CA2384613A1 - Unitary transducer control system - Google Patents

Unitary transducer control system Download PDF

Info

Publication number
CA2384613A1
CA2384613A1 CA002384613A CA2384613A CA2384613A1 CA 2384613 A1 CA2384613 A1 CA 2384613A1 CA 002384613 A CA002384613 A CA 002384613A CA 2384613 A CA2384613 A CA 2384613A CA 2384613 A1 CA2384613 A1 CA 2384613A1
Authority
CA
Canada
Prior art keywords
signal
control system
transducer
actuating
subject
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CA002384613A
Other languages
French (fr)
Other versions
CA2384613C (en
Inventor
Paul F. Ierymenko
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Publication of CA2384613A1 publication Critical patent/CA2384613A1/en
Application granted granted Critical
Publication of CA2384613C publication Critical patent/CA2384613C/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R29/00Monitoring arrangements; Testing arrangements
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10HELECTROPHONIC MUSICAL INSTRUMENTS; INSTRUMENTS IN WHICH THE TONES ARE GENERATED BY ELECTROMECHANICAL MEANS OR ELECTRONIC GENERATORS, OR IN WHICH THE TONES ARE SYNTHESISED FROM A DATA STORE
    • G10H3/00Instruments in which the tones are generated by electromechanical means
    • G10H3/12Instruments in which the tones are generated by electromechanical means using mechanical resonant generators, e.g. strings or percussive instruments, the tones of which are picked up by electromechanical transducers, the electrical signals being further manipulated or amplified and subsequently converted to sound by a loudspeaker or equivalent instrument
    • G10H3/14Instruments in which the tones are generated by electromechanical means using mechanical resonant generators, e.g. strings or percussive instruments, the tones of which are picked up by electromechanical transducers, the electrical signals being further manipulated or amplified and subsequently converted to sound by a loudspeaker or equivalent instrument using mechanically actuated vibrators with pick-up means
    • G10H3/18Instruments in which the tones are generated by electromechanical means using mechanical resonant generators, e.g. strings or percussive instruments, the tones of which are picked up by electromechanical transducers, the electrical signals being further manipulated or amplified and subsequently converted to sound by a loudspeaker or equivalent instrument using mechanically actuated vibrators with pick-up means using a string, e.g. electric guitar
    • G10H3/181Details of pick-up assemblies
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10HELECTROPHONIC MUSICAL INSTRUMENTS; INSTRUMENTS IN WHICH THE TONES ARE GENERATED BY ELECTROMECHANICAL MEANS OR ELECTRONIC GENERATORS, OR IN WHICH THE TONES ARE SYNTHESISED FROM A DATA STORE
    • G10H3/00Instruments in which the tones are generated by electromechanical means
    • G10H3/12Instruments in which the tones are generated by electromechanical means using mechanical resonant generators, e.g. strings or percussive instruments, the tones of which are picked up by electromechanical transducers, the electrical signals being further manipulated or amplified and subsequently converted to sound by a loudspeaker or equivalent instrument
    • G10H3/14Instruments in which the tones are generated by electromechanical means using mechanical resonant generators, e.g. strings or percussive instruments, the tones of which are picked up by electromechanical transducers, the electrical signals being further manipulated or amplified and subsequently converted to sound by a loudspeaker or equivalent instrument using mechanically actuated vibrators with pick-up means
    • G10H3/18Instruments in which the tones are generated by electromechanical means using mechanical resonant generators, e.g. strings or percussive instruments, the tones of which are picked up by electromechanical transducers, the electrical signals being further manipulated or amplified and subsequently converted to sound by a loudspeaker or equivalent instrument using mechanically actuated vibrators with pick-up means using a string, e.g. electric guitar
    • G10H3/186Means for processing the signal picked up from the strings
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10HELECTROPHONIC MUSICAL INSTRUMENTS; INSTRUMENTS IN WHICH THE TONES ARE GENERATED BY ELECTROMECHANICAL MEANS OR ELECTRONIC GENERATORS, OR IN WHICH THE TONES ARE SYNTHESISED FROM A DATA STORE
    • G10H3/00Instruments in which the tones are generated by electromechanical means
    • G10H3/12Instruments in which the tones are generated by electromechanical means using mechanical resonant generators, e.g. strings or percussive instruments, the tones of which are picked up by electromechanical transducers, the electrical signals being further manipulated or amplified and subsequently converted to sound by a loudspeaker or equivalent instrument
