CA2416839A1 - Cache system and method for generating uncached objects from cached and stored object components - Google Patents

Cache system and method for generating uncached objects from cached and stored object components Download PDF

Info

Publication number
CA2416839A1
CA2416839A1 CA002416839A CA2416839A CA2416839A1 CA 2416839 A1 CA2416839 A1 CA 2416839A1 CA 002416839 A CA002416839 A CA 002416839A CA 2416839 A CA2416839 A CA 2416839A CA 2416839 A1 CA2416839 A1 CA 2416839A1
Authority
CA
Canada
Prior art keywords
image
cache
components
component
cache system
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CA002416839A
Other languages
French (fr)
Other versions
CA2416839C (en
Inventor
Ron Abraham Gut
Alexis Paul Tzannes
Edmund Campion Reiter
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Aware Inc
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Publication of CA2416839A1 publication Critical patent/CA2416839A1/en
Application granted granted Critical
Publication of CA2416839C publication Critical patent/CA2416839C/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F12/00Accessing, addressing or allocating within memory systems or architectures
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T1/00General purpose image data processing
    • G06T1/60Memory management
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F12/00Accessing, addressing or allocating within memory systems or architectures
    • G06F12/02Addressing or allocation; Relocation
    • G06F12/08Addressing or allocation; Relocation in hierarchically structured memory systems, e.g. virtual memory systems
    • G06F12/0802Addressing of a memory level in which the access to the desired data or data block requires associative addressing means, e.g. caches
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F12/00Accessing, addressing or allocating within memory systems or architectures
    • G06F12/02Addressing or allocation; Relocation
    • G06F12/08Addressing or allocation; Relocation in hierarchically structured memory systems, e.g. virtual memory systems
    • G06F12/0802Addressing of a memory level in which the access to the desired data or data block requires associative addressing means, e.g. caches
    • G06F12/0875Addressing of a memory level in which the access to the desired data or data block requires associative addressing means, e.g. caches with dedicated cache, e.g. instruction or stack
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F16/00Information retrieval; Database structures therefor; File system structures therefor
    • G06F16/10File systems; File servers
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2212/00Indexing scheme relating to accessing, addressing or allocation within memory systems or architectures
    • G06F2212/45Caching of specific data in cache memory
    • G06F2212/455Image or video data

Abstract

Methods and apparatus for constructing objects within a cache system thereby allowing the cache system to respond to requested objects that are not initially available within the cache system. One embodiment of the invention caches image files, where the images are divided into components and stored in a format that allows identification and access to the components. The cache system determines that an object, such as an image file, is missing from the cache memory, locates sufficient components from the cache memory and/or external storage, and constructs the object from the located components.

Description

CACHE SYSTEM AND METHOD FOR GENERATING UNCACHED
OBJECTS FROM CACHED AND STORED OBJECT COMPONENTS
Related Application This application claims the benefit of the filing date of co-pen.ding U.S.
Provisional Application, Serial No. 60/225,412, filed August 15, 2000, entitled "Object Generating Smart Caching System," the entirety of which provisional application is incorporated by reference herein.
Field of the Invention The invention generally relates to data processing storage architectures and processes, and more specifically relates to cache memory for efficient access to stored data.
Ba~ck,~round of the Invention Recent developments in the computer and computer networking industries have spawned an ever increasing demand for fast access to large amounts of data relating to I S objects such as images, audio, and documents. Dramatic increases in both data storage capacity and computer processing speed have allowed computer applications to process and store greater amounts of data facilitating data content rich with multi-media. Similar advances in computer networking have lead to dramatic increases in both communications bandwidth and the breadth of network access. With these advances, vast amounts of information are routinely shared among computers supporting web-based and other networked applications.
Typically, a host computer is connected to a storage device, such as a hard disk drive or a file server, having a memory that holds the information in the form of objects.
When the host computer receives a request for a data object, the storage device is queried and the object is retrieved from the storage device and transferred to the host computer.
To reduce a delay involved in accessing the object from the storage device, a cache is often used on the host computer. The cache typically includes a smaller memory used to store the most frequently requested objects from the storage device. The cached objects are more quickly accessible than objects stored within the larger storage device.
Therefore, subsequent requests for objects that have been cached can be responded to quickly directly from the cache, without the need to access the storage device.
A typical cache includes binary logic functioning when the cache receives a request for an object to determine ifthe object is available in the cache. If the object is available in the cache, the cached object is used to respond to the request.
If the object is not available in the cache, the object request is responded to by retrieving the object from the larger storage device. If the storage device is connected to the requesting processor through a shared communications bus, there will likely be delays to retrieve the object due to the bandwidth of the bus, competition from other devices connected to the bus, and additional instructions necessary to communicate the object request to the storage device and the object delivery to the requestor. This delay will likely be even greater if the storage device, such as a web server, is remotely located and connected by a communication link such as the World Wide Web.
Summary of the Invention The present invention relates to a cache system and method for generating uncached objects from cached and stored object components. One embodiment of the invention caches image files, where the images consist of components and are stored in a format that allows identification and access to the individual image components.
In one aspect, a regenerative cache system determines that an object, such as an.
image file, is missing from the cache memory. The regenerative cache system then locates sufficient components to construct the object, where the components can be I 5 located within the cache memory, or within an external storage device, Once the components are located, the regenerative cache system constructs the object.
One feature of the invention in one embodiment is the storing within the regenerative cache system objects constructed by the regenerative cache system in response to an object request where the object is initially missing from the cache.
Another feature of the invention in one embodiment is the requesting of an object by the regenerative cache system in anticipation of an external request for an object not initially stored within the cache. Here, the regenerative cache system determines that an _,_ object will likely be requested, then the.regenerative cache system determines if the object is missing. If the anticipated requested object is missing from the cache, the regenerative cache system constructs the object.
In another aspect, a regenerative cache system includes an interface, logic element, memory, and a processor. The interface allows the regenerative cache system to communicate with external devices or systems to monitor requests for objects, to access externally stored objects and components, and to respond to requested objects.
The logic element fiznctions to determine if a requested object is missing from the cache, then, if missing, to locate the components to construct the requested object. Memory stores objects that are lileely to be requested and objects that include components that are likely to be necessary to construct requested objects that are not themselves in the cache. The processor functions in coordination with the interface, the logic element, and the memory to access the necessary components and construct the requested object.
One feature of the invention responds to a requested JPEG 2000 image file that is initially missing from the cache by constructing the requested iW age file using components from one or more JPEG 2000 image files resident within the cache system memory, or resident within external storage systems.
Another feature of the invention is to respond to a requested document file that is initially missing from the cache by constructing the requested document file by using components of other document files resident within the cache system memory, or resident within external storage systems.

