor which measures the frequency arid converts thts to a voltage.
'the current measuremem module 43 measures the voltage across a 1 O shunt resistor and scaling this value using a current sense ampliffer with active filtering. An alternative to this would be to use a Hall effect device to measure the current with the appropriate signal conditioning.
Current measurement conditioning is achieved by circuit module 44 in which the voltage measured across the shunt is converted to a O-faVolt signet in-espective of the direction of the current which is then fed to an input of the same 12 bit analog to digital converter used for the measurement of voltage described above. The conditioning circuitry also provides a digits) input to the micropxocessor indicating the direction of current flow. This is achieved via an integrated circuit with minimal extema) ~ components. Discrete component solutions would also be cost effective i n this area.
Temperature is measured by circuit module 4S using an integrated circuit temperature sensor mounted on the circutt~board. Any number of these can be used and located in different areas for example the battery, 2~ individual cells or outside for ambient temperature.
Temperature Measurement conditioning is achieved by circuit module 46 in which:

wo ~msi3i ~c~~no99moa6~

the temperature value is a voltage output end a tow offset voltage operational amplifier is used to :cafe this value to a 0-~Volt value suitable for connection to an input of the same analog to digital converter used far voltage and currerrt measurement.
A L.Iquid Crystal Display A.7 is used tc display information such as capacity remaining, kilometers remaining and any other information.
The display driver 48 is diivan directly by the microprocessor 40 by' writing the appropriate value to a memory location based on a lookup table s*ored inside the microprocessor 40. Depending on the mlcroprocesaor requirements and LCD complexity a separate integr~ed circuit driver may !?e used. A LED or gas plasma display could also be used. A Liquid Crystal display module may also ba used.
Audible indicator module 49 includes a plaza electric buzzer which provides audible signal to tfie user, This is ideally driven directly from the microprocessor or with a transistor driver if necessary.
A distance sensor 54 is mounted on the wheel should the battery be used in a moving vehicle. This sensor 50 can take the forrt of either a magnetic pickup where the magnet is located an the wheel and a hall effect pickup device is mounted on a stationary part of the vehicle or en optical sensor.
pistenee sensor conditioning is achieved by a circuit module 51 in which the output of the distance sensor 50 is a frequency that is scaled and measured by the microprocessor 40 which in turn converts this to a speed or distance value.
Pressure sensor module 52 includes s pressure transducer with a low voltage tin the order of 0-t 00mV) output is located in the battery.
I'rassura sansar conditioning modute 53 scales the output to WO 991b5i31 P~'Y'IAU99lOp469 0-6Volts via a precision operational amplifier acrd fed to the analog to digital converter.
The communications module 64 ensures that all control and communications signals from the battery charger are communicated via a 6 serial bus direct from the microprocessor 4t3. This serial bus can also access a PC for calibration purposes.
' . To ensure long battery life all components of the optimiser are chosen far low current consumption. The microprocessor, analog to digital converter, and ail other circuitry can be placed in a low current . consumption mode by a signal from the microprocessor to the law current mode module 56.
To achieve the required levels of accuracy the anp~iog inputs to the rr~icroprocessor ere calibrated by the calibration module 56 and the calibration factors and offsets are store in EEPROM memory.
1 g The software 57 is preferably polling orientated as wet! as being interrupt driven for time critical events such as current monitoring for energy use integration. Preferably, the software can determine if an individual cell is faulty and notify the battery charger.
The software may include a polynomial voltagt current algorithm tv prevent the battery from over-discharge by opening the switch. The software is adapted to-tal calculate the self discharge of the battery and can initiate the cal! balancing process, (b) log the numt~r of cycles and can send this information 2~ to the battery charger, (iii) rnonitor, communicate and initiate protective measures to prevent overvohage or under voltage, WO 99/65731 PCT/Ai.199/00469 fiv) sample current at regular lima intervals etnd integrates ' current with respect to time to provide ampere hours used and remaining data, and fvy the amperehours used and remaining is corrected 5 depending on loads during the currant cycle.
The microprocessor 40 can also drive FETS or tGBT'.s to control the current to a motor 68. This~can provide a single pulse width modulated control for a brushed type motor, or a quasi sinusoid control with multiple outputs for brushiess muitipld type motors such as reluctance motors or 10 brushless DC motors.
A FET or iGBT switch 69 is used for security and protection of the battery. FETS with a low on resistance ere used.
The switch 59 is controlled by switch control module 6U which is driven by the microprocessor 40 and the drive of the FETS or IGBT's t 5 utilises a switched power supply to boost the voltage to enable high side driving.
in the resistance control module 69, the microprocessor controls a FET the function of which is to periodically charge a capacitor to a voltage above the battery voltage and discharge this capacitor into the battery whilst at the same time switch another capacitor whose charge can hold the lead current.
The output of an energy gauge 62 is displayed on the LCD display es capacity remaining. This value is calculated by integrating the current over time. Current is sampled at regular intervals and this value is subtracted from an accumulator and then scalscf to 100°i6 to give a capacity remaining output.

