CA2403924C - Method for improving smart antenna array coverage - Google Patents

Method for improving smart antenna array coverage Download PDF

Info

Publication number
CA2403924C
CA2403924C CA002403924A CA2403924A CA2403924C CA 2403924 C CA2403924 C CA 2403924C CA 002403924 A CA002403924 A CA 002403924A CA 2403924 A CA2403924 A CA 2403924A CA 2403924 C CA2403924 C CA 2403924C
Authority
CA
Canada
Prior art keywords
epsilon
phi
adjusting
equal
adjustment
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
CA002403924A
Other languages
French (fr)
Other versions
CA2403924A1 (en
Inventor
Feng Li
Xiaolong Ran
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
China Academy of Telecommunications Technology CATT
Original Assignee
China Academy of Telecommunications Technology CATT
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by China Academy of Telecommunications Technology CATT filed Critical China Academy of Telecommunications Technology CATT
Publication of CA2403924A1 publication Critical patent/CA2403924A1/en
Application granted granted Critical
Publication of CA2403924C publication Critical patent/CA2403924C/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems

Abstract

The invention relates to a method for improving smart antenna array coverage. Arbitrary beam forming of an antenna array can be implemented by adjusting n antenna units beam forming parameter W(n), based on difference of size and shape between coverage required in engineering design and actually realized coverage. The method includes: setting an accuracy of W(n), i.e. an adjusting step length, setting a set of initial values W0(n), an initial value of mean-square error .epsilon.0, setting counting variable, setting threshold of ending adjustment M and maximum emission power of an antenna unit T(n). With the settings, a loop for W(n) adjustment is executed. A step-by-step approximation method is deployed for adjusting antenna radiation parameters, based on the minimum mean-square error criterion. Finially, an actual coverage of an antenna array approximates to the required coverage, under local optimization condition.

Description

METHOD FOR IMPROVING SMART ANTENNA ARRAY
COVERAGE
Field of the Technology The present invention relates generally to a smart antenna array technology used in a cellular mobile communication system, and more particularly to a method which can improve smart antenna array coverage.

Sackground of the Invention In a cellular mobile communication system using a smart antenna array, the smart antenna array is built in a radio base station, in general. The smart antenna array must use two kinds of beam forming for transmitting and receiving signals: one kind is the fixed beam forming, while another is the dynamic beam forming. The fixed beam forming, such as omnidirectional beam forming, strip beam forming or sector beam forming, is mainly used for transmitting omnidirectional information, such as broadcasting, paging etc. The dynamic beam forming is mainly used for tracing subscribers and transfers a subscriber data and signaling information etc to a specific user.

Fig.1 shows a cell distributing diagram of a cellular mobile communication network. Coverage is the first issue needed to be considered, when designing a cellular mobile communication system. In general, a smart antenna array of a wireless base station is located at the center of a cell, as shown by black dot 11 in Fig.l. Most cells have normal circle coverage, as shown by 12. Part of cells has non-symmetric circle coverage, as shown by 13, and strip coverage, as shown by 14. The normal circle coverage 12, non-symmetric circle coverage 13 and strip coverage 14 are overlapped for non-gap coverage.

As is well known that a power radiation diagram of an antenna array is determined by those parameters: such as geometrical arrangement shape for antenna units of the antenna array, characteristic of each antenna unit, phase and amplitude of radiation level of each antenna unit, etc. When designing an antenna array, in order to make the design can be commonly used, the design is taken under a relatively ideal environment, which includes free space, equipment works normally, etc. When a designed antenna array is put in practical use, the real power coverage of the antenna array will be certainly changed, because of different installing location and position, different landforms and land surface feature, different buildings height and different arrangement of antenna units, etc.

Fig.2 (part of Fig.1) shows a difference of an expected coverage 21 (normal circle) and a real coverage 22, because of different landforrns and land surface feature, etc. The real coverage can be measured at site. It is possible that every cell has this kind of difference, so except adjustment at site otherwise a real coverage of a mobile communication network may be very bad. Besides, it is need to reconfigure an antenna array when an individual antenna unit of the antenna array does not work normally or coverage requirement has been changed, at this time, the coverage of the antenna array must be adjusted in real time.

Principle of the adjustment is: based on fixed beam forming for omnidirectional coverage of a cell, a smart antenna array implements dynamic beam forming (dynamic directional radiation beam) for individual subscriber.

For formula (1): AW represents shape parameter of the expected beam forming, i.e. the needed coverage, wherein 0 represents polar coordinate angle of an observing point, and A(O) is radiation strength on 0 direction with same distance.
Suppose there are N antennas for an smart antenna array, wherein any antenna n has a position parameter D(n), a beam forming parameter W(n) and a emission power P on angle direction, then the real coverage is represented by formula (2):

z P(O) f (0, D(n)) x W(n) ...... (2) R=I

Wherein form of function f( O,D(n)) is related with type of a smart antenna array.
In a land mobile communication system, taking into account two dimensions coverage on plane is enough, in general. When dividing antennas in arrangement, there are a linear array and a ring array, a circular array can be seen as a special ring array (refer to China Patent 97202038.1 "A ring smart antenna array used for radio communication system"). In a cellular mobile communication system, when implementing sector coverage, in general a linear array is used, and when implementing omnidirectional coverage, a circular array is used. In the invention, a circular array is used as an example.

Suppose it is a circular array, then D(n) = 2 x (n -1) x7c / N;

f(0, D(n)) = exp(j x 2 x r lA x;r x cos(C) - D(n)) (find exponent).

Wherein r is the radius of a circular antenna array and A is the working wavelength. Fig.3 shows a power directional diagram of an omnidirectional beam forming for a normal circle antenna array with 8 antennas. Squares of digits 1.0885, 2.177, 3.2654, shown in Fig.3, represent power.

With minimum mean-square error algorithm, the mean square error E in formula (3) is the minimum one:
z 6 I I P(m~iz _,4(O-)1 x C(i) ...... (3) K ;_, In formula (3), K is the number of sampling point, when using approximation algorithm; and C(i) is a weight. For some points, if the required approximation is high, then C(i) is set larger, otherwise C(i) is set smaller. When required approximations for all points are coincident, C(i) will be set as 1, in general.

Besides, considering that transmission power of every antenna unit is limited, when taking amplitude of W(n) to represent the transmission power of an antenna unit, and setting maximum transmission power of each antenna unit as T(n), the limited condition can be expressed as:

IW(n)I5T(n)1z ====== (condition 1) Obviously, to find out an optimal value of the transmission power within the limit for every antenna unit, in general it only can be solved by selection and exhaustion of unsolved W(n) accuracy, except for some special situations which can be directly solved by a formula. Nevertheless, when using exhaustive solution, calculation volume is considerable large and has an exponential relationship with the number of antenna units N. Although, the calculation volume can be decreased by gradually raising accuracy and decreasing scope of value to be solved, but even only to solve the sub-optimal value, the calculation volume is still too large.

