CA2397789C - Novel human kinase protein and polynucleotides encoding the same - Google Patents

Novel human kinase protein and polynucleotides encoding the same Download PDF

Info

Publication number
CA2397789C
CA2397789C CA2397789A CA2397789A CA2397789C CA 2397789 C CA2397789 C CA 2397789C CA 2397789 A CA2397789 A CA 2397789A CA 2397789 A CA2397789 A CA 2397789A CA 2397789 C CA2397789 C CA 2397789C
Authority
CA
Canada
Prior art keywords
nhp
sequences
sequence
gene
antibodies
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CA2397789A
Other languages
French (fr)
Other versions
CA2397789A1 (en
Inventor
Gregory Donoho
Erin Hilbun
C. Alexander Turner Jr.
Glenn Friedrich
Brian Zambrowicz
Arthur T. Sands
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Lexicon Pharmaceuticals Inc
Original Assignee
Lexicon Pharmaceuticals Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Lexicon Pharmaceuticals Inc filed Critical Lexicon Pharmaceuticals Inc
Publication of CA2397789A1 publication Critical patent/CA2397789A1/en
Application granted granted Critical
Publication of CA2397789C publication Critical patent/CA2397789C/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/10Transferases (2.)
    • C12N9/12Transferases (2.) transferring phosphorus containing groups, e.g. kinases (2.7)
    • C12N9/1205Phosphotransferases with an alcohol group as acceptor (2.7.1), e.g. protein kinases
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P43/00Drugs for specific purposes, not provided for in groups A61P1/00-A61P41/00
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K38/00Medicinal preparations containing peptides

Abstract

Novel human polynucleotide and polypeptide sequences are disclosed that can be used in therapeutic, diagnostic, and pharmacogenomic applications.

Description

NOVEL HUMAN KINASE PROTEIN AND
POLYNUCLEOTIDES ENCODING THE SAME

1. INTRODUCTION
The present invention relates to the discovery, identification, and characterization of novel human polynucleotides encoding a protein that shares sequence similarity with animal kinases. The invention encompasses the described polynucleotides, host cell expression systems, the encoded proteins, fusion proteins, polypeptides and peptides, antibodies to the encoded proteins and peptides, and genetically engineered animals that either lack or over express the disclosed sequences, antagonists and agonists of the proteins, and other compounds that modulate the expression. or activity of the proteins encoded by the disclosed sequences that can be used for diagnosis, drug screening, clinical trial monitoring and the treatment of physiological disorders.
2. BACKGROUND OF THE INVENTION
Kinases mediate phosphorylation of a wide variety of proteins and compounds in the cell. Along with phosphatases, kinases are involved in a range of regulatory pathways. Given the physiological importance of kinases, they have been subject to intense scrutiny and are proven drug targets.
3. SUMMARY OF THE INVENTION
The present invention relates to the discovery, identification, and characterization of nucleotides that encode a novel human protein, and the corresponding amino acid sequence of this protein. The novel human protein (NHP) described for the first time herein shares structural similarity with animal kinases, including, but not limited to serine/threonine protein kinases, and particularly casein kinases. As such, the novel polynucleotides encode a new kinase protein having homologues and orthologs across a range of phyla and species.
The novel human polynucleotides described herein, encode an open reading frame (ORF) encoding a protein of 422 amino acids in length (see SEQ ID NO: 2).
The invention also encompasses agonists and antagonists of the described NHP, including small molecules, large molecules, mutant NHPs, or portions thereof that compete with native NHP, peptides, and antibodies, as well as nucleotide sequences that can be used to inhibit the expression of the described NHP

(e.g., antisense and ribozyme molecules, and gene or regulatory sequence replacement constructs) or to enhance the expression of the described NHP polynucleotides (e.g., expression constructs that place the described sequence under the control of a strong promoter system). Given that a knockout ES cell line has already been produced that mutates the murine ortholog of the described protein, the present invention also includes both transgenic animals that express a NHP transgene, and NHP "knock-outs" (which can be conditional) that do not express a functional NHP.
Further, the present invention also relates to processes for identifying compounds that modulate, i.e., act as agonists or antagonists, of NHP expression and/or NHP product activity that utilize purified preparations of the described NHPs and/or NHP product, or cells expressing the same. Such compounds can be used as therapeutic agents for the treatment of any of a wide variety of symptoms associated with biological disorders or imbalances.

SUBSTITUTE SHEET (RULE 26) 4. DESCRIPTION OF THE SEQUENCE LISTING AND FIGURES
The Sequence Listing provides the sequence of a novel human ORF that encodes the described novel human kinase-like protein.
SEQ ID NO:3 describes the NHP ORF and flanking regions.
5. DETAILED DESCRIPTION OF THE INVENTION
The NHP, described for the first time herein, is a novel protein that is widely expressed in, inter alia, human cell lines, and human brain, pituitary, cerebellum, spinal cord, thymus, lymph node, bone marrow, trachea, kidney, liver, prostate, testis, thyroid, adrenal gland, pancreas, salivary gland, stomach, small intestine, colon, skeletal muscle, heart, uterus, placenta, mammary gland, adipose, esophagus, bladder, cervix, rectum, pericardium, hypothalamus, ovary, fetal kidney, and fetal lung cells. The described sequences were compiled from gene trapped cDNAs, ESTs, and human prostate and testis cDNA libraries, (Edge Biosystems, Gaithersburg, MD, and Clontech, Palo Alto, CA).
The present invention encompasses the nucleotides presented in the Sequence Listing, host cells expressing such nucleotides, the expression products of such nucleotides, and: (a) nucleotides that encode mammalian homologs of the described sequences, including the specifically described NHP, and the NHP
products; (b) nucleotides that encode one or more portions of the NHP that correspond to functional domains, and the polypeptide products specified by such nucleotide sequences, including but not limited to the novel regions of any active domain(s); (c) isolated nucleotides that encode mutant versions, engineered or naturally occurring, of the described NHP in which all or a part of at least one domain is deleted or altered, and the polypeptide products specified by such nucleotide sequences, including but not limited to soluble proteins and peptides in which all or a portion of the signal sequence is deleted; (d) SUBSTITUTE SHEET (RULE 26) nucleotides that encode chimeric fusion proteins containing all or a portion of a coding region of a NHP, or one of its domains (e.g., a receptor/ligand binding domain, accessory protein/self-association domain, etc.) fused to another peptide or polypeptide; or (e) therapeutic or diagnostic derivatives of the described polynucleotides such as oligonucleotides, antisense polynucleotides, ribozymes, dsRNA, or gene therapy constructs comprising a sequence first disclosed in the Sequence Listing.
As discussed above, the present invention includes: (a) the human DNA sequences presented in the Sequence Listing (and vectors comprising the same) and additionally contemplates any nucleotide sequence encoding a contiguous NHP open reading frame (ORF) that hybridizes to a complement of a DNA sequence presented in the Sequence Listing under highly stringent conditions, e.g., hybridization to filter-bound DNA in 0.5 M
NaHPO4, 7o sodium dodecyl sulfate (SDS), 1 mM EDTA at 65 C, and washing in 0.1xSSC/0.1o SDS at 68 C (Ausubel F.M. et al., eds., 1989, Current Protocols in Molecular Biology, Vol. I, Green Publishing Associates, Inc., and John Wiley & sons, Inc., New York, at p. 2.10.3) and encodes a functionally equivalent gene product. Additionally contemplated are any nucleotide sequences that hybridize to the complement of the DNA sequence that encode and express an amino acid sequence presented in the Sequence Listing under moderately stringent conditions, e.g., washing in 0.2xSSC/0.l% SDS at 42 C (Ausubel et al., 1989, supra), yet still encode a functionally equivalent NHP product. Functional equivalents of a NHP include naturally occurring NHPs present in other species and mutant NHPs whether naturally occurring or engineered (by site directed mutagenesis, gene shuffling, directed evolution as described in, for example, U.S. Patent No.
5,837,458). The invention also includes degenerate nucleic acid variants of the disclosed NHP polynucleotide sequences.