The internal resistancelimpedance module 63 calculated the internal rssistance and impedance by means of measuring the change in voltage before and after a step change in current. This can occur both during Charge and discharge. AC current or voltage may be injected into the fi batte~'y arid the resultant voltage or currant is measured to Calculate internal resistance and Jmpedance.
The cell balancing module 64~operates so that when one cell is considered to be self discharged more than others in the group, power is takers from the entire group, converted to an appropriate voltage using a switched mode power converter and distributed to the weakest cell thus balancing the cells.
Conventional lead-acid batteries suffer from limited capachy utilisation, low depth of discharge, short cycle life, law energy density, therm~rl management problems and the need for constant boast charging to 7 6 maintain cell equalisation. The lead-acid batteries also require long charge #imes and high charge cun-ants can vnty be used for a few minutes at very low states-of-charge. tf high currents are used they normally result in higher than etlloweble voltages being reached leading to electrolyte los, end a reduction in the battery's capacity. The time to recharge a lead-acid zo battery with boost charging can be up to 4 hours at best if a proper charge profits is followed, Tha cycle life of a lead-acid battery varies gr~atly depending or? the depth-of-discharge reached during cycling. For electric vehicle applications a 90-1006 DOD (Depth of Discharge) may not by uncommon and at these Z6 I~OD levels, the cycle life of conventional deep cycle toad-acid batteries would be approximately 300 cycles.

