CA2411712A1 - Polycyclic, fused ring compounds, metal complexes and polymerization process - Google Patents

Polycyclic, fused ring compounds, metal complexes and polymerization process Download PDF

Info

Publication number
CA2411712A1
CA2411712A1 CA002411712A CA2411712A CA2411712A1 CA 2411712 A1 CA2411712 A1 CA 2411712A1 CA 002411712 A CA002411712 A CA 002411712A CA 2411712 A CA2411712 A CA 2411712A CA 2411712 A1 CA2411712 A1 CA 2411712A1
Authority
CA
Canada
Prior art keywords
hydrocarbyl
substituted hydrocarbyl
dimethyl
dihydrodibenzo
azulen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CA002411712A
Other languages
French (fr)
Other versions
CA2411712C (en
Inventor
Richard E. Campbell, Jr.
Jerzy Klosin
Ravi B. Shankar
Francis J. Timmers
Robert K. Rosen
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dow Global Technologies LLC
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Publication of CA2411712A1 publication Critical patent/CA2411712A1/en
Application granted granted Critical
Publication of CA2411712C publication Critical patent/CA2411712C/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F17/00Metallocenes
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C13/00Cyclic hydrocarbons containing rings other than, or in addition to, six-membered aromatic rings
    • C07C13/28Polycyclic hydrocarbons or acyclic hydrocarbon derivatives thereof
    • C07C13/32Polycyclic hydrocarbons or acyclic hydrocarbon derivatives thereof with condensed rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C13/00Cyclic hydrocarbons containing rings other than, or in addition to, six-membered aromatic rings
    • C07C13/28Polycyclic hydrocarbons or acyclic hydrocarbon derivatives thereof
    • C07C13/32Polycyclic hydrocarbons or acyclic hydrocarbon derivatives thereof with condensed rings
    • C07C13/62Polycyclic hydrocarbons or acyclic hydrocarbon derivatives thereof with condensed rings with more than three condensed rings
    • C07C13/66Polycyclic hydrocarbons or acyclic hydrocarbon derivatives thereof with condensed rings with more than three condensed rings the condensed ring system contains only four rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F7/00Compounds containing elements of Groups 4 or 14 of the Periodic System
    • C07F7/02Silicon compounds
    • C07F7/08Compounds having one or more C—Si linkages
    • C07F7/10Compounds having one or more C—Si linkages containing nitrogen having a Si-N linkage
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F210/00Copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond
    • C08F210/02Ethene
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2602/00Systems containing two condensed rings
    • C07C2602/02Systems containing two condensed rings the rings having only two atoms in common
    • C07C2602/14All rings being cycloaliphatic
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2420/00Metallocene catalysts
    • C08F2420/02Cp or analog bridged to a non-Cp X anionic donor
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2420/00Metallocene catalysts
    • C08F2420/05Cp or analog where at least one of the carbon atoms of the coordinating ring is replaced by a heteroatom
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F4/00Polymerisation catalysts
    • C08F4/42Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors
    • C08F4/44Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides
    • C08F4/60Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides together with refractory metals, iron group metals, platinum group metals, manganese, rhenium technetium or compounds thereof
    • C08F4/62Refractory metals or compounds thereof
    • C08F4/64Titanium, zirconium, hafnium or compounds thereof
    • C08F4/659Component covered by group C08F4/64 containing a transition metal-carbon bond
    • C08F4/65908Component covered by group C08F4/64 containing a transition metal-carbon bond in combination with an ionising compound other than alumoxane, e.g. (C6F5)4B-X+
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F4/00Polymerisation catalysts
    • C08F4/42Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors
    • C08F4/44Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides
    • C08F4/60Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides together with refractory metals, iron group metals, platinum group metals, manganese, rhenium technetium or compounds thereof
    • C08F4/62Refractory metals or compounds thereof
    • C08F4/64Titanium, zirconium, hafnium or compounds thereof
    • C08F4/659Component covered by group C08F4/64 containing a transition metal-carbon bond
    • C08F4/65912Component covered by group C08F4/64 containing a transition metal-carbon bond in combination with an organoaluminium compound
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F4/00Polymerisation catalysts
    • C08F4/42Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors
    • C08F4/44Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides
    • C08F4/60Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides together with refractory metals, iron group metals, platinum group metals, manganese, rhenium technetium or compounds thereof
    • C08F4/62Refractory metals or compounds thereof
    • C08F4/64Titanium, zirconium, hafnium or compounds thereof
    • C08F4/659Component covered by group C08F4/64 containing a transition metal-carbon bond
    • C08F4/6592Component covered by group C08F4/64 containing a transition metal-carbon bond containing at least one cyclopentadienyl ring, condensed or not, e.g. an indenyl or a fluorenyl ring
    • C08F4/65922Component covered by group C08F4/64 containing a transition metal-carbon bond containing at least one cyclopentadienyl ring, condensed or not, e.g. an indenyl or a fluorenyl ring containing at least two cyclopentadienyl rings, fused or not
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S526/00Synthetic resins or natural rubbers -- part of the class 520 series
    • Y10S526/943Polymerization with metallocene catalysts

Abstract

Compounds and metal complexes comprising a polycyclic, fused ring ligand or inertly substituted derivative thereof having up to 60 atoms other than hydrogen, said ligand comprising at least: (1) a cyclopentadienyl ring, (2) a 6,7, or 8 membered ring other than a 6-carbon aromatic ring, and (3) an aromatic ring, with the proviso that said 6, 7, or 8 membered ring (2), is fused to both the cyclopentadienyl ring (1), and the aromatic ring (3), polymerization catalysts, a process to prepare the novel compounds and complexes, and olefin polymerization processes using the same are disclosed.