Yet another feature of the invention is to respond to a requested web page file that is initially missing from the cache by constructing the requested web-page file by using components of other web-page files resident within the cache system memory, or resident within external storage systems.
S
Brief Description of the Drawings The invention is pointed out with particularity in the appended claims. The drawings are not necessarily to scale, emphasis instead generally being placed upon illustrating the principles of the invention. Like reference characters in the respective drawing figures indicate corresponding parts. The advantages of the invention may be better understood by referring to the following description taken in conjunction with the accompanying drawings in which:
FIG. 1 is a block diagram of an embodiment of a data processor architecture showing the relationship between a cache and a host data processor in this embodiment;
l S FIG. 2 is a general block diagram illustrating an embodiment of an implementation of the cache;
FIG. 3 is a general diagram illustrating an example of a data object structure;
FIG. 4 is a flow diagram generally illustrating an embodiment of a process for constructing objects in the cache;
FIG. 5 is a more detailed flow diagram illustrating an embodiment'of a process for constructing objects in the cache;
FIG. 6 is a general diagram illustrating an example of data object construction;
-S-FIG. 7 is a general diagram illustrating an example of an image data object;
FIG. 8 is a general diagram illustrating an example of another image data obj ect;
and FIG. 9 is a general diagram illustrating an example of a compound document data S object.
Detailed Description of the Invention Referring to.FIG. l, in one embodiment a data processing system 20 is in communication with a first storage device 22, a user interface 24, and one or more peripheral devices 26. The data processing system 20 receives data through either the user interface 24, the peripheral device 26, such as a modem or image scanner, or through memory reads from the first storage device 22 where the storage device comprises storage memory 28. The first storage device 22 can.be any data storage device such as a disk I 5 , drive, a magnetic tape drive, an optical disk drive, or an electronic memory. The data processing system 20 processes and optionally delivers data to the user interface 24, such as a terminal display, to the peripheral device 26, such as a printer, or through memory writes to the storage memory 28 of the first storage device 22.
The data processing system 20 includes a central processing unit (CPI)] 30 in communication with a second storage device 22' and an input/output (I/O) controller 34 through an electrical communications bus 44. The second storage device 22' is similar to the first storage device 22, having a storage memory 28, except that the second storage device 22' constitutes part ofthe data processing system 20 and is addressable directly through the system bus 44. The I/O controller 34 interfaces the first storage device 22, the user interface 24, and one or more peripheral devices 26 to the CPU 30.
The CPU 30 receives, processes, and delivers data.
The CPU 30 is further comprised of a processor 38, a CPU memory 40, and a regenerative cache system 42. The CPU 30 is in electrical communication with the CPU
memory 40 and the regenerative cache system 42 through a CPU electrical communications bus 36. In orie embodiment the CPU 30 is a computer, such as a file server, workstation, or personal computer (PC), and the memory 40 comprises any combination of dynamic random access memory (DRAM), read only memory (ROM), registers and cache used to store the instructions and data processed by the processor 38.
Other embodiments are shown with the regenerative cache system 42, shown in phantom, where the regenerative cache system 42 is configured locally at one or more of each of the CPU memory 40, the processor 38, the first and second storage devices 22 and 22', the I/O controller 34, the user interface 24, and the one or more peripheral devices 26. Also shown are embodiments wherein the regenerative cache system 42, shown in phantom, is co~gured as one or more standalone system components, and wherein the regenerative cache systems 42 are in communication with the CPU 30 through the Il0 controller 34 and through the system bus 44. The regenerative cache system 42 caches objects and generates uncached objects from cached and stored objects in accordance with the principles of the invention.
_7_ Referring to FIG. 2, one embodiment of the regenerative cache system 42 includes a cache memory element 46, an interface element 48, a processor element 50, and a logic element 52. The memory element 46 is in electrical communication with the interface element 48, the processor element ~0, and the logic element 52.
S In one embodiment, the regenerative cache system 42 manipulates and stores objects. In this embodiment, the cache memory element 46 provides a storage capability enabling the regenerative cache system 42 to store objects locally to the regenerative cache system 42. The interface element 48 is in further communication with external systems, devices, or components enabling the regenerative cache system 42 to accept as I 0 input new objects for storage or processing and to provide as output cached objects and/or components of cached objects. The logic element 52 enables the regenerative cache system 42 to locate an object. In one embodiment, the Logic element 52 determines whether an object is available within the cache memory element 46 and/or whether an object is available externally to the regenerative cache system 42 where the object can be I 5 located within one or more of each of the CPU memory 40, the first and second storage devices 22, 22', a second regenerative cache system 42 the user interface 24, and one or more peripheral devices 26.
In one embodiment, in addition to locating objects within and without the regenerative cache system 42, the logic element 52 performs functions similar to a typical 20 cache related to managing the limited cache memory 46 in an efficient manner (e.g., maintaining cached items determined likely to be requested in the future and not maintaining cached items determined not likely to be requested in the future).
_g_ Objects stored within the memory element 46 are individually addressable and can be addressed directly by memory location address, indirectly by a reference, such as a filename, or referentially through a virtual address map or address look-up table.
The elements 46, 48, 50, 52 of the regenerative cache system 42 can be grouped together and located on a single substrate, within a single module, or within a single chassis, distributed among combinations of one or more substrates, modules, or chassis, br shared among multiple regenerative cache systems 42. In one illustrative example of one embodiment of a shared element regenerative cache system 42 configuration, the processor 50 of a first regenerative cache system 42 serves as the processor 50 of a second regenerative cache systems 42.
Referring to FIG. 3, an object 54 contains an object tag 56 providing information related to the object 54 and an object payload 58 containing additional information related to the object 54. The object 54 represents any file having a format describing structured data. Examples of files having structured data formats include extensible markup language (XML) files; files using the Object Linking and Embedding (OLE) structure;
image files, such as bitmap, including OSl2 bitmap files containing multiple images, Computer Graphics Metafile (CGM), Flexible Image Transport System (FITS) file, Graphics Interchange Format (GIF) file, .Hierarchical Data File (HDF), Adobe PostScript file, Tagged-Image File Format (TIFF), compressed image files, such as discrete-cosine transformed image files and wavelet-transformed image files, such as Joint Photographic Experts Group (JPEG) compressed image files, including JPEG 2000 files; audio files such as MP3 files, or Wave Form Audio File Format files; compressed files, such as "zipped" fIes; video files, such as Moving Picture Experts Group (MPEG) files;
and database files. The object tag 56 contains information such as "meta" data, identifying a particular object 54 by including information such as a file identifier, a file type, and details relating to the particular file construction.
The object payload 58 is comprised of one or more components 60a through 60n (generally 60). Each component 60 is comprised of a component tag 62 and a component payload 64. The component tag 62 provides information such as a component identifier, a component type, and details relating to the component contents. The component payload 64 contains additional information related to the component 60. In some embodiments, the components 60 can be further subdivided into sub-component levels with a structure similar to that described for the component 60.
With these objects 54 representing structured data storage objects 54, such as XML, OLE, or JPEG 2000, the regenerative cache system 42 has the ability to search for and manipulate components 60. Once the components 60 have been located, they can be 1 S accessed and manipulated in a variety of ways for further processing and viewing. The objects S4 also lend themselves to being granularly updated by adding, subtracting, or re-ordering the individual object components 60.
In one embodiment each of the components 60 of an object 54 can constitute a new object 54 either individually or in combination. The components 60 can also be components 60 of objects 54 available within the cache memory 46, which, when extracted from their objects 54 and combined and affixed with an appropriate object tag 56, yield new objects 54.