WO 9916S13t E'GTlAL1991004r69 Fig. 3 shows the power control system 20 applied to a lead-acid battery of proven lead-acid format, however, it utilises advanced spiral wound technology for its cell structures. The twelve individual cells 2i are formed from electrodes with surface large areas, which are spiral would to form individual cello with very low resistance. Advanced eiectrolytcs have been developed to assist in allowing very high Currents to be extracted from the battery system. The battery system involves the integration of the power control system 20 with the spir~sl wound cell technology end improved electrolytes. The cells 2i are connected in series by the bus 22 which is also connected to the first capacitor moans 23, the control means 24, second capacitor means 25 and output terminals 2G. The dotted liras 27 represents the commend signal from the control means 24 to the first capacitor means 23. The use of a Valve-Regulated lead-acid format offers, a proven technology at a relatively low cost as a starting point for a °rerrtal 1 b energy" system.
By utilising the power control system 20 and reconfiguring the battery design to optimise the benefit$ of these features, there is provided a battery that offers significant improvements in the form of increased current flow, capacity, increased cycle life and rsduced recharge times at only a marginally higher manufactured cost, This is demonstrated in Fig. 4 which is a graph of cycle numbers against battery capacity for a lead acid battery with and without the power control system of the invention. A cycle is from charging to discharging and back to charging.
26 The increased current flow capability means that power and capacity utilisation is improved resulting in a higher obtainable amp-hour rating e»d the extension of vehicle range. The increased cycle life means that the WO 99fa513t pcr/AU99I00469 1$
battery can be recharged mare times before replaced, thereby, towering the annual operating costs. The reduced charging times mean that the battery can be turned around faster, thereby, reducing the number of spare batteries required in the rental energy system.
6 The power control system may also be applied to conventional NIMH
batteries which employ advanced processed and high purity materla(s that normally teed to a very high cast for the 'battery systems. Expanded nickel ,foams with high purity nickel hydroxide compounds and processed metal alloy materials all need a very high degree of quality control in order to 9 0 obtain a high performance battery.
NiMH hydride batteries Can also suffer from self-discharge problems and can also be affected by temperature. Qn certain systems the extraction of high current can cause damage the battery cells and cars must be taken not to over charge the baitterJes. in this respect, advanced 15 battery chargers are needed to ensure proper charging.
The NiMH battery system of this embodirment utilises advanced NiMH technology that has been designed to take full advantage of the benefits provided by the battery power control system. The sell structure utilises spiral would Gall technology allowing the production of cells which 20 have a much higher power output capability. The power control system is integrated into the battery pack cells. The power control system has the ability to significantly reduce polarisation effects allowing the battery system to provide higher current without jeopardising cycle life.
The Integrated unit is effectively a stand-alone intelligent energy 25 storage system as the power control system monitors all the unit's functions. The power control system can take active steps to maintain WO 99/65131 pC;T/AU99/00469 optimal battery performance, at the earns time resulting irt improved cycle ' life.
This Ni-MH system is ideally suited for a "rental Energy" system as its benefits include high energy density, high power, long Cycle life and puick recharge time. The system wilt allow greeter travelling distances for electric vehicles irt comparison to the valve regulated battery system but at a slightly higher cost. The production cost, however, of the system of this embodiment is significantly lower than existing products with estimates at current costs indicating a total price for the NtMH system almost 1 /7 0 the price of current avatlab!~ small production units.
. The NlMH system is particularly suitable for electric bicycles where a small battery systems offering tong range travel is desirable.
The power control system may also ba applied to Redox batteries which have been under imesttgation for many years. These batteries have mainly been in the form of Radox flow batteries which store energy in liquid electrolytes which are stored separately to the battery stack. during opcratton, the electrolytes sre recirculated through the system and energy is transferred to and from the electrolytes. The redox flow batteries usually suffer from a low energy density 2nd pumping losses associated with recirculating the electrolyte through the system. In certain cases, high seii-discharge rates are possible depending on the membranes or If internal shunt currents exist.
The redox gel battery differs from the radox flow principle In that the electrolytes do not need to be re-circulated since the electrolytes are super concentrated gels.
Conventional battery systems employ some form of solid metal electrodes that involve phase transfer reactions. This usually Leads to wo 9srssiat Pcmwu~nows9 increased weight and lose in efficiencies. The redox gel battery employs super concentrated gels, which contain a high concentration of positive and negative reactive ions in the respective gels. All reactive species are corrtained in the gels and no phase transfer reactions are involved which 8 leads to high efficiencies due to minimal losses, The power control system of the invention can bsr integrated in the Redox gel battery pack to reduce the effects of polarisrtion. As the gels are super concentrated, polarisation tends to be higher when high loads are applied to the battery system. A power control system specifically 9 D designed for the redox gel battery can alleviate many of the constraints in the design of the redox gel cell system.
The power control system 30 shown in Fg. 6 includes a bus system 37 which inter connects the cells 32, the control rneans 33, the first capacitor .means 34, the second capacitor means 35 and the output 7 5 terminals 38. Line-37 represents the command signal.
The control means 33 specifically designed for the redox gel cell also performs a number of monitoring functions, such as monitoring the individual cell voltages and temperatures. !t can also monitpr the internal pressure of the sealed battery pack and ascertain the allowable load limits 20 of the system at any given cond(tion. The control means 33 has the added end important ability to be able to take active steps in rnaintainir'g optimal battery performance at any state-of-charge. With this high degree of system control the system can utilise its total ~capecfty repeatedly end over a very long cycle life.
Zb This system is extremely cost competitive and offers superior pertarmance to current available energy storage system. The electrodes employed the redox gel cells simply function to allow the transfer of energy w0 99165131 . pcT/AU99/004d9 into and out of the gel electrolytes. The electrodes are inert and can be produced from specially developed conducting plastic ,materials.
This system incorporates the redox gel cells and the power corrtroi System to produce an energy storage system that has almost do~ebie the energy denstty of the NiMH system. The system also has very long cycle life due to the stability of the gel eiec~troiytes. The system has a whole is very cost effective. With its lightweight and robustness it is well suited to the battery exchange process for the "rental energy" vehicles.
Another embodiment of the invention relates to a battery charging 1 O and conditioning module that integrates with a battery performable power control system, which is integrated into a battery system.
Battery systems suffer a number of problems with one of the main limitations being incorrect charging or gang charging where the overall battery condition is recorded and an applicable charge applied. This 1 S concept however does not allow for the condition of individual cells and therefore the highest charged cell us usually overcharged and the lowest charged cell is usually undercharged. The result is that the overall battery life is significantly reduced.
Another problem is that betteries~ cannot accept high charge currents 20 because of the internal effects if Interns! resistance on the various components. Fast charging usually has the effect of gassing where hydrogen gas is given off which are not only dangerous but also limits thei life of the battery due to electrolyte degradation: ~ This charger works in conjunction with the power control system and limits the internal resistan ce 25 thereby permitting fasfer recharge rates without affecting the battery cycle life.