Claims (13)

1. A polycyclic, fused ring compound corresponding to the formula:
(Cp*)p-M* (I) or CpM(Z)z(X)x(L)1(X')x' (II), where Cp* is a polycyclic, fused ring ligand or inertly substituted derivative thereof comprising at least: (1) a cyclopentadienyl ring, (2) a 6,7,or 8 membered ring other than a 6-carbon aromatic ring, and (3) an aromatic ring, with the proviso that said 6, 7, or 8 membered ring (2), is fused to both the cyclopentadienyl ring (1), and the aromatic ring (3), said Cp* having up to 60 atoms other than hydrogen;
p is 1 or 2;
when p is 1, M* is hydrogen, an alkali metal or an alkaline earth metal halide, and, when p is 2, M* is an alkaline earth metal; said M* being bound to at least one of the non-fused, ring-carbons of the cyclopentadienyl ring, (1);
Cp is the aromatic ligand group derived from Cp* by removal of M*;
M is a metal selected from Groups 3-10 or the Lanthanide series of the Periodic Table of the Elements;
Z is either:
a) a cyclic ligand group containing delocalized .pi.-electrons, including a second or third, fused, polycyclic ligand, Cp, said Z being bonded to M by means of delocalized .pi.-electrons and optionally also covalently bonded to Cp through a divalent bridging group, Z', or b) a divalent moiety of the formula -Z'Y-, wherein, Z' is SiR6 2, CR6 2, SiR6 2,SiR6 2, CR6 2CR6 2, CR6=CR6, CR6 2SiR6 2, BR6, BR6L", or GeR6 2;
Y is -O-, -S-, -NR5-, -PR5-; -NR5 2, or -PR5 2;
R5, independently each occurrence, is hydrocarbyl, trihydrocarbylsilyl, or trihydrocarbylsilylhydrocarbyl, said R5 having up to 20 atoms other than hydrogen, and optionally two R5 groups or R5 together with Y form a ring system;
R6, independently each occurrence, is hydrogen, or a member selected from hydrocarbyl, hydrocarbyloxy, silyl, halogenated alkyl, halogenated aryl, -NR5 2, and combinations thereof, said R6 having up to 20 non-hydrogen atoms, and optionally, two R6 groups form a ring system;
L" is a monodentate or polydentate Lewis base optionally bonded to R6;
X is hydrogen or a monovalent anionic ligand group having up to 60 atoms not counting hydrogen;
L independently each occurrence is a neutral ligating compound having up to 20 atoms, other than hydrogen, and optionally L and X are bonded together;
X' is a divalent anionic ligand group having up to 60 atoms other than hydrogen;
z is 0, 1 or 2;

x is 0,1,2,or3;
1 is a number from 0 to 2, and x'is 0 or 1.
2. A compound or complex according to claim 1 corresponding to the formula:
structural isomers thereof wherein one or more double bonds occupy different positions within the various rings, and mixtures thereof, wherein:

T independently each occurrence is carbon, silicon, nitrogen, phosphorus, oxygen, sulfur, or boron;
J independently each occurrence is hydrogen, hydrocarbyl, trihydrocarbylsilyl, trihydrocarbylgermyl, halide, hydrocarbyloxy, trihydrocarbylsiloxy, bis(trihydrocarbylsilyl)amino, di(hydrocarbyl)amino, hydrocarbyleneamino, hydrocarbylimino, di(hydrocarbyl)phosphino, hydrocarbylenephosphino, hydrocarbylsulfido, halo- substituted hydrocarbyl, hydrocarbyloxy-substituted hydrocarbyl, trihydrocarbylsilyl- substituted hydrocarbyl, trihydrocarbylsiloxy-substituted hydrocarbyl, bis(trihydrocarbylsilyl)amino- substituted hydrocarbyl, di(hydrocarbyl)amino- substituted hydrocarbyl, hydrocarbyleneamino-substituted hydrocarbyl, di(hydrocarbyl)phosphino- substituted hydrocarbyl, hydrocarbylenephosphino-substituted hydrocarbyl, or hydrocarbylsulfido- substituted hydrocarbyl, said J group having up to 40 atoms not counting hydrogen atoms, and optionally two J groups together form a divalent derivative thereby forming a saturated or unsaturated ring, with the proviso that, in at least one occurrence, two or more of the foregoing J groups on different atoms, at least one or which is T, together form a divalent derivative, thereby forming at least one aromatic ring that is fused to the 6, 7, or 8 membered ring;
t is 0, 1 or 2; and, for compounds of formula (1A1) or (1A2) where T is carbon, in at least one occurrence, t is 2; and M*, p, M, Z, X, L, X', x, l, and x' are as previously defined in claim 1.
3. A metal complex according to claim 1, corresponding to the formula:
structural isomers thereof wherein one or more double bonds occupy different positions within the various rings, or a mixture thereof, wherein:
T independently each occurrence is carbon, silicon, nitrogen, phosphorus, oxygen, sulfur, or boron;
J independently each occurrence is hydrogen, hydrocarbyl, trihydrocarbylsilyl, trihydrocarbylgermyl, halide, hydrocarbyloxy, trihydrocarbylsiloxy, bis(trihydrocarbylsilyl)amino, di(hydrocarbyl)amino, hydrocarbyleneamino, hydrocarbylimino, di(hydrocarbyl)phosphino, hydrocarbylenephosphino, hydrocarbylsulfido, halo- substituted hydrocarbyl, hydrocarbyloxy-substituted hydrocarbyl, trihydrocarbylsilyl- substituted hydrocarbyl, trihydrocarbylsiloxy-substituted hydrocarbyl, bis(trihydrocarbylsilyl)amino- substituted hydrocarbyl, di(hydrocarbyl)amino- substituted hydrocarbyl, hydrocarbyleneamino-substituted hydrocarbyl, di(hydrocarbyl)phosphino- substituted hydrocarbyl, hydrocarbylenephosphino-substituted hydrocarbyl, or hydrocarbylsulfido- substituted hydrocarbyl, said J group having up to 40 atoms not counting hydrogen atoms, and optionally two J groups together form a divalent derivative thereby forming a saturated or unsaturated ring, with the proviso that, in at least one occurrence, two or more of the foregoing J groups on different atoms, at least one or which is T, together form a divalent derivative, thereby forming at least one aromatic ring that is fused to the 6, 7, or 8 membered ring;
t is 0, 1 or 2; and, for compounds of formula (1A1) or (1A2) where T is carbon, in at least one occurrence, t is 2; and M, Z', X, L, X', x, 1, and x' are as previously defined in claim 1.
4. A compound or complex according to claim 1, corresponding to the formula:
structural isomers thereof wherein one or more double bonds occupy different positions within the various rings, and mixtures thereof, wherein J* independently each occurrence is hydrogen, hydrocarbyl, trihydrocarbylsilyl, trihydrocarbylgermyl, halide, hydrocarbyloxy, trihydrocarbylsiloxy, bis(trihydrocarbylsilyl)amino, di(hydrocarbyl)amino, hydrocarbyleneamino, hydrocarbylimino, di(hydrocarbyl)phosphino, hydrocarbylenephosphino, hydrocarbylsulfido, halo- substituted hydrocarbyl, hydrocarbyloxy-substituted hydrocarbyl, trihydrocarbylsilyl- substituted hydrocarbyl, trihydrocarbylsiloxy-substituted hydrocarbyl, bis(trihydrocarbylsilyl)amino- substituted hydrocarbyl, di(hydrocarbyl)amino- substituted hydrocarbyl, hydrocarbyleneamino-substituted hydrocarbyl, di(hydrocarbyl)phosphino- substituted hydrocarbyl, hydrocarbylenephosphino-substituted hydrocarbyl, or hydrocarbylsulfido- substituted hydrocarbyl, said J* group having up to 40 atoms not counting hydrogen atoms, and two J* groups together or a J* and a J' group together may form a divalent derivative thereby forming a saturated or unsaturated ring, with the proviso that, in at least one occurrence, two or more of the foregoing J* groups on different atoms, together form a divalent derivative, thereby forming at least one aromatic ring that is fused to the 6, 7, or 8 membered ring;
J' independently each occurrence is hydrogen, hydrocarbyl, trihydrocarbylsilyl, trihydrocarbylgermyl, halide, hydrocarbyloxy, trihydrocarbylsiloxy, bis(trihydrocarbylsilyl)amino, di(hydrocarbyl)amino, hydrocarbyleneamino, hydrocarbylimino, di(hydrocarbyl)phosphino, hydrocarbylenephosphino, hydrocarbylsulfido, halo- substituted hydrocarbyl, hydrocarbyloxy-substituted hydrocarbyl, trihydrocarbylsilyl- substituted hydrocarbyl, trihydrocarbylsiloxy-substituted hydrocarbyl, bis(trihydrocarbylsilyl)amino- substituted hydrocarbyl, di(hydrocarbyl)amino- substituted hydrocarbyl, hydrocarbyleneamino-substituted hydrocarbyl, di(hydrocarbyl)phosphino- substituted hydrocarbyl, hydrocarbylenephosphino-substituted hydrocarbyl, or hydrocarbylsulfido- substituted hydrocarbyl, said J' group having up to 40 atoms not counting hydrogen atoms, and two J' groups together or a J' group and a J*
group together may form a divalent derivative thereby forming a saturated or unsaturated fused ring;
M* is hydrogen, an alkali metal or an alkaline earth metal halide, T is carbon, boron, nitrogen or oxygen, t is 1 or 2;
t' is 0, 1 or 2, and M, X, L, X', x, 1, and x' are as defined in claim 3.
5. A metal compound or complex according to claim 4 corresponding to the formula:
wherein, T is carbon, or nitrogen;
when T is carbon, t' is 2, and when T is nitrogen, t'is 1;
M* is hydrogen, sodium, potassium, or lithium;
M is titanium;
R1 each occurrence is hydrogen or a hydrocarbyl, amino or amino- substituted hydrocarbyl group of up to 20 atoms other than hydrogen, and optionally two R' groups may be joined together;
Y is -O-, -S-, -NR5-, -PR5-; -NR5 2, or -PR5 2;
Z' is SiR6 2, CR6 2, SiR6 2SiR6 2, CR6 2CR6 2, CR6=CR6, CR6 2SiR6 2, BR6, BR6L", or GeR6 2;
R5 each occurrence is independently hydrocarbyl, trihydrocarbylsilyl, or trihydrocarbylsilylhydrocarbyl, said R5 having up to 20 atoms other than hydrogen, and optionally two R5 groups or R5 together with Y form a ring system ;
R6 each occurrence is independently hydrogen, or a member selected from hydrocarbyl, hydrocarbyloxy, silyl, halogenated alkyl, halogenated aryl, -NR5 2, and combinations thereof, said R6 having up to 20 non-hydrogen atoms, and optionally, two R6 groups form a ring system;
X, L, L",and X' are as previously defined;