FIG. 4 shows an embodiment of a process used by the regenerative cache system 42 to construct an object 54. The regenerative cache system 42 determines if an object 54 is missing from the cache memory 46 {step 66). The object 54 can be identifed by an external request or from the regenerative cache system 42 determining that the object be obtained and cached in anticipation of a future request. The requested object 54 is missing from the cache 42 if the requested~object 54 has not been previously stored and maintained within the cache memory 46. If the object 54 is not missing from the regenerative cache system 42, the regenerative cache system 42 returns the requested object 54 stored within the cache memory 46 to respond to the requestor (e.g.;
the processor 38). If the requested object 54 is missing from the cache memory 46, the regenerative cache system 42 locates one or more components 60 sufficient to construct the requested object 54 (step 68) and constructs the object 54 (step 70) and returns the requested object 54 (step 72) to respond to the object 54 request. The regenerative cache system logic element 52 knows the contents of its own cache memory 46 and the requested object 54 because the regenerative cache system 42 accepts requests for obj ects 54. In one embodiment the regenerative cache system 42 determines the contents of its own cache memory 46 through the method used to track cached objects 54, such as a file table, directory, or address map. The logic element 52 determines the components 60 from which the object 54 can be produced and determines if those components 60 are available within the cache memory 46. In one embodiment, the logic element 52 determines the components 60 from which the object 54 can be produced from the syntax of the file structure and the request for the object 54. The syntax of the file structure defines structural attributes of the objects 54 and can include the definition of structural details relating to the object tag 56 and the one or more component tags 62 of the requested object 54. The request for the object 54 identifies what the xequested object 54 is. An example of a request for a JPEG 2000 image object 54 identif es the source image (e.g., a computer f Ie relating to a particular photograph) and how the requested object 54 is structured {e.g., in increasing resolution where lower-resolution components 60 are ordered before higher-resolution components). In some embodiments, the requested object 54 can be retrieved directly from the one or more remote storage devices 22, 22', 40, 42 regardless of the presence within the cache memory 46 of components 60 from which the object 54 can be produced. The requested object 54 can be retrieved directly from the one or more remote storage devices 22, 22', 40, 42 under any one of several situations, such as if ample communications bandwidth is available or if the pre-request contents of cache memory 46 are to. be preserved.
In one embodiment, the objects 54 are JPEG 2000 image files and the logic I 5 element S2 examines the object tags 56 of the objects 54 stored in the cache memory 46 to determine if the object 54 is missing from the cache memory 46. If the object 54 is missing from the cache memory 46, the regenerative cache system 42 examines the object 54 and component tags 62 of each object 54 available within the cache memory 46 to determine if any or all components 60 are available within the cache memory 46 to respond to the requested object 54. If sufficient components 60 are available, the components 60 are combined accordingly to construct an object 54 to respond to the object 54 request. If some components 60 are available within the cache memory 46, but not all components 60 sufficient to construct the requested object 54, the regenerative cache~system 42 obtains locally those components 60 available within the cache memory 46 and then obtains the additional components 60 sufficient to construct the requested object 54 from the one or more remote storage devices 22, 22', 40, 42. The regenerative cache system 42 then combines the components 60 to construct the requested object 54.
In some embodiments, the requested objects 54 are retrieved from storage directly rather 'than constructed within the regenerative cache system 42, even though some, or su~cient components 60 may be available in cache memory 46.
In one embodiment, after having constricted the requested object 54, the regenerative cache system 42 stores the newly constructed object 54 to satisfy future requests. In same embodiments, the components 60 used to construct the object 54 are copied and maintained separately as components 60 within the cache memory 46.
In other embodiments, the components 60 are used and combined to form the requested object 54 and the original components 60 are no longer stored. This form of object generation can be used where it is more efficient to store the components 60 within the constructed object 54, or if the regenerative cache system 42 has determined that the . components 60 within cache memory 46 are no longer necessary.
In more detail, referring to FIG. S, one embodiment of the regenerative cache system 42 determines the one or more components 60 sufficient to construct the requested object 54 (step 74). The regenerative cache system 42 determines the sufficient components 6f from the syntax of the file structure and the request for the object 54. The regenerative cache system 42 determines if the sufficient components 60 to construct the requested object 54 are available within the cache memory 46 (step 76). If the su~cient components 60 are available within the cache memory 46, the object. 54 is constructed by the cache processor SO (step 78). If the components 60 are not available in the cache memory 46, the regenerative cache system 42 determines if any components 60 of the requested object 54 are available in the cache memory 46 (step 80). If any of the components 60 of the requested object 54 are available in the cache memory 46, the regenerative cache system 42 determines which components 60 are missing by comparing the determined components 60 of the requested object 54 available in the cache memory 46 to the determined components 60 sufficient to construct the requested object 54 (step 82). Having determined the missing components 60, the regenerative cache system 42 retrieves the missing components 60 from one or more remote storage devices 22, 22', 40, 42 (step 84). Referring again to FIG. 1, the one or more remote storage devices 22, 22', 40, 42 can include local memory 40, a local storage device 22 in communication with the CPU 30 through a system bus 44, a peripheral storage device 22, an external storage source in communication with the data processing system 20, or another regenerative cache system 42. The regenerative cache system 42, having the components 60 from the locally available cache memory 46 and those retrieved from the remote one or more storage devices 22, 22', 40, 42, constructs the requested object 54 (step 78). The object 54 can be returned in response to an object request (step 95) and/or cached for future requests.
If no components 60 of the requested object 54 are available in the cache memory 46 (step 80), the regenerative cache system 42 determines if the requested object 54 is externally available in one or more of the remote storage devices 22, 22', 40, 42 (step 86).
In one embodiment, if the object 54 is available in storage memory 28 of either of the remote storage devices 22, 22', the regenerative cache system 42 need not respond to the request because either of the storage devices 22, 22' replies to the request directly.
Alternatively, the regenerative cache system 42 can retrieve the requested object 54 from the one or more remote storage devices 22, 22', 40, 42 and store it in the cache memory 46 to respond to future requested objects 54.
If the object 54 is not available in the one or more remote storage devices 22, 22', 40, 42 (step 86), having already determined that no components 60 are available within the cache memory 46 (step 80), the regenerative cache system 42 determines if the necessary components 60 that can produce the requested object 54 are externally available in the one or more remote storage devices 22, 22', 40, 42 (step 88).
If the components 60 that can produce the requested object 54 are unavailable in the one or more remote storage devices 22, 22', 40, 42 the object request cannot be satisfied (step 90). If the components 60 are available in the one or more remote storage devices 22, 22', 40, 42, the regenerative cache system 42 retrieves the necessary components 60 (step 92) and constructs the requested object 54 (step 78). Again, in some embodiments, the requested object 54 can be retrieved directly from the one or more remote storage devices 22, 22', 40, 42 regardless of the presence or absence within the cache memory 46 of any components 60 from which the object 54 can be produced.
In one embodiment, the regenerative cache system 42 stores within the cache memory 46 the components 60 retrieved externally from the one or more remote storage devices 22, 22', 40, 42. In another embodiment, the regenerative cache system 42 stores within the cache memory 46 the object 54 constructed by the regenerative cache system 42.
FIG. 6A shows three examples of the regenerative cache system 42 constructing obj ects 54 in accordance with the principles of the invention. This f gore illustrates the cache memory 46 and the storage memory 28, where each of the cache memory 46 and the storage memory 28 contain data in the form of objects 54a, 54b, 54c, and 54d. The cache memory 46 is illustrated twice, first on the left-hand side of the figure and again on the right-hand side of the figure. The left-hand side of the figure represents the contents of cache memory 46 and storage memory 28 before the regenerative cache system receives a request fox a particular object 54e. The cache memory 46 on the right-hand side of the figure represents the same cache memory 46 with altered memory contents after the regenerative cache system 42 responds to the request for the particular object 54e and cached the requested object 54.
For each of these examples, the cache memory 46 initially contains object 54a and object 54b and the storage memory 28 contains objects 54c and 54d. In a first example, the particular object 54e is requested and the regenerative cache system 42 determines that the particular object 54e is missing from the cache memory 46 as shown by the left-hand side of the figure. The regenerative cache system 42 determines the components 60 that can produce the requested particular object 54e. The logic element 52 then determines that the components 60 that can produce the requested particular object 54e are resident within the cache memory 46 and are contained within object payloads 58a and 58b of objects 54a and 54b, respectively. In this example, the particular components are not shown because the components 60 that make up each of the object payloads 58a and 58b are used to construct the requested particular object 54e. The regenerative cache system 42 then constructs the particular object 54e by taking the components contained within the object payloads 58a and 58b, combining them, and affixing the object tag 56 for requested particular object 54e. The solid arrows from the left-hand side bf the figure to the right trace the results of the regenerative cache system 42 responding to the request for requested particular object 54e. Although the constructed object 54 is shown as the concatenation of objects 54a and 54b, the resulting particular object 54e is itself a new and distinct object. As shown in this example, objects 54a and 54b remain within the cache memory 46 after the construction of a particular object 54e.
In a second illustrative example shaven by the dashed arrows, a particular object 54e' is requested and found missing from the cache memory 46. The regenerative cache system 42 determines the components 60 that can produce the particular object 54e' and the logic element 52 locates some, but not all of the sufficient components 60 within the cache memary 46. In this example, the components 60 located within cache memory 46 make up the object payload 58b of object 54b. To construct the requested particular object 54e', the logic element 52 locates missing components 60 in storage memory 28 where the missing components 60 are contained within the object payload 58c of object 54c. Having the cached components 60 from object 54b the regenerative cache.system 42 obtains the missing components located in the storage memory 28 and constructs the requested particular object 54e' in a manner similar to the construction of particular object 54e constructed in previous illustrative example.
In yet another illustrative example also referring to FIG 6A and shown by the dotted arrows, a particular object 54e" is requested and found missing from the cache memory 46. The regenerative cache system 42 determines the components 60 that can produce the requested particular object 54e" and the logic element 52 determines that none of the components 60 are available within the cache memory 46. The regenerative cache memory 42 determines that the requested object S4e" is not available in storage memory 28 and the logic element 52 locates the components 60 within object payloads I O 58c and 58d of objects 54c and 54d, respectively. The regenerative cache memory 42 then obtains the missing components 60 from storage memory 28 and then constructs the requested particular object 54e" in a manner similar to that described within the first and second illustrative examples.
FIG. 6B shows three examples of the regenerative cache system 42 constructing 15 objects 54 in accordance with the principles of the invention. FIG. 6B
illustrates a conf guration of cache memory 46 and storage memory 28 similar to that illustrated in FIG. 6A with further detail regarding the components of the stored obj ects 54. In each of these three illustrative examples, each of the objects 54 stored in cache memory 46 and storage memory 28 are shown comprising multiple components 60. Similar to the 20 illustrative examples of FIG. 6A, the requested particular objects 54e, 54e', and 54e" are comprised of one or more components 60 of a first stored object 54a, 54c in combination with one or more components 60 of a second stored object 54b, 54d.