SUBSTITUTE SHEET (RULE 26) Additionally contemplated are polynucleotides encoding NHP
ORFs, or their functional equivalents, encoded by polynucleotide sequences that are about 99, 95, 90, or about 85 percent similar to corresponding regions of SEQ ID NO:1 (as measured by BLAST sequence comparison analysis using, for example, the GCG
sequence analysis package using default parameters).
The invention also includes nucleic acid molecules, preferably DNA molecules, that hybridize to, and are therefore the complements of, the described NHP encoding polynucleotides.
Such hybridization conditions can be highly stringent or less highly stringent, as described above. In instances where the nucleic acid molecules are deoxyoligonucleotides ("DNA oligos"), such molecules are generally about 16 to about 100 bases long, or about 20 to about 80, or about 34 to about 45 bases long, or any variation or combination of sizes represented therein that incorporate a contiguous region of sequence first disclosed in the Sequence Listing. Such oligonucleotides can be used in conjunction with the polymerase chain reaction (PCR) to screen libraries, isolate clones, and prepare cloning and sequencing templates, etc.
Alternatively, such NHP oligonucleotides can be used as hybridization probes for screening libraries, and assessing gene expression patterns (particularly using a micro array or high-throughput "chip" format). Additionally, a series of the described NHP oligonucleotide sequences, or the complements thereof, can be used to represent all or a portion of the described NHP sequences. An oligonucleotide or polynucleotide sequence first disclosed in at least a portion of one or more of the sequences of SEQ ID NOS: 1-3 can be used as a hybridization probe in conjunction with a solid support matrix/substrate (resins, beads, membranes, plastics, polymers, metal or metallized substrates, crystalline or polycrystalline substrates, etc.). Of particular note are spatially addressable SUBSTITUTE SHEET (RULE 26) arrays (i.e., gene chips, microtiter plates, etc.) of oligonucleotides and polynucleotides, or corresponding oligopeptides and polypeptides, wherein at least one of the biopolymers present on the spatially addressable array comprises an oligonucleotide or polynucleotide sequence first disclosed in at least one of the sequences of SEQ ID NOS: 1-3, or an amino acid sequence encoded thereby. Methods for attaching biopolymers to, or synthesizing biopolymers on, solid support matrices, and conducting binding studies thereon are disclosed in, inter alia, U.S. Patent Nos. 5,700,637, 5,556,752, 5,744,305, 4,631,211, 5,445,934, 5,252,743, 4,713,326, 5,424,186, and 4,689,405 Addressable arrays comprising sequences first disclosed in SEQ ID NOS:1-3 can be used to identify and characterize the temporal and tissue specific expression of a gene. These addressable arrays incorporate oligonucleotide sequences of sufficient length to confer the required specificity, yet be within the limitations of the production technology. The length of these probes is within a range of between about 8 to about 2000 nucleotides. Preferably the probes consist of 60 nucleotides and more preferably 25 nucleotides from the sequences first disclosed in SEQ ID NOS:1-3.
For example, a series of the described oligonucleotide sequences, or the complements thereof, can be used in chip format to represent all or a portion of the described sequences.
The oligonucleotides, typically between about 16 to about 40 (or any whole number within the stated range) nucleotides in length can partially overlap each other and/or the sequence may be represented using oligonucleotides that do not overlap.
Accordingly, the described polynucleotide sequences shall typically comprise at least about two or three distinct oligonucleotide sequences of at least about 8 nucleotides in SUBSTITUTE SHEET (RULE 26) length that are each first disclosed in the described Sequence Listing. Such oligonucleotide sequences can begin at any nucleotide present within a sequence in the Sequence Listing and proceed in either a sense (51-to-3') orientation vis-a-vis the described sequence or in an antisense orientation.
Microarray-based analysis allows the discovery of broad patterns of genetic activity, providing new understanding of gene functions and generating novel and unexpected insight into transcriptional processes and biological mechanisms. The use of addressable arrays comprising sequences first disclosed in SEQ
ID NOS:1-3 provides detailed information about transcriptional changes involved in a specific pathway, potentially leading to the identification of novel components or gene functions that manifest themselves as novel phenotypes.
Probes consisting of sequences first disclosed in SEQ ID
NOS:1-3 can also be used in the identification, selection and validation of novel molecular targets for drug discovery. The use of these unique sequences permits the direct confirmation of drug targets and recognition of drug dependent changes in gene expression that are modulated through pathways distinct from the drugs intended target. These unique sequences therefore also have utility in defining and monitoring both drug action and toxicity.
As an example of utility, the sequences first disclosed in SEQ ID NOS:1-3 can be utilized in microarrays or other assay formats, to screen collections of genetic material from patients who have a particular medical condition. These investigations can also be carried out using the sequences first disclosed in SEQ ID NOS:1-3 in silico and by comparing previously collected genetic databases and the disclosed sequences using computer software known to those in the art.
SUBSTITUTE SHEET (RULE 26) Thus the sequences first disclosed in SEQ ID NOS:1-3 can be used to identify mutations associated with a particular disease and also as a diagnostic or prognostic assay.
Although the presently described sequences have been specifically described using nucleotide sequence, it should be appreciated that each of the sequences can uniquely be described using any of a wide variety of additional structural attributes, or combinations thereof. For example, a given sequence can be described by the net composition of the nucleotides present within a given region of the sequence. in conjunction with the presence of one or more specific oligonucleotide sequence(s) first disclosed in the SEQ ID NOS: 1-3. Alternatively, a restriction map specifying the relative positions of restriction endonuclease digestion sites, or various palindromic or other specific oligonucleotide sequences can be used to structurally describe a given sequence. Such restriction maps, which are typically generated by widely available computer programs (e.g., the University of Wisconsin GCG sequence analysis package, SEQUENCHER 3.0, Gene Codes Corp., Ann Arbor, MI, etc.), can optionally be used in conjunction with one or more discrete nucleotide sequence(s) present in the sequence that can be described by the relative position of the sequence relatve to one or more additional sequence(s) or one or more restriction sites present in the disclosed sequence.
For oligonucleotide probes, highly stringent conditions may refer, e.g., to washing in 6xSSC/0.05% sodium pyrophosphate at 37 C (for 14-base oligos), 48 C (for 17-base oligos), 55 C (for 20-base oligos), and 60 C (for 23-base oligos). These nucleic acid molecules may encode or act as NHP gene antisense molecules, useful, for example, in NHP gene regulation (for and/or as antisense primers in amplification reactions of NHP
gene nucleic acid sequences). With respect to NHP gene regulation, such techniques can be used to regulate biological SUBSTITUTE SHEET (RULE 26) functions. Further, such sequences can be used as part of ribozyme and/or triple helix sequences that are also useful for NHP gene regulation.
Inhibitory antisense or double stranded oligonucleotides can additionally comprise at least one modified base moiety which is selected from the group including but not limited to 5-fluorouracil, 5-bromouracil, 5-chlorouracil, 5-iodouracil, hypoxanthine, xantine, 4-acetylcytosine, 5-(carboxyhydroxylmethyl) uracil, 5-carboxymethylaminomethyl-2-thiouridine, 5-carboxymethylaminomethyluracil, dihydrouracil, beta-D-galactosylqueosine, inosine, N6-isopentenyladenine, 1-methylguanine, 1-methylinosine, 2,2-dimethylguanine, 2-methyladenine, 2-methylguanine, 3-methylcytosine, 5-methylcytosine, N6-adenine, 7-methylguanine, 5-methylaminomethyluracil, 5-methoxyaminomethyl-2-thiouracil, beta-D-mannosylqueosine, 5'-methoxycarboxymethyluracil, 5-methoxyuracil, 2-methylthio-N6-isopentenyladenine, uracil-5-oxyacetic acid (v), wybutoxosine, pseudouracil, queosine, 2-thiocytosine, 5-methyl-2-thiouracil, 2-thiouracil, 4-thiouracil, 5-methyluracil, uracil-5-oxyacetic acid methylester, uracil-5-oxyacetic acid (v), 5-methyl-2-thiouracil, 3-(3-amino-3-N-2-carboxypropyl) uracil, (acp3)w, and 2,6-diaminopurine.
The antisense oligonucleotide can also comprise at least one modified sugar moiety selected from the group including but not limited to arabinose, 2-fluoroarabinose, xylulose, and hexose.
In yet another embodiment, the antisense oligonucleotide will comprise at least one modified phosphate backbone selected from the group consisting of a phosphorothioate, a phosphorodithioate, a phosphoramidothioate, a phosphoramidate, a phosphordiamidate, a methylphosphonate, an alkyl phosphotriester, and a formacetalor analog thereof.
SUBSTITUTE SHEET (RULE 26) In yet another embodiment, the antisense oligonucleotide is an a-anomeric oligonucleotide. An a-anomeric oligonucleotide forms specific double-stranded hybrids with complementary RNA in which, contrary to the usual R-units, the strands run parallel to each other (Gautier et al., 1987, Nucl. Acids Res. 15:6625-6641). The oligonucleotide is a 2'-O-methylribonucleotide (Inoue et al., 1987, Nucl. Acids Res. 15:6131-6148), or a chimeric RNA-DNA analogue (Inoue et al., 1987, FEBS Lett.
215:327-330). Alternatively, double stranded RNA can be used to disrupt the expression and function of a targeted NHP.
Oligonucleotides of the invention can be synthesized by standard methods known in the art, e.g. by use of an automated DNA synthesizer (such as are commercially available from Biosearch, Applied Biosystems, etc.). As examples, phosphorothioate oligonucleotides can be synthesized by the method of Stein et al. (1988, Nucl. Acids Res. 16:3209), and methylphosphonate oligonucleotides can be prepared by use of controlled pore glass polymer supports (Sarin et al., 1988, Proc. Natl. Acad. Sci. U.S.A. 85:7448-7451), etc.