x is 0, 1 or 2;
l is 0 or 1; and x'is 0 or 1;
with the proviso that:
when x is 2, x' is zero, M is in the +4 formal oxidation state (or M is in the +3 formal oxidation state if Y is -NR5 2 or -PR5 2), and X is an anionic ligand selected from the group consisting of halide, hydrocarbyl, hydrocarbyloxy, di(hydrocarbyl)amido, di(hydrocarbyl)phosphido, hydrocarbylsulfido, and silyl groups, as well as halo-, di(hydrocarbyl)amino-, hydrocarbyloxy-, and di(hydrocarbyl)phosphino-substituted derivatives thereof, said X group having up to 30 atoms not counting hydrogen, when x is 0 and x' is 1, M is in the +4 formal oxidation state, and X' is a dianionic ligand selected from the group consisting of hydrocarbadiyl, oxyhydrocarbylene, and hydrocarbylenedioxy groups, said X group having up to 30 nonhydrogen atoms, when x is 1, and x' is 0, M is in the +3 formal oxidation state, and X is a stabilizing anionic ligand group selected from the group consisting of allyl, 2-(N,N-dimethylamino)phenyl, 2-(N,N-dimethylaminomethyl)phenyl, and 2-(N,N-dimethylamino)benzyl, and when x and x' are both 0,1 is 1, M is in the +2 formal oxidation state, and L
is a neutral, conjugated or nonconjugated diene, optionally substituted with one or more hydrocarbyl groups, said L having up to 40 carbon atoms and being bound to M by means of delocalized .pi.-electrons thereof.
6. A metal complex according to claim 1 that is:
(2,8-dihydrodibenzo[e,h]azulen-2-yl)-N-(1,1-dimethylethyl)dimethyl-silanamide titanium (II) 1,4-diphenyl-1,3-butadiene, (2,8-dihydrodibenzo[e,h]azulen-2-yl)-N-(1,1-dimethylethyl)dimethyl-silanamide titanium (II) 1,3-pentadiene, ((2,8-dihydrodibenzo[e,h]azulen-2-yl)-N-(1,1-dimethylethyl)dimethyl-silanamide titanium (III) 2-(N,N-dimethylamino)benzyl, (2,8-dihydrodibenzo[e,h]azulen-2-yl)-N-(1,1-dimethylethyl)dimethyl-silanamide titanium (IV) dichloride, 2,8-dihydrodibenzo[e,h]azulen-2-yl)-N-(1,1-dimethylethyl)dimethyl-silanamide titanium (IV) dimethyl, 2,8-dihydrodibenzo[e,h]azulen-2-yl)-N-(1,1-dimethylethyl)dimethyl-silanamide titanium (IV) dibenzyl, (2,8-dihydrodibenzo[e,h]azulen-2-yl)-N-(cyclohexyl)dimethyl-silanamide titanium (II) 1,4-diphenyl-1,3-butadiene, (2,8-dihydrodibenzo[e,h]azulen-2-yl)-N-(cyclohexyl)dimethyl-silanamide titanium (II) 1,3-pentadiene, ((2,8-dihydrodibenzo[e,h]azulen-2-yl)-N-(cyclohexyl)dimethyl-silanamide titanium (III) 2-(N,N-dimethylamino)benzyl, (2,8-dihydrodibenzo[e,h]azulen-2-yl)-N-(cyclohexyl)dimethyl-silanamide titanium (IV) dichloride, 2,8-dihydrodibenzo[e,h]azulen-2-yl)-N-(cyclohexyl)dimethyl-silanamide titanium (IV) dimethyl, 2,8-dihydrodibenzo[e,h]azulen-2-yl)-N-(cyclohexyl)dimethyl-silanamide titanium (IV) dibenzyl, (2,8-dihydrodibenzo[e,h]azulen-1-yl)-N-(1,1-dimethylethyl)dimethyl-silanamide titanium (II) 1,4-diphenyl-1,3-butadiene, (2,8-dihydrodibenzo[e,h]azulen-1-yl)-N-(1,1-dimethylethyl)dimethyl-silanamide titanium (II) 1,3-pentadiene, ((2,8-dihydrodibenzo[e,h]azulen-1-yl)-N-(1,1-dimethylethyl)dimethyl-silanamide titanium (III) 2-(N,N-dimethylamino)benzyl, (2,8-dihydrodibenzo[e,h]azulen-1-yl)-N-(1,1-dimethylethyl)dimethyl-silanamide titanium (IV) dichloride, 2,8-dihydrodibenzo[e,h]azulen-1-yl)-N-(1,1-dimethylethyl)dimethyl-silanamide titanium (IV) dimethyl, 2,8-dihydrodibenzo[e,h]azulen-1-yl)-N-(1,1-dimethylethyl)dimethyl-silanamide titanium (IV) dibenzyl, (2,8-dihydrodibenzo[e,h]azulen-1-yl)-N-(cyclohexyl)dimethyl-silanamide titanium (II) 1,4-diphenyl-1,3-butadiene, (2,8-dihydrodibenzo[e,h]azulen-1-yl)-N-(cyclohexyl)dimethyl-silanamide titanium (II) 1,3-pentadiene, ((2,8-dihydrodibenzo[e,h]azulen-1-yl)-N-(cyclohexyl)dimethyl-silanamide titanium (III) 2-(N,N-dimethylamino)benzyl, (2,8-dihydrodibenzo[e,h]azulen-1-yl)-N-(cyclohexyl)dimethyl-silanamide titanium (IV) dichloride, 2,8-dihydrodibenzo[e,h]azulen-1-yl)-N-(cyclohexyl)dimethyl-silanamide titanium (IV) dimethyl, 2,8-dihydrodibenzo[e,h]azulen-1-yl)-N-(cyclohexyl)dimethyl-silanamide titanium (IV) dibenzyl, or a mixture thereof.
7. An olefin polymerization process comprising contacting one or more olefin monomers under polymerization conditions with a catalyst composition comprising a metal complex according to any one of claims 1-6.
8. The process of claim 7 wherein the catalyst composition additionally comprises an activating cocatalyst.
9. The process of claim 8 conducted under solution, slurry or high pressure polymerization conditions.
10. The process of claim 8 conducted under slurry or gas phase polymerization conditions, wherein the catalyst additionally comprises an inert, particulated support.
11. The process of claim 8 wherein the activating cocatalyst is (2,4,6-trifluorophenyl)dioctadecylammonium tetrakis(pentafluorophenyl)borate, (2,4,6-trifluorophenyl)dioctadecylammonium (hydroxyphenyl)tris(pentafluorophenyl)- borate, (2,4,6-trifluorophenyl)dioctadecylammonium (diethylaluminoxyphenyl)tris(pentafluoro-phenyl) borate, (pentafluorophenyl)dioctadecylammonium tetrakis(pentafluorophenyl)borate, (pentafluorophenyl)dioctadecylammonium (hydroxyphenyl)tris(pentafluorophenyl)-borate, (pentafluorophenyl)dioctadecylammonium (diethylaluminoxyphenyl)tris(pentafluoro-phenyl) borate, (p-trifluoromethylphenyl)dioctadecylammonium tetrakis(pentafluorophenyl)borate, (p-trifluoromethylphenyl)dioctadecylammonium (hydroxyphenyl)tris(pentafluoro-phenyl) borate, (p-trifluoromethylphenyl)dioctadecylammonium (diethylaluminoxyphenyl)tris(penta-fluorophenyl) borate, p-nitrophenyldioctadecylammonium tetrakis(pentafluorophenyl)borate, p-nitrophenyldioctadecylammonium (hydroxyphenyl)tris(pentafluorophenyl) borate, or p-nitrophenyldioctadecylammonium (diethylaluminoxyphenyl)tris(pentafluorophenyl) borate.
12. A process for preparing a polycyclic, fused ring cyclopentadiene compound comprising:
A) contacting 1) a cyclic compound containing ethylenic unsaturation in the ring forming atoms thereof and substituted at the .alpha.-position of such ethylenic unsaturation with a leaving group with 2) an acetylenic compound containing a protecting group at one of the acetylenic carbons and a group that is reactive with the leaving group of the cyclic compound at the remaining acetylenic carbon under conditions to cause ligand exchange, optionally in the presence of a base, thereby forming a cyclic compound containing ethylenic unsaturation and substituted at an .alpha.-carbon of the ethylenic unsaturation with an acetylenic group;

