CA2368228A1 - Method and system for ablating surfaces with partially overlapping craters having consistent curvature - Google Patents

Method and system for ablating surfaces with partially overlapping craters having consistent curvature Download PDF

Info

Publication number
CA2368228A1
CA2368228A1 CA002368228A CA2368228A CA2368228A1 CA 2368228 A1 CA2368228 A1 CA 2368228A1 CA 002368228 A CA002368228 A CA 002368228A CA 2368228 A CA2368228 A CA 2368228A CA 2368228 A1 CA2368228 A1 CA 2368228A1
Authority
CA
Canada
Prior art keywords
region
laser
craters
diffracting
laser beam
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CA002368228A
Other languages
French (fr)
Other versions
CA2368228C (en
Inventor
John Karl Shimmick
George Caudle
Kingman Yee
Stephen J. Koons
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
AMO Manufacturing USA LLC
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Publication of CA2368228A1 publication Critical patent/CA2368228A1/en
Application granted granted Critical
Publication of CA2368228C publication Critical patent/CA2368228C/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F9/00Methods or devices for treatment of the eyes; Devices for putting-in contact lenses; Devices to correct squinting; Apparatus to guide the blind; Protective devices for the eyes, carried on the body or in the hand
    • A61F9/007Methods or devices for eye surgery
    • A61F9/008Methods or devices for eye surgery using laser
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F9/00Methods or devices for treatment of the eyes; Devices for putting-in contact lenses; Devices to correct squinting; Apparatus to guide the blind; Protective devices for the eyes, carried on the body or in the hand
    • A61F9/007Methods or devices for eye surgery
    • A61F9/008Methods or devices for eye surgery using laser
    • A61F9/00802Methods or devices for eye surgery using laser for photoablation
    • A61F9/00804Refractive treatments
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B18/18Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by applying electromagnetic radiation, e.g. microwaves
    • A61B18/20Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by applying electromagnetic radiation, e.g. microwaves using laser
    • A61B2018/2035Beam shaping or redirecting; Optical components therefor
    • A61B2018/20351Scanning mechanisms
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B18/18Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by applying electromagnetic radiation, e.g. microwaves
    • A61B18/20Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by applying electromagnetic radiation, e.g. microwaves using laser
    • A61B2018/2035Beam shaping or redirecting; Optical components therefor
    • A61B2018/20351Scanning mechanisms
    • A61B2018/20355Special scanning path or conditions, e.g. spiral, raster or providing spot overlap
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B18/18Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by applying electromagnetic radiation, e.g. microwaves
    • A61B18/20Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by applying electromagnetic radiation, e.g. microwaves using laser
    • A61B2018/2065Multiwave; Wavelength mixing, e.g. using four or more wavelengths
    • A61B2018/207Multiwave; Wavelength mixing, e.g. using four or more wavelengths mixing two wavelengths
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F9/00Methods or devices for treatment of the eyes; Devices for putting-in contact lenses; Devices to correct squinting; Apparatus to guide the blind; Protective devices for the eyes, carried on the body or in the hand
    • A61F9/007Methods or devices for eye surgery
    • A61F9/008Methods or devices for eye surgery using laser
    • A61F2009/00844Feedback systems
    • A61F2009/00846Eyetracking
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F9/00Methods or devices for treatment of the eyes; Devices for putting-in contact lenses; Devices to correct squinting; Apparatus to guide the blind; Protective devices for the eyes, carried on the body or in the hand
    • A61F9/007Methods or devices for eye surgery
    • A61F9/008Methods or devices for eye surgery using laser
    • A61F2009/00861Methods or devices for eye surgery using laser adapted for treatment at a particular location
    • A61F2009/00872Cornea
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F9/00Methods or devices for treatment of the eyes; Devices for putting-in contact lenses; Devices to correct squinting; Apparatus to guide the blind; Protective devices for the eyes, carried on the body or in the hand
    • A61F9/007Methods or devices for eye surgery
    • A61F9/008Methods or devices for eye surgery using laser
    • A61F9/00802Methods or devices for eye surgery using laser for photoablation
    • A61F9/00817Beam shaping with masks

Abstract

This invention is a technique for laser sculpting a predetermined shape on a n exposed corneal surface (6) by ablating a sequence of consistently curved craters (16a, 16b, 16c, 16d) with individual pulses of a laser beam (10). An initial laser beam energy pattern (14) is shaped by a laser beam shaping element (22) to make a consistently curved laser beam (12) energy pattern. T he consistently curved laser beam (12) ablates a consistently curved crater (16 ) in the surface (6) with a single pulse of the laser beam (10). A computer (2 6) controls the position of the laser beam (10), and scans the laser beam over the surface (6) to sculpt the predetermined shape in an ablation zone (18) o n the exposed surface. A sequence of partially overlapping craters (16a, 16b, 16c, 16d) are distributed over the ablation zone (18). In some embodiments diffractive optics (50) are used as a beam shaping element (33). In addition al embodiments, the consistently curved crater (16) is a uniformly curved spherical crater.