Low stringency conditions are well known to those of skill in the art, and will vary predictably depending on the specific organisms from which the library and the labeled sequences are derived. For guidance regarding such conditions see, for example, Sambrook at al., 1989, Molecular Cloning, A Laboratory Manual (and periodic updates thereof), Cold Springs Harbor Press, N.Y.; and Ausubel at al., 1989, Current Protocols in Molecular Biology, Green Publishing Associates and Wiley Interscience, N.Y.
Alternatively, suitably labeled NHP nucleotide probes can be used to screen a human genomic library using appropriately stringent conditions or by PCR. The identification and characterization of human genomic clones is helpful for SUBSTITUTE SHEET (RULE 26) identifying polymorphisms (including, but not limited to, nucleotide repeats, microsatellite alleles, single nucleotide polymorphisms, or coding single nucleotide polymorphisms), determining the genomic structure of a given locus/allele, and designing diagnostic tests. For example, sequences derived from regions adjacent to the intron/exon boundaries of the human gene can be used to design primers for use in amplification assays to detect mutations within the exons, introns, splice sites (e.g., splice acceptor and/or donor sites), etc., that can be used in diagnostics and pharmacogenomics.
Further, a NHP gene homolog can be isolated from nucleic acid from an organism of interest by performing PCR using two degenerate or "wobble" oligonucleotide primer pools designed on the basis of amino acid sequences within the NHP products disclosed herein. The template for the reaction may be total RNA, mRNA, and/or cDNA obtained by reverse transcription of mRNA
prepared from, for example, human or non-human cell lines or tissue, such as prostate, rectum, colon, or adrenal gland, known or suspected to express an allele of a NHP gene.
The PCR product can be subcloned and sequenced to ensure that the amplified sequences represent the sequence of the desired NHP gene. The PCR fragment can then be used to isolate a full length cDNA clone by a variety of methods. For example, the amplified fragment can be labeled and used to screen a cDNA
library, such as a bacteriophage cDNA library. Alternatively, the labeled fragment can be used to isolate genomic clones via the screening of a genomic library.
PCR technology can also be used to isolate full length cDNA
sequences. For example, RNA can be isolated, following standard procedures, from an appropriate cellular or tissue source (i.e., one known, or suspected, to express a NHP sequence, such as, for example, testis tissue). A reverse transcription (RT) reaction can be performed on the RNA using an oligonucleotide primer SUBSTITUTE SHEET (RULE 26) specific for the most 5' end of the amplified fragment for the priming of first strand synthesis. The resulting RNA/DNA hybrid may then be "tailed" using a standard terminal transferase reaction, the hybrid may be digested with RNase H, and second strand synthesis may then be primed with a complementary primer.
Thus, cDNA sequences upstream of the amplified fragment can be isolated. For a review of cloning strategies that can be used, see e.g., Sambrook et al., 1989, supra.

A cDNA encoding a mutant NHP gene can be isolated, for example, by using PCR. In this case, the first cDNA strand may be synthesized by hybridizing an oligo-dT oligonucleotide to mRNA isolated from tissue known or suspected to be expressed in an individual putatively carrying a mutant NHP allele, and by extending the new strand with reverse transcriptase. The second strand of the cDNA is then synthesized using an oligonucleotide that hybridizes specifically to the 5' end of the normal gene.
Using these two primers, the product is then amplified via PCR, optionally cloned into a suitable vector, and subjected to DNA
sequence analysis through methods well known to those of skill in the art. By comparing the DNA sequence of the mutant NHP
allele to that of a corresponding normal NHP allele, the mutation(s) responsible for the loss or alteration of function of the mutant NHP gene product can be ascertained.
Alternatively, a genomic library can be constructed using DNA obtained from an individual suspected of or known to carry a mutant NHP allele (e.g., a person manifesting a NHP-associated phenotype such as, for example, immune disorders, obesity, high blood pressure, etc.), or a cDNA library can be constructed using RNA from a tissue known, or suspected, to express a mutant NHP allele. A normal NHP gene, or any suitable fragment thereof, can then be labeled and used as a probe to identify the corresponding mutant NHP allele in such libraries. Clones containing mutant NHP gene sequences can then be purified and SUBSTITUTE SHEET (RULE 26) subjected to sequence analysis according to methods well known to those skilled in the art.
Additionally, an expression library can be constructed utilizing cDNA synthesized from, for example, RNA isolated from a tissue known, or suspected, to express a mutant NHP allele in an individual suspected of or known to carry such a mutant allele. In this manner, gene products made by the putatively mutant tissue may be expressed and screened using standard antibody screening techniques in conjunction with antibodies raised against a normal NHP product, as described below. (For screening techniques, see, for example, Harlow, E. and Lane, eds., 1988, "Antibodies: A Laboratory Manual", Cold Spring Harbor Press, Cold Spring Harbor.) Additionally, screening can be accomplished by screening with labeled NHP fusion proteins, such as, for example, alkaline phosphatase-NHP or NHP-alkaline phosphatase fusion proteins. In cases where a NHP mutation results in an expressed gene product with altered function (e.g., as a result of a missense or a frameshift mutation), polyclonal antibodies to a NHP are likely to cross-react with a corresponding mutant NHP gene product. Library clones detected via their reaction with such labeled antibodies can be purified and subjected to sequence analysis according to methods well known in the art.
An additional application of the described novel human polynucleotide sequences is their use in the molecular mutagenesis/evolution of proteins that are at least partially encoded by the described novel sequences using, for example, polynucleotide shuffling or related methodologies. Such approaches are described in U.S. Patents Nos. 5,830,721 and 5,837,458 The invention also encompasses (a) DNA vectors that contain any of the foregoing NHP coding sequences and/or their SUBSTITUTE SHEET (RULE 26) I
complements (i.e., antisense); (b) DNA expression vectors that contain any of the foregoing NHP coding sequences operatively associated with a regulatory element that directs the expression of the coding sequences (for example, baculo virus as described in U.S. Patent No. 5,869,336 );
(c) genetically engineered host cells that contain any of the foregoing NHP coding sequences operatively associated with a regulatory element that directs the expression of the coding sequences in the host cell; and (d) genetically engineered host cells that express an endogenous NHP gene under the control of an exogenously introduced regulatory element (i.e., gene activation).As used herein, regulatory elements include, but are not limited to, inducible and non-inducible promoters, enhancers, operators and other elements known to those skilled in the art that drive and regulate expression. Such regulatory elements include but are not limited to the cytomegalovirus (hCMV) immediate early gene, regulatable, viral elements (particularly retroviral LTR promoters), the early or late promoters of SV40 adenovirus, the lac system, the trp system, the TAC system, the TRC system, the major operator and promoter regions of phage lambda, the control regions of fd coat protein, the promoter for 3-phosphoglycerate kinase (PGK), the promoters of acid phosphatase, and the promoters of the yeast a-mating factors.
Where, as in the present instance, some of the described NHP peptides or polypeptides are thought to be cytoplasmic proteins, expression systems can be engineered that produce soluble derivatives of a NHP (corresponding to a NHP
extracellular and/or intracellular domains, or truncated polypeptides lacking one or more hydrophobic domains) and/or NHP
fusion protein products (especially NHP-Ig fusion proteins, i.e., fusions of a NHP domain to an IgFc), NHP antibodies, and anti-idiotypic antibodies (including Fab fragments) that can be SUBSTITUTE SHEET (RULE 26) used in therapeutic applications. Preferably, the above expression systems are engineered to allow the desired peptide or polypeptide to be recovered from the culture media.
The present invention also encompasses antibodies and anti-idiotypic antibodies (including Fab fragments), antagonists and agonists of the NHP, as well as compounds or nucleotide constructs that inhibit expression of a NHP gene (transcription factor inhibitors, antisense and ribozyme molecules, or gene or regulatory sequence replacement constructs), or promote the expression of a NHP (e.g., expression constructs in which NHP
coding sequences are operatively associated with expression control elements such as promoters, promoter/enhancers, etc.).