B) carbonylating and ring closing the product of step A) to form a polycyclic, fused ring cyclopentenone compound; and C) reducing and dehydrating the product of step B) to form the desired polycyclic, fused ring cyclopentadiene compound (III).
13. The process of claim 12 wherein the steps A), B) and C) are as follows:
A) B) C) where Le is a leaving group, Pr is a protecting group, T"-T" is the divalent remnant of the cyclic compound containing ethylenic unsaturation excluding the carbons forming the ethylenic unsaturation and Le, and M** is a group that is reactive with the leaving group, Le.
CA2411712A 2000-06-30 2001-06-12 Polycyclic, fused ring compounds, metal complexes and polymerization process Expired - Fee Related CA2411712C (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US21545600P 2000-06-30 2000-06-30
US60/215,456 2000-06-30
PCT/US2001/018808 WO2002002577A1 (en) 2000-06-30 2001-06-12 Polycyclic, fused ring compounds, metal complexes and polymerization process

Publications (2)

Publication Number Publication Date
CA2411712A1 true CA2411712A1 (en) 2002-01-10
CA2411712C CA2411712C (en) 2011-01-25

Family

ID=22803050

Family Applications (1)

Application Number Title Priority Date Filing Date
CA2411712A Expired - Fee Related CA2411712C (en) 2000-06-30 2001-06-12 Polycyclic, fused ring compounds, metal complexes and polymerization process

Country Status (9)

Country Link
US (2) US6613921B2 (en)
EP (1) EP1299405B1 (en)
JP (1) JP4964389B2 (en)
KR (1) KR20030013479A (en)
AT (1) ATE431353T1 (en)
AU (1) AU2001275462A1 (en)
CA (1) CA2411712C (en)
DE (1) DE60138708D1 (en)
WO (1) WO2002002577A1 (en)

