CA2419107A1 - Cryotreatment device and method - Google Patents

Cryotreatment device and method Download PDF

Info

Publication number
CA2419107A1
CA2419107A1 CA002419107A CA2419107A CA2419107A1 CA 2419107 A1 CA2419107 A1 CA 2419107A1 CA 002419107 A CA002419107 A CA 002419107A CA 2419107 A CA2419107 A CA 2419107A CA 2419107 A1 CA2419107 A1 CA 2419107A1
Authority
CA
Canada
Prior art keywords
coolant
cooling
lumen
recited
catheter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CA002419107A
Other languages
French (fr)
Other versions
CA2419107C (en
Inventor
Daniel M. Lafontaine
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Boston Scientific Ltd Barbados
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Publication of CA2419107A1 publication Critical patent/CA2419107A1/en
Application granted granted Critical
Publication of CA2419107C publication Critical patent/CA2419107C/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B18/02Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by cooling, e.g. cryogenic techniques
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F7/00Heating or cooling appliances for medical or therapeutic treatment of the human body
    • A61F7/10Cooling bags, e.g. ice-bags
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F7/00Heating or cooling appliances for medical or therapeutic treatment of the human body
    • A61F7/12Devices for heating or cooling internal body cavities
    • A61F7/123Devices for heating or cooling internal body cavities using a flexible balloon containing the thermal element
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/00234Surgical instruments, devices or methods, e.g. tourniquets for minimally invasive surgery
    • A61B2017/00238Type of minimally invasive operation
    • A61B2017/00243Type of minimally invasive operation cardiac
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B2017/00831Material properties
    • A61B2017/00867Material properties shape memory effect
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/22Implements for squeezing-off ulcers or the like on the inside of inner organs of the body; Implements for scraping-out cavities of body organs, e.g. bones; Calculus removers; Calculus smashing apparatus; Apparatus for removing obstructions in blood vessels, not otherwise provided for
    • A61B2017/22001Angioplasty, e.g. PCTA
    • A61B2017/22002Angioplasty, e.g. PCTA preventing restenosis
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/22Implements for squeezing-off ulcers or the like on the inside of inner organs of the body; Implements for scraping-out cavities of body organs, e.g. bones; Calculus removers; Calculus smashing apparatus; Apparatus for removing obstructions in blood vessels, not otherwise provided for
    • A61B2017/22051Implements for squeezing-off ulcers or the like on the inside of inner organs of the body; Implements for scraping-out cavities of body organs, e.g. bones; Calculus removers; Calculus smashing apparatus; Apparatus for removing obstructions in blood vessels, not otherwise provided for with an inflatable part, e.g. balloon, for positioning, blocking, or immobilisation
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/22Implements for squeezing-off ulcers or the like on the inside of inner organs of the body; Implements for scraping-out cavities of body organs, e.g. bones; Calculus removers; Calculus smashing apparatus; Apparatus for removing obstructions in blood vessels, not otherwise provided for
    • A61B2017/22051Implements for squeezing-off ulcers or the like on the inside of inner organs of the body; Implements for scraping-out cavities of body organs, e.g. bones; Calculus removers; Calculus smashing apparatus; Apparatus for removing obstructions in blood vessels, not otherwise provided for with an inflatable part, e.g. balloon, for positioning, blocking, or immobilisation
    • A61B2017/22065Functions of balloons
    • A61B2017/22067Blocking; Occlusion
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B2018/00005Cooling or heating of the probe or tissue immediately surrounding the probe
    • A61B2018/00041Heating, e.g. defrosting
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B2018/00053Mechanical features of the instrument of device
    • A61B2018/00184Moving parts
    • A61B2018/00196Moving parts reciprocating lengthwise
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B2018/00053Mechanical features of the instrument of device
    • A61B2018/00214Expandable means emitting energy, e.g. by elements carried thereon
    • A61B2018/0022Balloons
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B18/02Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by cooling, e.g. cryogenic techniques
    • A61B2018/0212Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by cooling, e.g. cryogenic techniques using an instrument inserted into a body lumen, e.g. catheter
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B18/02Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by cooling, e.g. cryogenic techniques
    • A61B2018/0231Characteristics of handpieces or probes
    • A61B2018/0262Characteristics of handpieces or probes using a circulating cryogenic fluid
    • A61B2018/0268Characteristics of handpieces or probes using a circulating cryogenic fluid with restriction of flow
    • A61B2018/0275Characteristics of handpieces or probes using a circulating cryogenic fluid with restriction of flow using porous elements
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B18/02Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by cooling, e.g. cryogenic techniques
    • A61B2018/0231Characteristics of handpieces or probes
    • A61B2018/0262Characteristics of handpieces or probes using a circulating cryogenic fluid
    • A61B2018/0268Characteristics of handpieces or probes using a circulating cryogenic fluid with restriction of flow
    • A61B2018/0281Characteristics of handpieces or probes using a circulating cryogenic fluid with restriction of flow using a tortuous path, e.g. formed by fins or ribs
    • A61B2018/0287Characteristics of handpieces or probes using a circulating cryogenic fluid with restriction of flow using a tortuous path, e.g. formed by fins or ribs the fluid flowing through a long thin tube with spiral shape
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B18/18Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by applying electromagnetic radiation, e.g. microwaves
    • A61B18/1815Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by applying electromagnetic radiation, e.g. microwaves using microwaves
    • A61B2018/1861Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by applying electromagnetic radiation, e.g. microwaves using microwaves with an instrument inserted into a body lumen or cavity, e.g. a catheter
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B90/00Instruments, implements or accessories specially adapted for surgery or diagnosis and not covered by any of the groups A61B1/00 - A61B50/00, e.g. for luxation treatment or for protecting wound edges
    • A61B90/04Protection of tissue around surgical sites against effects of non-mechanical surgery, e.g. laser surgery
    • A61B2090/0463Protection of tissue around surgical sites against effects of non-mechanical surgery, e.g. laser surgery against cooling or freezing
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B90/00Instruments, implements or accessories specially adapted for surgery or diagnosis and not covered by any of the groups A61B1/00 - A61B50/00, e.g. for luxation treatment or for protecting wound edges
    • A61B90/06Measuring instruments not otherwise provided for
    • A61B2090/064Measuring instruments not otherwise provided for for measuring force, pressure or mechanical tension
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B90/00Instruments, implements or accessories specially adapted for surgery or diagnosis and not covered by any of the groups A61B1/00 - A61B50/00, e.g. for luxation treatment or for protecting wound edges
    • A61B90/36Image-producing devices or illumination devices not otherwise provided for
    • A61B90/37Surgical systems with images on a monitor during operation
    • A61B2090/378Surgical systems with images on a monitor during operation using ultrasound
    • A61B2090/3782Surgical systems with images on a monitor during operation using ultrasound transmitter or receiver in catheter or minimal invasive instrument
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F7/00Heating or cooling appliances for medical or therapeutic treatment of the human body
    • A61F2007/0001Body part
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F7/00Heating or cooling appliances for medical or therapeutic treatment of the human body
    • A61F2007/0059Heating or cooling appliances for medical or therapeutic treatment of the human body with an open fluid circuit
    • A61F2007/0063Heating or cooling appliances for medical or therapeutic treatment of the human body with an open fluid circuit for cooling

Abstract

Devices and method for rcooling vessel walls to inhibit restenosis in conjunction with medical procedures such as coronary artery angioplasty.
Stenosed vessel walls can be cooled prior to angioplasty, after angioplasty, or both. The invention is believed to inhibit restenosis through cooling to a temperature near freezing, preferably without causing substantial vessel wall cell death. One catheter device includes a distal tube region having coolant delivery holes radially and longitudinally distributed along the distal region. In some devices, holes spray coolant directly onto the vessel walls, with the coolant absorbed into the blood stream. In other embodiments, a balloon or envelope in interposed between the coolant and the vessel walls and the coolant returned out of the catheter through a coolant return lumen. Some direct spray devices include an occlusion device to restrict blood flow past the region being cooled. Pressure, temperature, and ultrasonic probes are included in some cooling catheters. Pressure control valves are included in some devices to regulate balloon interior pressure within acceptable limits.
In applications using liquid carbon dioxide as coolant, the balloon interior pressure can be maintained above the triple point of carbon dioxide to inhibit dry ice formation. Some cooling catheters are coiled perfusion catheters supporting longer cooling periods by allowing perfusing blood flow simultaneously with vessel wall cooling. One coiled catheter is biased to assume a coiled shape when unconstrained and can be introduced into the body in a relatively straight shape, having a stiffening wire inserted through the coil strands.