The NHPs or NHP peptides, NHP fusion proteins, NHP
nucleotide sequences, antibodies, antagonists and agonists can be useful for the detection of mutant NHPs or inappropriately expressed NHPs for the diagnosis of disease. The NHP proteins or peptides, NHP fusion proteins, NHP nucleotide sequences, host cell expression systems, antibodies, antagonists, agonists and genetically engineered cells and animals can be used for screening for drugs (or high throughput screening of combinatorial libraries) effective in the treatment of the symptomatic or phenotypic manifestations of perturbing the normal function of NHP in the body. The use of engineered host cells and/or animals can offer an advantage in that such systems allow not only for the identification of compounds that bind to the endogenous receptor/ligand of a NHP, but can also identify compounds that trigger NHP-mediated activities or pathways.
Finally, the NHP products can be used as therapeutics. For example, soluble derivatives such as NHP peptides/domains corresponding the NHPs, NHP fusion protein products (especially NHP-Ig fusion proteins, i.e., fusions of a NHP, or a domain of a NHP, to an IgFc), NHP antibodies and anti-idiotypic antibodies (including Fab fragments), antagonists or agonists (including SUBSTITUTE SHEET (RULE 26) compounds that modulate or act on downstream targets in a NHP-mediated pathway) can be used to directly treat diseases or disorders. For instance, the administration of an effective amount of soluble NHP, or a NHP-IgFc fusion protein or an anti-idiotypic antibody (or its Fab) that mimics the NHP could activate or effectively antagonize the endogenous NHP or a protein interactive therewith. Nucleotide constructs encoding such NHP products can be used to genetically engineer host cells to express such products in vivo; these genetically engineered cells function as "bioreactors" in the body delivering a continuous supply of a NHP, a NHP peptide, or a NHP fusion protein to the body. Nucleotide constructs encoding functional NHPs, mutant NHPs, as well as antisense and ribozyme molecules can also be used in "gene therapy" approaches for the modulation of NHP expression. Thus, the invention also encompasses pharmaceutical formulations and methods for treating biological disorders.
Various aspects of the invention are described in greater detail in the subsections below.
5.1 THE NHP SEQUENCES
The cDNA sequence and the corresponding deduced amino acid sequence of the described NHP are presented in the Sequence Listing. The NHP nucleotide sequences were obtained from a human cDNA library using probes and/or primers generated from human gene trapped sequence tags.
Expression analysis has provided evidence that the described NHPs can be expressed in human tissues as well as gene trapped human cells. Given the strong homology to casein kinase I gamma isoforms, the described NHP may represent the human ortholog of such proteins that are present in other mammals. In addition to the serine/threonine kinases, the described NHPs also share significant similarity to a range of additional SUBSTITUTE SHEET (RULE 26) kinase families from a range of phyla and species. Given the physiological importance of protein kinases, they have been subject to intense scrutiny as exemplified and discussed in U.S.
Patent Nos. 5,756,289 and 5,817,479 .
5.2 NHP AND NHP POLYPEPTIDES
NHPs, polypeptides, peptide fragments, mutated, truncated, or deleted forms of the NHPs, and/or NHP fusion proteins can be prepared for a variety of uses. These uses include, but are not limited to, the generation of antibodies, as reagents in diagnostic assays, for the identification of other cellular gene products related to a NHP, as reagents in assays for screening for compounds that can be as pharmaceutical reagents useful in the therapeutic treatment of mental, biological, or medical disorders and disease.
The Sequence Listing discloses the amino acid sequence encoded by the described NHP-encoding polynucleotides. The NHP
has an initiator methionine in a DNA sequence context consistent with eucaryotic translation initiation site.
The NHP amino acid sequence of the invention include the amino acid sequence presented in the Sequence Listing as well as analogues and derivatives thereof. Further, corresponding NHP
homologues from other species are encompassed by the invention.
In fact, any NHP protein encoded by the NHP nucleotide sequences described above are within the scope of the invention, as are.
any novel polynucleotide sequences encoding all or any novel portion of an amino acid sequence presented in the Sequence Listing. The degenerate nature of the genetic code is well known, and, accordingly, each amino acid presented in the Sequence Listing, is generically representative of the well known nucleic acid "triplet" codon, or in many cases codons, that can encode the amino acid. As such, as contemplated SUBSTITUTE SHEET (RULE 26) herein, the amino acid sequences presented in the Sequence Listing, when taken together with the genetic code (see, for example, Table 4-1 at page 109 of "Molecular Cell Biology", 1986, J. Darnell et al. eds., Scientific American Books, New York, NY ) are generically representative of all the various permutations and combinations of nucleic acid sequences that can encode such amino acid sequences.
The invention also encompasses proteins that are functionally equivalent to the NHPs encoded by the presently described nucleotide sequences as judged by any of a number of criteria, including, but not limited to, the ability to bind and modify a NHP substrate, or the ability to effect an identical or complementary downstream pathway, or a change in cellular metabolism (e.g., proteolytic activity, ion flux, tyrosine phosphorylation, etc.). Such functionally equivalent NHP
proteins include, but are not limited to, additions or substitutions of amino acid residues within the amino acid sequence encoded by the NHP nucleotide sequences described above, but which result in a silent change, thus producing a functionally equivalent gene product. Amino acid substitutions may be made on the basis of similarity in polarity, charge, solubility, hydrophobicity, hydrophilicity, and/or the amphipathic nature of the residues involved. For example, nonpolar (hydrophobic) amino acids include alanine, leucine, isoleucine, valine, proline, phenylalanine, tryptophan, and methionine; polar neutral amino acids include glycine, serine, threonine, cysteine, tyrosine, asparagine, and glutamine;
positively charged (basic) amino acids include arginine, lysine, and histidine; and negatively charged (acidic) amino acids include aspartic acid and glutamic acid.
A variety of host-expression vector systems can be used to express the NHP nucleotide sequences of the invention. Where SUBSTITUTE SHEET (RULE 26) the NHP peptide or polypeptide can exist, or has been engineered to exist, as a soluble or secreted molecule, the soluble NHP
peptide or polypeptide can be recovered from the culture media.
Such expression systems also encompass engineered host cells that express a NHP, or functional equivalent, in situ.
Purification or enrichment of a NHP from such expression systems can be accomplished using appropriate detergents and lipid micelles and methods well known to those skilled in the art.
However, such engineered host cells themselves may be used in situations where it is important not only to retain the structural and functional characteristics of the NHP, but to assess biological activity, e.g., in drug screening assays.