The present invention provides a unique battery charging and conditioning module the integrates with a power control system which is integrated into a battery system. The main function of this power control system is to reduce the polarisation effects due to the internal resistance of ' the batteries. Importantly, it has allowed control of multiple on-board functions such as monitoring individual cells, providing power output control functions, operating in conjunction with spatial battery charges providing protection and a conditioning function.
Special b8ttery chargers can identify the power control system and t 0 thsrefore the battery module seria) number, which are relayed to the operations centre via a telemetry communications systems. Once the battery has been recorded and the cii~nts accoun*' verified, the battery charger is permitted, by the power co~troi system, to commence chargl~g.
The actual charging function is carried out in conjunction with the power control system to ensure that each cell is monitored and treated or conditioned to its specific requirements. This capability prevents damage to cells through undercharging or overcharging and therefore significantly improves the overall battery cycle life.
The battery charger is capable of identifying the type of battery and z0 automatically selects 'the correct charging format. if an unauthorised battery is installed into the oherger it will not permit connection. The charger is also capable, through feedback from the power control system of detecting whether the battery his been charged by any other means or whether the optimisation module or battery have been tampered with in any way and pass this information on to the operations centr~.

WO 991d5i3i PCTiAU99ro0/63 Each charger unit is linked vla a telemetry system to the operations centre, which enables constant manrtoring pf all stations in the network, plus the location of each battery and status of each account.
INDU;TRIAL AQ,PI.ICA 1LB I'fY_ The battery management system can be used in a Rental Energy Concept where it is installed into a range of service applications in the farm of vending machines, manually installed rect~args modules. automatic battery removal and rephlcernent carousels, robotic battery repleCernent faciittiss and parking/charging stations,

Claims

1. A power control system for providing a predetermined power output from a battery system comprising:
(i) output means for delivering power from the system to a load, (ii) control means adapted to be connected to the battery system to sense pre-selected operating parameters of the battery system and in a first mode of operation to provide power from the battery system to the output means, (iii) first capacitor means adapted to store a predetermined quantity of power connected between the control means and the battery system adapted to supply its stored power to the battery system in response to a command signal from the control means when the control means is in a second mode of operation, (iv) second capacitor means adapted to store a predetermined quantity connected between the control means and the output means adapted to supply its stored power to the output means in response to a command signal from the control means when the control means is in its second mode of operation.
2. A power control system according to claim 1 wherein the first and second capacitor means are adapted to store a small percentage of the power being transferred out of the battery.
3. A power control system according to claim 1 wherein the control means provides the command signals to the first capacitor means and the second capacitor means at a predetermined time interval after the commencement of supply from the power control system.
4. A power control system according to claim 7 wherein the control means is adapted to sense the polarisation level in the battery and wherein the control signals to the first capacitor means and the second capacitor means are initiated when the polarisation level in the battery exceeds the predetermined limit.
5. A power control system according io claim 1 wherein the stored power in the first capacitor means induces a reverse charge or pulse to excite the electrodes within the battery system at a rate that is proportional to the internal resistance of the battery system as sensed by the control means.
8. A management system for a battery having at least one cell that has at least a pair of electrodes and which is susceptible to polarisation, said battery management system comprising:
(i) means for monitoring a predetermined parameter of the or each cell that is indicative of the level of polarisation, (iii) means for storing a predetermined amount of the power being transferred into or out of the battery, and (iii) means for inducing a reverse charge or wise to the electrodes so as to reduce the polarisation.

7. A battery management system according to claim 6 wherein the predetermined parameter is the internal resistance of the or each cell.
8. A battery management system according to claim 6 wherein the reverse charge or pulse is induced at a rate that is proportional to the internal resistance and/or energy flow levels of the or each cell.
8. A battery management system according to claim 6 wherein the battery has a plurality of cells and the monitoring means monitors a predetermined parameter of each call and the reverse charge or pulse is induced into each cell.
10. A battery management system according to claim 6 and further including means for identifying a battery charger to which the battery has been connected and means for identifying the battery so that the identified battery charger will not charge an unidentified battery.
11. A battery management system according to claim 1 wherein the battery is a lead-acid battery.
12. A battery management system according to claim 11 wherein the lead-acid battery incorporates spiral wound electrodes and a high energy transfer capacity electrolyte medium.
13. A battery management system according to claim 11 wherein the lead-acid battery incorporates compressed plate electrodes which incorporate a high energy transfer capacity electrolyte medium.