    • G10H3/24Instruments in which the tones are generated by electromechanical means using mechanical resonant generators, e.g. strings or percussive instruments, the tones of which are picked up by electromechanical transducers, the electrical signals being further manipulated or amplified and subsequently converted to sound by a loudspeaker or equivalent instrument incorporating feedback means, e.g. acoustic
    • G10H3/26Instruments in which the tones are generated by electromechanical means using mechanical resonant generators, e.g. strings or percussive instruments, the tones of which are picked up by electromechanical transducers, the electrical signals being further manipulated or amplified and subsequently converted to sound by a loudspeaker or equivalent instrument incorporating feedback means, e.g. acoustic using electric feedback
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10HELECTROPHONIC MUSICAL INSTRUMENTS; INSTRUMENTS IN WHICH THE TONES ARE GENERATED BY ELECTROMECHANICAL MEANS OR ELECTRONIC GENERATORS, OR IN WHICH THE TONES ARE SYNTHESISED FROM A DATA STORE
    • G10H2220/00Input/output interfacing specifically adapted for electrophonic musical tools or instruments
    • G10H2220/155User input interfaces for electrophonic musical instruments
    • G10H2220/165User input interfaces for electrophonic musical instruments for string input, i.e. special characteristics in string composition or use for sensing purposes, e.g. causing the string to become its own sensor
    • G10H2220/171User input interfaces for electrophonic musical instruments for string input, i.e. special characteristics in string composition or use for sensing purposes, e.g. causing the string to become its own sensor using electrified strings, e.g. strings carrying coded or AC signals for transducing, sustain, fret length or fingering detection
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10HELECTROPHONIC MUSICAL INSTRUMENTS; INSTRUMENTS IN WHICH THE TONES ARE GENERATED BY ELECTROMECHANICAL MEANS OR ELECTRONIC GENERATORS, OR IN WHICH THE TONES ARE SYNTHESISED FROM A DATA STORE
    • G10H2220/00Input/output interfacing specifically adapted for electrophonic musical tools or instruments
    • G10H2220/461Transducers, i.e. details, positioning or use of assemblies to detect and convert mechanical vibrations or mechanical strains into an electrical signal, e.g. audio, trigger or control signal
    • G10H2220/505Dual coil electrodynamic string transducer, e.g. for humbucking, to cancel out parasitic magnetic fields
    • G10H2220/511Stacked, i.e. one coil on top of the other
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10HELECTROPHONIC MUSICAL INSTRUMENTS; INSTRUMENTS IN WHICH THE TONES ARE GENERATED BY ELECTROMECHANICAL MEANS OR ELECTRONIC GENERATORS, OR IN WHICH THE TONES ARE SYNTHESISED FROM A DATA STORE
    • G10H2220/00Input/output interfacing specifically adapted for electrophonic musical tools or instruments
    • G10H2220/461Transducers, i.e. details, positioning or use of assemblies to detect and convert mechanical vibrations or mechanical strains into an electrical signal, e.g. audio, trigger or control signal
    • G10H2220/525Piezoelectric transducers for vibration sensing or vibration excitation in the audio range; Piezoelectric strain sensing, e.g. as key velocity sensor; Piezoelectric actuators, e.g. key actuation in response to a control voltage
    • G10H2220/541Piezoelectric transducers for vibration sensing or vibration excitation in the audio range; Piezoelectric strain sensing, e.g. as key velocity sensor; Piezoelectric actuators, e.g. key actuation in response to a control voltage using piezoceramics, e.g. lead titanate [PbTiO3], zinc oxide [Zn2 O3], lithium niobate [LiNbO3], sodium tungstate [NaWO3], bismuth ferrite [BiFeO3]
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10HELECTROPHONIC MUSICAL INSTRUMENTS; INSTRUMENTS IN WHICH THE TONES ARE GENERATED BY ELECTROMECHANICAL MEANS OR ELECTRONIC GENERATORS, OR IN WHICH THE TONES ARE SYNTHESISED FROM A DATA STORE
    • G10H2250/00Aspects of algorithms or signal processing methods without intrinsic musical character, yet specifically adapted for or used in electrophonic musical processing
    • G10H2250/025Envelope processing of music signals in, e.g. time domain, transform domain or cepstrum domain
    • G10H2250/031Spectrum envelope processing
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10HELECTROPHONIC MUSICAL INSTRUMENTS; INSTRUMENTS IN WHICH THE TONES ARE GENERATED BY ELECTROMECHANICAL MEANS OR ELECTRONIC GENERATORS, OR IN WHICH THE TONES ARE SYNTHESISED FROM A DATA STORE
    • G10H2250/00Aspects of algorithms or signal processing methods without intrinsic musical character, yet specifically adapted for or used in electrophonic musical processing
    • G10H2250/315Sound category-dependent sound synthesis processes [Gensound] for musical use; Sound category-specific synthesis-controlling parameters or control means therefor
    • G10H2250/441Gensound string, i.e. generating the sound of a string instrument, controlling specific features of said sound
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R3/00Circuits for transducers, loudspeakers or microphones
    • H04R3/04Circuits for transducers, loudspeakers or microphones for correcting frequency response