Summary of the Invention In order to improve effectively smart antenna array coverage, a method to improve smart antenna array coverage has been designed. The improvement includes that the real coverage of an antenna array approaches to the design coverage;
and when part of antenna units is shut down because of trouble, the antenna radiation parameter of other normal working antenna units can be immediately adjusted to recover rapidly the cell coverage.

Purpose of the invention is to provide a method, which can adjust parameters of antenna units of an antenna array according to a practical need. With this method, an antenna array has a specific beam forming satisfying requirement, and a emission power optimal value of each antenna unit can be rapidly solved within a limit to obtain a local optimization effect.

The method of the invention is one kind of baseband digital signal processing methods. The method changes size and shape of coverage area of a smart antenna array, by adjusting parameter of each antenna (excluding those shut down antennas) of the smart antenna array, to obtain a local optimization effect coinciding with requirement under minimum mean-square error criterion. The specific adjusting scheme is that according to a difference of size and shape between coverage required in engineering design and actually realized coverage, an antenna radiation parameters is adjusted by method of step-by-step approximation under the minimum mean-square error criterion, in order to make the actually coverage of an antenna array approximates the requirement under local optimization condition.

According to the invention, adjusting the beam forming parameter W(n) for each antenna unit n of a N antenna array, according to actually situation, further comprises:
A. setting an accuracy of W(n) to be solved, i.e. an adjusting step length;
B. setting initial values include: an initial value WO(n) of beam forming parameter W(n) for antenna unit n; an initial value Eo of minimum mean-square error e a counting variable for recording the minimum adjustment times; an adjustment ending threshold value M and a maximum emission power amplitude T(n) for antenna unit n;

C. entering a loop for W(n) adjustment which comprises: generating a random number; deciding a change of W(n) by the set step length and calculating a new W(n);
when deciding the absolute value of W(n) being less than or equal to T(n)'11, calculating the minimum mean-square error E; when c being greater than or equal to so, keeping the E and increment the counting variable by 1;

D. repeating the step C until the counting variable being greater than or equal to the threshold value M, then ending the adjusting procedure and getting the result;
recording and storing the final W(n), replacing the Eo with the new E.

When comparing s and Eo in the step C, if s is less than so, then the calculation result W(n) of this time adjustment is recorded and stored, the co is replaced with the new calculated E and the counting variable is reset to zero.

The adjusting step length can be fixed or varied. If the adjusting step length is varied, then setting a minimum adjusting step length is also included during setting initial values. When the counting variable is greater than or equal to the threshold value M but the adjusting step length is not equal to the minimum adjusting step length, the adjusting step length is continually decreased and the adjusting procedure of W(n) is continued.

The adjusting procedure ending conditions further includes a preset adjustment ending threshold value E', and when E< E', the adjustment is ended.

The number of the initial value Wo(n) is related to the number of antenna units, which consist of the smart antenna array.

When setting the initial value Wo(n) of W(n), Wo(n) is set to zero for shut down antenna units of the smart antenna array and W(n) for the shut down antenna units will not be adjusted in the successive adjusting loop.

The minimum mean-square error s is calculated by the formula:

6= 1I I P(or ) _ A(Or )I x C(i), K ;_, Wherein P(O; ) is an antenna unit emission power when beam forming parameter of the antenna unit is W(n) and the directional angle is 0, and P(O; ) is related to the antenna array type; A(Oi ) is the 0 directional radiation strength with equal distance and the expected observation point having phase 0 for polar coordinates; K is the number of sample point when using approximate method and C(i) is a weight.

The setting an accuracy of W(n) to be solved, i.e. an adjusting step length, comprises:
Setting stepping change of a real part and an imaginary part for a complex number W(n), respectively; or setting stepping change of an amplitude and a phase for a polar coordinates W(n), respectively;
when using the stepping change of a real part and an imaginary part for a complex number W(n), the new W(n) is calculated by the formula:
WU+1(n)-Wu(n)+AWU(n)=I"(n)+(-1)""DI"(n)+ j*lIQU(n)+(-1)L AQ"(n)I , wherein A IU(n) and A Qu(n) are the adjusting step length of the real part IU(n) and imaginary part Qu(n), respectively; L; and LQ decide adjusting direction of the real part IU(n) and imaginary part QU(n), respectively; their values are decided by a generated random number;
when using the stepping change of an amplitude and a phase for a polar coordinates W(n), the new W(n) is calculated by the formula:
WU+1(n) = WU (n) * AWU (n) = AU (n) * AAU (n)(-1)4' * ei*1O
(n)+(_1)c~"OAOu(R)1, wherein A Au(n) and A 0 u(n) are the adjusting step length of the amplitude AU(n) and phase 0 u(n), respectively; LA and L~ decide adjusting direction of the amplitude Au(n) and phase 0 U(n), respectively, their value are decided by a generated random number;

The U is the U'h adjustment and U+l is the next adjustment.

The method of the invention concerns the case that when a radio base station uses a smart antenna array for fixed beam forming of omnidirectional coverage, the smart antenna array coverage can be effectively improved. The coverage size and shape of a smart antenna array is changed by adjusting each antenna unit parameter of the antenna array in order to obtain a local optimal effect of coincident requirement under the minimum mean-square error criterion.

The method of the invention is that according to a difference of size and shape between coverage required in engineering design and actually realized coverage, an antenna radiation parameters is adjusted by method of step-by-step approximation under the minimum mean-square error criterion, in order to make the actually coverage of an antenna array approximates the requirement under local optimization condition.

One application of the method is at installation site of a smart antenna array; where coverage size and shape of a smart antenna array can be changed by adjusting each antenna unit parameter of the smart antenna array to obtain an omnidirectional radiation beam forming which very approximates to an expected beam forming shape and has a local optimization result for coinciding with a requirement.
Another application of the method is that when part of antenna units in a smart antenna array is not normal and has been shut down, antenna radiation parameter of the remain normal antenna units can be immediately adjusted by the method to recover omnidirectional coverage for the cell immediately.