Claims (84)

1. A device for cooling a length of a body vessel interior having interior walls comprising:
means for distributing a coolant at multiple locations over said vessel inferior length; and a coolant delivery shaft having a first lumen therethrough, said first lumen being in fluid communication with, and operably coupled to, said coolant distributing means.
2. A cooling device as recited in claim 1, further comprising means for occluding said body vessel interior.
3. A cooling device as recited in claim 2, wherein said occluding means includes means for inflating said occluding means, said inflating means being in fluid communication with said first lumen, such that said inflating means is inflated with said coolant.
4. A cooling device as recited in claim 2, wherein said shaft includes a second lumen, said occluding means includes means for inflating said occluding means, said inflating means being in fluid communication with said second lumen.
5. A cooling device as recited in claim 2, wherein said device has a proximal end and a distal, terminal end for inserting into said body vessel, wherein said occluding means is proximal of said distributing means.
6. A cooling device as recited in claim 1, wherein said device includes an inflatable balloon interposed between said coolant distributing means and said body vessel interior walls.
7. A cooling device as recited in claim 6, wherein said balloon has an interior in fluid communication with said coolant lumen, such that sad balloon is inflated with said coolant.
8. A cooling device as recited in claim 6, wherein said shaft has a second lumen, and said balloon has an interior in fluid communication with said second lumen, such that said balloon is inflated from said second lumen.
9. A cooling device as recited in claim 6, wherein said means for distributing includes means for spraying said coolant in a radially outward direction.
10. A cooling device as recited in claim 1, wherein said means for distributing includes means for spraying said coolant in a radially outward direction.
11. A cooling device as recited in claim 1, wherein said means for distributing includes means for distributing at multiple locations simultaneously.
12. A cooling device as recited in claim 1, wherein said means for distributing coolant includes means for longitudinally moving said coolant distributing means relative to said cooling device.
13. A cooling device as recited in claim 1, wherein said means for distributing coolant includes means for rotating said coolant distributing means relative to said cooling device.
14. A cooling device as recited in claim 13, wherein said means for distributing coolant includes means for selectively spraying only selected angular locations about said coolant distribution means.
15. A cooling device as recited in claim1, wherein said distributing means includes a plurality of coolant delivery orifices in a centrally disposed coolant delivery tube.
16. A cooling device as recited in claim 1, wherein said means for distributing includes a plurality of distributing tubes of varying length having at least one coolant delivery orifice in said tubes.
17. A cooling device as recited in claim 1, wherein said means for distributing includes a microporous tube having said pores therethrough in fluid communication with said first lumen.
18. A cooling device as recited in claim 1, wherein said means for distributing coolant includes means for longitudinally and rotationally moving said coolant-distributing means relative to said cooling device.
19. A cooling device subassembly for cooling a length of a body vessel interior having interior walls comprising a coolant delivery shaft having a first lumen therethrough, and a distal region, said first lumen being in fluid communication with, and operably coupled to a distally disposed pressure-reducing orifice for providing at least part of said cooling due to a pressure drop across said orifice.
20. A device for cooling a length of a body vessel interior having interior walls comprising:
an inflatable balloon having an interior;
means for inflating said balloon;
means for providing a coolant to said balloon interior;
a coolant delivery shaft having a first lumen therethrough, said first lumen being in fluid communication with, and operably coupled to, said coolant providing means and balloon interior; and a coolant outflow pressure-regulating valve in fluid communication with said balloon interior for maintaining a regulated pressure in said balloon interior by controlling outflow of said coolant from said balloon interior.
21. A cooling device as recited in claim 20, further comprising a coolant exhaust lumen in fluid communication with said balloon interior, wherein said pressure-regulating valve is in fluid communication with said coolant exhaust lumen.
22. A device for cooling a length of a body vessel interior having interior walls comprising:
an inflatable balloon having an interior;
means for inflating said balloon;
means for providing a coolant to said balloon interior;
a coolant delivery shaft having a first lumen therethrough; and a pressure relief valve in fluid communication with, and interposed between, said first lumen and said balloon interior, for delivering coolant into said balloon when pressure in said first lumen exceeds a limit.
23. A device for cooling a length of a body vessel interior having interior walls comprising:
means for providing a coolant to said vessel interior;
a coolant delivery shaft including a proximal region and a distal region, and having a first lumen therethrough, said first lumen being in fluid communication with, and operably coupled to, said coolant providing means; and a cooling inhibiting jacket disposed in said shaft proximal region to inhibit cooling of said body vessel interior disposed near said proximal region, said cooling inhibiting jacket having a fluid inflow portion and a fluid outflow portion.
24. A catheter for cooling a stenosed vessel region comprising:

a tubular shaft having a proximal region, a distal region, an inflation lumen therethrough, a coolant lumen therethrough, and distal region tube walls having holes therethrough in fluid communication with said coolant lumen; and an inflatable balloon disposed in said distal region for occluding said vessel, said inflatable balloon having an interior in fluid communication with said inflation lumen.
25. A catheter as recited in claim 24, further comprising a pressure sensor disposed in said tube distal region.
26. A catheter as recited in claim 24, wherein said inflatable balloon is disposed proximal of said distal region holes such that when said catheter distal region is inserted in distally flowing vessel blood flow said inflatable balloon can be inflated to block said distal region holes from flowing blood.
27. A catheter as recited in claim 24, further comprising a coolant supply proximally coupled to said coolant lumen.
28. A method for inhibiting restenosis after angioplasty of a stenosis by cooling vessel walls comprising the steps of:
providing a tubular catheter including a distal region having coolant delivery holes and a coolant lumen therethrough in fluid communication with said holes;
inserting said catheter distal region through said vessel to a location near said stenosis; and injecting said coolant into said coolant lumen and through said coolant delivery holes toward said vessel walls.
29. A method for inhibiting restenosis as recited in claim 28, wherein said cooling is performed after angioplasty.
30. A method for inhibiting restenosis as recited in claim 28, wherein said cooling is performed prior to angioplasty.
31. A method for inhibiting restenosis as recited in claim 28, further comprising providing a distally disposed inflatable occlusion device, further comprising the step of inflating said occlusion device prior to performing said cooling, such that said cooling is less attenuated by blood flow past said coolant holes.
32. A method for inhibiting restenosis as recited in claim 31, wherein said catheter includes an inflation lumen in fluid communication with said inflatable occlusion device and said inflating step includes supplying fluid to said inflation lumen.
33. A method for inhibiting restenosis as recited in claim 28, further comprising providing a distally disposed vessel internal pressure sensor operably coupled to a pressure read-out disposed externally to vessel, further comprising moderating said coolant inflow in response to said vessel internal pressure.
34. A method for inhibiting restenosis as recited in claim 28, wherein said coolant is introduced into said catheter at a first, higher pressure and undergoes a pressure drop to a second, lower pressure upon exiting said coolant holes.
35. A method for inhibiting, restenosis as recited in claim 28, wherein said coolant is introduced into said catheter in liquid form at a first, higher pressure and undergoes a pressure drop to a second, lower pressure and changes to gaseous form upon exiting said coolant holes.
36. A method for inhibiting restenosis as recited in claim 28, wherein said stenosis is cooled for between about 0 degrees C and 10 degrees C. for between about 2 minutes and 10 minutes.
37. A catheter for cooling a stenosed vessel region comprising:
a tubular shaft having a proximal region, a distal region, an inflation lumen therethrough;
an inflatable balloon having an inner envelope surface and an interior in fluid communication with said inflation lumen; and a coolant shaft rotatably disposed substantially parallel to said tubular shaft and having a coolant lumen therethrough, and having at least one coolant exit port in fluid communication with said coolant lumen and disposed within said balloon interior and oriented to direct said coolant towards said balloon inner wall, such that rotating said coolant shaft rotates said coolant exit port.
38. A catheter as recited in claim 37, wherein said coolant shaft has an outer wall and is disposed coaxially within said tubular shaft, said inflation lumen is an annular lumen disposed between said coolant shaft outer wall and said tubular shaft inner wall and said coolant exit port is substantially coaxially disposed on a distal most end of said coolant shaft and said coolant shaft includes a distal bend to direct said coolant exit port toward said balloon inner wall, such that rotating said coolant shaft rotates said coolant exit port.
39. A catheter as recited in claim 37, further comprising a pressure sensor disposed in said tube distal region.
40. A method for inhibiting restenosis comprising the steps of:
providing a catheter including a tubular shaft having a distal region, an inflatable balloon disposed near said distal region, a coolant tube disposed axially with said tubular shaft, said coolant tube having a coolant lumen therethrough, and a distal coolant delivery port in fluid communication with said coolant lumen;
inserting said catheter distal region across said stenosed region;
inflating said balloon against said stenosis;
rotating said coolant tube to point said coolant port toward said stenosis;
and infusing said coolant through said coolant tube such that said coolant exits said coolant port and is directed against said balloon inner wall near said stenosis.
41. A method as recited in claim 40, wherein said coolant tube exit port is disposed on the distal tip of sand coolant tube and said coolant tube includes a distal bend for bringing said coolant exit port near said balloon inner wall, wherein said rotating step includes bringing said coolant tube distal end near said balloon inner wall.
42. A method as recited in claim 40, wherein said balloon includes an exhaust port for exhausting said coolant.
43. A method as recited in claim 42, wherein said catheter shaft includes an exhaust lumen in fluid communication with said balloon coolant exhaust port and said coolant exits said catheter through said exhaust lumen.
44. A method as recited in claim 43, wherein said exhaust lumen includes a pressure control valve for regulating said coolant pressure.
45. A method as recited in claim 44, wherein, during said cooling step, said coolant pressure is maintained above a minimum pressure and below a maximum pressure.
46. A method as recited in claim 45, wherein said coolant is infused as a liquid and changes phase to a gas during said cooling step.
47. A method as recited in claim 46, wherein said coolant includes carbon dioxide and said coolant pressure is regulated to remain above the triple point of said carbon dioxide to inhibit dry ice formation.
48. A method for inhibiting restenosis comprising:
providing a catheter including a tubular shaft having a distally disposed inflatable balloon having an interior, said shaft having a coolant supply lumen and an exhaust valve in fluid communication with said balloon interior, wherein said exhaust valve maintains said exhaust coolant above a minimum pressure by only allowing venting of said coolant through said exhaust valve at pressure above said minimum pressure;
disposing said balloon near a stenosis; and supplying said shaft with said coolant.
49. A method as recited in claim 48, wherein said coolant is supplied to said catheter as a gas having a triple point pressure and said minimum pressure is above said triple point.
50. A method as recited in claim 49, wherein said coolant includes carbon dioxide and said minimum pressure is above the triple point pressure of carbon dioxide.
51. A method as recited in claim 48, wherein said coolant is supplied to said catheter as a liquid and exits as a gas.
52. A catheter for cooling a vessel interior comprising:
a tubular catheter shaft having a distal region, a coolant supply lumen and a coolant exhaust;
an inflatable balloon disposed near said shaft distal region and having an inner wall and an interior in fluid communication with said coolant supply lumen and coolant exhaust; and a coolant distributor including, a length and a lumen therethrough in fluid communication with said catheter shaft coolant supply lumen, said distributor having a plurality of coolant exit orifices over said in fluid communication with said distributor tube lumen, such that said coolant is distributed into said balloon over said distributor length.
53. A catheter as recited in claim 52, wherein said coolant distributor includes a plurality of distributor tubes of varying lengths having a proximal region coupled to said tubular shaft distal region, said distributor tubes having a lumen therethrough in fluid communication with said catheter shaft coolant supply lumen, said distributor tubes having a distal region, wherein said distributor coolant exit orifices are disposed in said distributor tube distal regions.
54. A catheter as recited in claim 53, wherein said coolant distributor tube exit orifices are disposed radially outward toward said balloon inner wall such that said coolant sprays against said balloon inner wall.
55. A catheter as recited in claim 52, wherein said coolant distributor includes a substantially cylindrical porous tube having a proximal region coupled to said tubular shaft distal region, said porous tube having a lumen therethrough in fluid communication with said catheter shaft coolant supply lumen, wherein said distributor coolant exit orifices are disposed as pores along said porous tube length.
56. A catheter for cooling a vessel interior comprising:
a tubular catheter shaft having a distal region, a coolant supply lumen and a coolant exhaust lumen;
a coolant inflow control valve disposed in said tubular catheter shaft distal region, said valve being in fluid communication with said catheter shaft coolant supply lumen, said valve having a closed position to preclude flow from said coolant supply lumen and an open position to allow flow from said coolant lumen;
means for forcing said valve to assume said open and closed positions; and an inflatable balloon having an interior in fluid communication with said control valve and with said coolant exhaust lumen.
57. A catheter as recited in claim 56, wherein said means for opening and closing said valve includes means for biasing said valve to remain in said closed position until said coolant attains a minimum pressure whereupon said valve is forced by said coolant pressure to assume said open position to release said coolant.
58. A catheter as recited in claim 57, wherein said means for biasing includes a spring disposed in said catheter distal region to force said valve shut against said coolant pressure.
59. A catheter as recited in claim 56, wherein said means for opening and closing said valve includes a slidably disposed elongate member having a distal region operably coupled to said valve and a proximal region externally accessible from said catheter proximal end, such that sliding said slidable member proximal region opens and shuts said valve.
60. A catheter as recited in claim 59, wherein said slidable member operates to hold said valve in tension against a valve seat in said closed position and said slidable member is distally pushed to move said valve from said valve seat in said open position.
61. A catheter shaft subassemly for use in a cooling catheter comprising:
a tubular shaft having a proximal region, a distal region, and an intermediate region disposed longitudinally between said proximal region and said distal region;
said shaft having a coolant supply lumen, a coolant return lumen, a substantially annular warming fluid supply lumen distally in fluid communication with a warming fluid return lumen, wherein said warming fluid lumens have a distal most extent which does not extend into said distal region, such that said shaft subassembly is warmed by said warming fluid in said intermediate region substantially more than in said distal region.
62. A catheter shaft subassembly as recited in claim 61, wherein said warming fluid return lumen is an annular lumen disposed within said warming fluid supply lumen.
63. In a procedure for cooling an internal body vessel distal region using a tubular catheter having a distal catheter region cooled by a cooling supply lumen extending through a proximal catheter region, a method for reducing cooling of said proximal region comprising the steps of:
providing a warming jacket over a substantial portion of said proximal region, said warming jacket being in fluid communication with a proximal warming jacket supply port; and infusing warming fluid into said warming fluid proximal supply port, such that a proximal region of said body vessel is cooled less than said body vessel distal region.
64. A method for reducing an injury response to a blood vessel wall region following a medical procedure involving said vessel wall comprising:
providing a perfusion cooling catheter having a distal cooling region allowing blood flow past said distal cooling region;
inserting said perfusion cooling catheter distal cooling region; and cooling said vessel wall region while allowing blood flow through said vessel region.
65. A method as recited in claim 64, wherein said catheter cooling region is radially expandable and said cooling region has a first, contracted configuration during inserting and a second, expanded configuration during cooling.
66. A method as recited in claim 64, wherein said cooling step is performed prior to said medical procedure.
67. A method as recited in claim 64, wherein said cooling is performed longer than about 5 minutes.
68. A method as recited in claim 64, wherein said cooling is performed using a coolant entering said catheter cooling region as a liquid and exiting said cooling region as a gas.
69. A subassembly for a cooling perfusion catheter for cooling a body vessel comprising:
at least one cooling coil having a substantially helical shape, wherein said cooling coil includes a tubular strand having a lumen therethrough;
an inflow region in said lumen having a reducing orifice therein for creating a pressure drop across said reducing orifice; and an outflow region in said lumen for returning said coolant.
70. A subassembly as recited in claim 69, wherein said coil has a first, substantially helical unconstrained shape and a second, substantially linear constrained shape, wherein said coil can be forced to assume said constrained shape by inserting an elongate member through said strand rumen and can be allowed to assume said unconstrained shape by retracting said elongate member.
71. A subassembly for a cooling perfusion catheter for cooling a body vessel comprising:
at least one cooling coil having a substantially helical shape, wherein said cooling coil includes a tubular strand having a lumen therethrough; and an elongate stiffening member, insertable through said cooling coil lumen, wherein said coil has a first, substantially helical unconstrained shape and a second, substantially linear constrained shape, wherein said coil can be forced to assume said constrained shape by inserting said stiffening member through said strand lumen and can be allowed to assume said unconstrained shape by retracting said stiffening member.
72. A cooling catheter having a proximal region and a distal region comprising:
an elongate shaft having a coolant lumen therethrough;
an inflatable balloon disposed on said shaft distal region and having an interior in fluid communication with said coolant lumen and having an inflated outer diameter;
a radially expandable skirt secured near an end portion of said inflatable balloon and having an expanded outer diameter larger than said inflated balloon outer diameter, such that when said expandable skirt is expanded against a blood vessel wall and said balloon is inflated, an annular layer of blood is trapped between said balloon and said vessel wall.
73. A method for ablating tissue accessible through a blood vessel by cooling said tissue comprising the steps of:

providing a tubular catheter including a distal region having coolant delivery holes and a coolant lumen therethrough in fluid communication with said holes;
inserting said catheter distal region through said blood vessel to a location near said tissue; and injecting said coolant into said coolant lumen and through said coolant delivery holes toward said tissue for a time sufficient to cause tissue necrosis, wherein said coolant is in fluid communication with said tissue.
74. A method for ablating tissue as recited in claim 73, wherein said tissue is heart chamber tissue.
75. A method for ablating tissue as recited in claim 74, wherein said tissue is pulmonary vein tissue.
76. A method for ablating tissue as recited in claim 75, further comprising providing a distally disposed inflatable occlusion device, further comprising the step of inflating said occlusion device within said pulmonary vein prior to performing said cooling, such that said cooling is less attenuated by blood flow past said coolant holes.
77. A method for ablating tissue as recited in claim 76, wherein said catheter includes an inflation lumen in fluid communication with said inflatable occlusion device and said inflating step includes supplying fluid to said inflation lumen.
78. A method for inhibiting restenosis as recited in claim 73, wherein said coolant is introduced into said catheter at a first, higher pressure and undergoes a pressure drop to a second, lower pressure upon exiting said coolant holes.
79. A method for inhibiting restenosis as recited in claim 73, wherein said coolant is introduced into said catheter in liquid form at a first, higher pressure and undergoes a pressure drop to a second, lower pressure and changes to gaseous form upon exiting said coolant holes.
80. A method for ablating pulmonary vein tissue comprising the steps of:
providing a catheter including a tubular shaft having a distal region, an inflatable balloon disposed near said distal region, a coolant tube disposed axially with said tubular shaft, said coolant tube having a coolant lumen therethrough, and a distal coolant delivery port in fluid communication with said coolant lumen;
inserting said catheter distal region across said pulmonary vein tissue;
inflating said balloon within said pulmonary vein;
rotating said coolant tube to point said coolant port toward said pulmonary vein tissue; and infusing said coolant through said coolant tube such that said coolant exits said coolant port and is directed against said balloon inner wall near said pulmonary vein tissue for a time sufficient to cause tissue necrosis.
81. A method as recited in claim 80, wherein said coolant is infused as a liquid and changes phase to a gas during said cooling step.
82. A method for ablating pulmonary vein wall tissue comprising:
providing a perfusion cooling catheter having a distal cooling region allowing blood flow past said distal cooling region;
inserting said perfusion cooling catheter distal cooling region; and cooling said pulmonary vein wall region for a time and temperature sufficient to cause tissue necrosis while allowing blood flow through said pulmonary vein region.
83. A method as recited in claim 82, wherein said catheter cooling region is radially expandable and said cooling region has a first, contracted configuration during inserting and a second, expanded configuration during cooling.
84. A method as recited in claim 82, wherein said cooling is performed using a coolant entering said catheter cooling region as a liquid and exiting said cooling region as a gas.
CA2419107A 2000-07-25 2001-06-18 Cryotreatment device and method Expired - Lifetime CA2419107C (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US09/625,163 2000-07-25
US09/625,163 US7220257B1 (en) 2000-07-25 2000-07-25 Cryotreatment device and method
PCT/US2001/041026 WO2002007625A2 (en) 2000-07-25 2001-06-18 Cryotreatment device and method