Claims (36)

1. A method of sculpting a region on a surface of a tissue with a pulsed energy beam to effect a predetermined change in shape, the method comprising:
directing a pulsed beam of an ablative energy toward the tissue surface;
ablating a plurality of craters in the tissue, each crater having a consistent curvature in the tissue and ablated with a single pulse of the beam; and, scanning the beam over the region to effect the predetermined change in shape in the region by partially overlapping the plurality of consistently curved craters.
2. The method of claim 1 wherein ablating step is performed so that a dimension across a crater is about 5 to 80% of a dimension across the region.
3. The method of claim 2 wherein the ablating step is performed so that the consistent curvature of the crater is substantially uniform and spherical, and the dimension across the craters is substantially uniform.
4. The method of claim 1 wherein the beam is a laser beam, the method further comprising shaping an energy distribution profile of the laser beam with a beam shaping element.
5. The method of claim 4 wherein the shaping step further comprises diffracting the laser beam with a diffracting element.
6. The method of claim 5 wherein the diffracting step further comprises changing an amplitude of the beam with the diffracting element.
7. The method of claim 6 wherein the diffracting step further comprises changing a phase of the beam with the diffracting element.
8. The methods of claim 6 and claim 7 wherein the diffracting step further comprises transmitting the beam through the diffracting element to form the shaped beam with a portion of the beam passing through the element.
9. The methods of claim 6 and claim 7 wherein the diffracting step further comprises reflecting the beam off a surface of the diffracting element to form the shaped beam with a portion of the beam reflected off the element.
10. The method of claim 4 wherein the shaping step further comprises reflecting the beam with an angle varying reflecting element.
11. The method of claim 4 wherein the shaping step further comprises refracting the beam with an angle varying refracting element.
12. The method of claim 4 wherein the shaping step further comprises transmitting the beam through a material that variably transmits the laser beam.
13. The method of claim 4 wherein the shaping step further comprises reflecting the beam off a surface that variably reflects the laser beam.
14. The method of claim 4 further comprising deflecting the beam with an optical element selected from the group consisting of lenses, prisms and mirrors.
15. The method of claim 4 further comprising restricting a cross sectional area of the beam by transmitting the beam through an aperture formed of a non-transmitting material that blocks a portion of the beam.
16. The method of claim 15 further comprising forming an image of the restricted beam near the region.
17. The method of claim 4 further comprising rotating the laser beam shaping element between pulses of the laser beam.
18. A method of sculpting a region on a tissue surface with a pulsed laser beam to shape the region to a predetermined shape, the method comprising:
making a pulsed beam of an ablative energy;
shaping the laser beam with a beam shaping element by diffracting the laser beam with a diffracting element and changing a phase of the beam with the diffracting element by transmitting the beam through the diffracting element to form the shaped beam with a portion of the beam passing through the element;
restricting a cross sectional area of the beam;

forming an image of the restricted beam near the region;
ablating a crater having a substantially uniform curvature in the tissue with a single pulse of the beam, a dimension across the crater being about 5 to 80%
of a dimension across the region;
deflecting the beam;
rotating the laser beam shaping element between pulses of the laser beam;
and, scanning the beam over the region to form the shape in the region by partially overlapping a sequence of uniformly curved craters, the sequence of craters being distributed over the region to cover a dimension across the region and the dimension across the craters being substantially uniform among the craters of the sequence.
19. A method of sculpting an ablated region on an exposed corneal surface with a pulsed energy beam to shape the region to a predetermined shape, the method comprising:
making a pulsed beam of an ablative energy, the beam having an energy distribution profile;
ablating a crater having a consistent curvature in the tissue with a single pulse of the beam, the crater having a dimension across the crater; and, scanning the beam over the region to form the shape in the region by partially overlapping a plurality of consistently curved craters, the plurality of craters being distributed over the region to cover a dimension across the region.
20. A method of sculpting an ablated region on an exposed corneal surface with a pulsed laser beam to shape the region to a predetermined curved shape, the method comprising:
making a pulsed beam of an ablative energy, the beam having an energy distribution profile;
shaping the laser beam with a beam shaping element by diffracting the laser beam with a diffracting element and changing a phase of the beam with the diffracting element by transmitting the beam through the diffracting element to form the shaped beam with a portion of the beam passing through the element;