According to one aspect of the present invention, there is provided a method for improving coverage of a smart antenna array, comprises: deciding difference of size and shape between coverage of smart antenna array designed by mobile communication network engineering design parameters and actually realized coverage; adjusting radiation parameters of antenna units consisting of the smart antenna array by a step-by-step approximation method with minimum mean-square error arithmetic, to make the actually realized coverage approximates to the coverage of engineering design smart antenna array, under a local optimization condition.
According to another aspect of the present invention, there is provided a method for improving coverage of a smart antenna array, comprises: A. setting initial values include: an initial value Wo(n) of beam forming parameter W(n) for antenna unit n, constituting the smart antenna array; an adjustment ending threshold value M; an accuracy of W(n), i.e. an adjusting step length "step"; an initial value so of minimum mean-square error e, a maximum value of emission power amplitude T(n) and a counting variable "count" for recording the minimum adjustment times;
B. generating a set of random numbers, deciding W(n) changing direction, deciding W(n) changing size by the "step", generating W(n) of the Uth adjusting by the formula:
WU+'(n)=WU(n)+AWu(n); C. comparing the W(n) and T(n) : when the absolute value of W(n) being greater than T(n)1i2, continuing the W(n) generating operation; when the absolute value of W(n) being less than or equal to T(n)1i2, calculating the minimum mean-square error s; D. comparing s and so: when s being less than so, setting so being equal to s and resetting "count" being equal to zero, then continuing the W(n) generating operation; when s being not less than so, keeping the s and increasing "count" by 1; E. comparing "count" and M: when "count" being less than M, continuing the W(n) generating operation; when "count" being greater than or equal to M, ending the adjustment, getting the result W(n), E and resetting "count" to zero.

According to still another aspect of the present invention, there is provided a method for improving coverage of a smart antenna array, comprises: A. setting initial values include: an initial value Wo(n) of beam forming parameter W(n) for antenna unit n, constituting the smart antenna array; an adjustment ending threshold value M; an accuracy of W(n), i.e. an adjusting step length "step"; an initial value so of minimum mean-square error E, a maximum value of emission power amplitude T(n), a counting variable "count" for recording the minimum adjustment times and a minimum adjusting step length min_step; B. generating a set of random numbers, deciding W(n) changing direction, 7a deciding W(n) changing size by the "step", generating W(n) of the Uth adjusting by the formula: Wu+'(n)=W"(n)+OWu(n);
C. comparing the W(n) and T(n): when the absolute value of W(n) being greater than T(n)112, continuing the W(n) generating operation; when the absoulte value of W(n) being less than or equal to T(n)112, calculating the minimum mean-square error E; D. comparing s and so: when E being less than co, setting so being equal to s and resetting "count" being equal to zero, then continuing the W(n) generating operation; when s being not less than so, keeping the s and increasing "count" by 1; E. comparing "count" and M: when "count" being less than M, continuing the W(n) generating operation; when "count" being greater than or equal to M, going to step F; F. deciding whether "step" being equal to min_step: when "step" being not equal to min_step, decreasing the "step" and continuing the W(n) generating operation; when "step" being equal to min step, ending the adjustment, getting the result W(n), c and resetting "count"
to zero.

According to yet another aspect of the present invention, there is provided a method for improving coverage of a smart antenna array, comprises: A. setting initial values include: an initial value Wo(n) of beam forming parameter W(n) for antenna unit n, constituting the smart antenna array; an adjustment ending threshold value M; an accuracy of W(n), i.e. an adjusting step length "step"; an initial value Eo of minimum mean-square error s, a maximum value of emission power amplitude T(n), a counting variable "count" for recording the minimum adjustment times, an adjustment ending threshold value s' of minimum mean-square error E and a minimum adjusting step length min step; B.
generating a set of random numbers, deciding W(n) changing 7b direction, deciding W(n) changing size by the "step", generating W(n) of the Uth adjusting by the formula:
WU+'(n)=WU(n)+OWu(n); C. comparing the W(n) and T(n) : when the absolute value of W(n) being greater than T(n)112, continuing the W(n) generating operation; when the absoulte value of W(n) being less than or equal to T(n)1i2 calculating the minimum mean-square error s; D. comparing the s and s': when s being less than --', ending the adjustment, getting the result W(n), s and resetting "count"

to zero; when s being not less than c', going to step E; E.
comparing the s and co: when s being less than so, setting co being equal to c and resetting "count" being equal to zero, then continuing the W(n) generating operation; when s being not less than so, keeping the E and increasing "count" by 1;
F. comparing "count" and M: when "count" being less than M, continuing the W(n) generating operation; when "count" being greater than or equal to M, going to step G; G. deciding whether "step" being equal to min_step: when "step" being not equal to min_step, decreasing the "step" and continuing the W(n) generating operation; when "step" being equal to min_step, ending the adjustment, getting the result W(n), s and resetting "count" to zero.

Brief Description of the Drawings Fig. 1 is a cell distribution diagram for a cellular mobile communication network.

Fig. 2 is a diagram of difference between needed cell coverage and real cell coverage.

Fig. 3 is an omnidirectional beam forming power direction diagram of an eight-antenna array with normal circle coverage.

7c Fig. 4 is a flowchart of rapidly improving an antenna array beam forming coverage with a fixed step length.

Fig. 5 is a flowchart of rapidly improving an antenna array beam forming coverage with an alterable step length.

Fig. 6 is a flowchart having an ending condition for rapidly improving an antenna array beam forming coverage with an alterable step length.

Fig. 7 and Fig. 8 are power direction diagrams before adjustment and after adjustment, respectively, for an eight-antenna array with normal circle coverage omnidirectional beam forming when there is one antenna unit without working normally.

7d Fig.9 and Fig.10 are power direction diagrams before adjustment and after adjustment, respectively, for an eight-antenna array with circular coverage omnidirectional beam forming when there are two antenna units without working normally.

Embodiments of the Invention The present invention now will be described more fully hereinafter with reference to the accompanying drawings, in which preferred embodiments of the invention are shown. This invention may, however, be embodied in many different forms and should not be construed as limited to the embodiments set forth herein;
rather, these embodiments are provided so that this disclosure will be thorough and complete, and will fully convey the scope of the invention to those skilled in the art.
Like numbers refer to like elements throughout.

Fig.l to Fig.3 have been described before, and will not be repeated.

Refer to Fig.4, Fig.5 and Fig.6. The invention is a method which rapidly solves, within a limited scope, an optimization value of the beam forming parameter W(n) for any antenna unit n in an antenna array to obtain local optimization effect.
The method roughly includes the following five steps:

Stepl Set accuracy of W(n) to be solved, i.e. adjusting step length of W(n) during whole solving procedure. There are two kinds of adjusting step length setting methods: one is to set, respectively, real part and imaginary part of a W(n) in complex number and changes in step; another is to set, respectively, amplitude and angle of a W(n) in polar coordinates and changes in step.