14. A battery management system according to claim 11 wherein the lead-acid battery incorporates a bipolar coil arrangement.
16. A battery management system according to claim 6 wherein the battery is a nickel-metal-hydride battery.
16. A battery management system according to claim 15 wherein the nickel-metal-hydride battery incorporates spiral wound electrodes and a high energy transfer capacitor electrolyte medium.
17. A battery management system according to claim 15 wherein the nickel-metal-hydride battery incorporates compressed plate electrodes and a high energy transfer capacitor electrolyte medium.
18. A battery management system according to claim 6 wherein the battery is a Redox-Gel battery.
19. A battery management system according to claim 18 wherein the Hedox-Gel battery Incorporates spiral wound electrodes and a high energy transfer capacity electrolyte medium.
20. A battery management system according to claim 18 wherein the Redox-Gel battery incorporates compressed plate electrodes and a high energy transfer capacitor electrolyte medium.

29. A battery management system according to claim 6 wherein the predetermined parameter is selected from the voltage, current, temperature, pressure, internal resistance or internal impedance of the or each cell.
22. A battery incorporating the battery management system of claim 6.
CA002333043A 1998-06-09 1999-06-09 Energy storage system Abandoned CA2333043A1 (en)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
AUPP3992 1998-06-09
AUPP3992A AUPP399298A0 (en) 1998-06-09 1998-06-09 Methods of limiting the double layer effects in electrochemical systems
AUPP8260A AUPP826099A0 (en) 1999-01-18 1999-01-18 Improvements in energy storage systems
AUPP8260 1999-01-18
PCT/AU1999/000469 WO1999065131A1 (en) 1998-06-09 1999-06-09 Energy storage system

Publications (1)

Publication Number Publication Date
CA2333043A1 true CA2333043A1 (en) 1999-12-16

Family

ID=25645799

Family Applications (2)

Application Number Title Priority Date Filing Date
CA002333048A Abandoned CA2333048A1 (en) 1998-06-09 1999-06-09 Redox gel battery
CA002333043A Abandoned CA2333043A1 (en) 1998-06-09 1999-06-09 Energy storage system

Family Applications Before (1)

Application Number Title Priority Date Filing Date
CA002333048A Abandoned CA2333048A1 (en) 1998-06-09 1999-06-09 Redox gel battery

Country Status (16)

Country Link
US (2) US6507169B1 (en)
EP (2) EP1118146A1 (en)
JP (2) JP4165995B2 (en)
KR (2) KR20010071363A (en)
CN (2) CN1185743C (en)
AT (1) ATE367661T1 (en)
AU (2) AU771346B2 (en)
BR (2) BR9911519A (en)
CA (2) CA2333048A1 (en)
DE (1) DE69936586T2 (en)
EA (2) EA200001257A1 (en)
HK (2) HK1038643A1 (en)
ID (2) ID28115A (en)
MX (1) MXPA00012257A (en)
MY (2) MY123449A (en)
WO (2) WO1999065131A1 (en)