restricting a cross sectional area of the beam by transmitting the beam through an aperture formed in a non-transmitting material that blocks a portion of the beam;
forming an image of the restricted beam near the region;
ablating a crater having a substantially uniform curvature in the tissue with a single pulse of the beam, a dimension across the crater being about 5 to 80%
of a dimension across the region;
deflecting the beam with an optical element selected from the group consisting of lenses, prisms and mirrors;
rotating the laser beam shaping element between pulses of the laser beam to average the shaped beam; and, scanning the beam over the region to form the shape in the region by partially overlapping a sequence of uniformly curved craters, the plurality of craters being distributed over the region to cover a dimension across the region and the dimension across the craters being substantially uniform among the craters of the sequence.
21. A method for sculpting a treatment region on a surface, the method comprising:
directing a beam toward the region;
ablating a plurality of rounded axissymetric craters in the surface with pulses of the beam; and scanning the beam over the region to effect a predetermined change in shape of the surface by partially overlapping the craters.
22. A laser system for sculpting an ablated region on a surface of a tissue, the tissue having a threshold of ablation, the system comprising:
a laser for making a pulsed beam of an ablative laser energy;
a beam energy shaping element disposed in a path of the pulsed beam, the shaping element changing a laser beam energy pattern of the pulsed beam to a shaped beam, the shaped beam comprising a consistently curved laser beam energy pattern above the threshold of ablation; and, a scanning element for moving the shaped beam over the region to sculpt the region with a plurality of partially overlapping pulses of the ablative energy.
23. The laser system of claim 22 wherein the shaped beam further comprises a boundary enclosing the consistently curved pattern, an intensity of the beam adjacent the boundary is in a range from about 100 to about 150% of the threshold of ablation.
24. The laser system of claim 23 wherein the intensity of the beam adjacent the boundary is less than about 125% of the threshold of ablation.
25. The laser system of claim 24 wherein the intensity of the beam adjacent the boundary is less than about 110% of the threshold of ablation.
26. The laser system of claim 22 wherein the consistently curved beam pattern is a substantially spherical pattern.
27. The laser system of claim 22 wherein the consistently curved beam pattern is an aspheric pattern.
28. The laser system of claim 22 wherein a central portion of the consistently curved beam pattern has a higher intensity than a spherical pattern.
29. The laser system of claim 22 further comprising a computer coupled to the scanning element so as to control a position of the beam over the region according to a coordinate reference stored in the computer.
30. The laser system of claim 29 wherein the coordinate reference partially overlaps the consistently curved pattern among the pulses of the plurality.
31. The laser system of claim 23 further comprising an aperture formed in a non-transmitting material for restricting a cross sectional area of the beam by passing the beam through the aperture.
32. The laser system of claim 31 further comprising an imaging lens for forming an image of the beam passing through the aperture, the image being formed near the ablated region.
33. The laser system of claim 22 wherein the scanning element comprises an optical element selected from the group consisting of lenses, prisms and mirrors.
34. The laser system of claim 22 wherein the beam shaping element comprises an element selected from the group consisting of phase modulating transmitting diffractive optics, amplitude modulating transmitting diffractive optics, phase modulating reflecting diffractive optics, amplitude modulating reflecting diffractive optics, lenses, prisms, aspheric optics, mirrors, intensity grading transmitting optics and intensity grading reflecting optics.
35. The laser system of claim 22 wherein the beam shaping element comprises a partially absorbing material.
36. A laser system for sculpting an ablated region on an exposed surface of a cornea to a predetermined curved shape, the cornea having a threshold of ablation, the system comprising:
a pulsed laser for making a pulsed beam of an ablative laser energy;
a laser beam shaping element for changing a laser beam energy pattern of the pulsed beam to a shaped beam, the shaped beam comprising a substantially spherical laser beam energy pattern with a region of the substantially spherical pattern above the threshold of ablation;
a boundary enclosing the above threshold region and an intensity of the beam around the boundary being a proportion of the threshold of ablation, the proportion being in a range of 100 to 110%;
an aperture formed in a non-transmitting material for restricting a cross sectional area of the beam by passing the beam through the aperture;
an imaging lens for forming an image of the beam passing through the aperture, the image being formed near the ablated region;
a scanning element for moving the shaped beam over the region to sculpt the region to the shape with a sequence of partially overlapping pulses of the ablative energy wherein the scanning element comprises an optical element selected from the group consisting of lenses prisms and mirrors; and, a computer for controlling a position of the beam over the region according to a coordinate reference stored in the computer, the coordinate reference partially overlapping the consistently curved pattern among the pulses of the sequence.
CA2368228A 1999-04-30 2000-02-28 Method and system for ablating surfaces with partially overlapping craters having consistent curvature Expired - Lifetime CA2368228C (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US09/303,810 US6497701B2 (en) 1999-04-30 1999-04-30 Method and system for ablating surfaces with partially overlapping craters having consistent curvature
US09/303,810 1999-04-30
PCT/US2000/005276 WO2000066022A1 (en) 1999-04-30 2000-02-28 Method and system for ablating surfaces with partially overlapping craters having consistent curvature

Publications (2)

Publication Number Publication Date
CA2368228A1 true CA2368228A1 (en) 2000-11-09
CA2368228C CA2368228C (en) 2011-06-07

Family

ID=23173810

Family Applications (1)

Application Number Title Priority Date Filing Date
CA2368228A Expired - Lifetime CA2368228C (en) 1999-04-30 2000-02-28 Method and system for ablating surfaces with partially overlapping craters having consistent curvature

Country Status (9)

Country Link
US (1) US6497701B2 (en)
EP (1) EP1180981B1 (en)
JP (1) JP4615735B2 (en)
AT (1) ATE463218T1 (en)
AU (1) AU3612300A (en)
CA (1) CA2368228C (en)
DE (1) DE60044126D1 (en)
MX (1) MXPA01010867A (en)
WO (1) WO2000066022A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112719573A (en) * 2020-12-09 2021-04-30 成都宏明双新科技股份有限公司 Method for efficiently improving laser etching efficiency of product