Abstract

A control system (11) controls the motion of a physical subject (36) such as a mechanical system via a single transducer (10) which alternates in a time- discrete manner between the task of reading a signal indicative of the state of the subject and the task of influencing said state by the application of a force. Control of motion or vibration is achieved through a series of actuating pulses interleaved with sensing operations. The same single transducer (10) alternately acts as input to the control system (11) from th e subject and output from the control system (11) to the subject. The control system (11) provides full and individual control of all important harmonic modes of vibration of a subject mechanical system.

Claims (38)

1. In a control system for controlling the motion of a physical subject, the combination comprising:
a unitary transducer adapted to be coupled to the physical subject, the transducer being arranged to provide a sensing output signal in accordance with the motion of the subject and to effect a change in said motion in accordance with an actuating signal applied thereto; and a controller coupled to the transducer, the controller being programmed to respond to the sensing output signal during a sensing time channel portion of successive time frames and apply an actuating signal to the transducer during a separate actuating time channel of the time frames, whereby the sensing and actuating functions of the transducer are separated in time, the rate of occurrence of successive time frames being independent of the motion of the subject.
2. The control system of claim 1 wherein the controller is arranged to respond to an input signal and provide an actuating signal to the transducer which is a function of the input and sensing output signals.
3. The control system of claim 2 wherein the input signal is a reference signal which prescribes the desired state of motion of the subject.
4. The control system of claim 2 wherein the transducer is electromagnetic.
5. The control system of claim 2 wherein the transducer is piezoelectric.
6. The control system of claim 3 wherein the controller includes a sample and hold circuit for sampling the sensing output signal and retaining the signal for a preselected period of time.
7. The control system of claim 3 wherein the controller includes an A/D converter for converting the sampled sensing output signal to a digital format.
8. The control system of claim 3 wherein the actuating signal is in the form of an amplitude modulated signal.
9. The control system of claim 3 wherein the actuating signal is in the form of a pulse width modulated signal.
10. The control system of claim 3 wherein the actuating signal is in the form of a combined amplitude and pulse width modulated signal.
11. The control system of claim 3 wherein the control system is arranged to provide the actuating signal in the form a current from a high impedance source.
12. The control system of claim 3 wherein the control system is arranged to provide the actuating signal in the form of a voltage from a low impedance source.
13. The control system of claim 3 wherein the function of the reference and sensing output signals is a correction signal constituted to reduce the deviation of the subjects motion from the desired motion and wherein the actuating signal has a waveform shaped that is a smooth curve beginning and ending at zero and that is amplitude and polarity modulated by the correction signal.
14. In a control system for controlling the motion of a physical subject, the combination comprising:
a unitary transducer having a sensor/actuator circuit, the transducer being adapted to be coupled to the physical subject for providing a sensing output signal on the sensor/actuator circuit in accordance with the motion of the subject and for effecting a change in the motion of the subject in accordance with an actuating input signal applied to the sensor/actuator circuit;
a controller coupled to the transducer sensor/actuator circuit, the controller being arranged to respond to sensing output signal during a first or sensing portion of a time frame and to apply an actuating input signal to transducer during a second or actuating portion of the time frame for the purpose of separating and isolating sensing events from actuating events in time and for selectively damping or enhancing the motion of the subject over a succession of said time frames.
15. The control system of claim 14 wherein the transducer is electromagnetic.
16. The control system of claim 14 wherein the transducer is piezoelectric.
17. The control system of claim 14 wherein the desired state of motion of the physical subject is dictated by a reference signal and wherein the controller has:
a reference input for receiving the reference signal:
means for processing the transducer sensing output signal according to the reference signal to produce a correction signal and applying the correction signal, as the actuating input signal to the sensor/actuating circuit to control the actuating, force emitted by the transducer during the actuating time interval whereby the subject is constrained to conform to the motion dictated by the reference signal.
18. The control system of claim 17 further including a source of an excitation signal coupled to the controller for providing an excitation signal to the transducer sensor/actuator circuit independently of the correction signal, whereby the motion or position of the subject can be directly influenced.
19. The control system of claim 14 wherein the controller includes a sample and hold circuit for sampling the transducer sensing output signal and retaining said signal for a preselected time period.
20. The control system of claim 14 wherein the controller includes an analog to digital convertor for sampling and retaining the transducer sensing output signal and converting it to digital form for further processing by the controller.
21. The control system of claim 14 wherein the controller is arranged to apply the actuating signal to the transducer in the form of an amplitude modulated signal during the actuation portion of said time frames.
22. The control system of claim 14 wherein the controller is arranged to apply the actuating signal to the transducer in the form of a pulse width modulated signal during the actuation portion of said time frame.
23. The control system of claim 14 wherein the controller is arranged to apply the actuating signal to the transducer in the form of a combined amplitude and pulse width modulated signal.
24. The control system of claim 14 wherein the actuating signal applied to the transducer is in the form of a current emanating from a high impedance source.
25. The control system of claim 14 wherein the control system is arranged to provide the actuating signal in the form of a voltage from a low impedance source.
26. The control system of claim 17 wherein the actuating signal is a current pulse in the shape of a smooth curve that begins and ends at zero and is amplitude and polarity modulated by the correction signal over a succession of frames.
27. The control system of claim 15 wherein the transducer sensor/actuator circuit comprises a single winding for providing the sensing output signal and for receiving the actuating signal.
28. The control system of claim 15 wherein the transducer sensor/actuator circuit comprises separate sensor and actuating windings.
29. The control system of claim 15 wherein the subject includes the transducer sensor/actuator circuit.
30. The control system of claim 15 wherein the subject includes part or parts of the electromagnetic transducer other than the winding.
31. The control system of claim 16 wherein the transducer sensor/actuator circuit comprises a single pair of electrodes.
32. The control system of claim 16 wherein the transducer sensor/actuator circuit comprises separate sensing and actuating electrodes or electrode pairs.
33. The control system of claim 16 wherein the subject and transducer form one element.
34. The control system of claim 14 wherein the controller is arranged to vary the duration of the individual time frames making up said successive time frames.
35. In a method for controlling the motion of a physical subject in accordance with the motion prescribed by a reference signal, the combination comprising:
a transducer coupled to the physical subject, the transducer having a sensor/actuator circuit which provides a sensing output signal during a sensing portion of a single time frame representative of the motion of the physical subject and in response to an actuating input signal applied to the sensor/actuator circuit during a separate actuating portion of said time frame provides an actuating force to the physical subject;