Families Citing this family (63)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6825369B1 (en) * 1989-09-14 2004-11-30 The Dow Chemical Company Metal complex compounds
WO2002083754A1 (en) 2001-04-12 2002-10-24 Exxonmobil Chemical Patents Inc. Propylene ethylene polymers and production process
US6635715B1 (en) * 1997-08-12 2003-10-21 Sudhin Datta Thermoplastic polymer blends of isotactic polypropylene and alpha-olefin/propylene copolymers
EP1098934A1 (en) 1998-07-01 2001-05-16 Exxon Chemical Patents Inc. Elastic blends comprising crystalline polymer and crystallizable polymers of propylene
CA2411712C (en) * 2000-06-30 2011-01-25 Dow Global Technologies Inc. Polycyclic, fused ring compounds, metal complexes and polymerization process
US6927256B2 (en) * 2001-11-06 2005-08-09 Dow Global Technologies Inc. Crystallization of polypropylene using a semi-crystalline, branched or coupled nucleating agent
EP1444276A1 (en) * 2001-11-06 2004-08-11 Dow Global Technologies, Inc. Isotactic propylene copolymers, their preparation and use
US6943215B2 (en) * 2001-11-06 2005-09-13 Dow Global Technologies Inc. Impact resistant polymer blends of crystalline polypropylene and partially crystalline, low molecular weight impact modifiers
US6794514B2 (en) 2002-04-12 2004-09-21 Symyx Technologies, Inc. Ethylene-styrene copolymers and phenol-triazole type complexes, catalysts, and processes for polymerizing
CN1646550A (en) * 2002-04-16 2005-07-27 陶氏环球技术公司 Substituted polyclic, fused ring metal complexes and polymerization process
AU2003301313A1 (en) * 2002-10-17 2004-05-04 Dow Global Technologies Inc. Highly filled polymer compositions
US7579407B2 (en) * 2002-11-05 2009-08-25 Dow Global Technologies Inc. Thermoplastic elastomer compositions
US7459500B2 (en) * 2002-11-05 2008-12-02 Dow Global Technologies Inc. Thermoplastic elastomer compositions
CN100351275C (en) 2003-03-21 2007-11-28 陶氏环球技术公司 Morphology controlled olefin polymerization process
EP1905807B1 (en) 2003-08-19 2010-01-20 Dow Global Technologies Inc. Interpolymers suitable for use in hot melt adhesives and processes to prepare same
US6956003B2 (en) * 2003-12-03 2005-10-18 Formosa Plastics Corporation, U.S.A. Catalyst system for ethylene (co)-polymerization
US7399895B2 (en) * 2004-03-16 2008-07-15 Union Carbide Chemicals & Plastics Aluminum phosphate-supported group 6 metal amide catalysts for oligomerization of ethylene
BRPI0508173B1 (en) 2004-03-17 2016-03-15 Dow Global Technologies Inc multiblock copolymers, polymer, copolymer, a functional derivative, homogeneous polymer blend, process for preparing a propylene-containing multiblock copolymer and process for preparing a 4-methyl-1-pentene multiblock copolymer
SG151301A1 (en) 2004-03-17 2009-04-30 Dow Global Technologies Inc Catalyst composition comprising shuttling agent for ethylene multi- block copolymer formation
AU2005224258B2 (en) 2004-03-17 2010-09-02 Dow Global Technologies Inc. Catalyst composition comprising shuttling agent for ethylene copolymer formation
US7244858B2 (en) * 2004-03-25 2007-07-17 Praxair Technology, Inc. Organometallic precursor compounds
WO2006007094A2 (en) 2004-06-16 2006-01-19 Dow Global Technologies Inc. Technique for selecting polymerization modifiers
US7214749B2 (en) * 2004-07-09 2007-05-08 The Texas A&M University Systems Catalyst system for high activity and stereoselectivity in the homopolymerization and copolymerization of olefins
EP1805229A1 (en) 2004-10-28 2007-07-11 Dow Gloval Technologies Inc. Method of controlling a polymerization reactor
WO2006101596A1 (en) 2005-03-17 2006-09-28 Dow Global Technologies Inc. Catalyst composition comprising shuttling agent for tactic/ atactic multi-block copolymer formation
EP2894176B1 (en) 2005-03-17 2022-06-01 Dow Global Technologies LLC Catalyst composition comprising shuttling agent for regio-irregular multi-block copolymer formation
US9410009B2 (en) 2005-03-17 2016-08-09 Dow Global Technologies Llc Catalyst composition comprising shuttling agent for tactic/ atactic multi-block copolymer formation
BR122017016853B1 (en) 2005-09-15 2018-05-15 Dow Global Technologies Inc. PROCESS FOR POLYMERIZING ONE OR MORE POLYMERIZABLE MONOMERS BY ADDITION
ITMI20070878A1 (en) 2007-05-02 2008-11-03 Dow Global Technologies Inc PROCESS FOR POLYMERIZZAINE OF TACTICAL POLYMERS USING CHIRAL CATALYSTS
ITMI20070877A1 (en) 2007-05-02 2008-11-03 Dow Global Technologies Inc PROCESS FOR THE PRODUCTION OF MULTI-BLOCKED COPOLYMERS WITH THE USE OF POLAR SOLVENTS
CN102131837B (en) 2008-08-21 2014-10-15 陶氏环球技术有限责任公司 Metal-ligand complexes and catalysts
BR112012001942B1 (en) 2009-07-29 2019-10-22 Dow Global Technologies Llc multifunctional chain exchange agent, process for preparing a multifunctional chain exchange agent, process for preparing a multifunctional composition, multifunctional composition, process for preparing a multifunctional chain exchange agent containing poly radical polyolefin, telequel polyolefin, process for preparing a terminal functionality polyolefin with battery separator
US20110054122A1 (en) 2009-08-31 2011-03-03 Jerzy Klosin Catalyst and process for polymerizing an olefin and polyolefin prepared thereby
KR101827023B1 (en) 2010-02-19 2018-02-07 다우 글로벌 테크놀로지스 엘엘씨 Metal-ligand complexes and catalysts
EP3549960B1 (en) 2010-02-19 2021-03-24 Dow Global Technologies LLC Process for polymerizing an olefin monomer and catalyst therefor
WO2012103080A1 (en) 2011-01-26 2012-08-02 Dow Global Technologies Llc Process for making a polyolefin-polysiloxane block copolymer
US9296836B2 (en) 2011-05-12 2016-03-29 Dow Global Technologies Llc Non-cyclopentadienyl-based chromium catalysts for olefin polymerization
KR101212637B1 (en) * 2011-06-09 2012-12-14 에스케이종합화학 주식회사 NEW CYCLOPENTA[b]FLUORENYL TRANSITION METAL COMPLEXES, CATALYSTS COMPOSITION CONTAINING THE SAME, AND METHODS FOR PREPARING ETHYLENE HOMOPOLYMERS OR COPOLYMERS OF ETHYLENE AND α-OLEFINS USING THE SAME
CN103890023B (en) 2011-10-24 2016-11-16 三菱化学株式会社 Composition for thermoplastic elastomer and manufacture method thereof
CN108026115B (en) 2015-09-30 2021-11-09 陶氏环球技术有限责任公司 Multi-head or double-head composition capable of being used for chain shuttling and preparation method thereof
BR112019006150B1 (en) 2016-09-30 2023-02-28 Dow Global Technologies Llc COMPOSITION AND PROCESS FOR PREPARING THE COMPOSITION
EP3519474A1 (en) 2016-09-30 2019-08-07 Dow Global Technologies LLC Process for preparing multi- or dual-headed compositions useful for chain shuttling
WO2018064553A1 (en) 2016-09-30 2018-04-05 Dow Global Technologies Llc Multi- or dual-headed compositions useful for chain shuttling and process to prepare the same
KR102648625B1 (en) 2017-03-15 2024-03-19 다우 글로벌 테크놀로지스 엘엘씨 Catalyst system for forming multi-block copolymers
US20200247936A1 (en) 2017-03-15 2020-08-06 Dow Global Technologies Llc Catalyst system for multi-block copolymer formation
EP3596146B1 (en) 2017-03-15 2023-07-19 Dow Global Technologies LLC Catalyst system for multi-block copolymer formation
CN110582518B (en) 2017-03-15 2022-08-09 陶氏环球技术有限责任公司 Catalyst system for forming multi-block copolymers
SG11201908306TA (en) 2017-03-15 2019-10-30 Dow Global Technologies Llc Catalyst system for multi-block copolymer formation
US10968290B2 (en) 2017-03-28 2021-04-06 Exxonmobil Chemical Patents Inc. Metallocene-catalyzed polyalpha-olefins
US11021553B2 (en) 2018-02-12 2021-06-01 Exxonmobil Chemical Patents Inc. Metallocene dimer selective catalysts and processes to produce poly alpha-olefin dimers
US11078308B2 (en) 2018-02-12 2021-08-03 Exxonmobil Chemical Patents Inc. Processes to produce poly alpha-olefin trimers
CN111868106B (en) 2018-02-12 2023-02-17 埃克森美孚化学专利公司 Catalyst system and process for poly-alpha-olefins having high vinylidene content
EP3768686A1 (en) 2018-03-19 2021-01-27 Dow Global Technologies, LLC Silicon-terminated organo-metal compounds and processes for preparing the same
US11414436B2 (en) * 2018-04-26 2022-08-16 Exxonmobil Chemical Patents Inc. Non-coordinating anion type activators containing cation having large alkyl groups
US11059791B2 (en) 2019-04-25 2021-07-13 Exxonmobil Chemical Patents Inc. Non-coordinating anion type benzimidazolium activators
WO2021086926A1 (en) 2019-10-28 2021-05-06 Exxonmobil Chemical Patents Inc. Dimer selective metallocene catalysts, non-aromatic hydrocarbon soluble activators, and processes to produce poly alpha-olefin oligmers therewith
US11572423B2 (en) 2019-12-11 2023-02-07 Exxonmobil Chemicals Patents Inc. Processes for introduction of liquid activators in olefin polymerization reactions
US11584707B2 (en) 2019-12-16 2023-02-21 Exxonmobil Chemical Patents Inc. Non-coordinating anion type activators containing cation having aryldiamine groups and uses thereof
CN115485311A (en) 2020-02-24 2022-12-16 埃克森美孚化学专利公司 Ansa-bis (inden-2-yl) catalysts for the production of vinylidene-terminated polyalphaolefins
CN115315451B (en) * 2020-03-25 2023-12-01 日本聚丙烯株式会社 Catalyst for olefin polymerization, method for producing catalyst for olefin polymerization, and method for producing olefin polymer using catalyst for olefin polymerization
WO2022093814A1 (en) 2020-10-28 2022-05-05 Exxonmobil Chemical Patents Inc. Non-aromatic hydrocarbon soluble olefin polymerization catalysts and use thereof
US11746163B2 (en) 2021-01-05 2023-09-05 Exxonmobil Chemical Patents Inc. Isohexane-soluble unsaturated alkyl anilinium tetrakis(perfluoroaryl)borate activators
CN115710326A (en) * 2022-10-27 2023-02-24 万华化学集团股份有限公司 Dibenzofuran bridged aryloxy metal complex catalyst, and method and application thereof

