CA2355353A1 - Recirculating shade tree blender for a graphics system - Google Patents

Recirculating shade tree blender for a graphics system Download PDF

Info

Publication number
CA2355353A1
CA2355353A1 CA002355353A CA2355353A CA2355353A1 CA 2355353 A1 CA2355353 A1 CA 2355353A1 CA 002355353 A CA002355353 A CA 002355353A CA 2355353 A CA2355353 A CA 2355353A CA 2355353 A1 CA2355353 A1 CA 2355353A1
Authority
CA
Canada
Prior art keywords
texture
data
processing
blending
shader
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CA002355353A
Other languages
French (fr)
Other versions
CA2355353C (en
Inventor
Robert A. Drebin
Timothy J. Van Hook
Patrick Y. Law
Mark M. Leather
Matthew Komsthoeft
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nintendo Co Ltd
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Publication of CA2355353A1 publication Critical patent/CA2355353A1/en
Application granted granted Critical
Publication of CA2355353C publication Critical patent/CA2355353C/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T1/00General purpose image data processing
    • G06T1/20Processor architectures; Processor configuration, e.g. pipelining
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T15/003D [Three Dimensional] image rendering
    • G06T15/50Lighting effects
    • G06T15/80Shading
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T15/003D [Three Dimensional] image rendering
    • G06T15/005General purpose rendering architectures
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T15/003D [Three Dimensional] image rendering
    • G06T15/50Lighting effects
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T17/00Three dimensional [3D] modelling, e.g. data description of 3D objects

Abstract

A graphics system including a custom graphics and audio processor produces exciting 2D and 3D graphics and surround sound. The system includes a Graphics and audio processor including a 3D graphics pipeline and an audio digital signal processor. To achieve multi-texturing, conventional graphics renderin g systems typically rely on multiple rendering passes or require multiple serial/parallel texture-retrieval/processing circuits which occupy additiona l chip real-estate and exacerbate memory arbitration problems. To solve this proble m and to provide an enhanced repertoire of multi-texturing capabilities, a relatively low chip-footprint, versatile texture environment (TEV) processing subsystem is implemented in a pipelined graphics system by utilizing a flexible API and a hardware-accelerated programmable texture blender/shader arrangement that circulates computed color and alpha data over multiple texture blending/shading cycles (stages). The texture-environment subsystem combines per-vertex lighting, textures and constant (rasterized) colors to form computed pixel color prior to fogging and final pixel blending. Blending operations for color (RGB) and alpha components are independently processed within the TEV subsystem by a single sub-blend unit consisting of a set of color/alpha-combiner (shader) hardware that is reused over multiple processing stages to combine multiple textures. A set o f four selectable current-color input/output registers which are shared among all stages is provided at the output of the sub-blend unit to temporarily store computed color results and to pass computed color between stages. Arguments for blending stage operations can be selected from: the four current-color registers, rasterize d color (diffuse or specular), texture, the alpha components of the above colors, an d 0 or 1. Up to sixteen independently programmable consecutive stages, forming a chain of 78 blending operations, are supported for applying multiple textures to a singl e object in a single rendering pass.

Claims (48)

1. In a graphics pipeline, a hardware shader that blends selected inputs to provide a calculated color or opacity output that is fed back for use as an input to the hardware shader for a subsequent blending operation.
2. The pipeline of claim 1 wherein an output of the shader can be recirculated to provide n blending stages.
3. The pipeline of claim 1 wherein recirculation of said shader output allows shade tree type combining operations.
4. The pipeline of claim 1 wherein said shader provides both color blend and alpha blend operations in a same blending operation stage.
5. The pipeline of claim 1 wherein the pipeline includes a recirculating texture unit coupled to the shader, and wherein said shader blends a texture output previously provided by the recirculating texture unit while the recirculating texture unit performs a further texture mapping operation to provide a further texture output for blending by the shader.
6. The pipeline of claim 1 wherein the shader includes a programmable clamper.
7. The pipeline of claim 1 wherein the shader includes a programmable sealer.
8. The pipeline of claim 1 wherein the shader includes a comparator.
9. The pipeline of claim 1 wherein the shader includes a programmable color swap.
10. The pipeline of claim 1 wherein an output of the shader is made available as an input for a plurality of subsequent blending operations.
11. The pipeline of claim 1 wherein the shader includes separate blending circuits for performing both color blend and alpha blend operations during a same blending operation stage.
12. The pipeline of claim 1 wherein the shader includes a feedback mechanism for providing an output to an input of said shader.
13. The pipeline of claim 12 wherein said feedback mechanism includes one or more storage buffers for retaining an output from a blending operation and at least one of said buffers has an output connected to an input of said shader.
14. In a graphics system, a multi-texturing method comprising:~
(a) passing texture mapping data through a component combining arrangement to provide combined textured component outputs;
(b) reconfiguring the component combining arrangement; and (c) passing said combined textured component outputs through the reconfigured but same component combining arrangement to provide combined multi-textured component outputs.
15. The method of claim 10 wherein said steps (b) and (c) are repeated plural times.
16. The method of claim 10 wherein the component combining arrangement includes a texture color combiner.
17. The method of claim 10 wherein the component combining arrangement includes an alpha combiner.~
18. A method for providing multi-textured polygons comprising:
(a) generating first texture mapping data;