Publications (2)

Publication Number Publication Date
CA2419107A1 true CA2419107A1 (en) 2002-01-31
CA2419107C CA2419107C (en) 2012-01-17

Family

ID=24504859

Family Applications (1)

Application Number Title Priority Date Filing Date
CA2419107A Expired - Lifetime CA2419107C (en) 2000-07-25 2001-06-18 Cryotreatment device and method

Country Status (9)

Country Link
US (5) US7220257B1 (en)
EP (1) EP1303226B1 (en)
JP (1) JP4833494B2 (en)
AT (1) ATE338517T1 (en)
AU (1) AU2001281280A1 (en)
CA (1) CA2419107C (en)
DE (1) DE60122897T2 (en)
ES (1) ES2271060T3 (en)
WO (1) WO2002007625A2 (en)

Families Citing this family (229)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6602247B2 (en) * 1997-02-27 2003-08-05 Cryocath Technologies Inc. Apparatus and method for performing a treatment on a selected tissue region
US7220257B1 (en) * 2000-07-25 2007-05-22 Scimed Life Systems, Inc. Cryotreatment device and method
US7314477B1 (en) 1998-09-25 2008-01-01 C.R. Bard Inc. Removable embolus blood clot filter and filter delivery unit
US6432102B2 (en) 1999-03-15 2002-08-13 Cryovascular Systems, Inc. Cryosurgical fluid supply
US6648879B2 (en) 1999-02-24 2003-11-18 Cryovascular Systems, Inc. Safety cryotherapy catheter
US6514245B1 (en) 1999-03-15 2003-02-04 Cryovascular Systems, Inc. Safety cryotherapy catheter
US6955174B2 (en) 2000-08-18 2005-10-18 Uryovascular Systems, Inc. Cryotherapy method for detecting and treating vulnerable plaque
US6602246B1 (en) 2000-08-18 2003-08-05 Cryovascular Systems, Inc. Cryotherapy method for detecting and treating vulnerable plaque
US20030149368A1 (en) * 2000-10-24 2003-08-07 Hennemann Willard W. Method and apparatus for locating and detecting vascular plaque via impedence and conductivity measurements, and for cryogenically passivating vascular plaque and inhibiting vascular plaque progression and rupture
US7455666B2 (en) 2001-07-13 2008-11-25 Board Of Regents, The University Of Texas System Methods and apparatuses for navigating the subarachnoid space
US6786900B2 (en) 2001-08-13 2004-09-07 Cryovascular Systems, Inc. Cryotherapy methods for treating vessel dissections and side branch occlusion
US20030088240A1 (en) * 2001-11-02 2003-05-08 Vahid Saadat Methods and apparatus for cryo-therapy
US7479139B2 (en) * 2002-01-04 2009-01-20 Galil Medical Ltd. Apparatus and method for protecting tissues during cryoablation
US8347891B2 (en) 2002-04-08 2013-01-08 Medtronic Ardian Luxembourg S.A.R.L. Methods and apparatus for performing a non-continuous circumferential treatment of a body lumen
US7756583B2 (en) 2002-04-08 2010-07-13 Ardian, Inc. Methods and apparatus for intravascularly-induced neuromodulation
US6989009B2 (en) 2002-04-19 2006-01-24 Scimed Life Systems, Inc. Cryo balloon
US6929639B2 (en) 2002-08-30 2005-08-16 Scimed Life Systems, Inc. Cryo ablation coil
US6905493B2 (en) * 2003-04-01 2005-06-14 Cryocor, Inc. Mechanically extended spiral cryotip for a cryoablation catheter
US7101387B2 (en) 2003-04-30 2006-09-05 Scimed Life Systems, Inc. Radio frequency ablation cooling shield
US20040226556A1 (en) 2003-05-13 2004-11-18 Deem Mark E. Apparatus for treating asthma using neurotoxin
JP2007504910A (en) 2003-09-12 2007-03-08 ミノウ・メディカル・エルエルシイ Selectable biased reshaping and / or excision of atherosclerotic material
US20060025840A1 (en) * 2004-08-02 2006-02-02 Martin Willard Cooling tissue inside the body
US7704267B2 (en) 2004-08-04 2010-04-27 C. R. Bard, Inc. Non-entangling vena cava filter
US8396548B2 (en) 2008-11-14 2013-03-12 Vessix Vascular, Inc. Selective drug delivery in a lumen
US9713730B2 (en) 2004-09-10 2017-07-25 Boston Scientific Scimed, Inc. Apparatus and method for treatment of in-stent restenosis
US8021386B2 (en) * 2005-03-16 2011-09-20 Gore Enterprise Holdings, Inc. Controlled release mechanism for balloon catheters
US7967838B2 (en) 2005-05-12 2011-06-28 C. R. Bard, Inc. Removable embolus blood clot filter
US20060270981A1 (en) * 2005-05-13 2006-11-30 Leonilda Capuano Coiled injection tube
US8992515B2 (en) * 2005-05-13 2015-03-31 Medtronic Cryocath Lp Coolant injection tube
EP1906923B1 (en) 2005-07-22 2018-01-24 The Foundry, LLC Systems and methods for delivery of a therapeutic agent
CA2940038C (en) 2005-11-18 2018-08-28 C.R. Bard, Inc. Vena cava filter with filament
EP1968508B1 (en) 2005-12-22 2019-05-15 Hybernia Medical LLC Systems for intravascular cooling
US20070255098A1 (en) * 2006-01-19 2007-11-01 Capso Vision, Inc. System and method for in vivo imager with stabilizer
US20070249900A1 (en) * 2006-01-19 2007-10-25 Capso Vision, Inc. In vivo device with balloon stabilizer and valve
WO2007133366A2 (en) * 2006-05-02 2007-11-22 C. R. Bard, Inc. Vena cava filter formed from a sheet
US8019435B2 (en) 2006-05-02 2011-09-13 Boston Scientific Scimed, Inc. Control of arterial smooth muscle tone
US20090221955A1 (en) * 2006-08-08 2009-09-03 Bacoustics, Llc Ablative ultrasonic-cryogenic methods
US20080039727A1 (en) * 2006-08-08 2008-02-14 Eilaz Babaev Ablative Cardiac Catheter System
AU2007310991B2 (en) 2006-10-18 2013-06-20 Boston Scientific Scimed, Inc. System for inducing desirable temperature effects on body tissue
EP2954868A1 (en) 2006-10-18 2015-12-16 Vessix Vascular, Inc. Tuned rf energy and electrical tissue characterization for selective treatment of target tissues
WO2008049082A2 (en) 2006-10-18 2008-04-24 Minnow Medical, Inc. Inducing desirable temperature effects on body tissue
US10085798B2 (en) * 2006-12-29 2018-10-02 St. Jude Medical, Atrial Fibrillation Division, Inc. Ablation electrode with tactile sensor
US8226648B2 (en) 2007-12-31 2012-07-24 St. Jude Medical, Atrial Fibrillation Division, Inc. Pressure-sensitive flexible polymer bipolar electrode
US20080312644A1 (en) * 2007-06-14 2008-12-18 Boston Scientific Scimed, Inc. Cryogenic balloon ablation instruments and systems
EP3289992A1 (en) * 2007-11-21 2018-03-07 Adagio Medical, Inc. Flexible multi-tubular cryoprobe
EP2211743B1 (en) * 2007-11-21 2017-08-02 Adagio Medical, Inc. Flexible multi-tubular cryoprobe
US8424515B1 (en) * 2008-02-07 2013-04-23 Paragon Space Development Corporation Gas reconditioning systems
US8483831B1 (en) 2008-02-15 2013-07-09 Holaira, Inc. System and method for bronchial dilation
CA2719093A1 (en) * 2008-03-13 2009-09-17 Boston Scientific Scimed, Inc. Cryo-ablation refrigerant distribution catheter
WO2009128014A1 (en) * 2008-04-16 2009-10-22 Arbel Medical Ltd Cryosurgical instrument with enhanced heat exchange
US8814850B2 (en) * 2008-04-24 2014-08-26 Cryomedix, Llc Method and system for cryoablation treatment
EP2662046B1 (en) 2008-05-09 2023-03-15 Nuvaira, Inc. Systems and assemblies for treating a bronchial tree
JP5345678B2 (en) * 2008-05-15 2013-11-20 ボストン サイエンティフィック サイムド,インコーポレイテッド A device that adjusts the cryogenic ablation area by treating the tissue with cryogenic ablation
US20090299420A1 (en) * 2008-06-02 2009-12-03 Shuros Allan C Method and apparatus for cryotherapy and pacing preconditioning
US8939991B2 (en) 2008-06-08 2015-01-27 Hotspur Technologies, Inc. Apparatus and methods for removing obstructive material from body lumens
US9101382B2 (en) 2009-02-18 2015-08-11 Hotspur Technologies, Inc. Apparatus and methods for treating obstructions within body lumens
US8945160B2 (en) 2008-07-03 2015-02-03 Hotspur Technologies, Inc. Apparatus and methods for treating obstructions within body lumens
JP5233031B2 (en) * 2008-07-15 2013-07-10 株式会社デージーエス・コンピュータ Cryotherapy planning device and cryotherapy device
US8845627B2 (en) 2008-08-22 2014-09-30 Boston Scientific Scimed, Inc. Regulating pressure to lower temperature in a cryotherapy balloon catheter
WO2010033785A1 (en) * 2008-09-22 2010-03-25 Boston Scientific Scimed, Inc. Biasing a catheter balloon
US8465481B2 (en) * 2008-10-20 2013-06-18 Boston Scientific Scimed, Inc. Providing cryotherapy with a balloon catheter having a non-uniform thermal profile
CN102271603A (en) 2008-11-17 2011-12-07 明诺医学股份有限公司 Selective accumulation of energy with or without knowledge of tissue topography
US8382746B2 (en) 2008-11-21 2013-02-26 C2 Therapeutics, Inc. Cryogenic ablation system and method
US9149320B2 (en) * 2009-02-02 2015-10-06 Medtronic Cryocath Lp Isolation of pulmonary vein
US20120109057A1 (en) 2009-02-18 2012-05-03 Hotspur Technologies, Inc. Apparatus and methods for treating obstructions within body lumens
US8764740B2 (en) 2009-03-23 2014-07-01 Boston Scientific Scimed, Inc. Systems apparatus and methods for distributing coolant within a cryo-ablation device
DE102009018291A1 (en) * 2009-04-21 2010-10-28 Erbe Elektromedizin Gmbh Cryosurgical instrument
MX2012001288A (en) 2009-07-29 2012-06-19 Bard Inc C R Tubular filter.
US8702689B2 (en) 2009-09-01 2014-04-22 Boston Scientific Scimed, Inc. Systems and methods for twisting an expansion element of a cryoablation system
WO2011044387A2 (en) 2009-10-07 2011-04-14 The Board Of Regents Of The University Of Texas System Pressure-sensing medical devices, systems and methods, and methods of forming medical devices
CN102639077B (en) 2009-10-27 2015-05-13 赫莱拉公司 Delivery devices with coolable energy emitting assemblies
EP4111995A1 (en) 2009-11-11 2023-01-04 Nuvaira, Inc. Device for treating tissue and controlling stenosis
US8911439B2 (en) 2009-11-11 2014-12-16 Holaira, Inc. Non-invasive and minimally invasive denervation methods and systems for performing the same
DE102009053470A1 (en) * 2009-11-16 2011-05-26 Siemens Aktiengesellschaft Thermal ablation device, catheter, and method of performing a thermal ablation
US20110263921A1 (en) 2009-12-31 2011-10-27 Anthony Vrba Patterned Denervation Therapy for Innervated Renal Vasculature
US20110270238A1 (en) * 2009-12-31 2011-11-03 Raed Rizq Compliant Cryoballoon Apparatus for Denervating Ostia of the Renal Arteries
US8986293B2 (en) * 2010-01-27 2015-03-24 Medtronic Cryocath Lp Cryoballoon refrigerant dispersion control