comparing the transducer sensor output signal with the reference signal to provide an error signal; and processing the sensor output signal as a function of the error signal to create. a correction signal; and modulating with the correction signal to form the actuating signal; and applying the actuating signal to the transducer sensor/actuator circuit during the actuating portion of said time frame.
36. The method of claim 35 wherein the step of processing the sensor output signal comprises controlling the phase of correction signal at a set of control frequencies such that the correction signal acts to promote vibration of the subject at one subset of said set of frequencies and to inhibit vibration of the subject at a second subset of said set of frequencies.
37. The method of claim 36 further including the step of providing an error data signal that represents the difference result of comparing the magnitude of a frequency domain representation of the transducer sensor output signal against a template frequency domain magnitude representation signal supplied to the system as a reference input and wherein the step of controlling the phase of the correction signal including controlling the gain and phase of the filler at each control frequency in accordance with the error data signal.
38. The method of claim 37 wherein the reference input signal represents the harmonic structure of the desired subject vibration in the form of a frequency domain magnitude representation signal, wherein the error signal is in the form of an error data which represents the different result of comparing the magnitude of a frequency domain representation of the transducer sensor output signal against the reference signal, and wherein the step of controlling the phase and amplitude of the correction signal includes passing the sensor output signal through a filter or bank of filters and controlling the gain and phase of the filter or bank of filters at each control frequency in accordance with the error data signal.
CA002384613A 1999-09-14 2000-09-12 Unitary transducer control system Expired - Fee Related CA2384613C (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US09/395,671 US6216059B1 (en) 1999-09-14 1999-09-14 Unitary transducer control system
US09/395,671 1999-09-14
PCT/US2000/024907 WO2001020287A1 (en) 1999-09-14 2000-09-12 Unitary transducer control system