Suppose after the Uhadjustment, the W(n) is WU(n).
When using the first adjustment method, e(n) is expressed in complex number:
W u(n) = I u(n) + j x Qu (n). After next adjustment, the Wu+l (n) can be expressed as (formula 4):

Wu+'(n) =Wu(n)+OWu(n) = Iu(n)+(-1)fl DIu(n)+ j *LQu(n)+(-1)' AQu(n)J
..... (4) Wherein A IU(n) and A Qu(n) are adjusting step length of the real part IU(n) and imaginary part QU(n), respectively; L; and LQ decide adjusting direction of the real part IU(n) and imaginary part QU(n), respectively; their values will be decided by random decision method in step 2.

When using the second adjustment method, e(n) is expressed by a polar coordinate: W" (n) = A" (n)e''U(n) . After next adjustment, the W+i(n) can be expressed as (formula 5):

WU+I (n) = W u (n) * OW U(n) = Au (n)'k QAU (n)(-1)LA * ej+[0u(n)+(-1)Lu040u(n) ...... (5) Wherein A AU(n) and 00 U(n) are adjusting step length of the amplitude A u(n) and phase OU(n), respectively; LA and L~ decide adjusting direction of the amplitude Au(n) and phase Ou(n), respectively, their value will be decided by random decision method in step 3.

Step2 Set a set of W(n) initial value Wo(n), which satisfies limit condition 1:
W(n) <_ T(n)"Z , number of Wo(n) relates to antenna units number N of the antenna array. For those shut down antenna units, their Wo(n) should be zero and they will not be adjusted in the successive steps. Selection of the initial value Wo(n) has a certain degree influence for convergent speed of the algorithm and the final result.
If a rough scope of W(n) has been known before, then it is better to select a set of Wo(n) corresponding to the scope, and this is also benefit for raising the result accuracy.

Then, set an initial value Eo of the minimum mean-square error E. In order to enter the loop adjustment stage faster, in general, the initial value so is set with a larger value and the counting variable (count) is set to 0. The "count" is used to record the minimum adjustment times needed for W(n) under a so corresponding to a set of Wo(n). M is a required threshold used to decide when the adjustment would be ended and the result can be outputted. Obviously, with larger M value, the result is more reliable.

The initial value setting procedures, mentioned above, are shown in blocks 401, 501 and 601 of Fig.4, 5 and 6, respectively. These include the following setting:
Wo(n), M, adjusting step length ("step"), initial value of minimum mean-square error so, maximum transmission power of n'i'. antenna T(n) and counting variable (count).
The difference between blocks 501,601 and block 40-1 are that blocks 501, 601 further include setting a minimum adjusting step length min step, which is needed for using alterable step length adjustment.

Step 3 With= the procedure in step 1 and formulas (4) or (5), a new W(n) is created, i.e.
adjusting W(n). Each time, a set of random number is generated, then according to the random number, changing direction of W(n) is de(Sided. If after adjustment, W(n) breaks the limit of condition 1(1W (n)1:5T(n)"2), then the W(n) is added or subtracted, the amount of add or subtract is decided by adjusting step length ("step").
As at this moment the correct changing trend is not known, so same add probability and subtract probability are taken. Operation of step 3 is shown at blocks 402, 403, 502, 503, or 602, 603 in Fig.s 4, 5 or 6, respectively.

St~
After adjustment, if W(n) satisfies condition 1 limitation, then a new minimum mean-square error s is calculated with formula 3: If E< so, then W(n) of this time is recorded and stored, so is replaced by a new c, and counting variable is set to zero (count = 0). The operation of this step is shown at blocks 404, 405, 406, 504, 505, 506, or 604, 605, 606 in Fig.s 4, 5 or 6, respectively. In Fig. 6, c < s' is an ending condition of the adjustment, so before making decision s<60, decision s< E' must be made first; when E is greater than s', then 'decision c < so will be made, as shown in block 612. If s> so then the s is kept and the counting variable is increment (count+l), the operation is shown at blocks 407, 507 or 607 in Fig.s 4, 5 or 6, respectively. After decision E _ 60, has been made arid blocks 407, 507 or 607 have been executed, each time the counting variable "count" should be checked whether it is greater than the preset threshold value M, the operation is shown at block 408, 508 or 608 in Fig.s 4, 5 or 6, respectively.

Step 5 When s? Eo and "count" is less than the preset threshold value M have been decided, it is returned to step 3, i.e. blocks 402, 502 or 602 in Fig.s 4, 5 or 6 are executed again. Consequently, a set of random number is regenerated; and W(n+1) is calculated, if a set of W(n) has been calculated, then restart from W(1).
Repeat the procedure above until "count" _ M has been detected at blocks 408, 508 or 608.
Then, the whole adjusting procedure is ended. At this moment, the recorded W(n) is a set of optimal solutions, so is the corresponding minimum mean-square error, and the counting variable is set to zero (count = 0). The operation is shown at blocks 409, 509 or 609.

The solution obtained from the steps above is only a local optimization solution, but the calculation volume is much less and a set of solution can be quickly obtained.
If it is not satisfied with the solution of this time, then the procedure can be repeated, several sets of solution can be obtained and a set of solution with minimum mean-square error e can be got. Of course, when the procedure is repeated, the initial value Wo(n) of W(n) must be updated.

If the result is still unsatisfied, then alterable step length and raising accuracy can be used to improve the algorithm mentioned above, as shown in Fig.s 5 and 6.
In blocks 501 or 601, during setting initial values, a minimum adjusting step length min_step is set. At the beginning of the adjustment, a larger step length is used for adjustment. At blocks 510 or 610, when "count" is greater than M but "step" is greater than min_step, the calculation procedure is not ended instead of executing blocks 511 or 611. The adjusting step length is decreased at blocks 511 or 611, with the decreased step length the W(n) is changed and the minimum mean-square error 6 is calculated again and so on. Only when "count" is greater than M and "step" equals to min_step (step = min_step); then the calculation is ended, the result is outputted and a set of W(n) and the corresponding mean-square error s are obtained. Under same accuracy condition, varied length, in Fig.s 5 or 6, can raise calculation speed in certain degree.

Fig.6 shows a procedure where a system has a definite requirement of the mean-square error s. This is expressed as E< E', wherein E' is a preset threshold value. In this case, the procedure ending condition must be changed accordingly, that is a block 612 is added before block 605, and when s< E', the procedure is ended. In an implementation, s< E' can be deployed as ending condition, but using a fixed step length algorithm (as shown in Fig.4) to quick improved antenna array beam forming coverage.