Families Citing this family (72)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7039150B1 (en) * 1999-10-13 2006-05-02 Xicor, Inc. Serial interface for a battery management system
AUPQ908700A0 (en) * 2000-07-28 2000-08-24 Unisearch Limited Vanadium electrolyte battery
WO2003017407A1 (en) * 2001-08-10 2003-02-27 Eda, Inc. Improved load leveling battery and methods therefor
AUPR722101A0 (en) * 2001-08-24 2001-09-13 Skyllas-Kazacos, Maria Vanadium chloride/polyhalide redox flow battery
ITVA20010041A1 (en) * 2001-11-16 2003-05-16 Chemieco Srl SYSTEM OF ACCUMULATION AND / OR TRANSFORMATION OF ENERGY FROM SOURCES TO VOLTAGE AND FREQUENCY CHANGING
AUPS192102A0 (en) * 2002-04-23 2002-05-30 Unisearch Limited Vanadium bromide redox flow battery
DE10240921B4 (en) * 2002-09-02 2007-12-13 Qimonda Ag Method and device for selectively metallizing 3-D structures
AU2003901763A0 (en) 2003-04-14 2003-05-01 Michael Kazacos Novel bromide redox flow cells and batteries
US7339347B2 (en) * 2003-08-11 2008-03-04 Reserve Power Cell, Llc Apparatus and method for reliably supplying electrical energy to an electrical system
US8013611B2 (en) * 2006-07-14 2011-09-06 Reserve Power Cell, Llc Vehicle battery product and battery monitoring system
US7567057B2 (en) * 2003-08-11 2009-07-28 Reserve Power Cell, Llc Multiple battery management system, auxiliary battery attachment system, and network controlled multiple battery system
US8957301B2 (en) * 2011-02-14 2015-02-17 Robert Lyden Solar cell, module, array, network, and power grid
US6964205B2 (en) * 2003-12-30 2005-11-15 Tekscan Incorporated Sensor with plurality of sensor elements arranged with respect to a substrate
US7409315B2 (en) * 2004-06-28 2008-08-05 Broadcom Corporation On-board performance monitor and power control system
US7444192B2 (en) * 2004-10-26 2008-10-28 Aerovironment, Inc. Reactive replenishable device management
US20060158037A1 (en) * 2005-01-18 2006-07-20 Danley Douglas R Fully integrated power storage and supply appliance with power uploading capability
US7598700B2 (en) * 2005-03-30 2009-10-06 Reserve Power Cell, Llc Tamper resistant battery and battery warranty and performance tracking system
US7274975B2 (en) * 2005-06-06 2007-09-25 Gridpoint, Inc. Optimized energy management system
US20070203860A1 (en) * 2006-02-24 2007-08-30 Gridpoint, Inc. Energy budget manager
FI118656B (en) * 2006-05-05 2008-01-31 Finnish Electric Vehicle Techn Method and apparatus for treating battery cells
US8103389B2 (en) * 2006-05-18 2012-01-24 Gridpoint, Inc. Modular energy control system
WO2008064182A1 (en) * 2006-11-17 2008-05-29 Maxwell Technologies, Inc. Active voltage management system for energy storage device
EP2206190A4 (en) * 2007-09-14 2012-07-11 A123 Systems Inc Lithium rechargeable cell with reference electrode for state of health monitoring
US8386199B2 (en) * 2009-01-08 2013-02-26 4 Peaks Technology Llc Battery monitoring algorithms for vehicles
US8581548B2 (en) * 2009-12-28 2013-11-12 4 Peak Technology LLC Integrated cell balancing system, method, and computer program for multi-cell batteries
US20100179778A1 (en) * 2009-01-15 2010-07-15 Lonnie Calvin Goff Embedded monitoring system for batteries
US8437908B2 (en) * 2008-03-10 2013-05-07 4 Peaks Technology Llc Battery monitor system attached to a vehicle wiring harness
US20090210736A1 (en) * 2008-02-20 2009-08-20 Lonnie Calvin Goff Multi-function battery monitor system for vehicles
US8587150B2 (en) * 2008-02-28 2013-11-19 Deeya Energy, Inc. Method and modular system for charging a battery
US11909077B2 (en) 2008-06-12 2024-02-20 Massachusetts Institute Of Technology High energy density redox flow device
US20100047671A1 (en) * 2008-06-12 2010-02-25 Massachusetts Institute Of Technology High energy density redox flow device
US9786944B2 (en) 2008-06-12 2017-10-10 Massachusetts Institute Of Technology High energy density redox flow device
US8722226B2 (en) 2008-06-12 2014-05-13 24M Technologies, Inc. High energy density redox flow device
CN102246385B (en) * 2008-10-10 2015-07-29 艾默吉电力系统股份有限公司 For determining the method and apparatus of the state-of-charge of battery
KR102046773B1 (en) * 2009-04-06 2019-11-20 24엠 테크놀러지스 인코퍼레이티드 Fuel system using redox flow battery
TWI387140B (en) * 2009-05-22 2013-02-21 Univ Shu Te Light emitting diode
CN102460811B (en) * 2009-05-28 2015-11-25 艾默吉电力系统股份有限公司 Redox flow cell rebalancing
US20110079074A1 (en) * 2009-05-28 2011-04-07 Saroj Kumar Sahu Hydrogen chlorine level detector
WO2010138947A2 (en) 2009-05-29 2010-12-02 Deeya Energy, Inc. Methods of producing hydrochloric acid from hydrogen gas and chlorine gas
US10074879B2 (en) 2009-07-29 2018-09-11 Deep Science, Llc Instrumented fluid-surfaced electrode
US8974939B2 (en) 2009-07-29 2015-03-10 The Invention Science Fund I, Llc Fluid-surfaced electrode
CN102668224B (en) 2009-10-20 2016-01-20 国立大学法人东北大学 Vanadium cell
JP5546370B2 (en) * 2010-06-28 2014-07-09 日立ビークルエナジー株式会社 Capacitor control circuit and power storage device
JP2012054035A (en) * 2010-08-31 2012-03-15 Tomomi Abe Vanadium ion battery
EP2631984A1 (en) * 2010-10-18 2013-08-28 OHK Research Institute Battery charger and battery charging method
TW201301627A (en) * 2011-06-24 2013-01-01 Fu-Zi Xu Battery device with electric potential generated by oxidation-reduction reaction
WO2013049879A1 (en) * 2011-10-03 2013-04-11 Megapulse Australia Pty Ltd An improved battery conditioning apparatus
WO2013105825A2 (en) * 2012-01-12 2013-07-18 Ju Jingwan Charge/discharge conversion device using secondary batteries
WO2013105824A2 (en) * 2012-01-12 2013-07-18 Ju Jingwan Apparatus and method for controlling power device
WO2013105823A2 (en) * 2012-01-12 2013-07-18 Ju Jingwan Power device using secondary battery and method for converting battery mode of power device
KR101297148B1 (en) * 2012-01-12 2013-08-21 주진관 Power unit using secondary battery and the method for interchanging the charge-discharge mode
CA2765945A1 (en) * 2012-01-30 2013-07-30 Hydro-Quebec Battery management system for an electric vehicle with energy loss detection
AU2013249126B2 (en) * 2012-04-19 2015-10-01 Aytu Bioscience, Inc. Multiple layer gel
US9126055B2 (en) 2012-04-20 2015-09-08 Cardiac Science Corporation AED faster time to shock method and device
US9484569B2 (en) 2012-06-13 2016-11-01 24M Technologies, Inc. Electrochemical slurry compositions and methods for preparing the same
EP2885636B1 (en) 2012-10-23 2018-02-14 Aytu BioScience, Inc. Methods and systems for measuring oxidation-reduction potential of a biological sample
US9362583B2 (en) 2012-12-13 2016-06-07 24M Technologies, Inc. Semi-solid electrodes having high rate capability
US8993159B2 (en) 2012-12-13 2015-03-31 24M Technologies, Inc. Semi-solid electrodes having high rate capability
CN104682490B (en) * 2014-12-26 2017-07-28 深圳中智科创机器人有限公司 A kind of method and apparatus for controlling battery charging and discharging electric current
US9893544B2 (en) 2015-07-24 2018-02-13 At&T Intellectual Property I, L.P. Method and apparatus for intelligent battery control
US11005087B2 (en) 2016-01-15 2021-05-11 24M Technologies, Inc. Systems and methods for infusion mixing a slurry based electrode
US10263455B2 (en) 2016-06-17 2019-04-16 L&B Solutions, LLC Automated programmable battery balancing system and method of use
BR202016027055Y1 (en) * 2016-11-18 2019-09-10 Camila Rumi Kitagawa layout introduced in optimizer and reducer of electricity consumption
EP4047781A1 (en) * 2016-11-21 2022-08-24 Clean Train Propulsion Battery leasing and wireless power transfer for passenger rail
JP6855914B2 (en) 2017-05-10 2021-04-07 株式会社デンソー Control module
JP6946725B2 (en) * 2017-05-10 2021-10-06 株式会社デンソー Control module
KR102188723B1 (en) * 2017-11-07 2020-12-08 주식회사 엘지화학 Apparatus and method for estimating temperature of battery
US11207988B2 (en) 2018-08-06 2021-12-28 Robert M. Lyden Electric or hybrid vehicle with wireless device and method of supplying electromagnetic energy to vehicle
US10840707B2 (en) 2018-08-06 2020-11-17 Robert M. Lyden Utility pole with solar modules and wireless device and method of retrofitting existing utility pole
EP3770008A1 (en) * 2019-07-22 2021-01-27 ABB Schweiz AG Electric vehicle supply equipment, evse, for charging an electric vehicle
US11588421B1 (en) 2019-08-15 2023-02-21 Robert M. Lyden Receiver device of energy from the earth and its atmosphere
TR2021015353A2 (en) * 2021-10-01 2022-03-21 Univ Yildiz Teknik GET A NEW REDOX DOUBLE FOR ENERGY STORAGE DEVICES