Publications (2)

Publication Number Publication Date
CA2384613A1 true CA2384613A1 (en) 2001-03-22
CA2384613C CA2384613C (en) 2009-12-15

Family

ID=23564007

Family Applications (1)

Application Number Title Priority Date Filing Date
CA002384613A Expired - Fee Related CA2384613C (en) 1999-09-14 2000-09-12 Unitary transducer control system

Country Status (5)

Country Link
US (1) US6216059B1 (en)
EP (1) EP1218716B1 (en)
AU (1) AU766246B2 (en)
CA (1) CA2384613C (en)
WO (1) WO2001020287A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112436830A (en) * 2020-11-10 2021-03-02 杭州钪赛铂电子有限公司 Novel time domain conversion method in IGBT module driving

Families Citing this family (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6697043B1 (en) 1999-12-21 2004-02-24 Immersion Corporation Haptic interface device and actuator assembly providing linear haptic sensations
DE20022244U1 (en) * 1999-07-01 2001-11-08 Immersion Corp Control of vibrotactile sensations for haptic feedback devices
DE20080209U1 (en) * 1999-09-28 2001-08-09 Immersion Corp Control of haptic sensations for interface devices with vibrotactile feedback
US7182691B1 (en) * 2000-09-28 2007-02-27 Immersion Corporation Directional inertial tactile feedback using rotating masses
AU2002244175A1 (en) * 2001-02-27 2002-09-12 Sikorsky Aircraft Corporation System for computationally efficient active control of tonal sound or vibration
US7202851B2 (en) * 2001-05-04 2007-04-10 Immersion Medical Inc. Haptic interface for palpation simulation
US6937033B2 (en) * 2001-06-27 2005-08-30 Immersion Corporation Position sensor with resistive element
US7056123B2 (en) 2001-07-16 2006-06-06 Immersion Corporation Interface apparatus with cable-driven force feedback and grounded actuators
US7154470B2 (en) * 2001-07-17 2006-12-26 Immersion Corporation Envelope modulator for haptic feedback devices
US7369115B2 (en) * 2002-04-25 2008-05-06 Immersion Corporation Haptic devices having multiple operational modes including at least one resonant mode
EP1642262A4 (en) * 2003-06-09 2009-05-06 Paul Ierymenko A player technique control system for a stringed instrument and method of playing the instrument
US8450593B2 (en) * 2003-06-09 2013-05-28 Paul F. Ierymenko Stringed instrument with active string termination motion control
JP2005130624A (en) * 2003-10-24 2005-05-19 Hitachi Ltd Generator and power generation method
US7742036B2 (en) * 2003-12-22 2010-06-22 Immersion Corporation System and method for controlling haptic devices having multiple operational modes
US7317260B2 (en) * 2004-05-11 2008-01-08 Clipper Windpower Technology, Inc. Wind flow estimation and tracking using tower dynamics
US8232969B2 (en) * 2004-10-08 2012-07-31 Immersion Corporation Haptic feedback for button and scrolling action simulation in touch input devices
US7792597B2 (en) * 2007-06-28 2010-09-07 International Business Machines Corporation Control systems and method using a shared component actuator
US8129607B2 (en) 2008-03-04 2012-03-06 Robert Francis Joseph Loftus Electromagnetic field pickup for musical instruments
WO2011017355A2 (en) * 2009-08-03 2011-02-10 Ultimo Measurement, Llc Method and apparatus for measurement of physical properties of free flowing materials in vessels
US8249292B1 (en) 2010-01-13 2012-08-21 Eminence Speaker, LLC Mechanically adjustable variable flux speaker
FI20106363A (en) * 2010-12-22 2012-06-23 Mauri Konttinen SINGLE FOR A STRING INSTRUMENT
NL2006519C2 (en) * 2011-04-01 2012-10-02 Burger RECORDING DEVICE FOR CONVERTING VIBRATIONS.
US10113994B2 (en) 2013-02-06 2018-10-30 Ultimo Measurement Llc Non-invasive method for measurement of physical properties of free flowing materials in vessels
KR101567795B1 (en) * 2013-11-08 2015-11-11 숭실대학교산학협력단 Apparatus and method for pipeline scheduling of motion control software on multi-processors
US9418644B2 (en) * 2014-01-17 2016-08-16 New York University Pitch detection
US9816848B2 (en) 2014-01-23 2017-11-14 Ultimo Measurement Llc Method and apparatus for non-invasively measuring physical properties of materials in a conduit
US9595250B2 (en) * 2015-01-22 2017-03-14 Paul Ierymenko Handheld vibration control device for musical instruments
DE102016223864A1 (en) 2016-11-30 2018-05-30 Audi Ag An active vibration absorption system for absorbing a vibration of a vibrating element, and a motor vehicle having the active vibration absorption system and a method for operating the active vibration absorption system
US10163431B2 (en) * 2017-05-03 2018-12-25 Christopher Mills Non-linear pickup for string instruments