Fig.s 7 and 8 describe an application effect of the invention with comparison of two diagrams, by taking a circular antenna array with eight units as an example, as shown in Fig.3 (the invention is appropriate to any type of an antenna array and can dynamically make beam forming in real time, here only taking circular antenna array as an example). When an antenna unit (including the antenna, feeder cable and connected radio frequency transceiver etc.) of the antenna array has trouble, the radio base station must shut down the antenna unit with trouble and the radiation diagram of the antenna array is greatly worse. Fig.7 shows that when one antenna unit does not work, the radiation diagram of the antenna array is changed from an ideal circle to an irregular graph 71, and the cell coverage is worse immediately. With the method of the invention, the radio base station obtains parameter of other normal antenna units and adjusts them immediately by changing feed amplitude and phase of all normal antenna units, so a coverage shown by graph 81 in Fig.8 is obtained which has an approximate circle coverage.

Fig.s 9 and 10 describe another application effect of the invention with comparison of two diagrams, by also taking a circular antenna array with eight units as an example, as shown in Fig.3 (the invention is appropriate to any type of an antenna array and can dynamically make beam forming in real time, here only taking circular antenna array as an example). When two antenna units, separated by 7c/4 as shown in Fig.3, do not work, the radiation diagram of the antenna array is changed from an ideal circle to an irregular graph 91, and the cell coverage is much worse.
When this happens, with the method of the invention, the radio base station adjusts parameter of other normal antenna units immediately by changing feed amplitude and phase of all normal antenna units, so a coverage shown by graph 101 in Fig.10 is obtained which is obviously more approximate to a circle coverage.

It should be noted that when part of antenna units stop working, without increasing maximum emission power of normal antenna units, radius of the whole coverage is definitely decreased, as shown in Fig.7 and Fig.9. Consequently, cells coverage overlap decreases (refer to Fig.1), so it is possible that communication blindness area appears, as shown by the examples in Fig.7 and Fig.9. Under equal distance, when emission power level is decreased 3- 5 dB, the coverage radius will be decreased 10% - 20%. Therefore, in order to solve this problem, it is necessary to increase emission power for part of antenna units, or using "breath" function of neighbor cells.

The method improving antenna array coverage is an adjusting parameter procedure of antenna array. The beam forming parameter W(n) can be quickly obtain and a local optimization effect will be got.

Claims (19)

Claims
1. A method for improving coverage of a smart antenna array, comprises:
deciding difference of size and shape between coverage of smart antenna array designed by mobile communication network engineering design parameters and actually realized coverage;
adjusting radiation parameters of antenna units consisting of the smart antenna array by a step-by-step approximation method with minimum mean-square error arithmetic, to make the actually realized coverage approximates to the coverage of engineering design smart antenna array, under a local optimization condition.
2. The method according to claim 1, wherein the smart antenna array is consisted of n antenna units, the radiation parameter is beam forming parameter W(n), and the adjusting procedure comprises:
A. setting an accuracy of W(n) to be solved, i.e. an adjusting step length;
B. setting initial values include: an initial value W0(n) of beam forming parameter W(n) for antenna unit n; an initial value .epsilon.0 of minimum mean-square error .epsilon., a counting variable for recording the minimum adjustment times; an adjustment ending threshold value M and a maximum emission power amplitude T(n) for antenna unit n;
C. entering a loop for W(n) adjustment which comprises: generating a random number; deciding a change of W(n) by the set step length and calculating a new W(n);
when deciding the absolute value of W(n) being less than or equal to T(n)1/2, calculating the minimum mean-square error .epsilon.; when .epsilon. being greater than or equal to .epsilon.0, keeping the .epsilon. and increment the counting variable by 1;
D. repeating the step C until the counting variable being greater than or equal to the threshold value M, then ending the adjusting procedure and getting the result;
recording and storing the final W(n), replacing the .epsilon.0 with the new .epsilon..
3. The method according to claim 2, wherein the step C further comprises when .epsilon. being less than .epsilon.0, recording and storing the calculation result W(n) of this time adjustment, replacing the .epsilon.0 with the new .epsilon. and resetting the counting variable to zero.
4. The method according to claim 2, wherein the adjusting step length is fixed.
5. The method according to claim 2, wherein the adjusting step length is varied and the setting initial values further include a minimum adjusting step length; when the counting variable is greater than or equal to the threshold value M, the step D
further comprises:
deciding whether the adjusting step length being equal to the minimum adjusting step length, if not, then decreasing the adjusting step length and going to step C.
6. The method according to claim 2, wherein the setting initial values further include an adjustment ending threshold value .epsilon.', when the counting variable is greater than or equal to the threshold M, the step D further comprises:

deciding whether .epsilon. being less than .epsilon.', if not, going to step C.
7. The method according to claim 2, wherein the number of the initial value W0(n) is related to the number of antenna units, which consist of the smart antenna array.
8. The method according to claim 2, wherein when setting the initial value W0(n) of W(n), W0(n) is set to zero for shut down antenna units of the smart antenna array and W(n) for the shut down antenna units will not be adjusted in the successive adjusting loop.
9. The method according to claim 2, wherein the minimum mean-square error .epsilon.
is calculated by the formula: wherein P(.phi.i) is an antenna unit emission power when beam forming parameter of the antenna unit is W(n) and the directional angle is .phi., and P(.phi.i) is related to the antenna array type;
A(.phi.i) is the .phi. directional radiation strength with equal distance and the expected observation point having phase .phi. for polar coordinates; K is the number of sample point when using approximate method and C(i) is a weight.
10. The method according to claim 2, wherein setting an accuracy of W(n) to be solved, i.e. an adjusting step length, comprises:
setting stepping change of a real part and an imaginary part for a complex number W(n), respectively; or setting stepping change of an amplitude and a phase for a polar coordinates W(n), respectively;

when using the stepping change of a real part and an imaginary part for a complex number W(n), the new W(n) is calculated by the formula:
wherein .DELTA.I U(n) and .DELTA.Q U(n) are the adjusting step length of the real part I U(n) and imaginary part Q U(n), respectively; and decide adjusting direction of the real part I U(n) and imaginary part Q U(n), respectively; their values are decided by a generated random number;
when using the stepping change of an amplitude and a phase for a polar coordinates W(n), the new W(n) is calculated by the formula:
, wherein .DELTA.A U(n) and .DELTA..PHI.U(n) are the adjusting step length of the amplitude A U(n) and phase.PHI.U(n), respectively; and decide adjusting direction of the amplitude A U(n) and phase.PHI.U(n), respectively, their value are decided by a generated random number;
the U is the U th adjustment and U+1 is the next adjustment.
11. A method for improving coverage of a smart antenna array, comprises:
A. setting initial values include: an initial value W0(n) of beam forming parameter W(n) for antenna unit n, constituting the smart antenna array; an adjustment ending threshold value M; an accuracy of W(n), i.e. an adjusting step length "step"; an initial value .epsilon.0 of minimum mean-square error .epsilon., a maximum value of emission power amplitude T(n) and a counting variable "count" for recording the minimum adjustment times;