KR101142715B1 (en) * 2010-03-29 2012-05-10 서울대학교산학협력단 Rectal Balloon Catheter for Cryotherapy Operation in Pelvis and controlling system thereof
EP2555699B1 (en) 2010-04-09 2019-04-03 Vessix Vascular, Inc. Power generating and control apparatus for the treatment of tissue
US9192790B2 (en) 2010-04-14 2015-11-24 Boston Scientific Scimed, Inc. Focused ultrasonic renal denervation
US8473067B2 (en) 2010-06-11 2013-06-25 Boston Scientific Scimed, Inc. Renal denervation and stimulation employing wireless vascular energy transfer arrangement
US9931152B2 (en) * 2010-07-27 2018-04-03 Medtronic Cryocath Lp Dual injection tube cryocatheter and method for using same
US9084609B2 (en) 2010-07-30 2015-07-21 Boston Scientific Scime, Inc. Spiral balloon catheter for renal nerve ablation
US20120029512A1 (en) 2010-07-30 2012-02-02 Willard Martin R Balloon with surface electrodes and integral cooling for renal nerve ablation
US9358365B2 (en) 2010-07-30 2016-06-07 Boston Scientific Scimed, Inc. Precision electrode movement control for renal nerve ablation
US9155589B2 (en) 2010-07-30 2015-10-13 Boston Scientific Scimed, Inc. Sequential activation RF electrode set for renal nerve ablation
US9463062B2 (en) 2010-07-30 2016-10-11 Boston Scientific Scimed, Inc. Cooled conductive balloon RF catheter for renal nerve ablation
US9408661B2 (en) 2010-07-30 2016-08-09 Patrick A. Haverkost RF electrodes on multiple flexible wires for renal nerve ablation
CN103547229B (en) 2010-08-05 2017-09-26 美敦力Af卢森堡有限责任公司 Cryogenic ablation device, the system and method modulated for renal nerve
DE102010037026A1 (en) * 2010-08-18 2012-02-23 Erbe Elektromedizin Gmbh Device for fluid-carrying connection of at least one application probe to a supply connection and handle for a surgical instrument
US8911434B2 (en) * 2010-10-22 2014-12-16 Medtronic Cryocath Lp Balloon catheter with deformable fluid delivery conduit
US8974451B2 (en) 2010-10-25 2015-03-10 Boston Scientific Scimed, Inc. Renal nerve ablation using conductive fluid jet and RF energy
US9060754B2 (en) 2010-10-26 2015-06-23 Medtronic Ardian Luxembourg S.A.R.L. Neuromodulation cryotherapeutic devices and associated systems and methods
US20120136344A1 (en) 2010-10-26 2012-05-31 Medtronic Ardian Luxembourg S.A.R.L. Neuromodulation cryotherapeutic devices and associated systems and methods
US9220558B2 (en) 2010-10-27 2015-12-29 Boston Scientific Scimed, Inc. RF renal denervation catheter with multiple independent electrodes
US9220555B2 (en) * 2010-10-28 2015-12-29 Medtronic Ablation Frontiers Llc Cryo-ablation device with deployable injection tube
US9028485B2 (en) 2010-11-15 2015-05-12 Boston Scientific Scimed, Inc. Self-expanding cooling electrode for renal nerve ablation
US9089350B2 (en) 2010-11-16 2015-07-28 Boston Scientific Scimed, Inc. Renal denervation catheter with RF electrode and integral contrast dye injection arrangement
US9668811B2 (en) 2010-11-16 2017-06-06 Boston Scientific Scimed, Inc. Minimally invasive access for renal nerve ablation
US9326751B2 (en) 2010-11-17 2016-05-03 Boston Scientific Scimed, Inc. Catheter guidance of external energy for renal denervation
US9060761B2 (en) 2010-11-18 2015-06-23 Boston Scientific Scime, Inc. Catheter-focused magnetic field induced renal nerve ablation
US9192435B2 (en) 2010-11-22 2015-11-24 Boston Scientific Scimed, Inc. Renal denervation catheter with cooled RF electrode
US9023034B2 (en) 2010-11-22 2015-05-05 Boston Scientific Scimed, Inc. Renal ablation electrode with force-activatable conduction apparatus
US20120157993A1 (en) 2010-12-15 2012-06-21 Jenson Mark L Bipolar Off-Wall Electrode Device for Renal Nerve Ablation
US9220561B2 (en) 2011-01-19 2015-12-29 Boston Scientific Scimed, Inc. Guide-compatible large-electrode catheter for renal nerve ablation with reduced arterial injury
US9439707B2 (en) * 2011-03-25 2016-09-13 Medtronic Cryocath Lp Spray nozzle design for a catheter
WO2012161875A1 (en) 2011-04-08 2012-11-29 Tyco Healthcare Group Lp Iontophoresis drug delivery system and method for denervation of the renal sympathetic nerve and iontophoretic drug delivery
SG194150A1 (en) 2011-04-13 2013-11-29 Cryotherapeutics Gmbh Plaque stabilisation using cryoenergy
US9237925B2 (en) 2011-04-22 2016-01-19 Ablative Solutions, Inc. Expandable catheter system for peri-ostial injection and muscle and nerve fiber ablation
US8663190B2 (en) 2011-04-22 2014-03-04 Ablative Solutions, Inc. Expandable catheter system for peri-ostial injection and muscle and nerve fiber ablation
EP2701623B1 (en) 2011-04-25 2016-08-17 Medtronic Ardian Luxembourg S.à.r.l. Apparatus related to constrained deployment of cryogenic balloons for limited cryogenic ablation of vessel walls
US9492113B2 (en) 2011-07-15 2016-11-15 Boston Scientific Scimed, Inc. Systems and methods for monitoring organ activity
AU2012283908B2 (en) 2011-07-20 2017-02-16 Boston Scientific Scimed, Inc. Percutaneous devices and methods to visualize, target and ablate nerves
AU2012287189B2 (en) 2011-07-22 2016-10-06 Boston Scientific Scimed, Inc. Nerve modulation system with a nerve modulation element positionable in a helical guide
US20130053792A1 (en) * 2011-08-24 2013-02-28 Ablative Solutions, Inc. Expandable catheter system for vessel wall injection and muscle and nerve fiber ablation
US9056185B2 (en) 2011-08-24 2015-06-16 Ablative Solutions, Inc. Expandable catheter system for fluid injection into and deep to the wall of a blood vessel
US9283110B2 (en) * 2011-09-20 2016-03-15 Zoll Circulation, Inc. Patient temperature control catheter with outer sleeve cooled by inner sleeve
US10045881B2 (en) * 2011-09-28 2018-08-14 Zoll Circulation, Inc. Patient temperature control catheter with helical heat exchange paths
US9265459B2 (en) * 2011-10-07 2016-02-23 Boston Scientific Scimed, Inc. Methods and systems for detection and thermal treatment of lower urinary tract conditions
US9186210B2 (en) 2011-10-10 2015-11-17 Boston Scientific Scimed, Inc. Medical devices including ablation electrodes
US9420955B2 (en) 2011-10-11 2016-08-23 Boston Scientific Scimed, Inc. Intravascular temperature monitoring system and method
WO2013055815A1 (en) 2011-10-11 2013-04-18 Boston Scientific Scimed, Inc. Off -wall electrode device for nerve modulation
US9364284B2 (en) 2011-10-12 2016-06-14 Boston Scientific Scimed, Inc. Method of making an off-wall spacer cage
EP2768568B1 (en) 2011-10-18 2020-05-06 Boston Scientific Scimed, Inc. Integrated crossing balloon catheter
EP2768563B1 (en) 2011-10-18 2016-11-09 Boston Scientific Scimed, Inc. Deflectable medical devices
CN104023662B (en) 2011-11-08 2018-02-09 波士顿科学西美德公司 Hole portion renal nerve melts
US9119600B2 (en) 2011-11-15 2015-09-01 Boston Scientific Scimed, Inc. Device and methods for renal nerve modulation monitoring
US9119632B2 (en) 2011-11-21 2015-09-01 Boston Scientific Scimed, Inc. Deflectable renal nerve ablation catheter
KR102067583B1 (en) 2011-12-09 2020-01-17 메타벤션, 인크. Therapeutic neuromodulation of the hepatic system
US9265969B2 (en) 2011-12-21 2016-02-23 Cardiac Pacemakers, Inc. Methods for modulating cell function
DE102011057009B4 (en) * 2011-12-23 2019-02-21 Adceris Gmbh & Co. Kg Medical device for endovascular cooling and / or heating of blood
EP3138521B1 (en) 2011-12-23 2019-05-29 Vessix Vascular, Inc. Apparatuses for remodeling tissue of or adjacent to a body passage
US9433760B2 (en) 2011-12-28 2016-09-06 Boston Scientific Scimed, Inc. Device and methods for nerve modulation using a novel ablation catheter with polymeric ablative elements
US9050106B2 (en) 2011-12-29 2015-06-09 Boston Scientific Scimed, Inc. Off-wall electrode device and methods for nerve modulation
US9220556B2 (en) 2012-01-27 2015-12-29 Medtronic Cryocath Lp Balloon design to enhance cooling uniformity
US9883906B2 (en) 2012-04-22 2018-02-06 Newuro, B.V. Bladder tissue modification for overactive bladder disorders
US10610294B2 (en) 2012-04-22 2020-04-07 Newuro, B.V. Devices and methods for transurethral bladder partitioning
JP2015128457A (en) * 2012-04-27 2015-07-16 テルモ株式会社 embolus discharge catheter
ES2741699T3 (en) 2012-04-27 2020-02-12 Medtronic Ardian Luxembourg Cryotherapeutic devices for renal neuromodulation
US9241752B2 (en) 2012-04-27 2016-01-26 Medtronic Ardian Luxembourg S.A.R.L. Shafts with pressure relief in cryotherapeutic catheters and associated devices, systems, and methods
WO2013169927A1 (en) 2012-05-08 2013-11-14 Boston Scientific Scimed, Inc. Renal nerve modulation devices
DE102012104381A1 (en) * 2012-05-22 2013-11-28 Acandis Gmbh & Co. Kg Medical system for the endovascular tempering of blood and medical catheters
WO2014014955A1 (en) * 2012-07-17 2014-01-23 Prospex Medical III Devices to reduce myocardial reperfusion injury
WO2014032016A1 (en) 2012-08-24 2014-02-27 Boston Scientific Scimed, Inc. Intravascular catheter with a balloon comprising separate microporous regions
CN104780859B (en) 2012-09-17 2017-07-25 波士顿科学西美德公司 Self-positioning electrode system and method for renal regulation
WO2014047454A2 (en) 2012-09-21 2014-03-27 Boston Scientific Scimed, Inc. Self-cooling ultrasound ablation catheter
WO2014047411A1 (en) 2012-09-21 2014-03-27 Boston Scientific Scimed, Inc. System for nerve modulation and innocuous thermal gradient nerve block
US20140088584A1 (en) * 2012-09-26 2014-03-27 Boston Scientific Scimed, Inc. Medical device balloon catheter
US10835305B2 (en) 2012-10-10 2020-11-17 Boston Scientific Scimed, Inc. Renal nerve modulation devices and methods
US10945787B2 (en) 2012-10-29 2021-03-16 Ablative Solutions, Inc. Peri-vascular tissue ablation catheters
US10226278B2 (en) 2012-10-29 2019-03-12 Ablative Solutions, Inc. Method for painless renal denervation using a peri-vascular tissue ablation catheter with support structures