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06109072A (en) 1992-09-21 1994-04-19 Tokai Rubber Ind Ltd Vibration suppressing supporting device for power unit
JP3345930B2 (en) * 1993-01-06 2002-11-18 日産自動車株式会社 Active control device
US5321474A (en) 1993-03-10 1994-06-14 Xerox Corporation Active damping of electrode wire vibration in scavengeless development in a xerographic apparatus
US5333819A (en) * 1993-03-12 1994-08-02 General Electric Company Self tuning motion/vibration suppression system
US5593311A (en) 1993-07-14 1997-01-14 Thomas & Betts Corporation Shielded compact data connector
US5523526A (en) 1993-07-23 1996-06-04 Genesis Magnetics Corporation Sustaining devices for stringed musical instruments
US5652799A (en) 1994-06-06 1997-07-29 Noise Cancellation Technologies, Inc. Noise reducing system
US5568557A (en) * 1994-07-29 1996-10-22 Noise Cancellation Technologies, Inc. Active vibration control system for aircraft
US5668744A (en) * 1995-05-05 1997-09-16 Owens-Corning Fiberglas Technology Inc. Active noise control using piezoelectric sensors and actuators
JPH09280307A (en) * 1996-04-10 1997-10-28 Nissan Motor Co Ltd Active type vibration control device for vehicle
US6125008A (en) * 1996-04-15 2000-09-26 Digital Papyrus Corporation Flying head positioner having rotational fine positioning and adjustable actuator load
JPH1089403A (en) * 1996-09-10 1998-04-07 Nikon Corp Vibration control device
JP3228153B2 (en) * 1996-11-08 2001-11-12 日産自動車株式会社 Active vibration control device
US6128552A (en) * 1996-11-08 2000-10-03 Canon Kabushiki Kaisha Anti-vibration apparatus and method
US5813226A (en) * 1997-09-15 1998-09-29 Caterpillar Inc. Control scheme for pressure relief

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112436830A (en) * 2020-11-10 2021-03-02 杭州钪赛铂电子有限公司 Novel time domain conversion method in IGBT module driving

Also Published As

Publication number Publication date
AU7369900A (en) 2001-04-17
WO2001020287A1 (en) 2001-03-22
EP1218716A4 (en) 2009-03-18
AU766246B2 (en) 2003-10-09
CA2384613C (en) 2009-12-15
EP1218716B1 (en) 2012-04-18
EP1218716A1 (en) 2002-07-03
US6216059B1 (en) 2001-04-10

Similar Documents

Publication Publication Date Title
CA2384613A1 (en) Unitary transducer control system
KR20220024802A (en) Minimize Transducer Settling Time
EP0895704B1 (en) Hearing aid device
JPH05199749A (en) Dc/dc converter
JPS6127808B2 (en)
JP3751954B2 (en) Disk storage device and head positioning control method
US20020159606A1 (en) Electrodynamic transducer with acceleration control
KR850006839A (en) Video signal processor
US5521550A (en) Digital circuitry for noise blanking
EP0480509B1 (en) Arrangement for supplying energy to a load, as well as a drive system and a sound reproduction system comprising such an arrangement
JP2731160B2 (en) Excitation level controller
SU881899A1 (en) Device for control of piezoelectric motor
JPH0539460Y2 (en)
SU763687A1 (en) Device for recording frequency response
JPS60237879A (en) Speed servo motor
JPH0526909A (en) Automatic regulating circuit for offset
JPH06301948A (en) Head driving apparatus
SU744437A1 (en) Pulse regulator
SU1068996A1 (en) Video tape recording with slope-line mode of signal recording
JPS6210793Y2 (en)
SU1615792A1 (en) Multichannel device for recording/playback of analog information
JPS6024716A (en) Signal interpolating circuit
JPH08210901A (en) Electronic force balance
JPH0326452B2 (en)
JPH01196918A (en) Time axis multiplication circuit

Legal Events

Date Code Title Description
EEER Examination request
MKLA Lapsed

Effective date: 20170912