Family Cites Families (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3310656A (en) 1963-07-12 1967-03-21 Ipsen Ind Inc Condition controlling apparatus, particularly for controlling temperatures
US3310565A (en) * 1964-10-23 1967-03-21 Sandoz Ag Dibenzoazabicycloalkanes
NZ235032A (en) 1989-08-31 1993-04-28 Dow Chemical Co Constrained geometry complexes of titanium, zirconium or hafnium comprising a substituted cyclopentadiene ligand; use as olefin polymerisation catalyst component
JP2545006B2 (en) 1990-07-03 1996-10-16 ザ ダウ ケミカル カンパニー Addition polymerization catalyst
US5721185A (en) 1991-06-24 1998-02-24 The Dow Chemical Company Homogeneous olefin polymerization catalyst by abstraction with lewis acids
JP3402473B2 (en) 1991-08-20 2003-05-06 日本ポリケム株式会社 Olefin polymerization catalyst
US5374696A (en) 1992-03-26 1994-12-20 The Dow Chemical Company Addition polymerization process using stabilized reduced metal catalysts
JP3307704B2 (en) 1993-02-19 2002-07-24 三菱化学株式会社 Production method of .ALPHA.-olefin polymer
JP3293927B2 (en) 1993-02-19 2002-06-17 三菱化学株式会社 Catalyst component for .ALPHA.-olefin polymerization and method for producing .ALPHA.-olefin polymer using the same
US5470993A (en) 1993-06-24 1995-11-28 The Dow Chemical Company Titanium(II) or zirconium(II) complexes and addition polymerization catalysts therefrom
US5486632A (en) 1994-06-28 1996-01-23 The Dow Chemical Company Group 4 metal diene complexes and addition polymerization catalysts therefrom
DE69500979T2 (en) 1994-07-22 1998-03-05 Mitsubishi Chem Corp Catalyst component for alpha olefin polymerization and process for producing alpha olefin polymers using the same
JP3338190B2 (en) 1994-08-17 2002-10-28 三菱化学株式会社 Catalyst component for .ALPHA.-olefin polymerization and method for producing .ALPHA.-olefin polymer using the same
US5541349A (en) 1994-09-12 1996-07-30 The Dow Chemical Company Metal complexes containing partially delocalized II-bound groups and addition polymerization catalysts therefrom
DE69624839T2 (en) 1995-10-27 2003-08-28 Dow Chemical Co SUBSTITUTED INDENYL CONTAINING METAL COMPLEXES AND OLEFIN POLYMERIZATION PROCESS.
DE19543427C2 (en) 1995-11-21 2003-01-30 Infineon Technologies Ag Chip module, in particular for installation in a chip card
DE69722902T2 (en) * 1996-12-09 2004-05-19 Mitsubishi Chemical Corp. Alpha olefin polymerization catalyst
IT1290856B1 (en) * 1996-12-19 1998-12-14 Enichem Spa METALLOCENES, THEIR PREPARATION AND USE IN THE POLYMERIZATION OF ALPHA-OLEFINS
US6255515B1 (en) 1997-01-21 2001-07-03 Mitsubishi Chemical Corporation Processes for producing silicon- or germanium-containing organic compound, transition metal complex, catalyst for polymerization of α-olefin and α-olefin polymer
FI972946A (en) 1997-07-11 1999-01-12 Borealis As Novel metallocene compounds for polymerization of ethylenically unsaturated monomers
US6150297A (en) 1997-09-15 2000-11-21 The Dow Chemical Company Cyclopentaphenanthrenyl metal complexes and polymerization process
TW490470B (en) 1998-03-26 2002-06-11 Idemitsu Petrochemical Co Transition metal compound, polymerization catalyst comprising it, and method for producing polymers using the polymerization catalyst
JPH11335387A (en) * 1998-03-26 1999-12-07 Idemitsu Petrochem Co Ltd Transition metal compound, catalyst for polymerization using the same, and production of polymer using the catalyst
JP4116148B2 (en) 1998-06-08 2008-07-09 三菱化学株式会社 Novel transition metal compound, catalyst component for olefin polymerization, and method for producing α-olefin polymer
CN1291986A (en) * 1998-11-18 2001-04-18 蒙特尔技术有限公司 Bis (tetrahydro-indenyl) metallocenes as olefin-polymerisation-catalyst
DE19916837A1 (en) 1999-04-14 2000-10-19 Merck Patent Gmbh New di- or tetrahydro-benzoazulene derivatives, are integrin inhibitors useful e.g. for treating thrombosis, coronary heart disease, arteriosclerosis, tumors, osteoporosis or rheumatoid arthritis
IT1318436B1 (en) * 2000-03-31 2003-08-25 Enichem Spa POLYCYCLIC SUBSTITUTED CYCLOPENTADIENES AND METHOD FOR THEIR PREPARATION.
CA2411712C (en) * 2000-06-30 2011-01-25 Dow Global Technologies Inc. Polycyclic, fused ring compounds, metal complexes and polymerization process