US10881458B2 (en) 2012-10-29 2021-01-05 Ablative Solutions, Inc. Peri-vascular tissue ablation catheters
US9554849B2 (en) 2012-10-29 2017-01-31 Ablative Solutions, Inc. Transvascular method of treating hypertension
US9301795B2 (en) 2012-10-29 2016-04-05 Ablative Solutions, Inc. Transvascular catheter for extravascular delivery
US9526827B2 (en) 2012-10-29 2016-12-27 Ablative Solutions, Inc. Peri-vascular tissue ablation catheter with support structures
US10736656B2 (en) 2012-10-29 2020-08-11 Ablative Solutions Method for painless renal denervation using a peri-vascular tissue ablation catheter with support structures
US9095321B2 (en) 2012-11-21 2015-08-04 Medtronic Ardian Luxembourg S.A.R.L. Cryotherapeutic devices having integral multi-helical balloons and methods of making the same
DE102012111581B4 (en) * 2012-11-29 2018-05-09 Acandis Gmbh & Co. Kg Medical tempering for endovascular tempering of blood and system with such a tempering
US9017317B2 (en) 2012-12-06 2015-04-28 Medtronic Ardian Luxembourg S.A.R.L. Refrigerant supply system for cryotherapy including refrigerant recompression and associated devices, systems, and methods
US9398933B2 (en) 2012-12-27 2016-07-26 Holaira, Inc. Methods for improving drug efficacy including a combination of drug administration and nerve modulation
US9693821B2 (en) 2013-03-11 2017-07-04 Boston Scientific Scimed, Inc. Medical devices for modulating nerves
WO2014163987A1 (en) 2013-03-11 2014-10-09 Boston Scientific Scimed, Inc. Medical devices for modulating nerves
US9808311B2 (en) 2013-03-13 2017-11-07 Boston Scientific Scimed, Inc. Deflectable medical devices
US9072500B2 (en) * 2013-03-13 2015-07-07 Thach Duong Therapeutic cryoablation system
AU2014237950B2 (en) 2013-03-15 2017-04-13 Boston Scientific Scimed, Inc. Control unit for use with electrode pads and a method for estimating an electrical leakage
JP6220044B2 (en) 2013-03-15 2017-10-25 ボストン サイエンティフィック サイムド,インコーポレイテッドBoston Scientific Scimed,Inc. Medical device for renal nerve ablation
US10265122B2 (en) 2013-03-15 2019-04-23 Boston Scientific Scimed, Inc. Nerve ablation devices and related methods of use
US10390879B2 (en) 2013-05-20 2019-08-27 Mayo Foundation For Medical Education And Research Devices and methods for ablation of tissue
WO2014205399A1 (en) 2013-06-21 2014-12-24 Boston Scientific Scimed, Inc. Medical devices for renal nerve ablation having rotatable shafts
WO2014205388A1 (en) 2013-06-21 2014-12-24 Boston Scientific Scimed, Inc. Renal denervation balloon catheter with ride along electrode support
US9707036B2 (en) 2013-06-25 2017-07-18 Boston Scientific Scimed, Inc. Devices and methods for nerve modulation using localized indifferent electrodes
EP3016605B1 (en) 2013-07-01 2019-06-05 Boston Scientific Scimed, Inc. Medical devices for renal nerve ablation
CN105377170A (en) 2013-07-11 2016-03-02 波士顿科学国际有限公司 Medical device with stretchable electrode assemblies
US10660698B2 (en) 2013-07-11 2020-05-26 Boston Scientific Scimed, Inc. Devices and methods for nerve modulation
CN105682594B (en) 2013-07-19 2018-06-22 波士顿科学国际有限公司 Helical bipolar electrodes renal denervation dominates air bag
WO2015013301A1 (en) 2013-07-22 2015-01-29 Boston Scientific Scimed, Inc. Renal nerve ablation catheter having twist balloon
WO2015013205A1 (en) 2013-07-22 2015-01-29 Boston Scientific Scimed, Inc. Medical devices for renal nerve ablation
EP4049605A1 (en) 2013-08-22 2022-08-31 Boston Scientific Scimed Inc. Flexible circuit having improved adhesion to a renal nerve modulation balloon
CN105555218B (en) 2013-09-04 2019-01-15 波士顿科学国际有限公司 With radio frequency (RF) foley's tube rinsed with cooling capacity
CN105530885B (en) 2013-09-13 2020-09-22 波士顿科学国际有限公司 Ablation balloon with vapor deposited covering
EP3049005B1 (en) 2013-09-24 2022-08-10 Adagio Medical, Inc. Endovascular near critical fluid based cryoablation catheter
US11246654B2 (en) 2013-10-14 2022-02-15 Boston Scientific Scimed, Inc. Flexible renal nerve ablation devices and related methods of use and manufacture
EP3057511B1 (en) 2013-10-14 2022-12-28 Adagio Medical, Inc. Endoesophageal balloon catheter and system
US9687166B2 (en) 2013-10-14 2017-06-27 Boston Scientific Scimed, Inc. High resolution cardiac mapping electrode array catheter
CN105636537B (en) 2013-10-15 2018-08-17 波士顿科学国际有限公司 Medical instrument sacculus
US9770606B2 (en) 2013-10-15 2017-09-26 Boston Scientific Scimed, Inc. Ultrasound ablation catheter with cooling infusion and centering basket
EP3057521B1 (en) 2013-10-18 2020-03-25 Boston Scientific Scimed, Inc. Balloon catheters with flexible conducting wires
CN105682856A (en) 2013-10-22 2016-06-15 东曹Smd有限公司 Optimized textured surfaces and methods of optimizing
US9949652B2 (en) 2013-10-25 2018-04-24 Ablative Solutions, Inc. Apparatus for effective ablation and nerve sensing associated with denervation
US9931046B2 (en) 2013-10-25 2018-04-03 Ablative Solutions, Inc. Intravascular catheter with peri-vascular nerve activity sensors
US10517666B2 (en) 2013-10-25 2019-12-31 Ablative Solutions, Inc. Apparatus for effective ablation and nerve sensing associated with denervation
US10271898B2 (en) 2013-10-25 2019-04-30 Boston Scientific Scimed, Inc. Embedded thermocouple in denervation flex circuit
US10098685B2 (en) 2013-10-30 2018-10-16 Medtronic Cryocath Lp Feedback system for cryoablation of cardiac tissue
WO2015066521A1 (en) * 2013-11-01 2015-05-07 C2 Therapeutics, Inc. Cryogenic balloon ablation system
US9993279B2 (en) * 2013-12-06 2018-06-12 Medtronic Cryocath Lp Distal balloon impedance and temperature recording to monitor pulmonary vein ablation and occlusion
US9468485B2 (en) 2013-12-12 2016-10-18 Medtronic Cryocath Lp Real-time lesion formation assessment
CN105899157B (en) 2014-01-06 2019-08-09 波士顿科学国际有限公司 Tear-proof flexible circuit assembly
US10441338B2 (en) 2014-01-14 2019-10-15 Medtronic Cryocath Lp Balloon catheter with fluid injection elements
CN106572881B (en) 2014-02-04 2019-07-26 波士顿科学国际有限公司 Substitution of the heat sensor on bipolar electrode is placed
US11000679B2 (en) 2014-02-04 2021-05-11 Boston Scientific Scimed, Inc. Balloon protection and rewrapping devices and related methods of use
US10492842B2 (en) 2014-03-07 2019-12-03 Medtronic Ardian Luxembourg S.A.R.L. Monitoring and controlling internally administered cryotherapy
WO2015160574A1 (en) 2014-04-17 2015-10-22 Adagio Medical, Inc. Endovascular near critical fluid based cryoablation catheter having plurality of preformed treatment shapes
US10709490B2 (en) 2014-05-07 2020-07-14 Medtronic Ardian Luxembourg S.A.R.L. Catheter assemblies comprising a direct heating element for renal neuromodulation and associated systems and methods
JP6607938B2 (en) 2014-11-13 2019-11-20 アダージョ メディカル インコーポレイテッド Pressure-regulated refrigeration ablation system and related method
EP3226793A4 (en) * 2014-12-01 2018-11-07 Vesica E.K. Therapeutics Ltd Device and method for ablative treatment of targeted areas within a body lumen
US9414878B1 (en) 2015-05-15 2016-08-16 C2 Therapeutics, Inc. Cryogenic balloon ablation system
DE102015114044A1 (en) * 2015-08-25 2017-03-02 Acandis Gmbh & Co. Kg Medical aspiration system
EP3349676A4 (en) 2015-09-18 2019-05-15 Adagio Medical, Inc. Tissue contact verification system
US20170086901A1 (en) * 2015-09-29 2017-03-30 Cryomedix, Llc Catheter for renal denervation
US10864031B2 (en) 2015-11-30 2020-12-15 Adagio Medical, Inc. Ablation method for creating elongate continuous lesions enclosing multiple vessel entries
US11871977B2 (en) 2016-05-19 2024-01-16 Csa Medical, Inc. Catheter extension control
WO2017200877A1 (en) 2016-05-20 2017-11-23 C2 Therapeutics, Inc. Cryogenic ablation system with rotatable and translatable catheter
US10524859B2 (en) 2016-06-07 2020-01-07 Metavention, Inc. Therapeutic tissue modulation devices and methods
KR101811136B1 (en) 2016-07-26 2017-12-20 이화여자대학교 산학협력단 A catheter for cooling the interior side and lacuna of bodily tissue
EP3323366B1 (en) * 2016-11-18 2020-09-30 Erbe Elektromedizin GmbH Cryoprobe and method for producing same
US10758406B2 (en) 2016-12-30 2020-09-01 Zoll Circulation, Inc. High efficiency heat exchange catheters for control of patient body temperature
JP6946444B2 (en) * 2017-02-10 2021-10-06 セント・ジュード・メディカル,カーディオロジー・ディヴィジョン,インコーポレイテッド Equipment and methods for cryoablation
EP3641662A4 (en) 2017-06-23 2021-06-23 Jihad A. Mustapha Peripheral vascular filtration systems and methods
US11564725B2 (en) 2017-09-05 2023-01-31 Adagio Medical, Inc. Ablation catheter having a shape memory stylet
CN116869642A (en) * 2017-11-30 2023-10-13 波士顿科学医学有限公司 Compensation assembly for fluid injection line of intravascular catheter system
CA3087772A1 (en) 2018-01-10 2019-07-18 Adagio Medical, Inc. Cryoablation element with conductive liner
US11185360B2 (en) 2018-02-21 2021-11-30 United States Endoscopy Group, Inc. Devices and methods for fluid distribution from a catheter
US10849685B2 (en) 2018-07-18 2020-12-01 Ablative Solutions, Inc. Peri-vascular tissue access catheter with locking handle
GB2579673A (en) * 2018-12-12 2020-07-01 Haemair Ltd Cell washing apparatus
CN109498144A (en) * 2018-12-25 2019-03-22 心诺普医疗技术(北京)有限公司 Cryoablation conduit
WO2020180686A1 (en) 2019-03-01 2020-09-10 Rampart Health, L.L.C. Pharmaceutical composition combining immunologic and chemotherapeutic method for the treatment of cancer
US20200330665A1 (en) * 2019-04-19 2020-10-22 Abiomed, Inc. Cooled mechanical circulatory support system and method of operation
JP2024506914A (en) 2021-02-12 2024-02-15 ランパート ヘルス リミテッド ライアビリティー カンパニー Therapeutic compositions and methods combining multiplex immunotherapy and cancer vaccines for the treatment of cancer
WO2023006509A1 (en) * 2021-07-29 2023-02-02 Medtronic Ireland Manufacturing Unlimited Company Manifold for cryogenic balloon catheter