For each of the illustrative examples relating to FIG. 6B, object 54a and object 54b are initially stored within the cache memory 46 and objects 54c and 54d are initially stored within the storage memory 28. The regenerative cache system 42 determines which components 60 of stored objects 54 are necessary to construct the requested particular requested object 54e, 54e', or 54e". The logic element 52 1 ocates the components 60 to construct the requested particular object 54e, 54e', or S4e"
and the regenerative cache system 42 constructs the requested particular object 54e, 54e', or 54e".
In the first illustrative example, the requested particular object 54e is comprised of components 60a and 60c. The logic element 52 locates component 60a within object 54a stored in cache memory 46. The logic element 52 also locates component 60c within object 54b, also stored within cache memory 46. The regenerative cache system extracts components 60a and 60c from objects 54a and S4b, respectively, and constructs the requested particular object 54e by combining objects 60a and 60c and affixing a new object tag 56 associated with the requested particular object S4e. The solid arrows extending from the components 60a and 60c stored within objects 54a and S4b, respectively, within the cache memory 46 to the particular object 54e generated in response to the request illustrate the relationships between the objects 54 and components 60 relating to the request of this illustrative example. In this example' the particular object 54e constructed in response to a request is shown stored within the cache memory 46.
-l 9-In a second illustrative example shown by the dashed arrows, a requested particular object 54e' is constzucted by the regenerative cache system '42 similarly to the construction of the requested particular object 54e of the previous example, from component 60b of object 54a stored within cache memory 46 and from component 60g of object 54d stored within storage memory 28.
In a third illustrative example shown by the dotted arrows, a requested particular object 54e" is constructed by the regenerative cache system 42 similarly to the construction of requested particular objects 54e and 54e' in the preceding two illustrative examples from component 60f of object 54c stored within the storage memory 28 and component 60h of object 54d, also stored within the storage memory 2$.
FIG. 6C shows further illustrative examples of the regenerative cache system constructing objects 54 in accordance with the principles of the invention where the requested particular object 54 is comprised of one or more components of a single object.
In the first illustrative example, the particular object 54e is requested where the components of object 54e are comprised of component 60a. The logic element 52 locates component 60a as a component 60 of object S4a stored in cache mem.o'ry 46. The regenerative cache system 42 extracts component 60a from object 54a, affixes the object tag 56 to the particular object 54e, and stores the particular object 54e in response to the request for the particular object 54e. The solid arrow extending from object 60a stored within object 54a~within .the cache memory 46 to the particular object 54e generated in.
response to the request illustrates the relationships between the objects 54 and components 60 relating to the request of this illustrative example.

Similarly, in a second illustrative example, a particular object 54e' is requested where the components of object 54e' are .comprised of component 60g. The logic element 52 locates component 60g as a component 60 of object 54d stored in storage memory 28. The regenerative cache system 42 extracts component 60g from object 54d, off xes the object tag 56 to the particular object 54e', and stores the particular object 54e' within the cache memory 46 in response to the request for the particular object 54e'. The dashed arrow extending from object 60g stored within object 54d within the cache memory 46 to the particular object 54e' generated in response to the request illustrates the relationships between the objects 54 and components 60 relating to the request of this second illustrative example.
Referring to FIG. 7, in an illustrative example of one embodixnent of a regenerative cache system 42, a requested object 54 is a graphical image file 96, where the image file is a computer-readable representation of a graphical image, such as a digitized representation of a photograph. The image file can be an uncompressed image l 5 file such as a bitmapped image file, or a compressed image file, such as a discrete-cosine-transformed image file, or a wavelet-transformed image file, The image file 96 is comprised of a plurality of tiles 98a to 98n (generally 98). One example of an image f 1e 96 is a geographical map, such as a road, terrain, or weather map, where the image comprises a large number of pixels, more than typically displayable on a standard computer display terminal. The exemplary image file 96 can be treated as a whole or subdivided into tiles 98 where the tiles correspond to a.subset of the image file pixels that axe capable of being simultaneously displayed on a computer display terminal.
Here, the _27_ entire image file 96 can be requested from the one or more remote storage devices 22, 22', 40, 42 and the individual tiles 98 displayed as required, or individual tiles 98 can be retrieved from the one or more remote storage devices 22, 22', 40, 42 as required. If the requestor of the image file 96 observes a first tile 98a, then observes a second tile 98b, the regenerative cache system 42 can store the requested tiles 98a and 98b in the cache memory 46. A later request for a different object 54 including either of the tiles 98a or 98b as components 60 can be served from cache memory 46 using the cached tiles 98a or 98b rather than retrieving the tiles 98a, 98b from the one or more remote storage devices 22, 22', 40, 42.
Referring to FIG. 8, in one embodiment the object ~4 is a wavelet-transformed, compressed image 100. One example of a wavelet-transformed, compressed image is a JPEG 2000 image 100. The JPEG 2000 image 100 is comprised of various categories of components 60 related to the nature in which the JPEG 2000 compression algorithm functions. The JPEG 2000 compression algorithm takes a digital representation of an image 96 as shown in FIG. 7 and divides the image into one or more tiles 98.
The JPEG
2000 compression algorithm is applied separately to each of the tiles 98. Each tile 9S is divided into components 102a, 102b, and 102c (generally 102) such as red, green, and blue color components 102 that when combined together yield a color image.
Each of the color components 102 is transformed using a wavelet transform to form sub-bands 104a through 104j (generally 104) of the original image file 96. Sub-bands 104a, 104b, and 104c correspond to a first level wavelet transform. Sub-bands 104d, 104e, and 104f correspond to a second sub-band level, and sub-bands 104g, 104h, and 1041 correspond to a third sub-band level. The transform can be applied repeatedly to produce additional levels of sub-bands 104. The various levels of sub-bands 104 correspond to different Levels of image resolution.
When applying the JPEG 2000 algorithm to an image file 96, the two dimensional arrays of sub-bands 104 for each color component 102 are further divided by the JPEG
2000 algorithm into layers, or collections of coded bit-planes, 106a through 106n (generally 106). These layers 106 correspond to levels of image quality or accuracy. The more layers 106 that are decoded, the higher the quality of the image that is presented.
Referring again to FIG. 3, the JPEG 2000 image 100 corresponds to an object 54, while the tiles 98, color components 102, sub-bands 104, and layers 106 correspond to components 60. The JPEG 2000 algorithm converts an image file 96 into a JPEG