(b) passing the first texture mapping data through combiner hardware to provide a first output corresponding to the first texture mapping data;
(c) generating second texture mapping data; and (d) passing the second texture mapping data and the first output through the combiner hardware to provide a second output corresponding to the first and second texture mapping data.
19. The method of claim 14 wherein step (b) is performed during a blending stage, and step (d) is performed during a further blending stage that is later than the first-mentioned blending stage.
20. The method of claim 18 wherein the combiner hardware provides more than ten successive stages of texture mapping data blending.
21. In a graphics rendering pipeline including at least one texture mapping unit and a texture environment unit including combiner circuits, an improvement comprising iteratively reusing the combiner circuits to provide multiple stages that apply multiple textures to a surface displayed within an image.
22. The method of claim 21 wherein the iteratively reusing step includes using the combiner circuits to combine first texel colors during a first blending cycle/stage, and using the same combiner circuits to combine second texel colors using a second blending cycle/stage different from the first cycle/stage, the first and second cycles/stages both falling within a period for generating a single image frame.
23. The method of claim 21 where the first and second cycles/stages are consecutive.
24. The method of claim 21 wherein the combiner circuits comprise independent color combiner circuits and alpha combiner circuits.
25. The method of claim 21 wherein the combiner circuits compute (D + (-1 )sub * ((1-c) * A + C * B) + bias) < < shift where A, B, C and D are selected from four current-color registers, rasterized color, texture, alpha components, 0 and 1.
26. In a graphics system including a processing pipeline that renders and displays images at least in part in response to polygon vertex data and texture data stored in an associated memory, a multitexture processing subsystem for selectively mapping texture data corresponding to one or more different textures and/or texture characteristics to surfaces of said rendered and displayed images, said multitexture processing subsystem comprising:
a color/alpha-component blending unit configured within the pipeline to combine texture, rasterized color and/or alpha component data to produce a computed color and having a feedback mechanism that enables reintroduction of the computed color into the pipeline, wherein a processing of multiple textures is achieved by an iterative use/reuse of the blending unit.
27. A multitexture processing subsystem as in claim 26 wherein the blending unit comprises at least one multiplier and one adder and is configured to accept up to four input arguments for performing blending operations.
28. In a graphics system including a processing pipeline that renders and displays images at least in part in response to polygon vertex data and texture data stored in an associated memory, a multitexture processing subsystem for selectively mapping texture data corresponding to one or more different textures and/or texture characteristics to surfaces of said rendered and displayed images, said multitexture processing subsystem comprising:

a texture environment unit configured within the pipeline to process input texture, color and/or alpha data during a predetermined processing stage to accomplish a blending and/or mixing of textures and/or colors or alpha data, said texture environment unit including a color/alpha data blending unit having a feedback mechanism operable during selected temporal processing stages wherein an output of a current processing stage is made available as an input to a subsequent processing stage.
29. A multitexture processing subsystem as in claim 28 wherein the blending unit is connected to at least one storage register for making an output of a current processing stage available as an input to a subsequent temporal processing stage.
30. A multitexture processing subsystem as in claim 28 wherein the texture environment unit may accommodate up to sixteen successive temporal processing stages.
31. A multitexture processing subsystem as in claim 28 wherein the feedback mechanism comprises a plurality of storage registers.
32. A multitexture processing subsystem as in claim 28 wherein the blending unit comprises at least one multiplier and one adder and is configured to accept up to four input arguments for performing blending operations.
33. In a graphics system including a processing pipeline that renders and displays images at least in part in response to polygon vertex data and texture data stored in an associated memory, a multitexture processing subsystem for selectively mapping texture data corresponding to one or more different textures and/or texture characteristics to surfaces of said rendered and displayed images, said multitexture processing subsystem comprising:

a texture environment unit configured within the pipeline to process input texture and rasterized color data to provide independent mathematical blending operations on input texture and rasterized color data during a predetermined temporal processing cycle/stage, said texture environment unit including a feedback mechanism operated during selected temporal processing cycles/stages wherein an output of a current temporal processing cycle/stage is made available as an input to a subsequent temporal processing cycle/stage.
34. A multitexture processing subsystem as in claim 33 wherein the input texture and rasterized color data comprises RGB and Alpha data.
35. A multitexture processing subsystem as in claim 33 wherein an output of a texture environment unit temporal processing cycle/stage is available as an input to a subsequent texture environment temporal processing stage.
36. A multitexture processing subsystem as in claim 33 wherein the texture environment unit may accommodate up to sixteen successive temporal processing stages.
37. A multitexture processing subsystem as in claim 33 wherein the texture environment unit further comprises a blending unit having at least one multiplier and one adder.
38. A multitexture processing subsystem as in claim 33 wherein the blending unit is configured to accept up to four input arguments for performing blending operations.
39. In a graphics system including a processing pipeline that renders and displays images at least in part in response to polygon vertex data and texture data stored in an associated memory, a texture processing subsystem for selectively mapping texture data corresponding to one or more different textures and/or texture characteristics to surfaces of said rendered and displayed images, and a texture environment unit for processing input texture and rasterized color data to provide independent mathematical blending operations on said input texture and rasterized color data, a method for processing multiple textures comprising the steps of:
(a) performing blending operations on a first set of texture and rasterized color data during a first texture environment unit temporal processing cycle/stage;
and (b) providing an output of said first temporal processing cycle/stage as an input to a subsequent texture environment unit temporal processing cycle/stage.
40. A method for processing multiple textures as in claim 39 wherein an output from up to sixteen successive texture environment temporal processing stages may be provided as an input to a subsequent texture environment unit temporal processing cycle/stage.
41. A method for processing multiple textures as in claim 39 wherein input texture and rasterized color data comprise RGB and Alpha data.
42. A multitexture processing subsystem as in claim 28 wherein an output of a current processing stage is made available as an input to a plurality of subsequent processing stages.
43. In a graphics system including a multitexture processing subsystem for selectively sampling texture data corresponding to one or more different textures and/or texture characteristics, a hardware shader for performing shading/blending operations that receives a first texture data sample and a subsequent texture data sample from said multitexture processing subsystem and recirculates an output from a shading/blending operation performed using the first texture data sample to an input of said shader for performing a shading/blending operation using the subsequent texture data sample and the output from the shading/blending operation performed on the first texture data sample.
44. A graphics pipeline including a multitexture processing subsystem that sequentially provides samples of multiple textures to a hardware shader that performs blending/shading operations on texture sample outputs of the multitexture processing subsystem wherein said hardware shader recirculates a resulting output of a blending/shading operation for performing a subsequent blending/shading operation of said resulting output with a subsequent texture sample output.
45. A graphics processing pipeline that renders and displays images at least in part in response to polygon vertex data and texture data, comprising:
a recirculating texturing pipeline arrangement having a single texture address coordinate/data processing unit, a single texture retrieval unit, and a texture lookup data feedback path for recirculating selected retrieved texture lookup data from the texture retrieval unit back to the texture address coordinate/data processing unit; and a recirculating shade-tree alpha/color blender arrangement having a hardware shader connected to receive an output of the texture retrieval unit and a feedback path from an output of the hardware shader to an input of the shader for recirculating selected blended color or opacity output data, wherein the recirculating arrangement blends selected shader inputs to provide an output that is fed back for use as an input to the shader for a subsequent blending operation.
46. The pipeline of claim 45 wherein said single texture address coordinate/data processing unit interleaves the processing of logical direct and indirect texture coordinate data.
47. In a graphics system, a multitexture processing subsystem comprising:
a texturing arrangement having a single texture address coordinate/data processing unit, a single texture retrieval unit, and a texture lookup data feedback path for recirculating retrieved indirect texture lookup data from a single texture retrieval unit back to the texture address coordinate/data processing unit;
and a recirculating hardware shader connected to receive an output of the texture retrieval unit, wherein the shader blends selected received outputs to provide a calculated color or opacity output that is selectively fed back for use as an input to the shader for a subsequent blending operation.
48. The graphics system of claim 47 wherein said single texture address coordinate/data processing unit interleaves the processing of logical direct and indirect texture coordinate data.
CA2355353A 2000-08-23 2001-08-17 Recirculating shade tree blender for a graphics system Expired - Lifetime CA2355353C (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US22688800P 2000-08-23 2000-08-23
US60/226,888 2000-08-23
US09/722,367 US7034828B1 (en) 2000-08-23 2000-11-28 Recirculating shade tree blender for a graphics system
US09/722,367 2000-11-28