B. generating a set of random numbers, deciding W(n) changing direction, deciding W(n) changing size by the "step", generating W(n) of the U th adjusting by the formula: W U+1(n) = W U(n) + .DELTA.W U(n);

C. comparing the W(n) and T(n): when the absolute value of W(n) being greater than T(n)112, continuing the W(n) generating operation; when the absolute value of W(n) being less than or equal to T(n)1/2, calculating the minimum mean-square error .epsilon., D. comparing .epsilon. and .epsilon.0: when .epsilon. being less than .epsilon.0, setting .epsilon.0 being equal to .epsilon.
and resetting "count" being equal to zero, then continuing the W(n) generating operation; when .epsilon. being not less than .epsilon.0, keeping the s and increasing "count" by 1,;

E. comparing "count" and M: when "count" being less than M, continuing the W(n) generating operation; when "count" being greater than or equal to M, ending the adjustment, getting the result W(n), .epsilon. and resetting "count" to zero.
12. The method according to claim 11, wherein the minimum mean-square error .epsilon. is calculated by the formula: wherein P(.PHI.i) is an antenna unit emission power when beam forming parameter of the antenna unit is W(n) and the directional angle is .PHI., and P(.PHI.i) is related to the antenna array type;
A(.PHI.i) is the .PHI. directional radiation strength with equal distance and the expected observation point having phase .PHI. for polar coordinates; K is the number of sample point when using approximate method and C(i) is a weight.
13. The method according to claim 11, wherein setting accuracy of W(n) to be solved, i.e. an adjusting step length, comprises:

setting stepping change of a real part and an imaginary part for a complex number W(n), respectively; or setting stepping change of an amplitude and a phase for a polar coordinates W(n), respectively;

when using the stepping change of a real part and an imaginary part for a complex number W(n), the new W(n) is calculated by the formula:
wherein .DELTA.I U(n) and.DELTA.Q U(n) are the adjusting step length of the real part I U(n) and imaginary part Q U(n), respectively; and >IMG> decide adjusting direction of the real part I U(n) and imaginary part Q U(n), respectively; their values are decided by a generated random number;

when using the stepping change of an amplitude and a phase for a polar coordinates W(n), the new W(n) is calculated by the formula:
, wherein .DELTA.A U(n) and.DELTA..PHI.U(n) are the adjusting step length of the amplitude A U(n) and phase.PHI.U(n), respectively; decide adjusting direction of the amplitude A U(n) and phase.PHI.U(n), respectively, their value are decided by a generated random number;
the U is the U th adjustment and U+1 is the next adjustment.
14. A method for improving coverage of a smart antenna array, comprises:
A. setting initial values include:, an initial value W0(n) of beam forming parameter W(n) for antenna unit n, constituting the smart antenna array; an adjustment ending threshold value M; an accuracy of W(n), i.e. an adjusting step length "step"; an initial value .epsilon.0 of minimum mean-square error .epsilon., a maximum value of emission power amplitude T(n), a counting variable "count" for recording the minimum adjustment times and a minimum adjusting step length min_step;
B. generating a set of random numbers, deciding W(n) changing direction, deciding W(n) changing size by the "step", generating W(n) of the U th adjusting by the formula: W U+1(n) = W U(n) + .DELTA.W U(n);

C. comparing the W(n) and T(n): when the absolute value of W(n) being greater than T(n)1/2, continuing the W(n) generating operation; when the absoulte value of W(n) being less than or equal to T(n)1/2, calculating the minimum mean-square error .epsilon., D. comparing .epsilon. and .epsilon.0: when .epsilon. being less than .epsilon.0, setting .epsilon.0 being equal to .epsilon.
and resetting "count". being equal to zero, then continuing the W(n) generating operation; when s being not less than .epsilon.0, keeping the .epsilon. and increasing "count" by 1,;
E. comparing "count" and M: when "count" being less than M, continuing the W(n) generating operation; when "count" being greater than or equal to M, going to step F;
F. deciding whether "step" being equal to min_step: when "step" being not equal to min step, decreasing the "step" and continuing the W(n) generating operation; when "step" being equal to min_step, ending the adjustment, getting the result W(n), .epsilon. and resetting "count" to zero.
15. The method according to claim 14, wherein the minimum mean-square error .epsilon. is calculated by the formula: wherein P(.PHI.i) is an antenna unit emission power when beam forming parameter of the antenna unit is W(n) and the directional angle is .PHI., and P(.PHI.i) is related to the antenna array type;
A(.PHI.i) is the .PHI. directional radiation strength with equal distance and the expected observation point having phase .PHI. for polar coordinates; K is the number of sample point when using approximate method and C(i) is a weight.
16. The method according to claim 14, wherein setting accuracy of W(n) to be solved, i.e. an adjusting step length, comprises:
setting stepping change of a real part and an imaginary part for a complex number W(n), respectively; or setting stepping change of an amplitude and a phase for a polar coordinates W(n), respectively;
when using the stepping change of a real part and an imaginary part for a complex number W(n), the new W(n) is calculated by the formula:
wherein .DELTA.I U(n) and.DELTA.Q U(n) are the adjusting step length of the real part I U(n) and imaginary part Q U(n), respectively; decide adjusting direction of the real part I U(n) and imaginary part Q U(n), respectively; their values are decided by a generated random number;
when using the stepping change of an amplitude and a phase for a polar coordinates W(n), the new W(n) is calculated by the formula:
, wherein .DELTA.A U(n) and.DELTA..PHI.U(n) are the adjusting step length of the amplitude A U(n) and phase.PHI.U(n), respectively; decide adjusting direction of the amplitude A U(n) and phase.PHI.U(n), respectively, their value are decided by a generated random number;
the U is the U th adjustment and U+1 is the next adjustment.
17. A method for improving coverage of a smart antenna array, comprises:
A. setting initial values include: an initial value W0(n) of beam forming parameter W(n) for antenna unit n, constituting the smart antenna array; an adjustment ending threshold value M; an accuracy of W(n), i.e. an adjusting step length "step"; an initial value so of minimum mean-square error .epsilon., a maximum value of emission power amplitude T(n), a counting variable "count" for recording the minimum adjustment times, an adjustment ending threshold value .epsilon.' of minimum mean-square error .epsilon. and a minimum adjusting step length min_step;
B. generating a set of random members, deciding W(n) changing direction, deciding W(n) changing size by the "step", generating W(n) of the U th adjusting by the formula: W U+1(n) = W U(n) + .DELTA.W U(n);