image I 00 referred to as a JPEG 2000 "codestream." The codestream is essentially an aggregation of the components 60 arranged in a particular order with a particular codestream header, or object tag 56. The JPEG 2000 codestream also includes component tags 62 for each of the components 60 to facilitate their identification and manipulation.
Depending on a particular selection and ordering of the components 60, a JPEG
2000 codestream contains different compressed versions of the original image file 96, The JPEG 2000 codestream syntax allows image presentation that varies in color, resolution, quality, and spatial location on the original image.
In an illustrative example, referring again to FIG. 8, where the requested object 54 is a JPEG 2000 image 100, the object components 60 comprise one or more tiles 98, and one or more color components 102, and/or one or more sub-bands 104, and/or one or more layers 106. The syntax of the JPEG 2000 algorithm dictates the order of the components 60 in response to a request. The requested object 54 can be the entire full-sized, full-color, full-resolution, and full-quality JPEG 2000 image 100, or the requested object 54 can be a subset of the full-sized, full-color, full-resolution, full-quality JPEG
2000 image 100. Examples of a subset of a JPEG 2000 image 100.include a central portion of a larger image, a grayscale version of a color image, a thumbnail of a higher-resolution image, or a reduced-quality version of the of a full-quality image.
In addition to identifying the extent of the full-sized, full-color, full-resolution, full-quality JPEG 2000 image 100, the request for object 54 can also identify a particular ordering of the requested object components 60. The ordering of the components effects the presentation of a decompxessed JPEG 2000 image 100. The components can be ordered with respect to the tiles 98 to produce a presentation in progressive size, or progressively by location on the image, e.g., starting with the center tiles) 98 and continuing with the remaining tiles 98 outward towards the image boarder. The components 60 can also be ordered with respect to the color components 102 to produce a presentation in progressive color, e.g., starting with a grayscale image, then progressing to a dual color image, and ultimately progressing to the full-color image_ Alternatively, the components 60 can be ordered with respect to the sub-bands 104 to produce a presentation in progressive resolution, e.g., starting with a low-resolution image, then progressing to a higher-level resolution, and ultimately progressing to the resolution level of the requested object 54. The components 60 can also be ordered with respect to the layers 106 to produce a presentation in progressive quality, e.g., startir~g with a low-quality image, then progressing to a higher-quality image, and ultimately progressing to the quality level of the requested object 54.
Other variations are possible where a selected portion of the full-size, full-color, full-resolution, full-quality JPEG 2000 image is presented in any of the previously identified presentation modes, or where different segments of the requested rmage 100 are presented with varying size, color, resolution, or quality. One example would be a low-resolution image having a sub-region, such as the central region provided at a higher resolution.
In a first illustrative example, the regenerative cache system 42 has cached within the cache memory 46 a first object 54 comprising an ordered set of components 60 that define a particular presentation of the 3PEG 2000 image file 100. In a first illustrative example, the first object 54 is the full-sized, full-color, full-resolution full-quality JPEG
2000 image file 100, ordered for progressive resolution. When a subsequent request is received for a second object 54 that is related to the first object, such as a request for a lower-resolution version of the first image 54, the regenerative cache system 42 knows that it has the necessary components 60 within the cache memory 46 to construct the lower-resolution second image 54. The regenerative cache system then locates the necessary components 60 from the first cached object 54 and constructs the second object 54.
In another illustrative example, the first object 54 stored within the cache memory 46 is a reduced-resolution, or thumbnail presentation of the JPEG 2000 image file 100.

Subsequently, a request is received for a second object 54 that is related to the first obj ect 54, such as a request for a full-resolution presentation of the JPEG 2000 image 100 from which the thumbnail first object 54 was obtained. Again, the regenerative cache system 42 knows that it has the thumbnail components) 60 (the lower sub-bands) 104) related to the second requested object 54 stored within the cache memory 46. The regenerative cache system 42 then determines the additional components 60 su~cient to construct the requested second object 54 when combined with the thumbnail components 60 and obtains those additional components from the one or more storage devices 22, 22', 40, 42.
The regenerative cache system 42 can similarly serve requests for second objects 54 that differ from the f rst object ~4 in color, quality, or even presentation ordering of the components 60.
Referring to FIG. 9, in yet another embodiment the objects 54 are compound documents 1 O8. The compound documents 108 are comprised of a plurality of docunzent .components 60a through 60d (generally 60). The document components 60 represent any identifiable subsection of a hle. Examples of document components 60 include graphics, spreadsheets, chapters, sections, pages of text, slides, charts, graphs, drawings, and tables.
Examples of compound documents include word processing documents, OLE
documents, web documents, and slide presentations. Other examples of compound documents include audio files where the document components 60 represent individual songs, or portions of songs of a multi-song compilation such as an audio compact disk (CD), an compressed digital audio file, such as an MP3 file, or individual tracks of a mufti track recording.
_26_ In one example, the compound document 108 is an OLE document and the document component 60 is an embedded spreadsheet. Here, a data processing system 20 responds to a request for a first compound document 108 by retrieving the compound document i 08 from storage and caching the compound document 1 O8, containing the spreadsheet document component 60 in the regenerative cache system 42. The regenerative cache system 42 can return the compound document 108 and cache the compound document 108 and component 60 separately. When the data processing system 20 receives a later request for a second document 108 differex~t from the first document 108, but having the same embedded spreadsheet document component 60, the regenerative cache system 42 determines that the second compound document 108 is not cached, but the embedded spreadsheet component 60 is cached and contained within the first compound document I08 (or contained separately in the compound document and the component 60 if cached separately). The regenerative cache system 42 retrieves the sufficient document components b0 for the second requested compound document I 08, less the spreadsheet document component 60 already cached. The regenerative cache system 42 then combines the cached spreadsheet document component 60 with the remaining document components 60 retrieved from storage creating the requested second compound document 108. The regenerative cache system 42 can decide to cache some or all of the second compound document 108 to serve later requests. Other examples of compound documents 108 that are similarly handled by the regenerative cache system 42 include web compound documents 108, such as HTML documents with embedded components 60. The components of a web compound document 108 include items such as graphic components, text block components, frames, and applets.
Having shown the preferred embodiments, one skilled in the art will reali2e that many variations are possible within the scope and spirit of the claimed invention. It is therefore the intention to limit the invention only by the scope of the claims.

Claims (37)

  1. What is claimed is:

    I . In a data processing system having a cache, a method for generating uncached objects comprising:

    (a) locating at least one component that is related to an uncached object; and (b) constructing, by the cache, the uncached object from the located at least one component.
  2. 2. The method of claim 1 wherein step b further comprises obtaining the located at least one component.
  3. 3. The method of claim 1 further comprising obtaining the at least one component from the cache and a second component from a storage system.
  4. 4. The method of claim 1 further comprising obtaining the at least one component and the second components from a storage system.
  5. 5. The method of claim 1 further comprising deriving the at least one component from an object.
  6. 6. The method of claim 1 further comprising storing the constructed object in the cache.
  7. 7. The method of claim 1 further comprising generating, by the cache, a request for the object.
  8. 8. The method of claim 1 wherein the object is an image file.
  9. 9. The method of claim 8 wherein the image file is a JPEG-2000 file.
  10. 10. The method of claim 1 wherein the at least one component is an image file.
  11. 11. The method of claim 10 wherein the image file is a JPEG-2000 file.
  12. 12. The method of claim 1 wherein the object is a web page.
  13. 13. The method of claim 1 wherein the at least one component is a web page.
  14. 14. The method of claim 1 wherein the object is a document.
  15. 15. The method of claim 1 wherein the at least one component is a document.
  16. 16. A cache system comprising:

    a cache memory storing one or more objects;

    logic element determining that an object is missing from the memory; and a processor obtaining at least one component related to the missing object and constricting the object in response to the logic element determining that the object is missing from the cache memory.
  17. 17. The cache system of claim 16 wherein obtaining the at least one component further comprises obtaining the at least one component from an object.
  18. 18. The cache system of claim 16 wherein the object is an image file.
  19. 19. The cache system of claim 18 wherein the image file is a JPEG-2000 file.
  20. 20. The cache system of claim 16 wherein the component is an image file.
  21. 21. The cache system of claim 20 wherein the image file is a JPEG-2000 file.
  22. 22. The cache system of claim 16 wherein the object is a web page.
  23. 23. The cache system of claim 16 wherein the component is a web page.
  24. 24. The cache system of claim 16 wherein the object is a document.
  25. 25. The cache system of claim 16 wherein the component is a document.
  26. 26. The cache system of claim 16 wherein a request is generated by the cache system.
  27. 27. The cache system of claim 16 wherein the cache system is a server.
  28. 28. The cache system of claim 27 wherein the request is generated by a client.
  29. 29. The cache system of claim 16 wherein the logic element determining the requested object is missing from the cache memory:

    (a) further determining if the components to construct the requested object are in the cache memory; and (b) further determining the components missing from the cache memory required from the storage device to construct the object.
  30. 30. The cache system of claim 29 wherein the cache system is generating the request for an object.
  31. 31. In an image server having a cache, a method for obtaining an image comprising:

    (a) obtaining the image from the cache, if the image is present within the cache, otherwise, (b) constructing the image from one or more cached image components, if the cache has one or more cached image components from which the image can be produced, otherwise, (c) determining whether to construct the image using an uncached image component stored in a remote storage.
  32. 32. The method of claim 31 further comprising constructing the image from the uncached image component stored in remote storage and one or more cached image components, upon determining to construct the image using the uncached image component.
  33. 33. The method of claim 31 further comprising constructing the image from the remote stored image component upon determining to construct the image using the uncached image component stored in the remote storage.
  34. 34. The method of claim 31, further comprising obtaining the image from the remote storage if it is determined not to construct the image.
  35. 35. The method of claim 31 wherein the image is a JPEG 2000 image.
  36. 36. In an image server having a cache, a method for obtaining an image comprising obtaining the image from the cache, if the image is present within the cache, otherwise constructing the image from image components obtained from one of the cache only, remote storage only, and a combination of the cache and the remote storage.
  37. 37. The method of claim 36 wherein the image is a compressed image.
CA2416839A 2000-08-15 2001-08-08 Cache system and method for generating uncached objects from cached and stored object components Expired - Lifetime CA2416839C (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US22541200P 2000-08-15 2000-08-15
US60/225,412 2000-08-15
PCT/US2001/041608 WO2002015011A2 (en) 2000-08-15 2001-08-08 Cache system and method for generating uncached objects from cached and stored object components

Publications (2)

Publication Number Publication Date
CA2416839A1 true CA2416839A1 (en) 2002-02-21
CA2416839C CA2416839C (en) 2013-03-12

Family

ID=22844765

Family Applications (1)

Application Number Title Priority Date Filing Date
CA2416839A Expired - Lifetime CA2416839C (en) 2000-08-15 2001-08-08 Cache system and method for generating uncached objects from cached and stored object components

Country Status (8)

Country Link
US (3) US7006099B2 (en)
EP (3) EP1309917B1 (en)
JP (4) JP2004506978A (en)
KR (2) KR101081296B1 (en)
AU (4) AU8354201A (en)
CA (1) CA2416839C (en)
ES (1) ES2612121T3 (en)
WO (1) WO2002015011A2 (en)