Also Published As

Publication number Publication date
CA2411712C (en) 2011-01-25
WO2002002577A1 (en) 2002-01-10
AU2001275462A1 (en) 2002-01-14
ATE431353T1 (en) 2009-05-15
EP1299405B1 (en) 2009-05-13
US6800701B2 (en) 2004-10-05
US6613921B2 (en) 2003-09-02
US20030216529A1 (en) 2003-11-20
US20020062011A1 (en) 2002-05-23
JP4964389B2 (en) 2012-06-27
DE60138708D1 (en) 2009-06-25
JP2004505019A (en) 2004-02-19
EP1299405A1 (en) 2003-04-09
KR20030013479A (en) 2003-02-14

Similar Documents

Publication Publication Date Title
CA2411712A1 (en) Polycyclic, fused ring compounds, metal complexes and polymerization process
CA2477776A1 (en) Substituted indenyl metal complexes and polymerization process
EP0632819B1 (en) Addition polymerization catalysts comprising reduced oxidation state metal complexes
EP0495375B1 (en) Process for preparing addition polymerization catalysts via metal center oxidation
EP0698618B1 (en) Addition polymerization catalyst with oxidative activation
JP5035864B2 (en) Metallocene complex and polymerization catalyst composition containing the same
JP3186218B2 (en) Terminal vinyl ethylene-propylene copolymer and method for producing the same
JP2004505019A5 (en)
KR950701651A (en) PREPARATION OF ADDITION POLYMERIZATION CATALYSTS VIA LEWIS ACID MITIGATED METAL CENTER OXIDATION
EP1529051B1 (en) Group 4 metal complexes containing 4-aryl-substituted, tricyclic indenyl derivatives
US6806327B2 (en) Substituted polycyclic, fused ring compounds, metal complexes and polymerization process
CA2483326A1 (en) Alkaryl-substituted group 4 metal complexes, catalysts and olefin polymerization process
JP2001527086A (en) π complex compound
US6872844B2 (en) Metal complexes containing acetylenic ligands, polymerization catalysts and addition polymerization process
EP1497301B1 (en) Substituted polycyclic, fused ring metal complexes and polymerization process
JPH0662642B2 (en) Bis (2-substituted cyclopentadienyl) zirconium dihalide
JPH0662644B2 (en) Bis (4-substituted cyclopentadienyl) zirconium dihalide

Legal Events

Date Code Title Description
EEER Examination request
MKLA Lapsed

Effective date: 20150612