Family Cites Families (66)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3125096A (en) 1964-03-17 Compressor
GB1019028A (en) 1963-10-02 1966-02-02 Edward Thomas Armstrong Hypothermia apparatus
US3712306A (en) 1971-11-09 1973-01-23 Brymill Corp Cryogenic application chamber and method
US4367743A (en) * 1976-05-24 1983-01-11 Virginia M. Gregory Self-pressurizing cryogenic apparatus and method
US4211233A (en) * 1978-01-05 1980-07-08 Lin Edward D Urethral catheter
IT1159748B (en) 1978-06-23 1987-03-04 Bracco Dario CRIOTHERAPY APPARATUS
DE2831199C3 (en) 1978-07-15 1981-01-08 Erbe Elektromedizin Gmbh & Co Kg, 7400 Tuebingen Cryosurgical device
FR2547911B1 (en) 1983-06-27 1985-12-13 Lacroix E Tous Artifices DISPERSABLE ANTICHAR MINE WITH AUTOMATIC POSITIONING
US4784133A (en) 1987-01-28 1988-11-15 Mackin Robert A Working well balloon angioscope and method
US4860744A (en) 1987-11-02 1989-08-29 Raj K. Anand Thermoelectrically controlled heat medical catheter
US5147355A (en) 1988-09-23 1992-09-15 Brigham And Womens Hospital Cryoablation catheter and method of performing cryoablation
US5108390A (en) 1988-11-14 1992-04-28 Frigitronics, Inc. Flexible cryoprobe
US5019042A (en) 1988-11-23 1991-05-28 Harvinder Sahota Balloon catheters
GB2226497B (en) 1988-12-01 1992-07-01 Spembly Medical Ltd Cryosurgical probe
US5624392A (en) 1990-05-11 1997-04-29 Saab; Mark A. Heat transfer catheters and methods of making and using same
US5342301A (en) 1992-08-13 1994-08-30 Advanced Polymers Incorporated Multi-lumen balloons and catheters made therewith
US5190540A (en) 1990-06-08 1993-03-02 Cardiovascular & Interventional Research Consultants, Inc. Thermal balloon angioplasty
ZA917281B (en) 1990-09-26 1992-08-26 Cryomedical Sciences Inc Cryosurgical instrument and system and method of cryosurgery
US5139496A (en) 1990-12-20 1992-08-18 Hed Aharon Z Ultrasonic freeze ablation catheters and probes
US5520682A (en) 1991-09-06 1996-05-28 Cryomedical Sciences, Inc. Cryosurgical instrument with vent means and method using same
US5423807A (en) 1992-04-16 1995-06-13 Implemed, Inc. Cryogenic mapping and ablation catheter
US5281215A (en) 1992-04-16 1994-01-25 Implemed, Inc. Cryogenic catheter
US5443470A (en) 1992-05-01 1995-08-22 Vesta Medical, Inc. Method and apparatus for endometrial ablation
US5334193A (en) 1992-11-13 1994-08-02 American Cardiac Ablation Co., Inc. Fluid cooled ablation catheter
US5348554A (en) * 1992-12-01 1994-09-20 Cardiac Pathways Corporation Catheter for RF ablation with cooled electrode
US5335669A (en) 1993-04-21 1994-08-09 American Medical Systems, Inc. Rectal probe with temperature sensor
US5454807A (en) 1993-05-14 1995-10-03 Boston Scientific Corporation Medical treatment of deeply seated tissue using optical radiation
NL9301851A (en) 1993-10-26 1995-05-16 Cordis Europ Cryo-ablation catheter.
GB2283678B (en) 1993-11-09 1998-06-03 Spembly Medical Ltd Cryosurgical catheter probe
US5501681A (en) 1993-11-12 1996-03-26 Neuwirth; Robert S. Intrauterine cryoablation cauterizing apparatus and method
US5417689A (en) 1994-01-18 1995-05-23 Cordis Corporation Thermal balloon catheter and method
US5536252A (en) 1994-10-28 1996-07-16 Intelliwire, Inc. Angioplasty catheter with multiple coaxial balloons
US5957917A (en) 1995-01-20 1999-09-28 Miravant Systems, Inc. Transluminal hyperthermia catheter and method for use
WO1997012557A1 (en) 1995-10-06 1997-04-10 Kelleher Brian S Steerable, flexible forceps device
US5925038A (en) 1996-01-19 1999-07-20 Ep Technologies, Inc. Expandable-collapsible electrode structures for capacitive coupling to tissue
US6464697B1 (en) * 1998-02-19 2002-10-15 Curon Medical, Inc. Stomach and adjoining tissue regions in the esophagus
US5910104A (en) 1996-12-26 1999-06-08 Cryogen, Inc. Cryosurgical probe with disposable sheath
US5968059A (en) 1997-03-06 1999-10-19 Scimed Life Systems, Inc. Transmyocardial revascularization catheter and method
US5868735A (en) 1997-03-06 1999-02-09 Scimed Life Systems, Inc. Cryoplasty device and method
US7220257B1 (en) * 2000-07-25 2007-05-22 Scimed Life Systems, Inc. Cryotreatment device and method
US6012457A (en) 1997-07-08 2000-01-11 The Regents Of The University Of California Device and method for forming a circumferential conduction block in a pulmonary vein
US6024740A (en) 1997-07-08 2000-02-15 The Regents Of The University Of California Circumferential ablation device assembly
US6547788B1 (en) * 1997-07-08 2003-04-15 Atrionx, Inc. Medical device with sensor cooperating with expandable member
US5902299A (en) * 1997-07-29 1999-05-11 Jayaraman; Swaminathan Cryotherapy method for reducing tissue injury after balloon angioplasty or stent implantation
US5971979A (en) 1997-12-02 1999-10-26 Odyssey Technologies, Inc. Method for cryogenic inhibition of hyperplasia
US6440128B1 (en) * 1998-01-14 2002-08-27 Curon Medical, Inc. Actively cooled electrode assemblies for forming lesions to treat dysfunction in sphincters and adjoining tissue regions
US6231595B1 (en) * 1998-03-31 2001-05-15 Innercool Therapies, Inc. Circulating fluid hypothermia method and apparatus
US7291144B2 (en) 1998-03-31 2007-11-06 Innercool Therapies, Inc. Method and device for performing cooling- or cryo-therapies for, e.g., angioplasty with reduced restenosis or pulmonary vein cell necrosis to inhibit atrial fibrillation
US6685732B2 (en) 1998-03-31 2004-02-03 Innercool Therapies, Inc. Method and device for performing cooling- or cryo-therapies for, e.g., angioplasty with reduced restenosis or pulmonary vein cell necrosis to inhibit atrial fibrillation employing microporous balloon
US6106518A (en) 1998-04-09 2000-08-22 Cryocath Technologies, Inc. Variable geometry tip for a cryosurgical ablation device
GB2337000B (en) 1998-04-30 2000-08-09 Spembly Medical Ltd Improvements relating to cooled probes
GB2336782A (en) 1998-04-30 1999-11-03 Spembly Medical Ltd Cryosurgical apparatus
AU4432799A (en) 1998-06-19 2000-01-05 Endocare, Inc. Sheath, cryoprobe, and methods for use
US6428563B1 (en) * 2000-01-21 2002-08-06 Radiant Medical, Inc. Heat exchange catheter with improved insulated region
US6335029B1 (en) * 1998-08-28 2002-01-01 Scimed Life Systems, Inc. Polymeric coatings for controlled delivery of active agents
US6348067B1 (en) * 1998-11-25 2002-02-19 Israel Aircraft Industries Ltd. Method and system with shape memory heating apparatus for temporarily supporting a tubular organ
WO2000047118A1 (en) 1999-02-10 2000-08-17 Swaminathan Jayaraman Balloon catheter for cryotherapy and method of using same
US6432102B2 (en) * 1999-03-15 2002-08-13 Cryovascular Systems, Inc. Cryosurgical fluid supply
US6264679B1 (en) * 1999-08-20 2001-07-24 Radiant Medical, Inc. Heat exchange catheter with discrete heat exchange elements
US6283959B1 (en) 1999-08-23 2001-09-04 Cyrocath Technologies, Inc. Endovascular cryotreatment catheter
US6542781B1 (en) 1999-11-22 2003-04-01 Scimed Life Systems, Inc. Loop structures for supporting diagnostic and therapeutic elements in contact with body tissue
US6529756B1 (en) * 1999-11-22 2003-03-04 Scimed Life Systems, Inc. Apparatus for mapping and coagulating soft tissue in or around body orifices
US6551274B2 (en) 2000-02-29 2003-04-22 Biosense Webster, Inc. Cryoablation catheter with an expandable cooling chamber
US6673066B2 (en) * 2000-11-10 2004-01-06 Cardiostream, Inc. Apparatus and method to diagnose and treat vulnerable plaque
US6666858B2 (en) 2001-04-12 2003-12-23 Scimed Life Systems, Inc. Cryo balloon for atrial ablation
KR101912960B1 (en) 2010-10-25 2018-10-29 메드트로닉 아르디언 룩셈부르크 에스에이알엘 Catheter Appratuses having Multi-Electrode Arrays for Renal Neuromodulation and Associated Systems and Methods