Families Citing this family (114)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7006099B2 (en) 2000-08-15 2006-02-28 Aware, Inc. Cache system and method for generating uncached objects from cached and stored object components
US20020184612A1 (en) * 2001-06-01 2002-12-05 Hunt Joseph R. Runtime configurable caching for component factories
US7444393B2 (en) 2001-10-30 2008-10-28 Keicy K. Chung Read-only storage device having network interface, a system including the device, and a method of distributing files over a network
US7283135B1 (en) * 2002-06-06 2007-10-16 Bentley Systems, Inc. Hierarchical tile-based data structure for efficient client-server publishing of data over network connections
US7734824B2 (en) 2002-10-18 2010-06-08 Ricoh Co., Ltd. Transport of reversible and unreversible embedded wavelets
US7401221B2 (en) * 2002-09-04 2008-07-15 Microsoft Corporation Advanced stream format (ASF) data stream header object protection
JP4135888B2 (en) * 2002-09-18 2008-08-20 株式会社リコー Image processing apparatus, image processing method, program, and storage medium
US7761459B1 (en) * 2002-10-15 2010-07-20 Ximpleware, Inc. Processing structured data
FR2853788A1 (en) * 2003-04-08 2004-10-15 Canon Kk METHOD AND DEVICE FOR ACCESSING A DIGITAL DOCUMENT IN A PEER-TO-PEER COMMUNICATION NETWORK
US7069351B2 (en) 2003-06-02 2006-06-27 Chung Keicy K Computer storage device having network interface
FR2860935B1 (en) 2003-10-09 2006-03-03 Canon Kk METHOD AND DEVICE FOR PROCESSING DIGITAL DATA
JPWO2007004520A1 (en) * 2005-06-30 2009-01-29 オリンパス株式会社 Search system and search method
US8196123B2 (en) * 2007-06-26 2012-06-05 Microsoft Corporation Object model for transactional memory
US7991910B2 (en) 2008-11-17 2011-08-02 Amazon Technologies, Inc. Updating routing information based on client location
US8028090B2 (en) 2008-11-17 2011-09-27 Amazon Technologies, Inc. Request routing utilizing client location information
US8769185B2 (en) 2007-10-23 2014-07-01 Keicy Chung Computer storage device having separate read-only space and read-write space, removable media component, system management interface, and network interface
US8156243B2 (en) * 2008-03-31 2012-04-10 Amazon Technologies, Inc. Request routing
US8601090B1 (en) 2008-03-31 2013-12-03 Amazon Technologies, Inc. Network resource identification
US8447831B1 (en) 2008-03-31 2013-05-21 Amazon Technologies, Inc. Incentive driven content delivery
US7970820B1 (en) 2008-03-31 2011-06-28 Amazon Technologies, Inc. Locality based content distribution
US8606996B2 (en) * 2008-03-31 2013-12-10 Amazon Technologies, Inc. Cache optimization
US7962597B2 (en) 2008-03-31 2011-06-14 Amazon Technologies, Inc. Request routing based on class
US8321568B2 (en) * 2008-03-31 2012-11-27 Amazon Technologies, Inc. Content management
US8533293B1 (en) 2008-03-31 2013-09-10 Amazon Technologies, Inc. Client side cache management
US7925782B2 (en) 2008-06-30 2011-04-12 Amazon Technologies, Inc. Request routing using network computing components
US9912740B2 (en) 2008-06-30 2018-03-06 Amazon Technologies, Inc. Latency measurement in resource requests
US9407681B1 (en) 2010-09-28 2016-08-02 Amazon Technologies, Inc. Latency measurement in resource requests
US8065417B1 (en) 2008-11-17 2011-11-22 Amazon Technologies, Inc. Service provider registration by a content broker
US8073940B1 (en) 2008-11-17 2011-12-06 Amazon Technologies, Inc. Managing content delivery network service providers
US8122098B1 (en) 2008-11-17 2012-02-21 Amazon Technologies, Inc. Managing content delivery network service providers by a content broker
US8521880B1 (en) 2008-11-17 2013-08-27 Amazon Technologies, Inc. Managing content delivery network service providers
US8060616B1 (en) 2008-11-17 2011-11-15 Amazon Technologies, Inc. Managing CDN registration by a storage provider
US8732309B1 (en) 2008-11-17 2014-05-20 Amazon Technologies, Inc. Request routing utilizing cost information
US20100162126A1 (en) * 2008-12-23 2010-06-24 Palm, Inc. Predictive cache techniques
US8688837B1 (en) 2009-03-27 2014-04-01 Amazon Technologies, Inc. Dynamically translating resource identifiers for request routing using popularity information
US8756341B1 (en) 2009-03-27 2014-06-17 Amazon Technologies, Inc. Request routing utilizing popularity information
US8521851B1 (en) 2009-03-27 2013-08-27 Amazon Technologies, Inc. DNS query processing using resource identifiers specifying an application broker
US8412823B1 (en) 2009-03-27 2013-04-02 Amazon Technologies, Inc. Managing tracking information entries in resource cache components
US9076239B2 (en) * 2009-04-30 2015-07-07 Stmicroelectronics S.R.L. Method and systems for thumbnail generation, and corresponding computer program product
WO2010140999A1 (en) * 2009-06-03 2010-12-09 Thomson Licensing Method and apparatus for constructing composite video images
US8782236B1 (en) 2009-06-16 2014-07-15 Amazon Technologies, Inc. Managing resources using resource expiration data
EP2271058A1 (en) * 2009-07-03 2011-01-05 Siemens Aktiengesellschaft Device and method of distributing and forwarding requirements to a number of web servers in an industrial automation system
US8397073B1 (en) 2009-09-04 2013-03-12 Amazon Technologies, Inc. Managing secure content in a content delivery network
US8433771B1 (en) 2009-10-02 2013-04-30 Amazon Technologies, Inc. Distribution network with forward resource propagation
US9495338B1 (en) 2010-01-28 2016-11-15 Amazon Technologies, Inc. Content distribution network
US8805048B2 (en) 2010-04-01 2014-08-12 Mark Batesole Method and system for orthodontic diagnosis
US8756272B1 (en) 2010-08-26 2014-06-17 Amazon Technologies, Inc. Processing encoded content
US10089711B2 (en) * 2010-09-03 2018-10-02 Adobe Systems Incorporated Reconstructable digital image cache
US8468247B1 (en) 2010-09-28 2013-06-18 Amazon Technologies, Inc. Point of presence management in request routing
US8930513B1 (en) 2010-09-28 2015-01-06 Amazon Technologies, Inc. Latency measurement in resource requests
US10097398B1 (en) 2010-09-28 2018-10-09 Amazon Technologies, Inc. Point of presence management in request routing
US9712484B1 (en) 2010-09-28 2017-07-18 Amazon Technologies, Inc. Managing request routing information utilizing client identifiers
US8819283B2 (en) 2010-09-28 2014-08-26 Amazon Technologies, Inc. Request routing in a networked environment
US8924528B1 (en) 2010-09-28 2014-12-30 Amazon Technologies, Inc. Latency measurement in resource requests
US8938526B1 (en) 2010-09-28 2015-01-20 Amazon Technologies, Inc. Request routing management based on network components
US8577992B1 (en) 2010-09-28 2013-11-05 Amazon Technologies, Inc. Request routing management based on network components
US10958501B1 (en) 2010-09-28 2021-03-23 Amazon Technologies, Inc. Request routing information based on client IP groupings
US9003035B1 (en) 2010-09-28 2015-04-07 Amazon Technologies, Inc. Point of presence management in request routing
US8452874B2 (en) 2010-11-22 2013-05-28 Amazon Technologies, Inc. Request routing processing
US9391949B1 (en) 2010-12-03 2016-07-12 Amazon Technologies, Inc. Request routing processing
US8626950B1 (en) 2010-12-03 2014-01-07 Amazon Technologies, Inc. Request routing processing
US9100377B2 (en) * 2010-12-09 2015-08-04 Fujifilm North America Corporation System and method for providing caching and pre-fetch of assets/media
US9075893B1 (en) * 2011-02-25 2015-07-07 Amazon Technologies, Inc. Providing files with cacheable portions
US10467042B1 (en) 2011-04-27 2019-11-05 Amazon Technologies, Inc. Optimized deployment based upon customer locality
CN103917962A (en) * 2011-11-18 2014-07-09 国际商业机器公司 Reading files stored on a storage system
US8904009B1 (en) 2012-02-10 2014-12-02 Amazon Technologies, Inc. Dynamic content delivery
US10021179B1 (en) 2012-02-21 2018-07-10 Amazon Technologies, Inc. Local resource delivery network
US9083743B1 (en) 2012-03-21 2015-07-14 Amazon Technologies, Inc. Managing request routing information utilizing performance information
US10623408B1 (en) 2012-04-02 2020-04-14 Amazon Technologies, Inc. Context sensitive object management
US9154551B1 (en) 2012-06-11 2015-10-06 Amazon Technologies, Inc. Processing DNS queries to identify pre-processing information
US9525659B1 (en) 2012-09-04 2016-12-20 Amazon Technologies, Inc. Request routing utilizing point of presence load information
US9323577B2 (en) 2012-09-20 2016-04-26 Amazon Technologies, Inc. Automated profiling of resource usage
US9135048B2 (en) 2012-09-20 2015-09-15 Amazon Technologies, Inc. Automated profiling of resource usage
US10205698B1 (en) 2012-12-19 2019-02-12 Amazon Technologies, Inc. Source-dependent address resolution
US9294391B1 (en) 2013-06-04 2016-03-22 Amazon Technologies, Inc. Managing network computing components utilizing request routing
GB2534693B (en) * 2013-11-08 2017-02-08 Exacttrak Ltd Data accessibility control
US9582160B2 (en) 2013-11-14 2017-02-28 Apple Inc. Semi-automatic organic layout for media streams
US9489104B2 (en) 2013-11-14 2016-11-08 Apple Inc. Viewable frame identification
US20150254806A1 (en) * 2014-03-07 2015-09-10 Apple Inc. Efficient Progressive Loading Of Media Items
US10033627B1 (en) 2014-12-18 2018-07-24 Amazon Technologies, Inc. Routing mode and point-of-presence selection service
US10091096B1 (en) 2014-12-18 2018-10-02 Amazon Technologies, Inc. Routing mode and point-of-presence selection service
US10097448B1 (en) 2014-12-18 2018-10-09 Amazon Technologies, Inc. Routing mode and point-of-presence selection service
US10225326B1 (en) 2015-03-23 2019-03-05 Amazon Technologies, Inc. Point of presence based data uploading
US9887931B1 (en) 2015-03-30 2018-02-06 Amazon Technologies, Inc. Traffic surge management for points of presence
US9887932B1 (en) 2015-03-30 2018-02-06 Amazon Technologies, Inc. Traffic surge management for points of presence
US9819567B1 (en) 2015-03-30 2017-11-14 Amazon Technologies, Inc. Traffic surge management for points of presence
US9832141B1 (en) 2015-05-13 2017-11-28 Amazon Technologies, Inc. Routing based request correlation
US10616179B1 (en) 2015-06-25 2020-04-07 Amazon Technologies, Inc. Selective routing of domain name system (DNS) requests
US10097566B1 (en) 2015-07-31 2018-10-09 Amazon Technologies, Inc. Identifying targets of network attacks
JP2017033446A (en) * 2015-08-05 2017-02-09 株式会社リコー Information processing system, control method thereof, and program
US9742795B1 (en) 2015-09-24 2017-08-22 Amazon Technologies, Inc. Mitigating network attacks
US9794281B1 (en) 2015-09-24 2017-10-17 Amazon Technologies, Inc. Identifying sources of network attacks
US9774619B1 (en) 2015-09-24 2017-09-26 Amazon Technologies, Inc. Mitigating network attacks
US10270878B1 (en) 2015-11-10 2019-04-23 Amazon Technologies, Inc. Routing for origin-facing points of presence
US10049051B1 (en) 2015-12-11 2018-08-14 Amazon Technologies, Inc. Reserved cache space in content delivery networks
US10257307B1 (en) 2015-12-11 2019-04-09 Amazon Technologies, Inc. Reserved cache space in content delivery networks
US10348639B2 (en) 2015-12-18 2019-07-09 Amazon Technologies, Inc. Use of virtual endpoints to improve data transmission rates
US10075551B1 (en) 2016-06-06 2018-09-11 Amazon Technologies, Inc. Request management for hierarchical cache
US10110694B1 (en) 2016-06-29 2018-10-23 Amazon Technologies, Inc. Adaptive transfer rate for retrieving content from a server
US9992086B1 (en) 2016-08-23 2018-06-05 Amazon Technologies, Inc. External health checking of virtual private cloud network environments
US10033691B1 (en) 2016-08-24 2018-07-24 Amazon Technologies, Inc. Adaptive resolution of domain name requests in virtual private cloud network environments
BR112019003435A2 (en) * 2016-08-25 2019-05-21 Koninklijke Philips N.V. system configured to store and retrieve spatial data in a database, workstation or imaging equipment, method for storing and retrieving spatial data in a database and computer readable media
US10616250B2 (en) 2016-10-05 2020-04-07 Amazon Technologies, Inc. Network addresses with encoded DNS-level information
KR20180067221A (en) * 2016-12-12 2018-06-20 에이치피프린팅코리아 주식회사 Host divice transmitting print data to printer and method for encoding print data by host device
US10372499B1 (en) 2016-12-27 2019-08-06 Amazon Technologies, Inc. Efficient region selection system for executing request-driven code
US10831549B1 (en) 2016-12-27 2020-11-10 Amazon Technologies, Inc. Multi-region request-driven code execution system
US10938884B1 (en) 2017-01-30 2021-03-02 Amazon Technologies, Inc. Origin server cloaking using virtual private cloud network environments
US10503613B1 (en) 2017-04-21 2019-12-10 Amazon Technologies, Inc. Efficient serving of resources during server unavailability
US11075987B1 (en) 2017-06-12 2021-07-27 Amazon Technologies, Inc. Load estimating content delivery network
US10447648B2 (en) 2017-06-19 2019-10-15 Amazon Technologies, Inc. Assignment of a POP to a DNS resolver based on volume of communications over a link between client devices and the POP
US10742593B1 (en) 2017-09-25 2020-08-11 Amazon Technologies, Inc. Hybrid content request routing system
US10592578B1 (en) 2018-03-07 2020-03-17 Amazon Technologies, Inc. Predictive content push-enabled content delivery network
US10862852B1 (en) 2018-11-16 2020-12-08 Amazon Technologies, Inc. Resolution of domain name requests in heterogeneous network environments
US11025747B1 (en) 2018-12-12 2021-06-01 Amazon Technologies, Inc. Content request pattern-based routing system