C. comparing the W(n) and T(n): when the absolute value of W(n) being greater than T(n)1/2, continuing the W(n) generating operation; when the absoulte value of W(n) being less than or equal to T(n)1/2, calculating the minimum mean-square error .epsilon. ;

D. comparing the .epsilon. and .epsilon.': when .epsilon. being less than .epsilon.', ending the adjustment, getting the result W(n), .epsilon. and resetting "count" to zero; when .epsilon. being not less than .epsilon.', going to step E;
E. comparing the .epsilon. and .epsilon.0: when .epsilon. being less than .epsilon.0, setting .epsilon.0 being equal to .epsilon. and resetting "count" being equal to zero, then continuing the W(n) generating operation; when .epsilon. being not less than .epsilon.0, keeping the c and increasing "count" by 1;
F. comparing "count" and M: when "count" being less than M, continuing the W(n) generating operation; when "count" being greater than or equal to M, going to step G;
G. deciding whether "step" being equal to min_step: when "step" being not equal to min_step, decreasing the "step" and continuing the W(n) generating operation; when "step" being equal to min_step, ending the adjustment, getting the result W(n), .epsilon. and resetting "count" to zero.
18. The method according to claim 17, wherein the minimum mean-square error .epsilon. is calculated by the formula: wherein P(.PHI.i) is an antenna unit emission power when beam forming parameter of the antenna unit is W(n) and the directional angle is .PHI., and P(.PHI.i) is related to the antenna array type;
A(.PHI.i) is the .PHI. directional radiation strength with equal distance and the expected observation point having phase .PHI. for polar coordinates; K is the number of sample point when using approximate method and C(i) is a weight.
19. The method according to claim 17, wherein setting accuracy of W(n) to be solved, i.e. an adjusting step length, comprises:
setting stepping change of a real part and an imaginary part for a complex number W(n), respectively; or setting stepping change of an amplitude and a phase for a polar coordinates W(n), respectively;
when using the stepping change of a real part and an imaginary part for a complex number W(n), the new W(n) is calculated by the formula:
wherein .DELTA.I U(n) and.DELTA.Q U(n) are the adjusting step length of the real part I U(n) and imaginary part Q U(n), respectively; and decide adjusting direction of the real part I U(n) and imaginary part Q U(n), respectively; their values are decided by a generated random number;
when using the stepping change of an amplitude and a phase for a polar coordinates W(n), the new W(n) is calculated by the formula:
, wherein .DELTA.A U(n) and.DELTA..PHI.U(n) are the adjusting step length of the amplitude A U(n) and phase.PHI.U(n), respectively; and decide adjusting direction of the amplitude A U(n) and phase.PHI.U(n), respectively, their value are decided by a generated random number;
the U is the U th adjustment and U+1 is the next adjustment.
CA002403924A 2000-03-27 2001-01-12 Method for improving smart antenna array coverage Expired - Lifetime CA2403924C (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
CN00103547.9 2000-03-27
CNB001035479A CN1145239C (en) 2000-03-27 2000-03-27 Method for improving covered range of intelligent antenna array
PCT/CN2001/000017 WO2001073894A1 (en) 2000-03-27 2001-01-12 A method for improving intelligent antenna array coverage

Publications (2)

Publication Number Publication Date
CA2403924A1 CA2403924A1 (en) 2002-09-24
CA2403924C true CA2403924C (en) 2008-04-01

Family

ID=4577069

Family Applications (1)

Application Number Title Priority Date Filing Date
CA002403924A Expired - Lifetime CA2403924C (en) 2000-03-27 2001-01-12 Method for improving smart antenna array coverage

Country Status (14)

Country Link
US (1) US6738016B2 (en)
EP (1) EP1291973B1 (en)
JP (1) JP4786110B2 (en)
KR (1) KR100563599B1 (en)
CN (1) CN1145239C (en)
AT (1) ATE403243T1 (en)
AU (2) AU2500301A (en)
BR (1) BR0109611B1 (en)
CA (1) CA2403924C (en)
DE (1) DE60135118D1 (en)
MX (1) MXPA02009560A (en)
RU (1) RU2256266C2 (en)
TW (1) TW527753B (en)
WO (1) WO2001073894A1 (en)

Families Citing this family (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7529525B1 (en) * 2002-04-16 2009-05-05 Faulkner Interstices Llc Method and apparatus for collecting information for use in a smart antenna system
US7289826B1 (en) 2002-04-16 2007-10-30 Faulkner Interstices, Llc Method and apparatus for beam selection in a smart antenna system
US7065383B1 (en) * 2002-04-16 2006-06-20 Omri Hovers Method and apparatus for synchronizing a smart antenna apparatus with a base station transceiver
US7346365B1 (en) 2002-04-16 2008-03-18 Faulkner Interstices Llc Smart antenna system and method
CN101715194A (en) * 2002-10-18 2010-05-26 卡耐特无线有限公司 Apparatus and method for extending the coverage area of a licensed wireless communication system using an unlicensed wireless communication system
WO2004040699A1 (en) * 2002-10-30 2004-05-13 Zte Corporation Conversion method of transmitting and receiving weighting value in the intelligent antenna system
CN101471139A (en) * 2002-11-25 2009-07-01 张国飙 Design of three-dimensional memory device
DE10321467A1 (en) 2003-05-13 2004-12-09 Infineon Technologies Ag Test method for characterization of the output circuits of high-speed memory module in which the inputs to the output circuit are temporarily disconnected from their memory cells and instead connected to a test data source
CN100388657C (en) * 2003-06-03 2008-05-14 华为技术有限公司 United time-space multi-path searching method and apparatus with fixed multi-beam intellectual antenna
CN100399629C (en) * 2004-04-09 2008-07-02 大唐移动通信设备有限公司 Curve intelligent antenna array and method for optimizing its structural parameter
JP2006025201A (en) * 2004-07-08 2006-01-26 Funai Electric Co Ltd Television broadcast receiving system
US7181248B1 (en) * 2005-08-10 2007-02-20 Lucent Technologies Inc. Design and construction of wireless systems
CN101072066B (en) * 2006-05-08 2011-05-11 中兴通讯股份有限公司 Intelligent antenna realizing method for CDMA communication system
CN101304278B (en) * 2008-06-30 2013-04-03 中国移动通信集团设计院有限公司 Method for covering base station subdistrict using multi-matrix element antenna
CN101420068B (en) * 2008-11-25 2013-03-13 电子科技大学 Distribution method for sensor antenna array
US9379806B1 (en) * 2011-11-30 2016-06-28 RKF Engineering Solutions, LLC EIRP-based beamforming
KR20140138862A (en) * 2012-03-06 2014-12-04 키사, 아이엔씨. System for constraining an operating parameter of an ehf communication chip
CN103079268A (en) * 2012-12-28 2013-05-01 上海寰创通信科技股份有限公司 Antenna positioning method of CPE (Customer Premise Equipment)
CN104103913B (en) * 2014-06-18 2017-02-15 南京信息工程大学 Small-sized plane reversed F loading array antenna
CN105992264A (en) * 2015-01-27 2016-10-05 中国移动通信集团四川有限公司 Base station and self-processing method thereof
CN107431272A (en) * 2015-03-06 2017-12-01 何晓溪 Beam form-endowing method and device
US9848370B1 (en) * 2015-03-16 2017-12-19 Rkf Engineering Solutions Llc Satellite beamforming
US9736846B1 (en) 2015-09-29 2017-08-15 Sprint Communications Company L.P. Intelligent radiation selection for antennas in a wireless communications environment
EP3553885B1 (en) * 2016-12-29 2023-03-01 Huawei Technologies Co., Ltd. Array antenna and network apparatus
CN114079929B (en) * 2020-08-21 2023-08-15 中国移动通信集团重庆有限公司 Cell coverage adjusting method and wireless access network system
CN114447635B (en) * 2022-04-11 2022-08-26 西安星通通信科技有限公司 Method and system for improving conformal phased array antenna EIRP