Families Citing this family (48)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4003918B2 (en) * 2000-10-20 2007-11-07 株式会社ニデック Cornea surgery device
US7918846B2 (en) * 2000-12-05 2011-04-05 Amo Manufacturing Usa, Llc Method and system for laser treatment of refractive errors using offset imaging
US6740078B2 (en) * 2001-04-24 2004-05-25 Gustavo E. Tamayo Method and apparatus for treating presbyopia
US7156859B2 (en) 2001-07-23 2007-01-02 Fos Holding S.A. Device for separating the epithelium layer from the surface of the cornea of an eye
DE10164579C1 (en) * 2001-12-28 2003-08-21 Jenoptik Automatisierungstech Process for separating optical fibers using CO¶2¶ laser radiation
BR0312430A (en) 2002-06-19 2005-04-26 Palomar Medical Tech Inc Method and apparatus for treating skin and subcutaneous conditions
DE10307741A1 (en) * 2003-02-24 2004-09-02 Carl Zeiss Meditec Ag Arrangement for improving the image field in ophthalmic devices
DE10332815B4 (en) * 2003-07-18 2020-10-22 Carl Zeiss Meditec Ag Method and apparatus for forming curved cut surfaces in a transparent material
DE10333770A1 (en) * 2003-07-22 2005-02-17 Carl Zeiss Meditec Ag Method for material processing with laser pulses of large spectral bandwidth and apparatus for carrying out the method
DE10334110A1 (en) 2003-07-25 2005-02-17 Carl Zeiss Meditec Ag Apparatus and method for forming curved cut surfaces in a transparent material
DE10334108B4 (en) * 2003-07-25 2018-05-09 Carl Zeiss Meditec Ag Apparatus for forming a closed, curved cut surface
JP4729883B2 (en) * 2003-10-31 2011-07-20 セイコーエプソン株式会社 Substrate processing method, microlens sheet manufacturing method, transmissive screen, projector, display device, and substrate processing device
DE102004014181A1 (en) * 2004-03-23 2005-10-06 Carl Zeiss Meditec Ag Material processing device and method
US7206132B2 (en) * 2004-08-06 2007-04-17 Visx, Incorporated Lenslet array for beam homogenization
US7252662B2 (en) * 2004-11-02 2007-08-07 Lenticular Research Group Llc Apparatus and processes for preventing or delaying one or more symptoms of presbyopia
US8394084B2 (en) 2005-01-10 2013-03-12 Optimedica Corporation Apparatus for patterned plasma-mediated laser trephination of the lens capsule and three dimensional phaco-segmentation
AU2016203089B2 (en) * 2005-01-10 2017-04-06 Amo Development, Llc Method and apparatus for patterned plasma-mediated laser trephination of the lens capsule and three dimensional phaco-segmentation
EP1848389B1 (en) 2005-02-15 2011-07-20 Carl Zeiss Meditec AG Method for the establishment of an ablation program and means for carrying out said methods
US9649224B2 (en) * 2005-02-19 2017-05-16 Lenticular Research Group Llc Apparatus and processes for preventing or delaying onset or progression of age-related cataract
US7856985B2 (en) * 2005-04-22 2010-12-28 Cynosure, Inc. Method of treatment body tissue using a non-uniform laser beam
US7413566B2 (en) * 2005-05-19 2008-08-19 Amo Manufacturing Usa, Llc Training enhanced pseudo accommodation methods, systems and devices for mitigation of presbyopia
GB2439286B (en) * 2006-06-22 2010-09-15 Dezac Group Ltd Apparatus and methods for skin treatment
US7586957B2 (en) 2006-08-02 2009-09-08 Cynosure, Inc Picosecond laser apparatus and methods for its operation and use
EP2462907B1 (en) 2006-11-10 2014-10-29 Topcon Medical Laser Systems, Inc. System for determining dosimetry in ophthalmic photomedicine
EP2772226B1 (en) 2007-03-13 2023-07-19 AMO Development, LLC Apparatus for creating ocular surgical and relaxing incisions
ES2673575T3 (en) 2007-09-06 2018-06-22 Alcon Lensx, Inc. Precise fixation of surgical photo-disruption objective
AU2009231849A1 (en) * 2008-03-31 2009-10-08 Lenticular Research Group, Llc Processes and apparatus for preventing, delaying or ameliorating one or more symptoms of presbyopia
US9492322B2 (en) 2009-11-16 2016-11-15 Alcon Lensx, Inc. Imaging surgical target tissue by nonlinear scanning
US8265364B2 (en) 2010-02-05 2012-09-11 Alcon Lensx, Inc. Gradient search integrated with local imaging in laser surgical systems
US8414564B2 (en) 2010-02-18 2013-04-09 Alcon Lensx, Inc. Optical coherence tomographic system for ophthalmic surgery
US8398236B2 (en) 2010-06-14 2013-03-19 Alcon Lensx, Inc. Image-guided docking for ophthalmic surgical systems
US9532708B2 (en) 2010-09-17 2017-01-03 Alcon Lensx, Inc. Electronically controlled fixation light for ophthalmic imaging systems
US8183500B2 (en) * 2010-12-03 2012-05-22 Uvtech Systems, Inc. Orthogonal beam delivery system for wafer edge processing
US8459794B2 (en) 2011-05-02 2013-06-11 Alcon Lensx, Inc. Image-processor-controlled misalignment-reduction for ophthalmic systems
US9622913B2 (en) 2011-05-18 2017-04-18 Alcon Lensx, Inc. Imaging-controlled laser surgical system
US8398238B1 (en) 2011-08-26 2013-03-19 Alcon Lensx, Inc. Imaging-based guidance system for ophthalmic docking using a location-orientation analysis
JP5861329B2 (en) * 2011-08-31 2016-02-16 株式会社ニデック Ophthalmic laser treatment device
DE102011085046A1 (en) 2011-10-21 2013-04-25 Carl Zeiss Meditec Ag Generation of cut surfaces in a transparent material by means of optical radiation
DE102011085047A1 (en) 2011-10-21 2013-04-25 Carl Zeiss Meditec Ag Producing cuts in a transparent material by means of optical radiation
US9066784B2 (en) 2011-12-19 2015-06-30 Alcon Lensx, Inc. Intra-surgical optical coherence tomographic imaging of cataract procedures
US9023016B2 (en) 2011-12-19 2015-05-05 Alcon Lensx, Inc. Image processor for intra-surgical optical coherence tomographic imaging of laser cataract procedures
EP2839552A4 (en) 2012-04-18 2015-12-30 Cynosure Inc Picosecond laser apparatus and methods for treating target tissues with same
US10058453B2 (en) * 2012-04-24 2018-08-28 Wavelight Gmbh Extracting lenticules for refractive correction
US9398979B2 (en) 2013-03-11 2016-07-26 Technolas Perfect Vision Gmbh Dimensional compensator for use with a patient interface
WO2014145707A2 (en) 2013-03-15 2014-09-18 Cynosure, Inc. Picosecond optical radiation systems and methods of use
US11418000B2 (en) 2018-02-26 2022-08-16 Cynosure, Llc Q-switched cavity dumped sub-nanosecond laser
US10837828B2 (en) * 2018-09-05 2020-11-17 Government Of The United States Of America, As Represented By The Secretary Of Commerce Non-attenuating meter for determining optical energy of laser light
US11484361B2 (en) * 2019-08-27 2022-11-01 Nikolai Tankovich Tip for multiple beam tissue therapy