Family Cites Families (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
IT1215539B (en) * 1987-06-03 1990-02-14 Honeywell Inf Systems TRANSPARENT BUFFER MEMORY.
JPH02178878A (en) 1988-12-29 1990-07-11 Nec Corp Image information storage system
JPH0524452A (en) 1991-03-28 1993-02-02 Mazda Motor Corp Power train structure of vehicle
US5263136A (en) * 1991-04-30 1993-11-16 Optigraphics Corporation System for managing tiled images using multiple resolutions
JPH0535563A (en) 1991-07-30 1993-02-12 Nec Corp Method for managing image information
JPH06119218A (en) 1992-10-08 1994-04-28 Nippon Telegr & Teleph Corp <Ntt> File cache control method
US5664106A (en) * 1993-06-04 1997-09-02 Digital Equipment Corporation Phase-space surface representation of server computer performance in a computer network
US5832219A (en) * 1994-02-08 1998-11-03 Object Technology Licensing Corp. Distributed object networking service
JP2658902B2 (en) 1994-10-04 1997-09-30 日本電気株式会社 Image generation device
US5963981A (en) * 1995-10-06 1999-10-05 Silicon Graphics, Inc. System and method for uncached store buffering in a microprocessor
US5893920A (en) * 1996-09-30 1999-04-13 International Business Machines Corporation System and method for cache management in mobile user file systems
US5987567A (en) * 1996-09-30 1999-11-16 Apple Computer, Inc. System and method for caching texture map information
US5974572A (en) * 1996-10-15 1999-10-26 Mercury Interactive Corporation Software system and methods for generating a load test using a server access log
JPH1188866A (en) 1997-07-18 1999-03-30 Pfu Ltd High-definition image display device and program storage medium therefor
JP4010024B2 (en) 1997-09-02 2007-11-21 ソニー株式会社 Compressed video signal decoding device
US6192382B1 (en) * 1997-09-24 2001-02-20 Mediaone Group, Inc. Method and system for web site construction using HTML fragment caching
GB2332289A (en) * 1997-12-11 1999-06-16 Ibm Handling processor-intensive data processing operations
US6343350B1 (en) 1998-02-13 2002-01-29 International Business Machines Corporation Conserving storage space by means of low resolution objects
US6061715A (en) 1998-04-30 2000-05-09 Xerox Corporation Apparatus and method for loading and reloading HTML pages having cacheable and non-cacheable portions
JP2000029448A (en) 1998-07-13 2000-01-28 Toshiba Corp Picture information providing system, image information display terminal, and server device
US6661904B1 (en) * 1998-07-15 2003-12-09 Personalogo Method and system for automated electronic conveyance of hidden data
US6363418B1 (en) * 1998-10-16 2002-03-26 Softbook Press, Inc. On-line image caching control for efficient image display
US6470436B1 (en) * 1998-12-01 2002-10-22 Fast-Chip, Inc. Eliminating memory fragmentation and garbage collection from the process of managing dynamically allocated memory
US6631205B1 (en) * 1999-01-13 2003-10-07 Canon Kabushiki Kaisha Stereoscopic imaging in a portable document format
JP4270623B2 (en) 1999-01-13 2009-06-03 三菱電機株式会社 Time series data storage and delivery system
US6553393B1 (en) * 1999-04-26 2003-04-22 International Business Machines Coporation Method for prefetching external resources to embedded objects in a markup language data stream
US6314452B1 (en) * 1999-08-31 2001-11-06 Rtimage, Ltd. System and method for transmitting a digital image over a communication network
US6480200B1 (en) * 2000-06-09 2002-11-12 Hewlett-Packard Company Method and apparatus for deferred texture validation on a multi-tasking computer
US7006099B2 (en) 2000-08-15 2006-02-28 Aware, Inc. Cache system and method for generating uncached objects from cached and stored object components
US7006009B2 (en) * 2002-04-01 2006-02-28 Key Energy Services, Inc. Servicing system for wells

Also Published As

Publication number Publication date
KR20030024861A (en) 2003-03-26
EP2698719A3 (en) 2014-08-20
EP3333715A1 (en) 2018-06-13
EP1309917A2 (en) 2003-05-14
AU8354201A (en) 2002-02-25
EP1309917B1 (en) 2018-01-24
WO2002015011A2 (en) 2002-02-21
US8122059B2 (en) 2012-02-21
ES2612121T3 (en) 2017-05-12
KR20100132085A (en) 2010-12-16
US20040172495A1 (en) 2004-09-02
AU2006228047A1 (en) 2006-11-02
JP2010061679A (en) 2010-03-18
AU2010202800A1 (en) 2010-07-22
CA2416839C (en) 2013-03-12
US20120110035A1 (en) 2012-05-03
KR101021321B1 (en) 2011-03-11
AU2001283542B2 (en) 2006-10-05
JP2004506978A (en) 2004-03-04
US7006099B2 (en) 2006-02-28
US8386531B2 (en) 2013-02-26
EP2698719A2 (en) 2014-02-19
JP2009295177A (en) 2009-12-17
AU2010202800B2 (en) 2012-07-19
JP2008293530A (en) 2008-12-04
EP3333715B1 (en) 2019-08-07
US20020103970A1 (en) 2002-08-01
WO2002015011A3 (en) 2002-09-26
EP2698719B1 (en) 2016-10-26
KR101081296B1 (en) 2011-11-08

Similar Documents

Publication Publication Date Title
CA2416839C (en) Cache system and method for generating uncached objects from cached and stored object components
AU2001283542A1 (en) Cache system and method for generating uncached objects from cached and stored object components
CA2719593C (en) Dynamic composition for image transmission
US7284069B2 (en) Method for document viewing
AU770084B2 (en) Methods, apparatus, and systems for storing, retrieving and playing multimedia data
US20040109197A1 (en) Apparatus and method for sharing digital content of an image across a communications network
JP2007234027A (en) Method, server and computer program for access to partial document imagery
EP0967556A2 (en) Flat image delivery server
US6211881B1 (en) Image format conversion with transparency color adjustment
CN115250352A (en) Partitioning ASTC textures into sub-image sets
US10956488B2 (en) Image tile request service
Palaniappan et al. Multiresolution tiling for interactive viewing of large datasets
Hu et al. Use image streaming technologies to present high resolution images on the internet

Legal Events

Date Code Title Description
EEER Examination request
MKEX Expiry

Effective date: 20210809