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2674404B2 (en) * 1991-12-13 1997-11-12 日本電気株式会社 Base station coverage area control method
GB2281175B (en) * 1993-08-12 1998-04-08 Northern Telecom Ltd Base station antenna arrangement
US6101399A (en) 1995-02-22 2000-08-08 The Board Of Trustees Of The Leland Stanford Jr. University Adaptive beam forming for transmitter operation in a wireless communication system
US5924020A (en) 1995-12-15 1999-07-13 Telefonaktiebolaget L M Ericsson (Publ) Antenna assembly and associated method for radio communication device
GB2318216B (en) 1996-10-12 2001-04-04 Motorola Ltd The stabilisation of phased array antennas
JP3287538B2 (en) * 1996-10-16 2002-06-04 株式会社エヌ・ティ・ティ・ドコモ Adaptive array receiver
JP3816162B2 (en) * 1996-10-18 2006-08-30 株式会社東芝 Beamwidth control method for adaptive antenna
US5923700A (en) * 1997-02-24 1999-07-13 At & T Wireless Adaptive weight update method and system for a discrete multitone spread spectrum communications system
CN2293901Y (en) * 1997-03-13 1998-10-07 北京信威通信技术有限公司 Ring shape intelligent antenna array for radio communication system
GB2328800A (en) * 1997-08-29 1999-03-03 Motorola Ltd Antenna array arrangement with converging nulls
CN2293907Y (en) 1997-12-25 1998-10-07 吴卓文 Fluorescent lamp holder
JPH11266180A (en) * 1998-03-18 1999-09-28 Fujitsu Ltd Array antenna system for radio base station
JP2000082982A (en) 1998-09-03 2000-03-21 Nec Corp Array antenna reception device
KR100557082B1 (en) * 1998-09-08 2006-06-16 삼성전자주식회사 Effective Service Area Calculation Method of Sector Base Station According to Antenna Type
JP3326416B2 (en) * 1998-10-30 2002-09-24 三洋電機株式会社 Adaptive array device
JP3481481B2 (en) * 1998-12-24 2003-12-22 日本電気株式会社 Phased array antenna and manufacturing method thereof
US6400318B1 (en) * 1999-04-30 2002-06-04 Kabushiki Kaisha Toshiba Adaptive array antenna
US6239744B1 (en) * 1999-06-30 2001-05-29 Radio Frequency Systems, Inc. Remote tilt antenna system

Also Published As

Publication number Publication date
DE60135118D1 (en) 2008-09-11
EP1291973A1 (en) 2003-03-12
EP1291973A4 (en) 2004-07-28
KR100563599B1 (en) 2006-03-22
EP1291973B1 (en) 2008-07-30
RU2002128745A (en) 2004-02-27
KR20020087435A (en) 2002-11-22
BR0109611B1 (en) 2015-01-20
CN1145239C (en) 2004-04-07
CN1315756A (en) 2001-10-03
JP2003529262A (en) 2003-09-30
JP4786110B2 (en) 2011-10-05
US20030058165A1 (en) 2003-03-27
AU2500301A (en) 2001-10-08
BR0109611A (en) 2003-07-22
US6738016B2 (en) 2004-05-18
WO2001073894A1 (en) 2001-10-04
ATE403243T1 (en) 2008-08-15
CA2403924A1 (en) 2002-09-24
AU2001225003B2 (en) 2005-03-17
TW527753B (en) 2003-04-11
MXPA02009560A (en) 2004-07-30
RU2256266C2 (en) 2005-07-10

Similar Documents

Publication Publication Date Title
CA2403924C (en) Method for improving smart antenna array coverage
CN110621039B (en) Communication method and device
US8150413B2 (en) Radio network designing apparatus and method
CN110622435B (en) Method and device for determining broadcast beam weight in wireless communication system
EP0837523A2 (en) Adaptive antenna
WO1995034997A2 (en) Diversity combining for antennas
WO2001056187A2 (en) Cell and sector optimization system and methods
US7096040B1 (en) Passive shapable sectorization antenna gain determination
EP1444852B1 (en) Method for providing cell contouring in a communication network
US11330445B1 (en) Adaptive sectoring of a wireless base station
GB2367188A (en) Shaped antenna beam
US20170054210A1 (en) Interference suppression for array-based communications
Cavdar et al. The optimization of cell sizes and base stations power level in cell planning
Setiawan et al. Design of Ultra-wideband Slotted Microstrip Antenna for WRAN Application
CN115118364B (en) Method and system for analyzing and early warning interference of 5G signal different system
US11832112B2 (en) Wireless base station installation position calculation method and wireless base station installation position calculation device
Ata Effect of power change from interferer sources on the CDF probability in a mobile radio cellular system
Prasad et al. Performance analysis of a sectorized mobile microcellular radio system with diversity and forward error connection coding
JP2900531B2 (en) Channel allocation method of cellular system
Leung et al. Reuse cluster size selection for a mobile packet radio system
Faruk et al. Impact of mechanical down tilt and height on the pilot coverage of UMTS networks
Brenig Interference control in cellular systems
JP2900513B2 (en) Channel allocation method of cellular system
Bishara et al. Effect of power change from interferer sources on the CDF probability in a mobile radio cellular system
Seki et al. Effect of customer premises directional antennas on fixed wireless access systems in the downlink multipath channel

Legal Events

Date Code Title Description
EEER Examination request