Publications (2)

Publication Number Publication Date
CA2355353A1 true CA2355353A1 (en) 2002-02-23
CA2355353C CA2355353C (en) 2010-05-04

Family

ID=26920956

Family Applications (1)

Application Number Title Priority Date Filing Date
CA2355353A Expired - Lifetime CA2355353C (en) 2000-08-23 2001-08-17 Recirculating shade tree blender for a graphics system

Country Status (8)

Country Link
US (2) US7034828B1 (en)
EP (1) EP1182618A3 (en)
JP (1) JP4731028B2 (en)
KR (1) KR20020015973A (en)
CN (1) CN1339764A (en)
AU (1) AU5785101A (en)
CA (1) CA2355353C (en)
TW (1) TWI244050B (en)

Families Citing this family (124)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7548238B2 (en) * 1997-07-02 2009-06-16 Nvidia Corporation Computer graphics shader systems and methods
US9007393B2 (en) * 1997-07-02 2015-04-14 Mental Images Gmbh Accurate transparency and local volume rendering
US7749089B1 (en) 1999-02-26 2010-07-06 Creative Kingdoms, Llc Multi-media interactive play system
US7878905B2 (en) 2000-02-22 2011-02-01 Creative Kingdoms, Llc Multi-layered interactive play experience
US6761637B2 (en) 2000-02-22 2004-07-13 Creative Kingdoms, Llc Method of game play using RFID tracking device
US7445550B2 (en) 2000-02-22 2008-11-04 Creative Kingdoms, Llc Magical wand and interactive play experience
US6724394B1 (en) * 2000-05-31 2004-04-20 Nvidia Corporation Programmable pixel shading architecture
US7002591B1 (en) * 2000-08-23 2006-02-21 Nintendo Co., Ltd. Method and apparatus for interleaved processing of direct and indirect texture coordinates in a graphics system
US7538772B1 (en) 2000-08-23 2009-05-26 Nintendo Co., Ltd. Graphics processing system with enhanced memory controller
US7066781B2 (en) 2000-10-20 2006-06-27 Denise Chapman Weston Children's toy with wireless tag/transponder
JP4001015B2 (en) * 2001-01-23 2007-10-31 セイコーエプソン株式会社 Image input apparatus and image input method
US7564460B2 (en) 2001-07-16 2009-07-21 Microsoft Corporation Systems and methods for providing intermediate targets in a graphics system
GB2383248B (en) * 2001-12-14 2005-12-07 Imagination Tech Ltd 3-dimensional computer graphics system
US20070066396A1 (en) 2002-04-05 2007-03-22 Denise Chapman Weston Retail methods for providing an interactive product to a consumer
US6967566B2 (en) 2002-04-05 2005-11-22 Creative Kingdoms, Llc Live-action interactive adventure game
US6825843B2 (en) * 2002-07-18 2004-11-30 Nvidia Corporation Method and apparatus for loop and branch instructions in a programmable graphics pipeline
US7674184B2 (en) 2002-08-01 2010-03-09 Creative Kingdoms, Llc Interactive water attraction and quest game
US7570273B1 (en) 2002-08-29 2009-08-04 Nvidia Corporation Accelerated rotation for displaying an image
US8259121B2 (en) * 2002-10-22 2012-09-04 Broadcom Corporation System and method for processing data using a network
US20040095348A1 (en) * 2002-11-19 2004-05-20 Bleiweiss Avi I. Shading language interface and method
US6933947B2 (en) * 2002-12-03 2005-08-23 Microsoft Corporation Alpha correction to compensate for lack of gamma correction
US9446319B2 (en) 2003-03-25 2016-09-20 Mq Gaming, Llc Interactive gaming toy
US7646817B2 (en) * 2003-03-28 2010-01-12 Microsoft Corporation Accelerating video decoding using a graphics processing unit
US7978205B1 (en) * 2004-05-03 2011-07-12 Microsoft Corporation Systems and methods for providing an enhanced graphics pipeline
US7570267B2 (en) 2004-05-03 2009-08-04 Microsoft Corporation Systems and methods for providing an enhanced graphics pipeline
US8416242B1 (en) 2004-05-14 2013-04-09 Nvidia Corporation Method and system for interpolating level-of-detail in graphics processors
US8860722B2 (en) * 2004-05-14 2014-10-14 Nvidia Corporation Early Z scoreboard tracking system and method
US8743142B1 (en) 2004-05-14 2014-06-03 Nvidia Corporation Unified data fetch graphics processing system and method
US8736620B2 (en) 2004-05-14 2014-05-27 Nvidia Corporation Kill bit graphics processing system and method
US20060007234A1 (en) * 2004-05-14 2006-01-12 Hutchins Edward A Coincident graphics pixel scoreboard tracking system and method
US8432394B1 (en) 2004-05-14 2013-04-30 Nvidia Corporation Method and system for implementing clamped z value interpolation in a raster stage of a graphics pipeline
US8687010B1 (en) 2004-05-14 2014-04-01 Nvidia Corporation Arbitrary size texture palettes for use in graphics systems
US8736628B1 (en) 2004-05-14 2014-05-27 Nvidia Corporation Single thread graphics processing system and method
US8411105B1 (en) 2004-05-14 2013-04-02 Nvidia Corporation Method and system for computing pixel parameters
US7079156B1 (en) 2004-05-14 2006-07-18 Nvidia Corporation Method and system for implementing multiple high precision and low precision interpolators for a graphics pipeline
US8711155B2 (en) 2004-05-14 2014-04-29 Nvidia Corporation Early kill removal graphics processing system and method
JP2005332195A (en) * 2004-05-19 2005-12-02 Sony Computer Entertainment Inc Texture unit, image drawing apparatus, and texel transfer method
US20060012604A1 (en) * 2004-07-15 2006-01-19 Avinash Seetharamaiah Legacy processing for pixel shader hardware
US7324106B1 (en) * 2004-07-27 2008-01-29 Nvidia Corporation Translation of register-combiner state into shader microcode
US7400325B1 (en) 2004-08-06 2008-07-15 Nvidia Corporation Culling before setup in viewport and culling unit