The expression systems that may be used for purposes of the invention include but are not limited to microorganisms such as bacteria (e.g., E. soli, B. subtilis) transformed with recombinant bacteriophage DNA, plasmid DNA or cosmid DNA expres-sion vectors containing NHP nucleotide sequences; yeast (e.g., Saccharomyces, Pichia) transformed with recombinant yeast expression vectors containing NHP nucleotide sequences; insect cell systems infected with recombinant virus expression vectors (e.g., baculovirus) containing NHP sequences; plant cell systems infected with recombinant virus expression vectors (e.g., cauliflower mosaic virus, CaMV; tobacco mosaic virus, TMV) or transformed with recombinant plasmid expression vectors (e.g., Ti plasmid) containing NHP nucleotide sequences; or mammalian cell systems (e.g., COS, CHO, BHK, 293, 3T3) harboring recombinant expression constructs containing promoters derived from the genome of mammalian cells (e.g., metallothionein promoter) or from mammalian viruses (e.g., the adenovirus late promoter; the vaccinia virus 7.5K promoter).
In bacterial systems, a number of expression vectors may be advantageously selected depending upon the use intended for the SUBSTITUTE SHEET (RULE 26) NHP product being expressed. For example, when a large quantity of such a protein is to be produced for the generation of pharmaceutical compositions of or containing NHP, or for raising antibodies to a NHP, vectors that direct the expression of high levels of fusion protein products that are readily purified may be desirable. Such vectors include, but are not limited, to the E. coli expression vector pUR278 (Ruther et al., 1983, EMBO J.
2:1791), in which a NHP coding sequence may be ligated individually into the vector in frame with the lacZ coding region so that a fusion protein is produced; pIN vectors (Inouye & Inouye, 1985, Nucleic Acids Res. 13:3101-3109; Van Heeke &
Schuster, 1989, J. Biol. Chem. 264:5503-5509); and the like.
pGEX vectors may also be used to express foreign polypeptides as fusion proteins with glutathione S-transferase (GST). In general, such fusion proteins are soluble and can easily be purified from lysed cells by adsorption to glutathione-agarose beads followed by elution in the presence of free glutathione.
The PGEX vectors are designed to include thrombin or factor Xa protease cleavage sites so that the cloned target gene product can be released from the GST moiety.
In an insect system, Autographa californica nuclear polyhidrosis virus (AcNPV) is used as a vector to express foreign genes. The virus grows in Spodoptera frugiperda cells.
A NHP encoding polynucleotide sequence can be cloned individually into non-essential regions (for example the polyhedrin gene) of the virus and placed under control of an AcNPV promoter (for example the polyhedrin promoter).
Successful insertion of NHP coding sequence will result in inactivation of the polyhedrin gene and production of non-occluded recombinant virus (i.e., virus lacking the proteinaceous coat coded for by the polyhedrin gene). These recombinant viruses are then used to infect Spodoptera SUBSTITUTE SHEET (RULE 26) frugiperda cells in which the inserted sequence is expressed (e.g., see Smith et al., 1983, J. Virol. 46: 584; Smith, U.S.
Patent No. 4,215,051).
In mammalian host cells, a number of viral-based expression systems may be utilized. In cases where an adenovirus is used as an expression vector, the NHP nucleotide sequence of interest may be ligated to an adenovirus transcription/translation control complex, e.g., the late promoter and tripartite leader sequence. This chimeric sequence can then be inserted in the adenovirus genome by in vitro or in vivo recombination. Inser-tion in a non-essential region of the viral genome (e.g., region El or E3) will result in a recombinant virus that is viable and capable of expressing a NHP product in infected hosts (e.g., See Logan & Shenk, 1984, Proc. Natl. Acad. Sci. USA 81:3655-3659). Specific initiation signals may also be required for efficient translation of inserted NHP nucleotide sequences.
These signals include the ATG initiation codon and adjacent sequences. In cases where an entire NHP gene or cDNA, including its own initiation codon and adjacent sequences, is inserted into the appropriate expression vector, no additional translational control signals may be needed. However, in cases where only a portion of a NHP coding sequence is inserted, exogenous translational control signals, including, perhaps, the ATG initiation codon, must be provided. Furthermore, the initiation codon must be in phase with the reading frame of the desired coding sequence to ensure translation of the entire insert. These exogenous translational control signals and initiation codons can be of a variety of origins, both natural and synthetic. The efficiency of expression may be enhanced by the inclusion of appropriate transcription enhancer elements, transcription terminators, etc. (See Bittner at al., 1987, Methods in Enzymol. 153:516-544).

SUBSTITUTE SHEET (RULE 26) In addition, a host cell strain may be chosen that modulates the expression of the inserted sequences, or modifies and processes the gene product in the specific fashion desired.
Such modifications (e.g., glycosylation) and processing (e.g., cleavage) of protein products may be important for the function of the protein. Different host cells have characteristic and specific mechanisms for the post-translational processing and modification of proteins and gene products. Appropriate cell lines or host systems can be chosen to ensure the correct modification and processing of the foreign protein expressed.
To this end, eukaryotic host cells which possess the cellular machinery for proper processing of the primary transcript, glycosylation, and phosphorylation of the gene product may be used. Such mammalian host cells include, but are not limited to, CHO, VERO, BHK, HeLa, COS, MDCK, 293, 3T3, W138, and in particular, human cell lines.
For long-term, high-yield production of recombinant proteins, stable expression is preferred. For example, cell lines which stably express the NHP sequences described above can be engineered. Rather than using expression vectors which contain viral origins of replication, host cells can be transformed with DNA controlled by appropriate expression control elements (e.g., promoter, enhancer sequences, transcription terminators, polyadenylation sites, etc.), and a selectable marker. Following the introduction of the foreign DNA, engineered cells may be allowed to grow for 1-2 days in an enriched media, and then are switched to a selective media. The selectable marker in the recombinant plasmid confers resistance to the selection and allows cells to stably integrate the plasmid into their chromosomes and grow to form foci which in turn can be cloned and expanded into cell lines. This method may advantageously be used to engineer cell lines which express the NHP product. Such engineered cell lines may be particularly SUBSTITUTE SHEET (RULE 26) useful in screening and evaluation of compounds that affect the endogenous activity of the NHP product.
A number of selection systems can be used, including but not limited to the herpes simplex virus thymidine kinase (Wigler, et al., 1977, Cell 11:223), hypoxanthine-guanine phosphoribosyltransferase (Szybalska & Szybalski, 1962, Proc.
Natl. Acad. Sci. USA 48:2026), and adenine phosphoribosyltransferase (Lowy, et al., 1980, Cell 22:817) genes can be employed in tk-, hgprt- or aprt- cells, respectively. Also, antimetabolite resistance can be used as the basis of selection for the following genes: dhfr, which confers resistance to methotrexate (Wigler, et al., 1980, Natl.
Acad. Sci. USA 77:3567; O'Hare, et al., 1981, Proc. Natl. Acad.
Sci. USA 78:1527); gpt, which confers resistance to mycophenolic acid (Mulligan & Berg, 1981, Proc. Natl. Acad. Sci. USA
78:2072); neo, which confers resistance to the aminoglycoside G-418 (Colberre-Garapin, et al., 1981, J. Mol. Biol. 150:1); and hygro, which confers resistance to hygromycin (Santerre, et al., 1984, Gene 30:147).

Alternatively, any fusion protein can be readily purified by utilizing an antibody specific for the fusion protein being expressed. For example, a system described by Janknecht et al.
allows for the ready purification of non-denatured fusion proteins expressed in human cell lines (Janknecht, et al., 1991, Proc. Natl. Acad. Sci. USA 88:8972-8976). In this system, the sequence of interest is subcloned into a vaccinia recombination plasmid such that the gene's open reading frame is translationally fused to an amino-terminal tag consisting of six histidine residues. Extracts from cells infected with recombinant vaccinia virus are loaded onto Ni2+ nitriloacetic acid-agarose columns and histidine-tagged proteins are selectively eluted with imidazole-containing buffers.

SUBSTITUTE SHEET (RULE 26) Also encompassed by the present invention are fusion proteins that direct the NHP to a target organ and/or facilitate transport across the membrane into the cytosol.
Conjugation of NHPs to antibody molecules or their Fab fragments could be used to target cells bearing a particular epitope.
Attaching the appropriate signal sequence to the NHP would also transport the NHP to the desired location within the cell.
Alternatively targeting of NHP or its nucleic acid sequence might be achieved using liposome or lipid complex based delivery systems. Such technologies are described in Liposomes:A Practical Approach, New,RRC ed., Oxford University Press, New York and in U.S. Patents Nos. 4,594,595, 5,459,127, 5,948,767 and 6,110,490 Additionally embodied are novel protein constructs engineered in such a way that they facilitate transport of the NHP to the target site or desired organ, where they cross the cell membrane and/or the nucleus where the NHP can exert its functional activity. This goal may be achieved by coupling of the NHP to a cytokine or other ligand that provides targeting specificity, and/or to a protein transducing domain to facilitate passage across cellular membranes and can optionally be engineered to include nuclear localization sequences.