Family Cites Families (150)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2480737A (en) 1948-03-08 1949-08-30 Jayle Gaetan Jean-Edward Cutting instrument particularly useful in connection with corneal grafting
US3074407A (en) 1956-09-17 1963-01-22 Marguerite Barr Moon Eye Res F Surgical devices for keratoplasty and methods thereof
US3476112A (en) 1966-12-05 1969-11-04 Jacob K Elstein Surgical instrument for removal of thin layers
US3697889A (en) 1970-02-17 1972-10-10 Xerox Corp Tunable laser
US3743965A (en) 1971-07-12 1973-07-03 Spectro Physics Inc Tunable lasers
JPS5643635B2 (en) 1973-03-26 1981-10-14
US3848104A (en) 1973-04-09 1974-11-12 Avco Everett Res Lab Inc Apparatus for heat treating a surface
US3982541A (en) 1974-07-29 1976-09-28 Esperance Jr Francis A L Eye surgical instrument
US3983507A (en) 1975-01-06 1976-09-28 Research Corporation Tunable laser systems and method
US4169663A (en) 1978-02-27 1979-10-02 Synemed, Inc. Eye attention monitor
US4180751A (en) 1978-09-08 1979-12-25 Gte Sylvania Incorporated Mode-locked optical parametric oscillator apparatus
US4526171A (en) 1980-01-15 1985-07-02 Schachar Ronald A Cornea incision device
US4349907A (en) 1980-04-23 1982-09-14 The United Stated Of America As Represented By The Department Of Energy Broadly tunable picosecond IR source
US4619259A (en) 1980-05-09 1986-10-28 Graybill Walter R Ophthalmic surgery tool
US4386428A (en) 1980-10-14 1983-05-31 Sanders Associates, Inc. Tripled Nd:YAG Pumped Tm3+ laser oscillator
US4477159A (en) 1980-11-06 1984-10-16 Nidek Co., Ltd. Photocoagulator
US4546773A (en) 1981-01-23 1985-10-15 Accutome, Inc. Apparatus to measure conical thickness
US4688570A (en) 1981-03-09 1987-08-25 The Regents Of The University Of California Ophthalmologic surgical instrument
US4633866A (en) 1981-11-23 1987-01-06 Gholam Peyman Ophthalmic laser surgical method
US4461294A (en) 1982-01-20 1984-07-24 Baron Neville A Apparatus and process for recurving the cornea of an eye
US4423728A (en) 1982-02-26 1984-01-03 Lieberman David M Cam-guided trephine
US4784135A (en) 1982-12-09 1988-11-15 International Business Machines Corporation Far ultraviolet surgical and dental procedures
US4520816A (en) 1983-01-12 1985-06-04 Schachar Ronald A Method and apparatus for delivering laser energy for ophthalmic use
US4598714A (en) 1983-02-22 1986-07-08 Accutome, Inc. Apparatus for measuring the thickness of corneas
US4573467A (en) 1983-05-13 1986-03-04 The United States Of America As Represented By The Department Of Health And Human Services Optical coupling device for biomicroscope
US5207668A (en) 1983-11-17 1993-05-04 Visx Incorporated Method for opthalmological surgery
US4718418A (en) 1983-11-17 1988-01-12 Lri L.P. Apparatus for ophthalmological surgery
US5312320A (en) 1983-11-17 1994-05-17 Visx, Incorporated Apparatus for performing ophthalmological surgery
US4773414A (en) 1983-11-17 1988-09-27 Lri L.P. Method of laser-sculpture of the optically used portion of the cornea
US4729372A (en) 1983-11-17 1988-03-08 Lri L.P. Apparatus for performing ophthalmic laser surgery
US4665913A (en) 1983-11-17 1987-05-19 Lri L.P. Method for ophthalmological surgery
US4770172A (en) 1983-11-17 1988-09-13 Lri L.P. Method of laser-sculpture of the optically used portion of the cornea
ZA847841B (en) 1983-11-17 1985-05-29 Francis A L Esperance Method and apparatus for ophthalmological surgery
US5219343A (en) 1983-11-17 1993-06-15 Visx Incorporated Apparatus for performing ophthalmogolical surgery
US5507741A (en) 1983-11-17 1996-04-16 L'esperance, Jr.; Francis A. Ophthalmic method for laser surgery of the cornea
US4732148A (en) 1983-11-17 1988-03-22 Lri L.P. Method for performing ophthalmic laser surgery
US5108388B1 (en) 1983-12-15 2000-09-19 Visx Inc Laser surgery method
US5711762A (en) 1983-12-15 1998-01-27 Visx, Incorporated Laser surgery apparatus and method
JPS60148566A (en) 1984-01-13 1985-08-05 株式会社東芝 Laser treatment apparatus
US4538608A (en) * 1984-03-23 1985-09-03 Esperance Jr Francis A L Method and apparatus for removing cataractous lens tissue by laser radiation
DE3422144A1 (en) 1984-06-14 1985-12-19 Josef Prof. Dr. 6900 Heidelberg Bille DEVICE FOR DISPLAYING AREA AREAS OF THE HUMAN EYE
US4580559A (en) 1984-07-24 1986-04-08 Esperance Francis A L Indirect ophthalmoscopic photocoagulation delivery system for retinal surgery
DE3433581C2 (en) 1984-09-13 1986-08-07 Fa. Carl Zeiss, 7920 Heidenheim Device for laminating, refractive corneal surgery
US4669466A (en) 1985-01-16 1987-06-02 Lri L.P. Method and apparatus for analysis and correction of abnormal refractive errors of the eye
FR2576780B1 (en) 1985-02-04 1991-06-14 Azema Alain APPARATUS FOR CHANGING THE CURVATURE OF THE EYE CORNEA OVER THE WHOLE PUPILLARY SURFACE BY PHOTOCHEMICAL ABLATION OF THE SAME
US4862886A (en) 1985-05-08 1989-09-05 Summit Technology Inc. Laser angioplasty
IL79034A (en) 1985-06-06 1993-05-13 Visx Inc Apparatus for ophthalmological surgery
AU606315B2 (en) * 1985-09-12 1991-02-07 Summit Technology, Inc. Surface erosion using lasers
JPS6294153A (en) 1985-10-18 1987-04-30 興和株式会社 Laser beam coagulation apparatus
US4720189A (en) 1986-01-07 1988-01-19 Northern Telecom Limited Eye-position sensor
US5423801A (en) 1986-03-19 1995-06-13 Summit Technology, Inc. Laser corneal surgery
GB8606821D0 (en) 1986-03-19 1986-04-23 Pa Consulting Services Corneal reprofiling
US4856513A (en) 1987-03-09 1989-08-15 Summit Technology, Inc. Laser reprofiling systems and methods