US8189002B1 (en) * 2004-10-29 2012-05-29 PME IP Australia Pty, Ltd. Method and apparatus for visualizing three-dimensional and higher-dimensional image data sets
US7821520B1 (en) * 2004-12-10 2010-10-26 Nvidia Corporation Fragment processor having dual mode register file
US7623132B1 (en) * 2004-12-20 2009-11-24 Nvidia Corporation Programmable shader having register forwarding for reduced register-file bandwidth consumption
US8004515B1 (en) * 2005-03-15 2011-08-23 Nvidia Corporation Stereoscopic vertex shader override
JP2009500730A (en) * 2005-07-01 2009-01-08 メンタル イメージズ ゲーエムベーハー Computer graphic shader system and method
WO2007013492A1 (en) * 2005-07-26 2007-02-01 Digital Media Professionals Inc. Multilayer reflection shading image creating method and computer
JP4805633B2 (en) 2005-08-22 2011-11-02 任天堂株式会社 Game operation device
US7942745B2 (en) * 2005-08-22 2011-05-17 Nintendo Co., Ltd. Game operating device
US8313379B2 (en) * 2005-08-22 2012-11-20 Nintendo Co., Ltd. Video game system with wireless modular handheld controller
US7927216B2 (en) 2005-09-15 2011-04-19 Nintendo Co., Ltd. Video game system with wireless modular handheld controller
JP4262726B2 (en) * 2005-08-24 2009-05-13 任天堂株式会社 Game controller and game system
US8870655B2 (en) 2005-08-24 2014-10-28 Nintendo Co., Ltd. Wireless game controllers
US8308563B2 (en) * 2005-08-30 2012-11-13 Nintendo Co., Ltd. Game system and storage medium having game program stored thereon
US8157651B2 (en) 2005-09-12 2012-04-17 Nintendo Co., Ltd. Information processing program
JP4530419B2 (en) * 2006-03-09 2010-08-25 任天堂株式会社 Coordinate calculation apparatus and coordinate calculation program
JP4151982B2 (en) 2006-03-10 2008-09-17 任天堂株式会社 Motion discrimination device and motion discrimination program
JP4684147B2 (en) * 2006-03-28 2011-05-18 任天堂株式会社 Inclination calculation device, inclination calculation program, game device, and game program
US8766995B2 (en) 2006-04-26 2014-07-01 Qualcomm Incorporated Graphics system with configurable caches
US8933933B2 (en) * 2006-05-08 2015-01-13 Nvidia Corporation Optimizing a graphics rendering pipeline using early Z-mode
US8207975B1 (en) * 2006-05-08 2012-06-26 Nvidia Corporation Graphics rendering pipeline that supports early-Z and late-Z virtual machines
US20070268289A1 (en) * 2006-05-16 2007-11-22 Chun Yu Graphics system with dynamic reposition of depth engine
US8884972B2 (en) * 2006-05-25 2014-11-11 Qualcomm Incorporated Graphics processor with arithmetic and elementary function units
US8869147B2 (en) * 2006-05-31 2014-10-21 Qualcomm Incorporated Multi-threaded processor with deferred thread output control
US8644643B2 (en) * 2006-06-14 2014-02-04 Qualcomm Incorporated Convolution filtering in a graphics processor
US8766996B2 (en) * 2006-06-21 2014-07-01 Qualcomm Incorporated Unified virtual addressed register file
US7973797B2 (en) * 2006-10-19 2011-07-05 Qualcomm Incorporated Programmable blending in a graphics processing unit
US8537168B1 (en) 2006-11-02 2013-09-17 Nvidia Corporation Method and system for deferred coverage mask generation in a raster stage
US8243069B1 (en) * 2006-11-03 2012-08-14 Nvidia Corporation Late Z testing for multiple render targets
KR100791411B1 (en) * 2006-12-07 2008-01-07 한국전자통신연구원 Apparatus and method for processing graphics
JP5127242B2 (en) 2007-01-19 2013-01-23 任天堂株式会社 Acceleration data processing program and game program
CN101647044B (en) * 2007-04-11 2011-10-19 松下电器产业株式会社 Image generating apparatus and image generating method
US8441497B1 (en) 2007-08-07 2013-05-14 Nvidia Corporation Interpolation of vertex attributes in a graphics processor
US9183607B1 (en) 2007-08-15 2015-11-10 Nvidia Corporation Scoreboard cache coherence in a graphics pipeline
US8392529B2 (en) 2007-08-27 2013-03-05 Pme Ip Australia Pty Ltd Fast file server methods and systems
US8073676B2 (en) * 2007-09-21 2011-12-06 Sony Computer Entertainment Inc. Method and apparatus for emulation enhancement
US10311541B2 (en) 2007-11-23 2019-06-04 PME IP Pty Ltd Multi-user multi-GPU render server apparatus and methods
WO2009067675A1 (en) 2007-11-23 2009-05-28 Mercury Computer Systems, Inc. Client-server visualization system with hybrid data processing
WO2011065929A1 (en) 2007-11-23 2011-06-03 Mercury Computer Systems, Inc. Multi-user multi-gpu render server apparatus and methods
US9904969B1 (en) 2007-11-23 2018-02-27 PME IP Pty Ltd Multi-user multi-GPU render server apparatus and methods
US8548215B2 (en) 2007-11-23 2013-10-01 Pme Ip Australia Pty Ltd Automatic image segmentation of a volume by comparing and correlating slice histograms with an anatomic atlas of average histograms
US8276133B1 (en) 2007-12-11 2012-09-25 Nvidia Corporation System, method, and computer program product for determining a plurality of application settings utilizing a mathematical function
US8296781B1 (en) * 2007-12-11 2012-10-23 Nvidia Corporation System, method, and computer program product for determining application parameters based on hardware specifications
US8280864B1 (en) 2007-12-17 2012-10-02 Nvidia Corporation System, method, and computer program product for retrieving presentation settings from a database
US20100053205A1 (en) * 2008-09-03 2010-03-04 Debra Brandwein Method, apparatus, and system for displaying graphics using html elements
US9256514B2 (en) 2009-02-19 2016-02-09 Nvidia Corporation Debugging and perfomance analysis of applications
US9250926B2 (en) * 2009-04-30 2016-02-02 Microsoft Technology Licensing, Llc Platform extensibility framework