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR851569A (en) * 1939-03-14 1940-01-11 Advanced device for closing ship holds
US3776779A (en) * 1972-04-28 1973-12-04 Elpower Corp Gelled battery electrolyte containing a polyglycol polymer and a process for locating same within a lead-acid cell
US4086402A (en) * 1976-01-14 1978-04-25 Compagnie Generale D'electricite S.A. Lithium electric cell
US4018971A (en) * 1976-07-20 1977-04-19 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Gels as battery separators for soluble electrode cells
US4332870A (en) * 1979-12-26 1982-06-01 Duracell International Inc. Cell having a gelled anode containing a polyhydric alcohol
US4288913A (en) * 1979-12-26 1981-09-15 Duracell International Inc. Method of forming in situ gelled anode
SU851569A1 (en) 1979-12-29 1981-07-30 Предприятие П/Я М-5644 Storage battery charging method
US5281919A (en) * 1988-10-14 1994-01-25 Alliedsignal Inc. Automotive battery status monitor
US5439757A (en) * 1992-10-14 1995-08-08 National Power Plc Electrochemical energy storage and/or power delivery cell with pH control
US5523179A (en) 1994-11-23 1996-06-04 Polyplus Battery Company Rechargeable positive electrode
US5559078A (en) 1994-12-01 1996-09-24 Henkel Corporation Agriculturally active composition comprising polyhydroxy acid amide adjuvant
RU2105395C1 (en) 1995-04-26 1998-02-20 Общество с ограниченной ответственностью "Интергрин" Fuel cell
US5614332A (en) * 1995-05-26 1997-03-25 Pavelle; Richard Method and apparatus for increasing charging and discharging efficiency in batteries
US5674642A (en) 1995-06-02 1997-10-07 Regents Of The University Of Minnesota High capacity high rate materials
US5708347A (en) 1995-08-01 1998-01-13 Alliedsignal Inc. Method for accelerating the depolarization of a polarized battery to facilitate battery testing
JPH09223513A (en) * 1996-02-19 1997-08-26 Kashimakita Kyodo Hatsuden Kk Liquid circulating type battery
US6081098A (en) * 1997-11-03 2000-06-27 Midtronics, Inc. Method and apparatus for charging a battery
FR2758019B1 (en) * 1996-12-30 1999-01-22 Alsthom Cge Alcatel POWER CONVERTER WITH IMPROVED CONTROL OF MAIN SWITCHES