5.3 ANTIBODIES TO;NHP PRODUCTS
Antibodies that specifically recognize one or more epitopes of a NHP, or epitopes of conserved variants of a NHP, or peptide fragments of a NHP are also encompassed by the invention. Such antibodies include but are not limited to polyclonal antibodies, monoclonal antibodies (mAbs), humanized or chimeric antibodies, SUBSTITUTE SHEET (RULE 26) single chain antibodies, Fab fragments, F(ab')2 fragments, fragments produced by a Fab expression library, anti-idiotypic (anti-Id) antibodies, and epitope-binding fragments of any of the above.
The antibodies of the invention can be used, for example, in the detection of NHP in a biological sample and may, therefore, be utilized as part of a diagnostic or prognostic technique whereby patients may be tested for abnormal amounts of NHP. Such antibodies may also be utilized in conjunction with, for example, compound screening schemes for the evaluation of the effect of test compounds on expression and/or activity of a NHP gene product. Additionally, such antibodies can be used in conjunction gene therapy to, for example, evaluate the normal and/or engineered NHP-expressing cells prior to their introduction into the patient. Such antibodies may additionally be used as a method for the inhibition of abnormal NHP activity.
Thus, such antibodies may, therefore, be utilized as part of treatment methods.
For the production of antibodies, various host animals may be immunized by injection with the NHP, an NHP peptide (e.g., one corresponding to a functional domain of an NHP), truncated NHP polypeptides (NHP in which one or more domains have been deleted), functional equivalents of the NHP or mutated variant of the NHP. Such host animals may include but are not limited to pigs, rabbits, mice, goats, and rats, to name but a few.
Various adjuvants may be used to increase the immunological response, depending on the host species, including but not limited to Freund's adjuvant (complete and incomplete), mineral salts such as aluminum hydroxide or aluminum phosphate, surface active substances such as lysolecithin, pluronic polyols, polyanions, peptides, oil emulsions, and potentially useful human adjuvants such as BCG (bacille Calmette-Guerin) and Corynebacterium parvum. Alternatively, the immune response could SUBSTITUTE SHEET (RULE 26) be enhanced by combination and or coupling with molecules such as keyhole limpet hemocyanin, tetanus toxoid, diptheria toxoid, ovalbumin, cholera toxin or fragments thereof. Polyclonal antibodies are heterogeneous populations of antibody molecules derived from the sera of the immunized animals.
Monoclonal antibodies, which are homogeneous populations of antibodies to a particular antigen, can be obtained by any technique which provides for the production of antibody molecules by continuous cell lines in culture. These include, but are not limited to, the hybridoma technique of Kohler and Milstein, (1975, Nature 256:495-497; and U.S. Patent No.
4,376,110), the human B-cell hybridoma technique (Kosbor et al., 1983, Immunology Today 4:72; Cole et al., 1983, Proc. Natl.
Acad. Sci. USA 80:2026-2030), and the EBV-hybridoma technique (Cole et al., 1985, Monoclonal Antibodies And Cancer Therapy, Alan R. Liss, Inc., pp. 77-96). Such antibodies may be of any immunoglobulin class including IgG, IgM, IgE, IgA, IgD and any subclass thereof. The hybridoma producing the mAb of this invention may be cultivated in vitro or in vivo. Production of high titers of mAbs in vivo makes this the presently preferred method of production.
In addition, techniques developed for the production of "chimeric antibodies" (Morrison et al., 1984, Proc. Natl. Acad.
Sci., 81:6851-6855; Neuberger et al., 1984, Nature, 312:604-608;

Takeda et al., 1985, Nature, 314:452-454) by splicing the sequences from a mouse antibody molecule of appropriate antigen specificity together with sequences from a human antibody molecule of appropriate biological activity can be used. A
chimeric antibody is a molecule in which different portions are derived from different animal species, such as those having a variable region derived from a murine mAb and a human immunoglobulin constant region. Such technologies are described SUBSTITUTE SHEET (RULE 26) in U.S. Patents Nos. 6,075,181 and 5,877,397 Also favored is the production of fully humanized monoclonal antibodies as described in US Patent No. 6,150,584 Alternatively, techniques described for the production of single chain antibodies (U.S. Patent 4,946,778; Bird, 1988, Science 242:423-426; Huston et al., 1988, Proc. Natl. Acad. Sci.
USA 85:5879-5883; and Ward et al., 1989, Nature 334:544-546) can be adapted to produce single chain antibodies against NHP gene products. Single chain antibodies are formed by linking the heavy and light chain fragments of the Fv region via an amino acid bridge, resulting in a single chain polypeptide.
Antibody fragments which recognize specific epitopes may be generated by known techniques. For example, such fragments include, but are not limited to: the F(ab')2 fragments which can be produced by pepsin digestion of the antibody molecule and the Fab fragments which can be generated by reducing the disulfide bridges of the F(ab')2 fragments. Alternatively, Fab expression libraries may be constructed (Huse et al., 1989, Science, 246:1275-1281) to allow rapid and easy identification of monoclonal Fab fragments with the desired specificity.
Antibodies to a NHP can, in turn, be utilized to generate anti-idiotype antibodies that "mimic" a given NHP, using techniques well known to those. skilled in the art. (See, e.g., Greenspan & Bona, 1993, FASEB J 7(5):437-444; and Nissinoff, 1991, J. Immunol. 147(8):2429-2438). For example antibodies which bind to a NHP domain and competitively inhibit the binding of NHP to its cognate receptor/ligand can be used to generate anti-idiotypes that "mimic" the NHP and, therefore, bind, activate, or neutralize a NHP, NHP receptor, or NHP ligand.

SUBSTITUTE SHEET (RULE 26) ' T"

Such anti-idiotypic antibodies or Fab fragments of such anti-idiotypes can be used in therapeutic regimens involving a NHP
mediated pathway.
The present invention is not to be limited in scope by the specific embodiments described herein, which are intended as single illustrations of individual aspects of the invention, and functionally equivalent methods and components are within the scope of the invention. Indeed, various modifications of the invention, in addition to those shown and described herein will become apparent to those skilled in the art from the foregoing description. Such modifications are intended to fall within the scope of the appended claims.