US5336217A (en) 1986-04-24 1994-08-09 Institut National De La Sante Et De La Recherche Medicale (Insepm) Process for treatment by irradiating an area of a body, and treatment apparatus usable in dermatology for the treatment of cutaneous angio dysplasias
US4807623A (en) 1986-05-30 1989-02-28 David M. Lieberman Device for simultaneously forming two incisions along a path on an eye
US4838266A (en) 1986-09-08 1989-06-13 Koziol Jeffrey E Lens shaping device using a laser attenuator
US4911711A (en) * 1986-12-05 1990-03-27 Taunton Technologies, Inc. Sculpture apparatus for correcting curvature of the cornea
US4729373A (en) 1986-12-18 1988-03-08 Peyman Gholam A Laser-powered surgical device with a vibrating crystalline tip
US4840175A (en) 1986-12-24 1989-06-20 Peyman Gholam A Method for modifying corneal curvature
US5324281A (en) 1987-03-09 1994-06-28 Summit Technology, Inc. Laser reprofiling system employing a photodecomposable mask
US5019074A (en) 1987-03-09 1991-05-28 Summit Technology, Inc. Laser reprofiling system employing an erodable mask
US4798204A (en) 1987-05-13 1989-01-17 Lri L.P. Method of laser-sculpture of the optically used portion of the cornea
US5284477A (en) * 1987-06-25 1994-02-08 International Business Machines Corporation Device for correcting the shape of an object by laser treatment
FR2617042B1 (en) * 1987-06-25 1994-05-13 Hanna Khalil CORNEAL SURGERY DEVICE
GB2207799B (en) 1987-08-04 1991-09-18 Gen Electric Co Plc Tunable lasers
US5163934A (en) 1987-08-05 1992-11-17 Visx, Incorporated Photorefractive keratectomy
JPH01113025A (en) 1987-10-28 1989-05-01 Topcon Corp Laser scanning ophthalmic apparatus
US4993826A (en) 1987-11-25 1991-02-19 Taunton Technologies, Inc. Topography measuring apparatus
US4764930A (en) 1988-01-27 1988-08-16 Intelligent Surgical Lasers Multiwavelength laser source
US4901718A (en) * 1988-02-02 1990-02-20 Intelligent Surgical Lasers 3-Dimensional laser beam guidance system
US4848340A (en) 1988-02-10 1989-07-18 Intelligent Surgical Lasers Eyetracker and method of use
US4907586A (en) 1988-03-31 1990-03-13 Intelligent Surgical Lasers Method for reshaping the eye
US5425727A (en) 1988-04-01 1995-06-20 Koziol; Jeffrey E. Beam delivery system and method for corneal surgery
US5364388A (en) 1988-04-01 1994-11-15 Koziol Jeffrey E Beam delivery system for corneal surgery
US5074859A (en) 1990-01-05 1991-12-24 Koziol Jeffrey E Beam delivery system for corneal surgery
US5102409A (en) 1988-04-22 1992-04-07 Balgorod Barry M Method and apparatus for modification of corneal refractive properties
US5219344A (en) 1988-06-09 1993-06-15 Visx, Incorporated Methods and apparatus for laser sculpture of the cornea
US4896015A (en) 1988-07-29 1990-01-23 Refractive Laser Research & Development Program, Ltd. Laser delivery system
DE68919328T2 (en) 1988-10-28 1995-05-24 Ibm Ultraviolet laser ablation and etching of organic solids.
EP0368512A3 (en) 1988-11-10 1990-08-08 Premier Laser Systems, Inc. Multiwavelength medical laser system
DE3838253A1 (en) 1988-11-11 1990-05-23 Krumeich Joerg H Suction ring for operations on the human eye
US4903695C1 (en) 1988-11-30 2001-09-11 Lri L P Method and apparatus for performing a keratomileusis or the like operation
US5196006A (en) 1989-04-25 1993-03-23 Summit Technology, Inc. Method and apparatus for excision endpoint control
US5152759A (en) 1989-06-07 1992-10-06 University Of Miami, School Of Medicine, Dept. Of Ophthalmology Noncontact laser microsurgical apparatus
US4975918A (en) 1989-06-07 1990-12-04 Maxwell Laboratories, Inc. Tunable laser
CA2025871A1 (en) 1989-09-21 1991-03-22 Akira Itani Solid state laser device for lithography light source and semiconductor lithography method
US5063942A (en) 1989-12-14 1991-11-12 Corneal Contouring, Inc. Method for surgically re-profiling the cornea
US5133726A (en) 1990-02-14 1992-07-28 Ruiz Luis A Automatic corneal shaper
JP2980938B2 (en) 1990-04-12 1999-11-22 株式会社ニデック Lens system for condensing semiconductor laser light
FR2660859B1 (en) 1990-04-12 1992-07-10 Hanna Khalil KERATOTOME FOR THE MAKING OF ARCIFORM INCISIONS.
US5182759A (en) 1990-05-16 1993-01-26 Amoco Corporation Apparatus and method for pumping of a weakly absorbing lasant material
US5222960A (en) 1990-10-05 1993-06-29 Poley Brooks J Cracking and rotating cataract for removal from eye
AU647533B2 (en) * 1990-10-16 1994-03-24 Summit Technology, Inc. Laser thermokeratoplasty methods and apparatus
US5065046A (en) 1990-11-28 1991-11-12 Amoco Corporation Method and apparatus for parametric generation of midinfrared light in KNbO3
FR2670669B1 (en) 1990-12-20 1993-03-12 Hanna Khalil INSTRUMENT FOR SURGICAL CORRECTION OF ASTIGMATISM.
JP3199124B2 (en) * 1990-12-28 2001-08-13 株式会社ニデック Laser ablation equipment
US5163936A (en) 1991-01-22 1992-11-17 Reliant Laser Corp. Endoscopic mirror laser beam delivery system and method for controlling alignment
JP3206923B2 (en) 1991-01-30 2001-09-10 株式会社ニデック Ophthalmic laser surgery device
US5257988A (en) 1991-07-19 1993-11-02 L'esperance Medical Technologies, Inc. Apparatus for phacoemulsifying cataractous-lens tissue within a protected environment
US5263950A (en) 1991-07-24 1993-11-23 L'esperance Medical Technologies, Inc. Phaco-extractor for fragmenting cataractous-lens situs of fragmentation
US5144630A (en) * 1991-07-29 1992-09-01 Jtt International, Inc. Multiwavelength solid state laser using frequency conversion techniques