US9460546B1 (en) 2011-03-30 2016-10-04 Nvidia Corporation Hierarchical structure for accelerating ray tracing operations in scene rendering
JP5103543B2 (en) * 2011-05-16 2012-12-19 株式会社ディジタルメディアプロフェッショナル A computer graphics circuit and a three-dimensional computer that uses this circuit to generate a two-dimensional pseudo-random texture pattern applied to a three-dimensional object displayed on a two-dimensional display system using a one-dimensional texture image Graphics equipment
US9142043B1 (en) 2011-06-24 2015-09-22 Nvidia Corporation System and method for improved sample test efficiency in image rendering
US8970584B1 (en) 2011-06-24 2015-03-03 Nvidia Corporation Bounding box-based techniques for improved sample test efficiency in image rendering
US9153068B2 (en) 2011-06-24 2015-10-06 Nvidia Corporation Clipless time and lens bounds for improved sample test efficiency in image rendering
US9269183B1 (en) 2011-07-31 2016-02-23 Nvidia Corporation Combined clipless time and lens bounds for improved sample test efficiency in image rendering
US9098941B2 (en) 2012-01-23 2015-08-04 Ayasdi, Inc. Systems and methods for graphical layout
US8830254B2 (en) * 2012-01-24 2014-09-09 Ayasdi, Inc. Systems and methods for graph rendering
US9305394B2 (en) 2012-01-27 2016-04-05 Nvidia Corporation System and process for improved sampling for parallel light transport simulation
US9411595B2 (en) 2012-05-31 2016-08-09 Nvidia Corporation Multi-threaded transactional memory coherence
US9275377B2 (en) 2012-06-15 2016-03-01 Nvidia Corporation System, method, and computer program product for determining a monotonic set of presets
US10509658B2 (en) 2012-07-06 2019-12-17 Nvidia Corporation System, method, and computer program product for simultaneously determining settings for a plurality of parameter variations
US10668386B2 (en) 2012-07-06 2020-06-02 Nvidia Corporation System, method, and computer program product for simultaneously determining settings for a plurality of parameter variations
US9092573B2 (en) 2012-07-06 2015-07-28 Nvidia Corporation System, method, and computer program product for testing device parameters
US9286247B2 (en) 2012-07-06 2016-03-15 Nvidia Corporation System, method, and computer program product for determining settings for a device by utilizing a directed acyclic graph containing a plurality of directed nodes each with an associated speed and image quality
US9250931B2 (en) 2012-07-06 2016-02-02 Nvidia Corporation System, method, and computer program product for calculating settings for a device, utilizing one or more constraints
US9201670B2 (en) 2012-07-06 2015-12-01 Nvidia Corporation System, method, and computer program product for determining whether parameter configurations meet predetermined criteria
US9171394B2 (en) 2012-07-19 2015-10-27 Nvidia Corporation Light transport consistent scene simplification within graphics display system
US9159158B2 (en) 2012-07-19 2015-10-13 Nvidia Corporation Surface classification for point-based rendering within graphics display system
US9251762B2 (en) 2012-12-19 2016-02-02 Microsoft Technology Licensing, Llc. Runtime transformation of images to match a user interface theme
US9824009B2 (en) 2012-12-21 2017-11-21 Nvidia Corporation Information coherency maintenance systems and methods
KR101736468B1 (en) * 2012-12-24 2017-05-29 한화테크윈 주식회사 Apparatus and method for processing image
US10102142B2 (en) 2012-12-26 2018-10-16 Nvidia Corporation Virtual address based memory reordering
US11183292B2 (en) 2013-03-15 2021-11-23 PME IP Pty Ltd Method and system for rule-based anonymized display and data export
US10540803B2 (en) 2013-03-15 2020-01-21 PME IP Pty Ltd Method and system for rule-based display of sets of images
US11244495B2 (en) 2013-03-15 2022-02-08 PME IP Pty Ltd Method and system for rule based display of sets of images using image content derived parameters
US9509802B1 (en) 2013-03-15 2016-11-29 PME IP Pty Ltd Method and system FPOR transferring data to improve responsiveness when sending large data sets
US8976190B1 (en) 2013-03-15 2015-03-10 Pme Ip Australia Pty Ltd Method and system for rule based display of sets of images
US10070839B2 (en) 2013-03-15 2018-09-11 PME IP Pty Ltd Apparatus and system for rule based visualization of digital breast tomosynthesis and other volumetric images
US9477575B2 (en) 2013-06-12 2016-10-25 Nvidia Corporation Method and system for implementing a multi-threaded API stream replay
US9569385B2 (en) 2013-09-09 2017-02-14 Nvidia Corporation Memory transaction ordering
GB2518902B (en) * 2013-10-07 2020-07-01 Advanced Risc Mach Ltd Early depth testing in graphics processing
US11599672B2 (en) 2015-07-31 2023-03-07 PME IP Pty Ltd Method and apparatus for anonymized display and data export
US9984478B2 (en) 2015-07-28 2018-05-29 PME IP Pty Ltd Apparatus and method for visualizing digital breast tomosynthesis and other volumetric images
US10089708B2 (en) * 2016-04-28 2018-10-02 Qualcomm Incorporated Constant multiplication with texture unit of graphics processing unit
US10909679B2 (en) 2017-09-24 2021-02-02 PME IP Pty Ltd Method and system for rule based display of sets of images using image content derived parameters
US11256528B2 (en) 2018-10-26 2022-02-22 Nvidia Corporation Individual application window streaming suitable for remote desktop applications
US10970911B2 (en) 2019-02-21 2021-04-06 Facebook Technologies, Llc Graphics processing chip with machine-learning based shader