SUBSTITUTE SHEET (RULE 26) SEQUENCE LISTING
<110> LEXICON GENETICS INCORPORATED

<120> Novel Human Kinase Protein and Polynucleotides Encoding the Same <130> 15240-15CA FC/gc <150> PCT/USO1/02120 <151> 2001-01-18 <150> US 60/176,690 <151> 2000-01-18 <160> 3 <170> FastSEQ for Windows Version 4.0 <210> 1 <211> 1269 <212> DNA
<213> Homo sapiens <400> 1 atggaccatc ctagtaggga aaaggatgaa agacaacgga caactaaacc catggcacaa 60 aggagtgcac actgctctcg accatctggc tcctcatcgt cctctggggt tcttatggtg 120 ggacccaact tcagggttgg caagaagata ggatgtggga acttcggaga gctcagatta 180 ggtaaaaatc tctacaccaa tgaatatgta gcaatcaaac tggaaccaat aaaatcacgt 240 gctccacagc ttcatttaga gtacagattt tataaacagc ttggcagtgc aggtgaaggt 300 ctcccacagg tgtattactt tggaccatgt gggaaatata atgccatggt gctggagctc 360 cttggcccta gcttggagga cttgtttgac ctctgtgacc gaacatttac tttgaagacg 420 gtgttaatga tagccatcca gctgctttct cgaatggaat acgtgcactc aaagaacctc 480 atttaccgag atgtcaagcc agagaacttc ctgattggtc gacaaggcaa taagaaagag 540 catgttatac acattataga ctttggactg gccaaggaat acattgaccc cgaaaccaaa 600 aaacacatac'cttataggga acacaaaagt ttaactggaa ctgcaagata tatgtctatc 660 aacacgcatc ttggcaaaga gcaaagccgg agagatgatt tggaagccct aggccatatg 720 ttcatgtatt tccttcgagg cagcctcccc tggcaaggac tcaaggctga cacattaaaa 780 gagagatatc aaaaaattgg tgacaccaaa aggaatactc ccattgaagc tctctgtgag 840 aactttccag aggagatggc aacctacctt cgatatgtca ggcgactgga cttctttgaa 900 aaacctgatt atgagtattt acggaccctc ttcacagacc tctttgaaaa gaaaggctac 960 acctttgact atgcctatga ttgggttggg agacctattc ctactccagt agggtcagtt 1020 cacgtagatt ctggtgcatc tgcaataact cgagaaagcc acacacatag ggatcggcca 1080 tcacaacagc agcctcttcg aaatcaggtg gttagctcaa ccaatggaga gctgaatgtt 1140 gatgatccca cgggagccca ctccaatgca ccaatcacag ctcatgccga ggtggaggta 1200 gtggaggaag ctaagtgctg ctgtttcttt aagaggaaaa ggaagaagac tgctcagcgc 1260 cacaagtga 1269 <210> 2 <211> 422 <212> PRT
<213> Homo sapiens 28a <400> 2 Met Asp His Pro Ser Arg Glu Lys Asp Glu Arg Gln Arg Thr Thr Lys Pro Met Ala Gln Arg Ser Ala His Cys Ser Arg Pro Ser Gly Ser Ser Ser Ser Ser Gly Val Leu Met Val Gly Pro Asn Phe Arg Val Gly Lys Lys Ile Gly Cys Gly Asn Phe Gly Glu Leu Arg Leu Gly Lys Asn Leu Tyr Thr Asn Glu Tyr Val Ala Ile Lys Leu Glu Pro Ile Lys Ser Arg Ala Pro Gin Leu His Leu Glu Tyr Arg Phe Tyr Lys Gln Leu Gly Ser Ala Gly Glu Gly Leu Pro Gln Val Tyr Tyr Phe Gly Pro Cys Gly Lys Tyr Asn Ala Met Val Leu Glu Leu Leu Gly Pro Ser Leu Glu Asp Leu Phe Asp Leu Cys Asp Arg Thr Phe Thr Leu Lys Thr Val Leu Met Ile Ala Ile Gln Leu Leu Ser Arg Met Glu Tyr Val His Ser Lys Asn Leu Ile Tyr Arg Asp Val Lys Pro Glu Asn Phe Leu Ile Gly Arg Gln Gly Asn Lys Lys Glu His Val Ile His Ile Ile Asp Phe Gly Leu Ala Lys Glu Tyr Ile Asp Pro Glu Thr Lys Lys His Ile Pro Tyr Arg Glu His Lys Ser Leu Thr Gly Thr Ala Arg Tyr Met Ser Ile Asn Thr His Leu Gly Lys Glu Gln Ser Arg Arg Asp Asp Leu Glu Ala Leu Gly His Met Phe Met Tyr Phe Leu Arg Gly Ser Leu Pro Trp Gln Gly Leu Lys Ala Asp Thr Leu Lys Glu Arg Tyr Gln Lys Ile Gly Asp Thr Lys Arg Asn Thr Pro Ile Glu Ala Leu Cys Glu Asn Phe Pro Glu Glu Met Ala Thr Tyr Leu Arg Tyr Val Arg Arg Leu Asp Phe Phe Glu Lys Pro Asp Tyr Glu Tyr Leu Arg Thr Leu Phe Thr Asp Leu Phe Glu Lys Lys Gly Tyr Thr Phe Asp Tyr Ala Tyr Asp Trp Val Gly Arg Pro Ile Pro Thr Pro Val Gly Ser Val His Val Asp Ser Gly Ala Ser Ala Ile Thr Arg Glu Ser His Thr His Arg Asp Arg Pro Ser Gln Gln Gln Pro Leu Arg Asn Gln Val Val Ser Ser Thr Asn Gly Glu Leu Asn Val Asp Asp Pro Thr Gly Ala His Ser Asn Ala Pro Ile Thr Ala His Ala Glu Val Glu Val Val Glu Glu Ala Lys Cys Cys Cys Phe Phe Lys Arg Lys Arg Lys Lys Thr Ala Gln Arg His Lys 28b <210> 3 <211> 1968 <212> DNA
<213> Homo sapiens <400> 3 atactgaagc tacttgctgt actataggag agctctgtcc tgtaggatca tggaccatcc 60 tagtagggaa aaggatgaaa gacaacggac aactaaaccc atggcacaaa ggagtgcaca 120 ctgctctcga ccatctggct cctcatcgtc ctctggggtt cttatggtgg gacccaactt 180 cagggttggc aagaagatag gatgtgggaa cttcggagag ctcagattag gtaaaaatct 240 ctacaccaat gaatatgtag caatcaaact ggaaccaata aaatcacgtg ctccacagct 300 tcatttagag tacagatttt ataaacagct tggcagtgca ggtgaaggtc tcccacaggt 360 gtattacttt ggaccatgtg ggaaatataa tgccatggtg ctggagctcc ttggccctag 420 cttggaggac ttgtttgacc tctgtgaccg aacatttact ttgaagacgg tgttaatgat 480 agccatccag ctgctttctc gaatggaata cgtgcactca aagaacctca tttaccgaga 540 tgtcaagcca gagaacttcc tgattggtcg acaaggcaat aagaaagagc atgttataca 600 cattatagac tttggactgg ccaaggaata cattgacccc gaaaccaaaa aacacatacc 660 ttatagggaa cacaaaagtt taactggaac tgcaagatat atgtctatca acacgcatct 720 tggcaaagag caaagccgga gagatgattt ggaagcccta ggccatatgt tcatgtattt 780 ccttcgaggc agcctcccct ggcaaggact caaggctgac acattaaaag agagatatca 840 aaaaattggt gacaccaaaa ggaatactcc cattgaagct ctctgtgaga actttccaga 900 ggagatggca acctaccttc gatatgtcag gcgactggac ttctttgaaa aacctgatta 960 tgagtattta cggaccctct tcacagacct ctttgaaaag aaaggctaca cctttgacta 1020 tgcctatgat tgggttggga gacctattcc tactccagta gggtcagttc acgtagattc 1080 tggtgcatct gcaataactc gagaaagcca cacacatagg gatcggccat cacaacagca 1140 gcctcttcga aatcaggtgg ttagctcaac caatggagag ctgaatgttg atgatcccac 1200 gggagcccac tccaatgcac caatcacagc tcatgccgag gtggaggtag tggaggaagc 1260 taagtgctgc tgtttcttta agaggaaaag gaagaagact gctcagcgcc acaagtgacc 1320 agtgcctccc aggagtcctc aggccctggg gactctgact caattgtacc tgcagctcct 1380 gccatttctc attggaaggg actcctcttt gggggagggt ggatatccaa accaaaaaga 1440 agaaaacaga tgcccccaga aggggccagt gcgggcagcc agggcctagt gggtcattgg 1500 ccatctccgc ctgcctaagg ctctgagcag gtcccagagc tgctgttcct ccactgcttg 1560 cccatagggc tgcctggttg actctccttc ccattgttta cagtgaaggt gtcattcaca 1620 aaaactcaag gactgctatt ctccttcttc cccttagttt actcctggtt tttaccccac 1680 cctcaaccct ctccagcata aaacctagtg agctaaaggc tttgtctgca gaaggagatc 1740 aagaggcttg ggggtaaggc caagaaggta ggaggaaaat ggcagacctg ggctggagaa 1800 gaaccttctc cgtatcccag gtgtgcctgg cagtatggtt tcctcttcct ctgtgcctgt 1860 gcagcattca tcccagctgg cccttggagt tcaggttcct tcttccctcc ctcctgtgaa 1920 gttacactgt aggacacaag ctgtgagcaa tctgcagtct actggccc 1968 28c

Claims (5)