CA2073802C (en) 1991-08-16 2003-04-01 John Shimmick Method and apparatus for combined cylindrical and spherical eye corrections
US5290301A (en) 1991-09-10 1994-03-01 Lieberman David M Cam guided corneal trephine
US5363388A (en) 1991-10-18 1994-11-08 Cedars-Sinai Medical Center Continuously tunable solid state ultraviolet coherent light source
US5984916A (en) * 1993-04-20 1999-11-16 Lai; Shui T. Ophthalmic surgical laser and method
EP0614388B1 (en) * 1991-11-06 2002-06-12 LAI, Shui, T. Corneal surgery device
US5395362A (en) 1992-01-14 1995-03-07 Summit Technology Methods and apparatus for distributing laser radiation
JPH05220189A (en) * 1992-02-14 1993-08-31 Nidek Co Ltd Ablation device by laser beam
US5637109A (en) * 1992-02-14 1997-06-10 Nidek Co., Ltd. Apparatus for operation on a cornea using laser-beam
US5349590A (en) 1992-04-10 1994-09-20 Premier Laser Systems, Inc. Medical laser apparatus for delivering high power infrared light
US5217452A (en) 1992-05-18 1993-06-08 Donnell Francis E O Transscleral laser treatment of subretinal neovascularization
US5370641A (en) 1992-05-22 1994-12-06 O'donnell, Jr.; Francis E. Laser trabeculodissection
JP2907656B2 (en) 1992-08-31 1999-06-21 株式会社ニデック Laser surgery device
DE4232915A1 (en) * 1992-10-01 1994-04-07 Hohla Kristian Device for shaping the cornea by removing tissue
US5437658A (en) 1992-10-07 1995-08-01 Summit Technology, Incorporated Method and system for laser thermokeratoplasty of the cornea
JP3197375B2 (en) 1992-11-07 2001-08-13 株式会社ニデック Corneal ablation device
US5520679A (en) 1992-12-03 1996-05-28 Lasersight, Inc. Ophthalmic surgery method using non-contact scanning laser
USRE37504E1 (en) 1992-12-03 2002-01-08 Lasersight Technologies, Inc. Ophthalmic surgery method using non-contact scanning laser
US5288292A (en) 1992-12-04 1994-02-22 Micro Precision Instrument Company Keratome with miniature differential micrometer
JP2809959B2 (en) 1993-01-29 1998-10-15 株式会社ニデック Laser beam ablation apparatus and method
US5353262A (en) 1993-03-12 1994-10-04 General Electric Company Optical transducer and method of use
US5350374A (en) 1993-03-18 1994-09-27 Smith Robert F Topography feedback control system for photoablation
US5345534A (en) 1993-03-29 1994-09-06 Texas Instruments Incorporated Semiconductor wafer heater with infrared lamp module with light blocking means
US5556395A (en) 1993-05-07 1996-09-17 Visx Incorporated Method and system for laser treatment of refractive error using an offset image of a rotatable mask
US5549597A (en) 1993-05-07 1996-08-27 Visx Incorporated In situ astigmatism axis alignment
US5360424A (en) 1993-06-04 1994-11-01 Summit Technology, Inc. Tracking system for laser surgery
US5395356A (en) 1993-06-04 1995-03-07 Summit Technology, Inc. Correction of presbyopia by photorefractive keratectomy
US5411501A (en) 1993-06-04 1995-05-02 Summit Technology, Inc. Laser reprofiling system for correction of astigmatisms
AU7099694A (en) 1993-06-04 1995-01-03 Summit Technology, Inc. Rotatable aperture apparatus and methods for selective photoablation of surfaces
US5461212A (en) 1993-06-04 1995-10-24 Summit Technology, Inc. Astigmatic laser ablation of surfaces
US5474548A (en) 1993-07-14 1995-12-12 Knopp; Carl F. Method of establishing a unique machine independent reference frame for the eye
US5405355A (en) 1993-09-10 1995-04-11 Vitrophage, Inc. Method of radial keratotomy employing a vibrating cutting blade
US5571107A (en) 1993-10-26 1996-11-05 Shaibani; Sanan B. Laser surgical apparatus for sculpting a cornea using a diffractive optical element and method of using the same
IL108059A (en) 1993-12-17 1998-02-22 Laser Ind Ltd Method and apparatus for applying laser beams to a working surface, particularly for ablating tissue
US5505723A (en) 1994-02-10 1996-04-09 Summit Technology, Inc. Photo-refractive keratectomy
US5849006A (en) 1994-04-25 1998-12-15 Autonomous Technologies Corporation Laser sculpting method and system
DE4442669C2 (en) * 1994-11-30 1999-02-18 Schwind Gmbh & Co Kg Herbert Device for removing tissue from an cornea
US5613965A (en) 1994-12-08 1997-03-25 Summit Technology Inc. Corneal reprofiling using an annular beam of ablative radiation
US5480396A (en) * 1994-12-09 1996-01-02 Simon; Gabriel Laser beam ophthalmological surgery method and apparatus
US5599340A (en) 1994-12-09 1997-02-04 Simon; Gabriel Laser beam ophthalmological surgery method and apparatus
JP3490520B2 (en) 1994-12-12 2004-01-26 株式会社ニデック Ophthalmic equipment
US5646791A (en) 1995-01-04 1997-07-08 Visx Incorporated Method and apparatus for temporal and spatial beam integration
US5642287A (en) * 1995-03-02 1997-06-24 Sotiropoulos; Nicholas Sculpturing device for laser beams
US5807381A (en) * 1995-10-18 1998-09-15 Scientific Optics, Inc. Method and apparatus for improving vision
US5722971A (en) * 1995-10-20 1998-03-03 Peyman; Gholam A. Intrastromal corneal modification
US5782822A (en) 1995-10-27 1998-07-21 Ir Vision, Inc. Method and apparatus for removing corneal tissue with infrared laser radiation
US5906608A (en) * 1996-01-31 1999-05-25 Nidek Co., Ltd. Ablation apparatus
DE19619481C1 (en) * 1996-05-14 1997-11-27 Aesculap Meditec Gmbh Method and device for removing material with a laser beam
US6290695B1 (en) * 1996-10-26 2001-09-18 Aesculap Meditech Gmbh Process and device for shaping surfaces
US6193710B1 (en) * 1998-07-16 2001-02-27 Visx, Incorporated Method for scanning non-overlapping patterns of laser energy with diffractive optics