Family Cites Families (112)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4275413A (en) 1978-03-30 1981-06-23 Takashi Sakamoto Linear interpolator for color correction
US4357624A (en) 1979-05-15 1982-11-02 Combined Logic Company Interactive video production system
US4491836A (en) 1980-02-29 1985-01-01 Calma Company Graphics display system and method including two-dimensional cache
US4425559A (en) 1980-06-02 1984-01-10 Atari, Inc. Method and apparatus for generating line segments and polygonal areas on a raster-type display
US4388620A (en) 1981-01-05 1983-06-14 Atari, Inc. Method and apparatus for generating elliptical images on a raster-type video display
US4463380A (en) 1981-09-25 1984-07-31 Vought Corporation Image processing system
US4570233A (en) 1982-07-01 1986-02-11 The Singer Company Modular digital image generator
US4600919A (en) 1982-08-03 1986-07-15 New York Institute Of Technology Three dimensional animation
US4615013A (en) 1983-08-02 1986-09-30 The Singer Company Method and apparatus for texture generation
GB8322438D0 (en) 1983-08-19 1983-10-12 Marconi Avionics Display systems
US4586038A (en) 1983-12-12 1986-04-29 General Electric Company True-perspective texture/shading processor
US4808988A (en) 1984-04-13 1989-02-28 Megatek Corporation Digital vector generator for a graphic display system
US4601055A (en) 1984-04-10 1986-07-15 The United States Of America As Represented By The Secretary Of Commerce Image processor
US4725831A (en) 1984-04-27 1988-02-16 Xtar Corporation High-speed video graphics system and method for generating solid polygons on a raster display
US4829452A (en) 1984-07-05 1989-05-09 Xerox Corporation Small angle image rotation using block transfers
US4658247A (en) 1984-07-30 1987-04-14 Cornell Research Foundation, Inc. Pipelined, line buffered real-time color graphics display system
US4695943A (en) 1984-09-27 1987-09-22 Honeywell Information Systems Inc. Multiprocessor shared pipeline cache memory with split cycle and concurrent utilization
DE3584718D1 (en) 1984-12-07 1992-01-02 Dainippon Screen Mfg IMAGE DATA PROCESSING METHOD AND SYSTEM DAFUER.
US4625289A (en) 1985-01-09 1986-11-25 Evans & Sutherland Computer Corp. Computer graphics system of general surface rendering by exhaustive sampling
US4710876A (en) 1985-06-05 1987-12-01 General Electric Company System and method for the display of surface structures contained within the interior region of a solid body
US4897806A (en) 1985-06-19 1990-01-30 Pixar Pseudo-random point sampling techniques in computer graphics
US5239624A (en) 1985-06-19 1993-08-24 Pixar Pseudo-random point sampling techniques in computer graphics
FR2586838B1 (en) 1985-08-30 1989-07-28 Labo Electronique Physique HIDDEN FACES PROCESSOR FOR SYNTHESIS OF THREE-DIMENSIONAL IMAGES
US4974177A (en) 1985-10-04 1990-11-27 Daikin Industries Ltd. Mapping circuit of a CRT display device
US4692880A (en) 1985-11-15 1987-09-08 General Electric Company Memory efficient cell texturing for advanced video object generator
JPS62192878A (en) 1986-02-20 1987-08-24 Nippon Gakki Seizo Kk Painting-out method for polygon
US4862392A (en) 1986-03-07 1989-08-29 Star Technologies, Inc. Geometry processor for graphics display system
JPS62231380A (en) 1986-03-31 1987-10-09 Namuko:Kk Picture synthesizing device
US4768148A (en) 1986-06-27 1988-08-30 Honeywell Bull Inc. Read in process memory apparatus
US4785395A (en) 1986-06-27 1988-11-15 Honeywell Bull Inc. Multiprocessor coherent cache system including two level shared cache with separately allocated processor storage locations and inter-level duplicate entry replacement
US4817175A (en) 1986-08-26 1989-03-28 Schlumberger Systems And Services, Inc. Video stream processing system
US4855934A (en) 1986-10-03 1989-08-08 Evans & Sutherland Computer Corporation System for texturing computer graphics images
US4918625A (en) 1986-12-19 1990-04-17 Cae-Link Corporation Method and apparatus for processing translucent objects
US4965750A (en) 1987-03-31 1990-10-23 Hitachi, Ltd. Graphic processor suitable for graphic data transfer and conversion processes
US4833601A (en) 1987-05-28 1989-05-23 Bull Hn Information Systems Inc. Cache resiliency in processing a variety of address faults
US4935879A (en) 1987-08-05 1990-06-19 Daikin Industries, Ltd. Texture mapping apparatus and method
US4965751A (en) 1987-08-18 1990-10-23 Hewlett-Packard Company Graphics system with programmable tile size and multiplexed pixel data and partial pixel addresses based on tile size
US5170468A (en) 1987-08-18 1992-12-08 Hewlett-Packard Company Graphics system with shadow ram update to the color map
US4866637A (en) 1987-10-30 1989-09-12 International Business Machines Corporation Pipelined lighting model processing system for a graphics workstation's shading function
US5144291A (en) 1987-11-02 1992-09-01 Matsushita Electric Industrial Co., Ltd. Means for eliminating hidden surface
US4901064A (en) 1987-11-04 1990-02-13 Schlumberger Technologies, Inc. Normal vector shading for 3-D graphics display system
US4945500A (en) 1987-11-04 1990-07-31 Schlumberger Technologies, Inc. Triangle processor for 3-D graphics display system
US4888712A (en) 1987-11-04 1989-12-19 Schlumberger Systems, Inc. Guardband clipping method and apparatus for 3-D graphics display system
US5361386A (en) 1987-12-04 1994-11-01 Evans & Sutherland Computer Corp. System for polygon interpolation using instantaneous values in a variable
CA1309198C (en) 1987-12-10 1992-10-20 Carlo J. Evangelisti Parallel rendering of smoothly shaded color triangles with anti-aliased edges for a three dimensional color display
US4974176A (en) 1987-12-18 1990-11-27 General Electric Company Microtexture for close-in detail
GB2214037A (en) 1987-12-18 1989-08-23 Ibm Solid modelling system
US5136664A (en) 1988-02-23 1992-08-04 Bersack Bret B Pixel rendering
DE68918886T2 (en) 1988-04-08 1995-06-01 Dainippon Screen Mfg Process for obtaining the outline of an object in an image.
US4907174A (en) 1988-06-02 1990-03-06 Sun Microsystems, Inc. Z-buffer allocated for window identification
US5097427A (en) 1988-07-06 1992-03-17 Hewlett-Packard Company Texture mapping for computer graphics display controller system
US5315692A (en) 1988-07-22 1994-05-24 Hughes Training, Inc. Multiple object pipeline display system
US4996666A (en) 1988-08-12 1991-02-26 Duluk Jr Jerome F Content-addressable memory system capable of fully parallel magnitude comparisons
US5003496A (en) 1988-08-26 1991-03-26 Eastman Kodak Company Page memory control in a raster image processor
US4989138A (en) 1988-09-02 1991-01-29 Tektronix, Inc. Single bus graphics data processing pipeline with decentralized bus arbitration
JPH0727581B2 (en) 1988-09-09 1995-03-29 インターナショナル・ビジネス・マシーンズ・コーポレーション Graphic processing device
US5016183A (en) 1988-09-13 1991-05-14 Computer Design, Inc. Textile design system and method
US5018076A (en) 1988-09-16 1991-05-21 Chips And Technologies, Inc. Method and circuitry for dual panel displays
JP2685548B2 (en) 1988-11-28 1997-12-03 株式会社日立製作所 Method and apparatus for rotating digital image data
GB8828342D0 (en) 1988-12-05 1989-01-05 Rediffusion Simulation Ltd Image generator