Also Published As

Publication number Publication date
EP1303226B1 (en) 2006-09-06
DE60122897T2 (en) 2007-04-12
US7220257B1 (en) 2007-05-22
WO2002007625A3 (en) 2002-04-18
JP4833494B2 (en) 2011-12-07
US20070250050A1 (en) 2007-10-25
DE60122897D1 (en) 2006-10-19
US20110282272A1 (en) 2011-11-17
ATE338517T1 (en) 2006-09-15
AU2001281280A1 (en) 2002-02-05
CA2419107C (en) 2012-01-17
EP1303226A2 (en) 2003-04-23
ES2271060T3 (en) 2007-04-16
US20150018904A1 (en) 2015-01-15
US8409266B2 (en) 2013-04-02
JP2004516042A (en) 2004-06-03
WO2002007625A2 (en) 2002-01-31
US8845707B2 (en) 2014-09-30
US20130238064A1 (en) 2013-09-12
US8012147B2 (en) 2011-09-06
WO2002007625A9 (en) 2003-10-23

Similar Documents

Publication Publication Date Title
CA2419107A1 (en) Cryotreatment device and method
US11357563B2 (en) Method and apparatus for inflating and deflating balloon catheters
US9555223B2 (en) Method and apparatus for inflating and deflating balloon catheters
US6908462B2 (en) Apparatus and method for cryogenic inhibition of hyperplasia
CA2673180C (en) Method and apparatus for inflating and deflating balloon catheters
US6283959B1 (en) Endovascular cryotreatment catheter
US8672919B2 (en) Dual balloon catheter assembly
US8439906B2 (en) Regulating internal pressure of a cryotherapy balloon catheter

Legal Events

Date Code Title Description
EEER Examination request
MKEX Expiry

Effective date: 20210618