Also Published As

Publication number Publication date
AU771346B2 (en) 2004-03-18
US6507169B1 (en) 2003-01-14
JP2002518969A (en) 2002-06-25
CN1305655A (en) 2001-07-25
KR20010071363A (en) 2001-07-28
HK1038643A1 (en) 2002-03-22
JP4165995B2 (en) 2008-10-15
CN1134875C (en) 2004-01-14
ID27342A (en) 2001-04-05
EA200001257A1 (en) 2001-08-27
EP1095419A1 (en) 2001-05-02
US6720107B1 (en) 2004-04-13
CN1305649A (en) 2001-07-25
EP1095419A4 (en) 2005-06-15
AU4588999A (en) 1999-12-30
BR9911519A (en) 2001-03-20
DE69936586D1 (en) 2007-08-30
WO1999065100A1 (en) 1999-12-16
AU4589099A (en) 1999-12-30
CN1185743C (en) 2005-01-19
EA200001256A1 (en) 2001-08-27
MY124056A (en) 2006-06-30
EP1095419B1 (en) 2007-07-18
MY123449A (en) 2006-05-31
KR20010071430A (en) 2001-07-28
MXPA00012257A (en) 2002-04-24
AU744894B2 (en) 2002-03-07
CA2333048A1 (en) 1999-12-16
ID28115A (en) 2001-05-03
HK1038651A1 (en) 2002-03-22
JP2002518795A (en) 2002-06-25
DE69936586T2 (en) 2008-04-30
ATE367661T1 (en) 2007-08-15
WO1999065131A1 (en) 1999-12-16
BR9911520A (en) 2001-03-20
EP1118146A1 (en) 2001-07-25

Similar Documents

Publication Publication Date Title
US6507169B1 (en) Energy storage system
AU4252599A (en) Energy gauge
EP2083494B1 (en) Abnormality detecting device for storage element, abnormality detecting method for storage element, abnormality detecting program for storage element, and computer-readable recording medium storing abnormality detecting program
JP3136926B2 (en) Storage battery status management system
KR20100020477A (en) Battery pack and battery system
EP1161788A1 (en) Energy monitoring and charging system
AU2004203624B2 (en) Energy monitoring and charging system
TW434964B (en) Energy storage system
AU2004205219A1 (en) Energy gauge
US20230208166A1 (en) Reconfigurable battery pack
MXPA00012258A (en) Energy storage system
van Schalkwijk et al. Integration of battery packs and charging options

Legal Events

Date Code Title Description
FZDE Discontinued