WHAT IS CLAIMED IS:
1. An isolated nucleic acid molecule comprising a nucleotide sequence encoding the amino acid sequence shown in SEQ
ID NO:2.
2. The isolated nucleic acid molecule of claim 1, wherein the isolated nucleic acid molecule comprises a nucleotide sequence that:
(a) encodes the amino acid sequence shown in SEQ ID
NO: 2; and (b) hybridizes under stringent conditions to the nucleotide sequence of SEQ ID NO: 1 or the complement thereof, wherein said stringent conditions are consisting of 0.5 M NaHPO4, 7% sodium dodecyl sulfate (SDS), 1 mM EDTA at 65°C, and washing in 0.1x SSC/0.1% SDS at 68°C.
3. The isolated nucleic acid molecule of any one of claims 1 and 2, wherein the isolated nucleic acid molecule comprises the nucleotide sequence described in SEQ ID NO: 1.
4. An expression vector comprising a nucleotide sequence encoding the amino acid sequence shown in SEQ ID NO:2.
5. A cell comprising the expression vector of claim 4.
CA2397789A 2000-01-18 2001-01-18 Novel human kinase protein and polynucleotides encoding the same Expired - Fee Related CA2397789C (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US17669000P 2000-01-18 2000-01-18
US60/176,690 2000-01-18
PCT/US2001/002120 WO2001053493A2 (en) 2000-01-18 2001-01-18 Human kinase protein and polynucleotides encoding the same

Publications (2)

Publication Number Publication Date
CA2397789A1 CA2397789A1 (en) 2001-07-26
CA2397789C true CA2397789C (en) 2010-10-19

Family

ID=22645429

Family Applications (1)

Application Number Title Priority Date Filing Date
CA2397789A Expired - Fee Related CA2397789C (en) 2000-01-18 2001-01-18 Novel human kinase protein and polynucleotides encoding the same

Country Status (6)

Country Link
US (2) US6746861B2 (en)
EP (1) EP1248846A2 (en)
JP (1) JP2004504804A (en)
AU (1) AU784540B2 (en)
CA (1) CA2397789C (en)
WO (1) WO2001053493A2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080050809A1 (en) * 1999-09-28 2008-02-28 Alejandro Abuin Novel human kinases and polynucleotides encoding the same
EP1259620A2 (en) 2000-02-29 2002-11-27 Millennium Pharmaceuticals, Inc. 2504, 15977, and 14760, novel protein kinase family members and uses therefor
AU2003258095A1 (en) * 2002-08-07 2004-02-25 Exelixis, Inc. MP21S AS MODIFIERS OF THE p21 PATHWAY AND METHODS OF USE

Family Cites Families (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4215051A (en) 1979-08-29 1980-07-29 Standard Oil Company (Indiana) Formation, purification and recovery of phthalic anhydride
US4376110A (en) 1980-08-04 1983-03-08 Hybritech, Incorporated Immunometric assays using monoclonal antibodies
DE3301833A1 (en) 1983-01-20 1984-07-26 Gesellschaft für Biotechnologische Forschung mbH (GBF), 3300 Braunschweig METHOD FOR SIMULTANEOUS SYNTHESIS OF SEVERAL OLIGONOCLEOTIDES IN A SOLID PHASE
US4713326A (en) 1983-07-05 1987-12-15 Molecular Diagnostics, Inc. Coupling of nucleic acids to solid support by photochemical methods
US4594595A (en) 1984-04-18 1986-06-10 Sanders Associates, Inc. Circular log-periodic direction-finder array
US4631211A (en) 1985-03-25 1986-12-23 Scripps Clinic & Research Foundation Means for sequential solid phase organic synthesis and methods using the same
US4946778A (en) 1987-09-21 1990-08-07 Genex Corporation Single polypeptide chain binding molecules
US5700637A (en) 1988-05-03 1997-12-23 Isis Innovation Limited Apparatus and method for analyzing polynucleotide sequences and method of generating oligonucleotide arrays
US5744101A (en) 1989-06-07 1998-04-28 Affymax Technologies N.V. Photolabile nucleoside protecting groups
US5143854A (en) 1989-06-07 1992-09-01 Affymax Technologies N.V. Large scale photolithographic solid phase synthesis of polypeptides and receptor binding screening thereof
US5424186A (en) 1989-06-07 1995-06-13 Affymax Technologies N.V. Very large scale immobilized polymer synthesis
US5252743A (en) 1989-11-13 1993-10-12 Affymax Technologies N.V. Spatially-addressable immobilization of anti-ligands on surfaces
US6150584A (en) 1990-01-12 2000-11-21 Abgenix, Inc. Human antibodies derived from immunized xenomice
US6075181A (en) 1990-01-12 2000-06-13 Abgenix, Inc. Human antibodies derived from immunized xenomice
US5264618A (en) 1990-04-19 1993-11-23 Vical, Inc. Cationic lipids for intracellular delivery of biologically active molecules
US5877397A (en) 1990-08-29 1999-03-02 Genpharm International Inc. Transgenic non-human animals capable of producing heterologous antibodies of various isotypes
US6060296A (en) * 1991-07-03 2000-05-09 The Salk Institute For Biological Studies Protein kinases
WO1994017189A2 (en) * 1993-01-21 1994-08-04 The Salk Institute For Biological Studies Protein kinases
US5605793A (en) 1994-02-17 1997-02-25 Affymax Technologies N.V. Methods for in vitro recombination
US5837458A (en) 1994-02-17 1998-11-17 Maxygen, Inc. Methods and compositions for cellular and metabolic engineering
DK0773991T3 (en) 1994-07-15 2004-10-25 Cephalon Inc Active calpain expressed in baculovirus
US5908635A (en) 1994-08-05 1999-06-01 The United States Of America As Represented By The Department Of Health And Human Services Method for the liposomal delivery of nucleic acids
US5556752A (en) 1994-10-24 1996-09-17 Affymetrix, Inc. Surface-bound, unimolecular, double-stranded DNA
US5948767A (en) 1994-12-09 1999-09-07 Genzyme Corporation Cationic amphiphile/DNA complexes
US5817479A (en) * 1996-08-07 1998-10-06 Incyte Pharmaceuticals, Inc. Human kinase homologs

Also Published As

Publication number Publication date
AU3106501A (en) 2001-07-31
WO2001053493A3 (en) 2002-03-07
US20020038009A1 (en) 2002-03-28
US6746861B2 (en) 2004-06-08
JP2004504804A (en) 2004-02-19
US20050170364A1 (en) 2005-08-04
WO2001053493A2 (en) 2001-07-26
CA2397789A1 (en) 2001-07-26
EP1248846A2 (en) 2002-10-16
AU784540B2 (en) 2006-04-27

Similar Documents

Publication Publication Date Title
US6838275B2 (en) Human G-coupled protein receptor kinases and polynucleotides encoding the same
AU2001243521A1 (en) Novel human g-coupled protein receptor kinases and polynucleotides encoding the same
CA2397789C (en) Novel human kinase protein and polynucleotides encoding the same
AU785082B2 (en) Novel human kinase proteins and polynucleotides encoding the same
AU3690801A (en) Human proteases and polynucleotides encoding the same
US6929937B2 (en) Human transferase proteins and polynucleotides encoding the same
CA2402936A1 (en) Human phospholipases and polynucleotides encoding the same
CA2403636A1 (en) Human secreted proteins and polynucleotides encoding the same
AU2001247395A1 (en) Novel human phospholipases and polynucleotides encoding the same
CA2434896A1 (en) Novel human kinases and polynucleotides encoding the same
US20020082406A1 (en) Novel human kinase interacting protein and polynucleotides encoding the same
US20050124802A1 (en) Novel human membrane proteins and polynucleotides encoding the same
CA2400785A1 (en) Novel human kinases and polynucleotides encoding the same
CA2398087A1 (en) Novel human enzymes and polynucleotides encoding the same
WO2001066744A2 (en) Human transporter proteins and polynucleotides encoding the same
AU2093201A (en) Human membrane proteins and polynucleotides encoding the same having Homology to CD20 Proteins and IGE Receptors
AU2001245543A1 (en) Novel human kinase interacting protein and polynucleotides encoding the same
CA2390402A1 (en) Novel human kinase protein and polynucleotides encoding the same

Legal Events

Date Code Title Description
EEER Examination request
MKLA Lapsed