US5062057A (en) 1988-12-09 1991-10-29 E-Machines Incorporated Computer display controller with reconfigurable frame buffer memory
US5255353A (en) 1989-02-28 1993-10-19 Ricoh Company, Ltd. Three-dimensional shadow processor for an image forming apparatus
US5204944A (en) 1989-07-28 1993-04-20 The Trustees Of Columbia University In The City Of New York Separable image warping methods and systems using spatial lookup tables
DE69031202T2 (en) 1989-10-13 1998-02-19 Matsushita Electric Ind Co Ltd Method and device for color compensation in color images
JPH0776991B2 (en) 1989-10-24 1995-08-16 インターナショナル・ビジネス・マシーンズ・コーポレーション NURBS data conversion method and apparatus
JP3005007B2 (en) 1989-12-21 2000-01-31 キヤノン株式会社 Image coding device
US5056044A (en) 1989-12-21 1991-10-08 Hewlett-Packard Company Graphics frame buffer with programmable tile size
US5224208A (en) 1990-03-16 1993-06-29 Hewlett-Packard Company Gradient calculation for texture mapping
US5179638A (en) 1990-04-26 1993-01-12 Honeywell Inc. Method and apparatus for generating a texture mapped perspective view
US5163126A (en) 1990-05-10 1992-11-10 International Business Machines Corporation Method for adaptively providing near phong grade shading for patterns in a graphics display system
CA2071539C (en) 1990-05-12 2001-07-17 Graham John Olive Image generator
EP0464907B1 (en) 1990-06-29 1996-10-09 Philips Electronics Uk Limited Generating an image
US5241658A (en) 1990-08-21 1993-08-31 Apple Computer, Inc. Apparatus for storing information in and deriving information from a frame buffer
JP2725915B2 (en) 1990-11-15 1998-03-11 インターナショナル・ビジネス・マシーンズ・コーポレイション Triangle drawing apparatus and method
US5268995A (en) 1990-11-21 1993-12-07 Motorola, Inc. Method for executing graphics Z-compare and pixel merge instructions in a data processor
US5268996A (en) 1990-12-20 1993-12-07 General Electric Company Computer image generation method for determination of total pixel illumination due to plural light sources
US5307450A (en) 1991-02-19 1994-04-26 Silicon Graphics, Inc. Z-subdivision for improved texture mapping
FR2673791B1 (en) 1991-03-08 1993-05-07 Thomson Video Equip METHOD AND DEVICE FOR, IN DIGITAL IMAGE, CREATING A BORDER AROUND A SUBJECT INCLUDED ON A BACKGROUND AND GENERATOR OF SPECIAL EFFECTS COMPRISING SUCH A DEVICE.
JPH07122908B2 (en) 1991-03-12 1995-12-25 インターナショナル・ビジネス・マシーンズ・コーポレイション Apparatus and method for generating displayable information representing a three-dimensional solid object
US5421028A (en) 1991-03-15 1995-05-30 Hewlett-Packard Company Processing commands and data in a common pipeline path in a high-speed computer graphics system
US5415549A (en) 1991-03-21 1995-05-16 Atari Games Corporation Method for coloring a polygon on a video display
EP0739513B1 (en) 1991-08-13 1999-10-27 The Board Of Regents Of The University Of Washington Method of transmitting of data
TW225595B (en) 1991-09-03 1994-06-21 Gen Electric
US5404445A (en) 1991-10-31 1995-04-04 Toshiba America Information Systems, Inc. External interface for a high performance graphics adapter allowing for graphics compatibility
US5353424A (en) 1991-11-19 1994-10-04 Digital Equipment Corporation Fast tag compare and bank select in set associative cache
US5345541A (en) 1991-12-20 1994-09-06 Apple Computer, Inc. Method and apparatus for approximating a value between two endpoint values in a three-dimensional image rendering device
US5377313A (en) 1992-01-29 1994-12-27 International Business Machines Corporation Computer graphics display method and system with shadow generation
JP2760731B2 (en) 1992-04-30 1998-06-04 株式会社東芝 External interface circuit for high-performance graphics adapter that enables graphics compatibility
US5469535A (en) 1992-05-04 1995-11-21 Midway Manufacturing Company Three-dimensional, texture mapping display system
US5473736A (en) 1992-06-08 1995-12-05 Chroma Graphics Method and apparatus for ordering and remapping colors in images of real two- and three-dimensional objects
US5432900A (en) 1992-06-19 1995-07-11 Intel Corporation Integrated graphics and video computer display system
JPH0628485A (en) 1992-07-09 1994-02-04 Toshiba Corp Texture address generator, texture pattern generator, texture plotting device and texture address generating method
US5475803A (en) 1992-07-10 1995-12-12 Lsi Logic Corporation Method for 2-D affine transformation of images
US5432895A (en) 1992-10-01 1995-07-11 University Corporation For Atmospheric Research Virtual reality imaging system
US5388206A (en) 1992-11-13 1995-02-07 The University Of North Carolina Architecture and apparatus for image generation
US5392393A (en) 1993-06-04 1995-02-21 Sun Microsystems, Inc. Architecture for a high performance three dimensional graphics accelerator
US5408650A (en) 1993-06-29 1995-04-18 Digital Equipment Corporation Memory analysis system for dynamically displaying memory allocation and de-allocation events associated with an application program
US5490240A (en) 1993-07-09 1996-02-06 Silicon Graphics, Inc. System and method of generating interactive computer graphic images incorporating three dimensional textures
US5487146A (en) 1994-03-08 1996-01-23 Texas Instruments Incorporated Plural memory access address generation employing guide table entries forming linked list
US5461712A (en) 1994-04-18 1995-10-24 International Business Machines Corporation Quadrant-based two-dimensional memory manager
JP2673101B2 (en) * 1994-08-29 1997-11-05 インターナショナル・ビジネス・マシーンズ・コーポレイション Computer graphics equipment
US5651106A (en) * 1995-06-08 1997-07-22 Hewlett-Packard Company Method and apparatus for vertex sorting in a computer graphics system
US5977977A (en) * 1995-08-04 1999-11-02 Microsoft Corporation Method and system for multi-pass rendering
US5867166A (en) * 1995-08-04 1999-02-02 Microsoft Corporation Method and system for generating images using Gsprites
US6331856B1 (en) * 1995-11-22 2001-12-18 Nintendo Co., Ltd. Video game system with coprocessor providing high speed efficient 3D graphics and digital audio signal processing
US5854632A (en) * 1996-10-15 1998-12-29 Real 3D Apparatus and method for simulating specular reflection in a computer graphics/imaging system
JPH10269377A (en) * 1997-03-27 1998-10-09 Toshiba Corp Display control system, and display control method for three-dimensional graphics data
US6496190B1 (en) * 1997-07-02 2002-12-17 Mental Images Gmbh & Co Kg. System and method for generating and using systems of cooperating and encapsulated shaders and shader DAGs for use in a computer graphics system
JP2000155845A (en) * 1998-05-29 2000-06-06 Mitsubishi Electronics America Inc Storage device, data formatter, method for accessing data, method for clearing area of data, method for compressing data, method for formatting data, and graphic system operation method
CA2337530C (en) * 1998-07-16 2007-11-20 The Research Foundation Of State University Of New York Apparatus and method for real-time volume processing and universal 3d rendering
US6236413B1 (en) * 1998-08-14 2001-05-22 Silicon Graphics, Inc. Method and system for a RISC graphics pipeline optimized for high clock speeds by using recirculation
US6333744B1 (en) * 1999-03-22 2001-12-25 Nvidia Corporation Graphics pipeline including combiner stages