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112719573A (en) * 2020-12-09 2021-04-30 成都宏明双新科技股份有限公司 Method for efficiently improving laser etching efficiency of product

Also Published As

Publication number Publication date
EP1180981B1 (en) 2010-04-07
DE60044126D1 (en) 2010-05-20
EP1180981A1 (en) 2002-02-27
WO2000066022A9 (en) 2001-12-27
EP1180981A4 (en) 2005-09-28
JP4615735B2 (en) 2011-01-19
US6497701B2 (en) 2002-12-24
CA2368228C (en) 2011-06-07
WO2000066022A1 (en) 2000-11-09
MXPA01010867A (en) 2002-05-06
AU3612300A (en) 2000-11-17
US20020151878A1 (en) 2002-10-17
JP2002542877A (en) 2002-12-17
ATE463218T1 (en) 2010-04-15

Similar Documents

Publication Publication Date Title
CA2368228A1 (en) Method and system for ablating surfaces with partially overlapping craters having consistent curvature
US6331177B1 (en) Multiple beam laser sculpting system and method
US6638271B2 (en) Multiple beam laser sculpting system and method
US5849006A (en) Laser sculpting method and system
US5599340A (en) Laser beam ophthalmological surgery method and apparatus
CA1314943C (en) Device for correcting the shape of an object by laser treatment
US5284477A (en) Device for correcting the shape of an object by laser treatment
US6816316B2 (en) Smoothing laser beam integration using optical element motion
US5906608A (en) Ablation apparatus
WO1999004303A1 (en) Laser scanning apparatus and method
JP2017514602A (en) Photodestructive multiple pulse processing technology for materials
EP3531992B1 (en) Ophthalmic laser delivery apparatus using mems micromirror arrays for scanning and focusing laser beam
EP1051781A1 (en) Laser delivery system and method with diffractive optic beam integration
US5995265A (en) Method and apparatus for treating a surface with a scanning laser beam having an improved intensity cross-section
WO1994015238A1 (en) Method of shaping laser beam
AU8324398A (en) Laser scanning apparatus and method

Legal Events

Date Code Title Description
EEER Examination request
MKEX Expiry

Effective date: 20200228