Also Published As

Publication number Publication date
KR20020015973A (en) 2002-03-02
JP4731028B2 (en) 2011-07-20
US20060125825A1 (en) 2006-06-15
AU5785101A (en) 2002-02-28
EP1182618A3 (en) 2003-11-12
TWI244050B (en) 2005-11-21
US7176919B2 (en) 2007-02-13
US7034828B1 (en) 2006-04-25
CA2355353C (en) 2010-05-04
EP1182618A2 (en) 2002-02-27
JP2002063590A (en) 2002-02-28
CN1339764A (en) 2002-03-13

Similar Documents

Publication Publication Date Title
CA2355353A1 (en) Recirculating shade tree blender for a graphics system
US8610729B2 (en) Floating point computer system with fog
US5740343A (en) Texture compositing apparatus and method
US6181352B1 (en) Graphics pipeline selectively providing multiple pixels or multiple textures
EP1399892B1 (en) Programmable pixel shading architecture
US7158141B2 (en) Programmable 3D graphics pipeline for multimedia applications
US6980209B1 (en) Method and system for scalable, dataflow-based, programmable processing of graphics data
US7274369B1 (en) Digital image compositing using a programmable graphics processor
US20130169658A1 (en) Multi-threaded multi-format blending device for computer graphics operations
US6462743B1 (en) Pipeline processing system and method
US10614546B2 (en) Graphics processing
US7145570B2 (en) Magnified texture-mapped pixel performance in a single-pixel pipeline
Green Volumetric particle shadows
US6847372B2 (en) Magnified texture-mapped pixel performance in a single-pixel pipeline
EP0485833A2 (en) A method for executing graphics color saturating arithmetic instructions in a data processor
US20030169255A1 (en) Two-sided lighting in a single pass

Legal Events

Date Code Title Description
EEER Examination request
MKEX Expiry

Effective date: 20210817

MKEX Expiry

Effective date: 20210817